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1 Introduction

Let us consider a general unconstrained minimization problem :

find x∗ such that f(x∗) = minx∈Rn f(x),

for some function f : Rn → R. We assume that at least one minimizer exists,
which we call x∗. We also assume througout the lecture that f is C∞, to avoid
all possible regularity issues.

In the past lectures, we have seen how to find a good approximation of a
minimizer, under the assumption that f is convex. The goal of this lecture
is to study what we can do when f is not convex.

1.1 Why non-convex optimization is difficult

We first try to give an intuition of the difference between convex and
non-convex optimization, and why the latter one is much more difficult.

We consider the one-dimensional case, n = 1. Let us imagine that we run
a first-order algorithm (that is, an algorithm which can access the value of
f and ∇f at any desired point, and must return an approximate minimizer
based on this information only). After some time, the algorithm has queried
the values of f and ∇f at several points, for instance

{
−3,−1,−1

2
, 3
2
, 3
}

. The
gathered information is represented on the following picture.
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If f is convex, this already gives significant information on the minimum and
minimizer of f . Indeed, the graph of f is above its tangents, and below its
chords, which provides upper and lower bounds for f . In the specific example
considered here, these upper and lower bounds are respectively represented
in orange and red on the following picture. One can use them to deduce the
following two properties :

1. The minimum of f is between −3/8 and 1/8.

2. The minimizer(s) of f belong(s) to the interval [−1/2; 5/6].

In particular, from this information, one knows the value of min f up to
precision 0.5 and the minimizer up to precision 1.325.
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But if f is not convex, this information does not allow to distinguish, for
instance, the following two functions.
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The function represented on the left reaches its minimum at 1/2, and this
minimum is 0. The function on the right reaches its minimum at −2, and this
minimum is −1. The difference between the minimums of these two functions
is 1, and the difference between the minimizers is 2.5 : One cannot produce
estimations for the minimal value and minimizer of f comparable to the
convex setting.

Intuitively, to compute a trustworthy approximation of min f or argmin f
without the convexity assumption, one needs to sample f on a fine grid. As
soon as there is a “hole” in the sampling set 1, one cannot know whether the
function takes large or small values in this hole, hence one cannot compute a
precise estimate of min f or argmin f . In the one-dimensional case, it may be
possible to sample f on a fine grid, but if n is large, this is out of question :
The number of sampling points on a fine grid grows exponentially with the
dimension.

As a consequence, if f is not convex, we must give up the idea of finding
an approximate minimizer. In the rest of the lecture, we will see which kind
of points we can hope to find, and how.

1. The sampling set is the set of points at which the algorithm queries the values of f
and ∇f . In our example, it is {−3,−1,−1/2, 3/2, 3}.
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2 Critical points

A first idea is to look for a local minimizer instead of a global one. It turns
out that this is also out of reach, at least for pathological functions. Thus,
we lower our expectations again : instead of looking for a local minimizer,
we simply look for a point at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

Proposition 2.1. For any x ∈ Rn, we denote Hess f(x) the Hessian of f at

x, that is the n× n matrix whose (i, j)-th coefficient is ∂2f
∂xi∂xj

(x).

If x is a local minimizer of f , then

∇f(x) = 0 and Hess f(x) � 0.

Conversely, if ∇f(x) = 0 and Hess f(x) � 0, then x is a local minimizer
of f .

Définition 2.2. We say that an element x of Rn is

• a first-order critical point of f if ∇f(x) = 0,

• a second-order critical point of f if ∇f(x) = 0 and Hess f(x) � 0.

Exemple 2.3. We consider the map f : (x1, x2) ∈ R2 → x21 − x22 ∈ R.
Its gradient and Hessian have the following formulas :

∀x = (x1, x2) ∈ R2, ∇f(x) = (2x1,−2x2) and Hess f(x) = ( 2 0
0 −2 ) .

Therefore, f has a single first-order critical point, which is (0, 0). This
point is not a second-order critical point, because ( 2 0

0 −2 ) is not semidefinite
positive.

Although second-order critical points are not always local minimizers 2,
the two notions nevertheless coincide for many functions f . In addition, one
numerically observes that, in various interesting situations (including the
training of neural networks), f has no local minimizer other than its global
one, or, at least, all its local minimizers are approximate global minimizers
(meaning f(x) ≈ f(x∗)). It is thus of practical importance to be able to find
critical points.

2. The map (x→ x3) has a second-order critical point at 0, but no local minimizer.
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3 Convergence of gradient descent

Let us first consider the simplest first-order algorithm, gradient descent.
We have studied, in a previous lecture, its convergence properties in the
convex setting. How does it perform in the non-convex one ?

We assume that f is L-smooth for some L > 0 : For any x, y ∈ Rn,

||∇f(x)−∇f(y)|| ≤ L||x− y||.

We consider gradient descent with constant stepsize, equal to 1/L : starting
from an arbitrary x0 ∈ Rn, we define a sequence (xt)t∈N by

xt+1 = xt −
1

L
∇f(xt).

3.1 Convergence to a first-order critical point

Théorème 3.1. Let T ∈ N be fixed. We consider the following algorithm :

1. Run T steps of gradient descent, which defines a sequence (x0, x1, . . . , xT ).

2. Compute Tmin = argmin0≤t≤T ||∇f(xt)|| and define x̃T = xTmin
.

3. Return x̃T .

Then

||∇f(x̃T )|| ≤
√

2L(f(x0)− f(x∗))

T
.

We say that x̃T is a O(1/
√
T )-approximate first-order critical point.

Démonstration. Because f is L-smooth, it holds

∀t ∈ N, f(xt+1) ≤ f(xt)−
1

2L
||∇f(xt)||2.

Consequently,

T−1∑
t=0

||∇f(xt)||2 ≤ 2L
T−1∑
t=0

f(xt)− f(xt+1)

= 2L(f(x0)− f(xT ))

≤ 2L(f(x0)− f(x∗)).
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Since ||∇f(x̃T )|| ≤ ||∇f(xt)|| for any t ≤ T ,

T ||∇f(x̃T )||2 ≤ 2L(f(x0)− f(x∗)),

which implies

||∇f(x̃T )|| ≤
√

2L(f(x0)− f(x∗))

T
.

3.2 Convergence to a second-order critical point

The previous theorem shows that gradient descent allows to find approximate
first-order critical points, and even provides a convergence rate. For second-
order critical points, the picture is more complicated.

For some choices of initial points x0, it may happen that gradient descent
does not get close to an approximate second-order critical point, even when
run for an infinite number of steps. For instance, if x0 is a first-order critical
point of f , but not a second-order critical point, then

x0 = x1 = x2 = . . . ,

because ∇f(x0) = 0, hence gradient descent stays stuck at x0 and never
reaches a second-order critical point.

Théorème 3.2 (Lee, Simchowitz, Jordan, Recht 2016). We assume that

• f has only a finite number of first-order critical points ;

• for any M ∈ R, {x ∈ Rn, f(x) ≤M} is bounded.

We consider gradient descent with constant stepsize α ∈]0; 1
L

[.
For almost any x0 (that is, for all x0 outside a zero-Lebesgue measure

set), (xt)t∈N converges to a second-order critical point.

Intuition of proof. The finiteness of the critical set and the boundedness of
the level sets of f imply that (xt)t∈N converges to a first-order critical point
whatever x0. We admit this fact for simplicity.

We must show that, if xcrit is a first-order but not a second-order critical
point of f , then (xt)t∈N does not converge to xcrit, for almost any x0. We
consider such a critical point ; up to translation, we can assume that it is 0.
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We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, whose radius we call r0 :

∀x ∈ B(0, r0), f(x) =
1

2
〈x,Mx〉+ 〈x, b〉 ,

for some n× n symmetric matrix M .
For any x ∈ B(0, r0), ∇f(x) = Mx + b. Since 0 is a first-order critical

point, we necessarily have b = 0. In addition, Hess f(x) = M for any x ∈
B(0, r0) : for all i, j,

(Hess f(x))i,j =
∂2f

∂xi∂xj
(x)

=
∂2

∂xi∂xj

(
x→ 1

2

∑
1≤k,l≤n

Mklxkxl

)
(x)

=
1

2

∑
1≤k,l≤n

Mk,l
∂2

∂xi∂xj
(x→ xkxl) (x)

=
1

2

∑
1≤k,l≤n

Mk,l.


0 if {k, l} 6= {i, j}
1 if i 6= j and (k, l) = (i, j) or (j, i)
2 if i = j = k = l

=
1

2

{
(Mi,j +Mj,i) if i 6= j

2Mi,i if i = j

= Mi,j.

The assumption that 0 is not a second-order critical point is then equivalent
to the fact that M 6� 0.

As explained in the lecture of October 8, we can assume, up to an
orthogonal change of coordinates, that M is diagonal :

M =

( λ1 ... 0
...

...
...

0 ... λn

)
,

with λ1 ≥ · · · ≥ λn the eigenvalues of M . Since M 6� 0, at least the smallest
eigenvalue of M is negative : λn < 0.

If the sequence (xt)t∈N of gradient descent iterates converges to 0, then
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xt belongs to B(0, r0) for any t large enough, in which case

xt+1 = xt − α∇f(xt)

= xt − αMxt

=

(
(1−αλ1)xt,1

...
(1−αλn)xt,n

)
.

We fix t0 such that this relation holds for any t ≥ t0. Then, for any s ∈ N,

xt0+s =

(
(1−αλ1)sxt0,1

...
(1−αλn)sxt0,n

)
.

If the sequence converges to 0, all the coordinates of xt0+s must go to 0 when
s goes to +∞ (for any fixed t), which means that

∀k ∈ {1, . . . , n}, (1− αλk)sxt0,k
s→+∞→ 0. (1)

We have said that λn < 0, hence 1 < 1− αλn and (1− αλn)s 6→ 0 when
s→ +∞. In order for Property (1) to hold, we must therefore have

xt0,n = 0.

To summarize, we have shown that, if (xt)t∈N converges to 0, then, for
some t0,

xt0 ∈ E
def
= {z ∈ B(0, r0) such that zn = 0}.

As a consequence,
x0 ∈ (Id− α∇f)−t0 (E).

(For any map g : Rn → Rn, we define g−t0(E) as the set of points x such that
gt0(x) = g ◦ · · · ◦ g(x) ∈ E .) Therefore, the set of initial points x0 for which
the gradient descent iterates may converge to 0 is included in⋃

t∈N

(Id− α∇f)−t(E).

The set E has zero Lebesgue measure and one can check that Id− α∇f is a
diffeomorphism, hence (Id − α∇f)−t(E) has zero Lebesgue measure for any
t ∈ N, and the set of “problematic” initial points also has zero Lebesgue
measure.
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4 A second-order method

The theorem stated in the previous paragraph only states that gradient
descent reaches a second-order critical point “in the limit” (for almost any
initial point x0). It does not provide complexity estimates. This is unavoidable :
in high dimension, gradient descent may converge extremely slowly in the
worst case.

To overcome this possible slow convergence, several strategies are possible.
One of them is to add “noise” to gradient iterates from time to time, to help
them get away faster from first-order critical points. The interested reader
will find a description in How to escape saddle points efficiently, by C. Jin,
R. Ge, P. Netrapalli, S. Kakade and M. Jordan (ICML 2017)

Another one is to explicitely exploit the information provided by second-
order derivatives. This yields the family of second-order methods. In this
section, we briefly describe one member of this family : the trust-region
method.

The starting point is that, in the same way that ∇f provides a linear
approximation of f around any point, Hess f provides a (more precise) quadratic
approximation.

Proposition 4.1. For any x ∈ Rn,

f(x+ h) = f(x) + 〈h,∇f(x)〉+
1

2
〈h,Hess f(x)h〉+ o(||h||2).

To define xt+1 from xt, it is therefore reasonable to set

ht = argmin
||h||≤Rt

(
f(x) + 〈h,∇f(x)〉+

1

2
〈h,Hess f(x)h〉

)
and xt+1 = xt +ht. (In the definition of ht, Rt is a positive number, the trust
radius, whose choice is important for the good behavior of the algorithm.)

We provide convergence guarantees for this algorithm under the assumption
that Hess f is L2-Lipschitz for some L2 > 0 :

∀x, y, h ∈ Rn, ||(Hess f(x)− Hess f(y))h|| ≤ L2||x− y|| ||h||.

Théorème 4.2. Let ε > 0 be fixed.
We run the trust-region algorithm as described above, with Rt =

√
ε

L2
for

any t. We stop the algorithm if

||∇f(xt) + Hess f(xt)ht||
||ht||

≤
√
ε
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and return xt+1.

For any x0 ∈ Rn, the algorithm stops after at most O
(
L2
2(f(x0)−f(x∗))

ε3/2

)
iterations and the output xfinal is an approximate second-order critical point,
in the sense that

||∇f(xfinal)|| .
ε

L2

and λmin (Hess f(xfinal)) & −
√
ε.

(The notation “.” means “smaller up to a moderate multiplicative constant”
and λmin is the smallest eigenvalue.)
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SIAM journal on scientific and statistical computing, volume 4, number 3,
1983.

10

http://web.stanford.edu/class/msande311/2017lecture13.pdf

	Introduction
	Why non-convex optimization is difficult

	Critical points
	Convergence of gradient descent
	Convergence to a first-order critical point
	Convergence to a second-order critical point

	A second-order method
	References

