Corrigé de l'exercice 7.32

Commençons par montrer que, pour tout $x \in [0, 1]$,

$$1 + x \le e^x \le 1 + x + \frac{e}{2}x^2.$$

Soit $x \in [0; 1]$ fixé.

Si x = 0, la double inégalité est vraie, puisque $1 + x = e^x = 1 + x + \frac{e}{2}x^2 = 1$. Supposons maintenant que x ne vaut pas 0. La fonction exp est deux fois dérivable sur \mathbb{R} . D'après le théorème de Taylor-Lagrange, il existe donc $y \in]0; x[$ tel que

$$\exp(x) = \exp(0) + \exp'(0)x + \exp''(y)\frac{x^2}{2},$$

c'est-à-dire

$$e^x = 1 + x + \frac{x^2}{2}e^y$$
.

Fixons un tel y.

On a $e^y>0$ et, comme l'exponentielle est une fonction croissante et comme $y\leq 1$, on a aussi $e^y\leq e^1=e$. Donc

$$1 + x \le e^x \le 1 + x + \frac{e}{2}x^2.$$

Utilisons maintenant cette inégalité pour montrer que u a une limite et calculer celle-ci. L'inégalité nous permet d'affirmer que, pour tout $n \in \mathbb{N}$ et tout $k \in \mathbb{N}^*$, puisque $\frac{1}{n+k}$ appartient à [0;1],

$$1 + \frac{1}{n+k} \le e^{\frac{1}{n+k}} \le 1 + \frac{1}{n+k} + \frac{e}{2} \frac{1}{(n+k)^2}.$$
 (1)

Cela nous permet d'encadrer u_n pour tout $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} \frac{1}{n+k} \le u_n \le \sum_{k=1}^{n} \frac{1}{n+k} + \frac{e}{2} \sum_{k=1}^{n} \frac{1}{(n+k)^2}.$$

Nous allons étudier la convergence des différents termes de cette expression lorsque $n \to +\infty$.

Pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{n+k} = \sum_{k=0}^{n-1} \frac{1}{n+k} - \frac{1}{n} + \frac{1}{2n}$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1+\frac{k}{n}} - \frac{1}{2n}$$

$$\stackrel{n \to +\infty}{\longrightarrow} \left(\int_{0}^{1} \frac{1}{1+x} dx \right) - 0$$

$$= [\ln(1+x)]_{0}^{1}$$

$$= \ln(2).$$

(À la troisième ligne, on a appliqué le théorème 3.29 du poly.) De plus, pour tout $n \in \mathbb{N}^*$,

$$0 \le \sum_{k=1}^{n} \frac{1}{(n+k)^2}$$
$$\le \sum_{k=1}^{n} \frac{1}{n^2}$$
$$= \frac{1}{n}.$$

Le théorème d'encadrement nous permet donc d'affirmer que

$$\sum_{k=1}^{n} \frac{1}{(n+k)^2} \stackrel{n \to +\infty}{\to} 0.$$

Nous avons ainsi montré que

$$\sum_{k=1}^{n} \frac{1}{n+k} \stackrel{n \to +\infty}{\to} \ln(2)$$

et

$$\sum_{k=1}^{n} \frac{1}{n+k} + \frac{e}{2} \sum_{k=1}^{n} \frac{1}{(n+k)^2} \stackrel{n \to +\infty}{\to} \ln(2).$$

Par encadrement, nous pouvons donc déduire de l'équation (1) que u converge vers $\ln(2)$.