
Gradient descent

Irène Waldspurger

October 8, 2019

1 Definition of gradient descent

Let us assume that we want to find a minimizer of a function f : Rn → R :

find x∗ such that f(x∗) = min
x∈Rn

f(x). (1)

In all the lecture, we will assume that a minimizer exists, and denote it x∗
1.

1.1 Motivation and definition

An intuitively reasonable strategy to solve Problem (1) is to start from
an arbitrary point x0 ∈ Rn, gather some information on f around x0, and use
it to find another point x1, hopefully closer to a minimizer than x0. Doing
that repeatedly yields a sequence of points (xt)t∈N. If everything goes well,

f(xt)
t→+∞→ f(x∗),

that is, for large t, xt is an approximate minimizer of f .
We now assume that f is differentiable.

Définition 1.1. For any x, the gradient of f at x is

∇f(x)
def
=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
∈ Rn.

Proposition 1.2 (Informal). For any x ∈ Rn, the value of f around x can
be approximated by

∀y, f(y) ≈ f(x) + 〈∇f(x), y − x〉 . (2)

1. At least, we denote one of them by x∗ : The minimizer may not be unique.

1

Therefore, around xt, the direction along which f decays the most is
−∇f(xt). A sensible definition for xt+1 from xt is thus

xt+1 = xt − αt∇f(xt),

where αt is a positive number, called the stepsize, which controls the distance
between xt+1 and xt.

Algorithm 1 Gradient descent

Require: A starting point x0, a number of iterations T , a sequence of
stepsizes (αt)0≤t≤T−1
for t = 0, . . . , T − 1 do

Define xt+1 = xt − αt∇f(xt).
end for
return xT

The main goal of today’s lecture is to discuss under which hypotheses on
f we can ensure that f(xt) goes to f(x∗) when t goes to +∞ and, under
these hypotheses, what we can say about the convergence speed.

1.2 Example : quadratic function

Let f be defined as

∀x ∈ Rn, f(x) =
1

2
〈x,Mx〉+ 〈x, b〉 ,

where M is a symmetric n× n matrix, and b belongs to Rn.

Proposition 1.3. For any x ∈ Rn,

∇f(x) = Mx+ b.

Démonstration. Let x ∈ Rn be fixed. We must compute, for any k ∈ {1, . . . , n},

(∇f(x))k =
∂f

∂xk
(x) = lim

h→0

f(x+ hek)− f(x)

h
,

where ek denotes the k-th vector of the canonical basis.

2

We observe that, for any ∆ ∈ Rn,

f(x+ ∆)− f(x) =
1

2
〈x+ ∆,M(x+ ∆)〉+ 〈x+ ∆, b〉 − 1

2
〈x,Mx〉 − 〈x, b〉

=
1

2
〈∆,Mx〉+

1

2
〈x,M∆〉+ 〈∆,M∆〉+ 〈∆, b〉

= 〈∆,Mx+ b〉+
1

2
〈∆,M∆〉 .

Therefore, for any k ∈ {1, . . . , n},

(∇f(x))k = lim
h→0

h 〈ek,Mx+ b〉+ h2

2
〈ek,M∆〉

h

= lim
h→0

(
〈ek,Mx+ b〉+

h

2
〈ek,M∆〉

)
= 〈ek,Mx+ b〉
= (Mx+ b)k,

so ∇f(x) = Mx+ b.

Assuming M to be invertible, we see that the only point where the
gradient is zero is −M−1b. The only minimizer of f is therefore x∗ = −M−1b.
For any t, the t+ 1-th gradient descent iterate is thus defined by

xt+1 = xt − αt(Mxt + b) = (Id− αtM)xt − αtb,
that is, xt+1 − x∗ = (Id− αtM)(xt − x∗) + αtMx∗ − αtb

= (Id− αtM)(xt − x∗).

1.3 Choice of stepsizes

Properly choosing the stepsizes (αt)t∈N is crucial : if they are too large,
then xt+1 is outside the domain where the approximation (2) holds, and the
algorithm may diverge. On the contrary, if they are too small, xt needs many
time steps to move away from x0, and convergence can be slow.

What a good stepsize choice is depends on the properties of f . Let us
however mention some common strategies :

1. Fixed schedule : the stepsizes are chosen in advance ; αt generally depends
on t through a simple equation, like

∀t, αt = η, for some η > 0, (Constant stepsize)

3

or ∀t, αt =
1

t+ 1
. (Monotonically decreasing stepsize)

2. Exact line search : for any t, choose αt such that

f(xt − αt∇f(xt)) = min
a∈R

f(xt − a∇f(xt)).

3. Backtracking line search : unless f has very particular properties, it is
a priori difficult to minimize f on a line. The exact line search strategy
is therefore difficult to implement. Instead, one can simply choose αt
such that f(xt − αt∇f(xt)) is “sufficiently smaller than f(xt)” The
approximation (2) implies, for αt small enough,

f(xt − αt∇f(xt)) ≈ f(xt)− αt||∇f(xt)||2.

If we consider that “being sufficiently smaller than f(xt)” means that
the previous approximation holds, up to the introduction of a multiplicative
constant, the following algorithm describes a way to find a suitable αt.

Algorithm 2 Backtracking line search

Require: Parameters c, τ ∈]0; 1[, maximal stepsize value amax
Define αt = amax.
while f(xt − αt∇f(xt)) > f(xt)− cαt||∇f(xt)||2 do

Set αt = ταt.
end while
return αt

In this lecture, we will restrict ourselves to constant stepsizes.

2 Convergence analysis

Recall that the goal of gradient descent is, after a sufficient number of
steps, to obtain an approximate minimizer of f . Formally, we want

f(xt)
t→+∞→ f(x∗) = min f

and, if possible, we want the convergence rate to be fast.

4

2.1 Smooth functions

A natural idea to understand the behavior of (f(xt))t∈N is to find an upper
bound for f(xt+1) that depends on f(xt), and apply it iteratively to upper
bound f(xt+1) using f(x0) only. The simplest hypothesis one can make on f
to ensure that such an upper bound exists is smoothness.

Définition 2.1. For any L > 0, we say that f is L-smooth if ∇f is L-
Lipschitz, that is

∀x, y ∈ Rn, ||∇f(x)−∇f(y)|| ≤ L||x− y||.

Exemple 2.2. We consider again our quadratic function f : x→ 1
2
〈x,Mx〉+

〈x, b〉. For any x, y ∈ Rn,

||∇f(x)−∇f(y)|| = ||(Mx+ b)− (My + b)||
= ||M(x− y)||
= |||M ||| ||x− y||,

where |||M ||| denotes the operator norm of M . Standard results about symmetric
matrices tell us that

|||M ||| = max{|λ|, λ eigenvalue of M} def= λmax(M).

As a consequence, the function f is λmax(M)-smooth.

Lemme 2.3. Let L > 0 be fixed. If f is L-smooth, then, for any x, y ∈ Rn,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2.

Démonstration. For any x, y ∈ Rn,

f(y) = f(x) +

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉 dt

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

||∇f(x+ t(y − x))−∇f(x)|| ||y − x||dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

Lt||y − x||2dt

= f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2.

5

Corollaire 2.4. Let f be L-smooth, for some L > 0.
We consider gradient descent with constant stepsize : αt = 1

L
for all t.

Then, for any t,

f(xt+1) ≤ f(xt)−
1

2L
||∇f(xt)||2.

Corollaire 2.5. With the same hypotheses as in the previous corollary, and
additionally assuming that f is lower bounded,

1. (f(xt))t∈N converges to a finite value ;

2. ||∇f(xt)||
t→+∞→ 0.

Démonstration. The first property holds because, from Corollary 2.4, (f(xt))t∈N
is a non-increasing sequence, which is lower bounded because f is. The second
one is because, from the same corollary,

∀t ∈ N, ||∇f(xt)||2 ≤ 2L (f(xt)− f(xt+1)) .

Therefore, for any T ∈ N,

T−1∑
t=0

||∇f(xt)||2 ≤ 2L (f(x0)− f(xT)) ≤ 2L(f(x0)− inf f).

Therefore, the sum
∑

t≥0 ||∇f(xt)||2 converges, and (||∇f(xt)||)t∈N must go
to zero.

Without additional assumptions on f , there is not much more that we
can say about gradient descent. In particular, (f(xt))t∈N may not converge to
f(x∗). If we want to be able to guarantee that this convergence happens, we
need f to satisfy a much stronger property than smoothness. The simplest
and most widely studied example of such a property is convexity.

2.2 Smooth convex functions

Définition 2.6. We say that f is convex if

∀x, y ∈ Rn, t ∈ [0; 1], f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Proposition 2.7. When f is differentiable, it is convex if and only if

∀x, y ∈ Rn, f(y) ≥ f(x) + 〈∇f(x), y − x〉 .

6

Exemple 2.8. When is our quadratic function f : x → 1
2
〈x,Mx〉 + 〈x, b〉

convex ?
We have seen while computing ∇f that, for any x, y ∈ Rn (setting ∆ =

y − x in our previous equation),

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
〈y − x,M(y − x)〉 .

Therefore, f is convex if and only if, for any x, y ∈ Rn, 〈y − x,M(y − x)〉 ≥
0. This amounts to requiring that, for any v ∈ Rn, 〈v,Mv〉 ≥ 0 : f is convex
if and only if M is semidefinite positive.

As announced, if we assume that f , in addition to being smooth, is
convex, we can prove that (f(xt))t∈N converges to f(x∗). Moreover, we have
guarantees on the speed at which convergence takes place, as described by
the following theorem.

Théorème 2.9. Let f be convex and L-smooth, for some L > 0.
We consider gradient descent with constant stepsize : αt = 1

L
for all t.

Then, for any t ∈ N,

f(xt)− f(x∗) ≤
2L||x0 − x∗||2

t+ 4
.

Démonstration. First step : We show that the sequence of iterates gets closer
to the minimizer x∗ at each step : For any t ∈ N, 2

||x∗ − xt+1|| ≤ ||x∗ − xt||.

Let t be fixed. We find upper and lower bounds for f(x∗) using the
convexity and L-smoothness of f . First, by convexity,

f(x∗) ≥ f(xt) + 〈∇f(xt), x∗ − xt〉 = f(xt) + L 〈xt − xt+1, x∗ − xt〉 .

Then, using L-smoothness through Corollary 2.4, and also the fact that x∗
is a minimizer of f ,

f(x∗) ≤ f(xt+1)

≤ f(xt)−
1

2L
||∇f(xt)||2

= f(xt)−
L

2
||xt+1 − xt||2.

2. We do not need it for our proof, but a stronger inequality actually holds : ∀t ∈
N, ||x∗ − xt+1||2 ≤ ||x∗ − xt||2 − ||xt+1 − xt||2.

7

Combining the two bounds yields

f(xt) + L 〈xt − xt+1, x∗ − xt〉 ≤ f(x∗) ≤ f(xt)−
L

2
||xt+1 − xt||2

⇒ 2 〈xt − xt+1, x∗ − xt〉+ ||xt+1 − xt||2 ≤ 0

⇐⇒ ||x∗ − xt+1||2 ≤ ||x∗ − xt||2.

Second step : We can now find an inequality relating f(xt+1)− f(x∗) and
f(xt) − f(x∗) which, applied iteratively, will prove the result. First, from
corollary 2.4,

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L
||∇f(xt)||2. (4)

In addition, because f is convex, as we have already seen in the first part,

f(xt)− f(x∗) ≤ 〈∇f(xt), xt − x∗〉 .

Using now Cauchy-Schwarz as well as the first step of the proof :

f(xt)− f(x∗) ≤ ||∇f(xt)|| ||xt − x∗|| ≤ ||∇f(xt)|| ||x0 − x∗||.

In other words, ||∇f(xt)|| ≥ f(xt)−f(x∗)
||x0−x∗|| . We plug this into Equation (4) :

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L

(f(xt)− f(x∗))
2

||x0 − x∗||2
.

We can now establish the result by iteration over t. For t = 0, Corollary
2.4, together with the fact that ∇f(x∗) = 0, ensures that

f(x0)− f(x∗) ≤
L

2
||x0 − x∗||2.

Then, for any t ∈ N, if f(xt)− f(x∗) ≤ 2L||x0−x∗||2
t+4

,

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L

(f(xt)− f(x∗))
2

||x0 − x∗||2

≤ 2L||x0 − x∗||2

t+ 4
−

(
2L||x0−x∗||2

t+4

)2
2L||x0 − x∗||2

= 2L||x0 − x∗||2
(

1

t+ 4
− 1

(t+ 4)2

)
≤ 2L||x0 − x∗||2

t+ 5
.

8

(To obtain the second inequality, we have used the facts that the map x →
x − x2

2L||x0−x∗||2 is increasing over] −∞;L||x0 − x∗||2] and that 2L||x0−x∗||2
t+4

≤
L||x0 − x∗||2.)

If we treat ||x0 − x∗|| as a constant, the previous theorem guarantees
that f(xt)− f(x∗) = O(1/t). Therefore, if we want to find an ε-approximate
minimizer (that is, an xt such that f(xt) − f(x∗) ≤ ε), we can do so with
O(1/ε) iterations of gradient descent. This is nice for problems where we
do not need a high-precision solution, but when ε is very small, this is too
much. Unfortunately, Theorem 2.9 is essentially optimal : There are smooth
and convex functions f for which the inequality is an equality (up to minor
changes in the constants).

2.3 Smooth strongly convex functions

In the previous paragraph, we have seen that gradient descent allows
to approximately minimize any smooth convex function, but at a relatively
slow rate. We will now see a subclass of smooth convex functions for which
gradient descent converges much faster : This is the class of smooth strongly
convex functions.

Définition 2.10. Let µ > 0 be fixed. If f is differentiable, we say that it is
µ-strongly convex if, for any x, y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
||y − x||2.

We observe that, if f is strongly convex, then it is convex. But strong
convexity is a more powerful property than convexity : If we know the value
and gradient at a point x of a strongly convex function, we know a quadratic
lower bound for f (which, in particular, grows to +∞ away from x) instead
of a simple linear lower bound as for simply convex functions.

Remarque 2.11. For any µ > 0, f is µ-strongly convex if and only if the
function x→ f(x)− µ

2
||x||2 is convex.

Exemple 2.12. We consider again the quadratic function f : x ∈ Rn →
1
2
〈x,Mx〉+ 〈x, b〉. We assume that f is convex, that is M � 0. Is it strongly

convex ?

9

We recall a central theorem from matrix theory : M can be diagonalized
in an orthonormal basis. In other words, M can be written as

M = U

(λ1 ... 0
...

...
...

0 ... λn

)
UT ,

where U belongs to On(R) and λ1 ≥ · · · ≥ λn are the (ordered) eigenvalues
of M .

Changing the basis from the canonical one to the one defined by the

eigenvectors of M , we can assume that M =

(λ1 ... 0
...

...
...

0 ... λn

)
. For any x, y ∈ Rn,

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
〈y − x,M(y − x)〉

= f(x) + 〈∇f(x), y − x〉+
1

2

(
λ1(y1 − x1)2 + · · ·+ λn(yn − xn)2

)
≥ f(x) + 〈∇f(x), y − x〉+

1

2

(
λn(y1 − x1)2 + · · ·+ λn(yn − xn)2

)
= f(x) + 〈∇f(x), y − x〉+

λn
2
||y − x||2.

Therefore, if λn > 0, then f is λn-strongly convex.

Théorème 2.13. Let 0 < µ < L be fixed. Let f be L-smooth and µ-strongly
convex.

We consider gradient descent with constant stepsize : αt = 1
L

for all t.
Then, for any t ∈ N,

f(xt)− f(x∗) ≤
L

2

(
1− µ

L

)t
||x0 − x∗||2.

Démonstration. The first part of the proof is similar to the one of Theorem
2.9. In the proof of Theorem 2.9, we had shown that (||xt − x∗||)t∈N was a
non-increasing sequence. With the same reasoning but using strong convexity
instead of plain convexity, we improve this result and show that (||xt−x∗||)t∈N
actually goes to zero at a geometric rate.

Let t be fixed. By strong convexity,

f(x∗) ≥ f(xt) + 〈∇f(xt), x∗ − xt〉+
µ

2
||x∗ − xt||2

= f(xt) + L 〈xt − xt+1, x∗ − xt〉+
µ

2
||x∗ − xt||2.

10

And using L-smoothness as in the proof of Theorem 2.9,

f(x∗) ≤ f(xt)−
L

2
||xt+1 − xt||2.

We combine the two bounds :

2 〈xt − xt+1, x∗ − xt〉+ ||xt+1 − xt||2 +
µ

L
||x∗ − xt||2 ≤ 0

⇐⇒ ||x∗ − xt+1||2 ≤
(

1− µ

L

)
||x∗ − xt||2.

We can conclude : From Lemma 2.3 and because ∇f(x∗) = 0,

f(xt) ≤ f(x∗) +
L

2
||xt − x∗||2.

As a consequence,

f(xt)− f(x∗) ≤
L

2

(
1− µ

L

)t
||x∗ − x0||2.

Hence, when f is smooth and strongly convex, (f(xt)− f(x∗))t∈N decays
geometrically, with rate 1− µ

L
. An ε-approximate minimizer can be found in

O((log ε)/ log(1−µ/L)) gradient descent iterations, much less than the O(ε)
obtained without the strong convexity assumption.

We call L
µ
≥ 1 the condition number of f . The closer to 1 it is, the faster

the convergence.

3 Example : quadratic function (again)

As previously, we consider the function f : x ∈ Rn → 1
2
〈x,Mx〉 + 〈x, b〉,

and assume that

M =

(λ1 ... 0
...

...
...

0 ... λn

)
.

We assume that λ1 ≥ · · · ≥ λn > 0, and recall that f is then λn-strongly
convex and λ1-smooth.

11

We consider gradient descent with constant stepsize αt = 1
λ1
,∀t ∈ N. We

recall from Subsection 1.2 that

∀t ∈ N, xt+1 − x∗ =

(
1− 1

λ1
M

)
(xt − x∗),

⇒ ∀t ∈ N, xt − x∗ =

(
1− 1

λ1
M

)t
(x0 − x∗).

If we look at the k-th coordinate, for k = 1, . . . , n, this implies

(xt − x∗)k =

(
1− λk

λ1

)t
(x0 − x∗)k. (5)

As a consequence, for any t ∈ N,

f(xt)− f(x∗) =
1

2
〈xt,Mxt〉+ 〈xt, b〉+

1

2

〈
M−1b, b

〉
=

1

2

〈
xt +M−1b,M(xt +M−1b)

〉
=

1

2
〈xt − x∗,M(xt − x∗)〉

=
1

2

n∑
k=1

λk(xt − x∗)2k

=
1

2

n∑
k=1

λk

(
1− λk

λ1

)2t

(x0 − x∗)2k

≤ 1

2

n∑
k=1

λ1

(
1− λn

λ1

)2t

(x0 − x∗)2k

=
λ1
2

(
1− λn

λ1

)2t

||x0 − x∗||2.

This is essentially the convergence rate given by Theorem 2.13, with µ = λn

and L = λ1. The only difference is that the geometric rate is
(

1− λn
λ1

)2
instead of

(
1− λn

λ1

)
, but both numbers are of the same order, so this tells us

that our analysis of the convergence rate is not far from optimal.
Equation (5) allows us to understand more precisely the behavior of the

iterates. For any k = 1, . . . , n, (xt,k)t∈N converges geometrically to x∗,k, and

12

the rate is equal to
(

1− λk
λ1

)
. When λk is of the same order as λ1, this is

very fast. But if the condition number is large, that is

λ1
λn
� 1,

we can have λk � λ1 for large k, so that the rate
(

1− λk
λ1

)
is close to 1, and

convergence is slower.
Therefore, after a few gradients steps, we typically have

xt,k ≈ x∗,k

for small values of k, and the remaining iterations are only necessary for the
convergence of the last coordinates.

Intuitively, the problem here, when the condition number is large, is
that the stepsize 1

λ1
is well-suited to the first coordinates, along which the

gradient is large, but too small for the last coordinates, along which the
gradient is small. This issue can be overcame with second-order methods,
which exploit the information given by second-order derivatives and not only
by the gradient, but are generally much more computationally expensive.

4 Acceleration

To conclude this lecture, we go back to the setting where f is L-smooth,
for some L > 0, and convex. We have seen in Theorem 2.9 that f(xt)−f(x∗) =
O(1/t). As we said, this theorem cannot be significantly improved without
additional assumptions on f , like strong convexity : In the worst situations,
gradient descent really converges at rate O(1/t).

However, gradient descent may not be the best possible algorithm. Are
there other algorithms, that, from only the knowledge of ∇f at some points,
achieve a faster convergence rate ? The answer is yes. An example of such an
algorithm has been provided by Yurii Nesterov.

Two essential ideas for understanding the algorithm are :

1. At each time step, gradient descent evaluates the gradient of f at
the current iterate xt and defines xt+1 from this information only. It
completely discards the information obtained at previous time steps. A
better method must take this previous information into account.

13

2. Computing the gradient of f precisely at xt is the most intuitive choice,
but maybe not the most intelligent one. There may be another point
where ∇f carries more information on x∗ and f(x∗).

Therefore, in Nesterov’s algorithm, two sequences (xt)t∈N and (yt)t∈N are
defined. The first one, (xt)t∈N, is the sequence of approximate minimizers : If
we stop our algorithm at time t, it returns xt. The second one, (yt)t∈N, is the
sequence of points at which we compute ∇f . These sequences are defined by
the following iteration formulas :

xt+1 = yt −
1

L
∇f(yt);

yt+1 = xt+1 + γt(xt+1 − xt),

with x0 = y0 an arbitrary starting point, and where (γt)t∈N is a carefully
chosen sequence of real numbers, whose exact (and admittedly mysterious,
at first sight) definition, is

λ−1 = 0,

∀t ∈ N, λt =
1 +

√
1 + 4λ2t−1
2

,

∀t, γt =
λt − 1

λt+1

.

The following theorem provides a convergence rate for Nesterov’s algorithm.

Théorème 4.1. For any t ∈ N,

f(xt)− f(x∗) ≤
2L

(t+ 1)2
||x0 − x∗||2.

The convergence rate of Nesterov’s algorithm is thereforeO(1/t2), compared
to O(1/t) for gradient descent. One can show that this convergence rate is
optimal among all algorithms that only exploit gradient information about
f (called first-order algorithms).

5 References

The main sources used to prepare this lecture are two classical books :

14

• Convex optimization, by S. Boyd and L. Vandenberghe, which is a relatively
easy-to-read introduction to optimization ;

• Introductory lectures on convex optimization : a basic course, by Y. Nesterov,
which is more technical and theoretical than the previous one.

For the part on acceleration, two blog posts by S. Bubek have also been
useful :

• http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/

• http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-

for-nesterovs-momentum/

15

http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/

	Definition of gradient descent
	Motivation and definition
	Example: quadratic function
	Choice of stepsizes

	Convergence analysis
	Smooth functions
	Smooth convex functions
	Smooth strongly convex functions

	Example: quadratic function (again)
	Acceleration
	References

