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1 Definition of gradient descent

Let us assume that we want to find a minimizer of a function f : Rn → R :

find x∗ such that f(x∗) = min
x∈Rn

f(x). (1)

In all the lecture, we assume that a minimizer exists, and denote it x∗
1.

1.1 Definition

We also assume that f is differentiable.

Définition 1.1. For any x, the gradient of f at x is

∇f(x)
def
=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
∈ Rn.

If f is twice differentiable, we also define its Hessian at any point x as

Hess f(x) =

(
∂2f

∂xi∂xj

)
1≤i,j≤n

∈ Rn×n.

As explained in a previous lecture, the gradient at a point x ∈ Rn provides
a linear approximation of f in a neighborhood of f : informally,

∀y close to x, f(y) ≈ f(x) + 〈∇f(x), y − x〉 . (2)

1. At least, we denote one of them by x∗ : The minimizer may not be unique.
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Consequently, −∇f(x) is the direction along which f decays the most around
x. This motivates the definition of gradient descent : starting at any x0 ∈ Rn,
we define (xt)t∈N by

xt+1 = xt − αt∇f(xt), ∀t ∈ N.

Here αt is a positive number, called the stepsize.

Algorithm 1 Gradient descent

Require: A starting point x0, a number of iterations T , a sequence of
stepsizes (αt)0≤t≤T−1
for t = 0, . . . , T − 1 do

Define xt+1 = xt − αt∇f(xt).
end for
return xT

Since our goal is to find a minimizer of f , we hope that

xt
t→+∞→ x∗

or, at least,

f(xt)
t→+∞→ f(x∗)

The goal of today’s lecture in to understand under which assumptions on f we
can guarantee that this happens, and, when it does, what is the convergence
rate.

1.2 Choice of stepsizes

Properly choosing the stepsizes (αt)t∈N is crucial : if they are too large,
then xt+1 is outside the domain where the approximation (2) holds, and the
algorithm may diverge. On the contrary, if they are too small, xt needs many
time steps to move away from x0, and convergence can be slow.

What a good stepsize choice is depends on the properties of f . Let us
however mention some common strategies :

1. Fixed schedule : the stepsizes are chosen in advance ; αt generally depends
on t through a simple equation, like

∀t, αt = η, for some η > 0, (Constant stepsize)

or ∀t, αt =
1

t+ 1
. (Monotonically decreasing stepsize)
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2. Exact line search : for any t, choose αt such that

f(xt − αt∇f(xt)) = min
a∈R

f(xt − a∇f(xt)).

3. Backtracking line search : unless f has very particular properties, it is
a priori difficult to minimize f on a line. The exact line search strategy
is therefore difficult to implement. Instead, one can simply choose αt
such that f(xt − αt∇f(xt)) is “sufficiently smaller than f(xt)” The
approximation (2) implies, for αt small enough,

f(xt − αt∇f(xt)) ≈ f(xt)− αt||∇f(xt)||2.

If we consider that “being sufficiently smaller than f(xt)” means that
the previous approximation holds, up to the introduction of a multiplicative
constant, the following algorithm describes a way to find a suitable αt.

Algorithm 2 Backtracking line search

Require: Parameters c, τ ∈]0; 1[, maximal stepsize value amax
Define αt = amax.
while f(xt − αt∇f(xt)) > f(xt)− cαt||∇f(xt)||2 do

Set αt = ταt.
end while
return αt

In this lecture, we will restrict ourselves to constant stepsizes.

1.3 Reminder : the quadratic case

Let f be defined as

∀x ∈ Rn, f(x) =
1

2
〈x,Mx〉+ 〈x, b〉 ,

where M is a symmetric n× n matrix, and b belongs to Rn.

Proposition 1.2. The function f is twice differentiable. For any x ∈ Rn,

∇f(x) = Mx+ b;

Hess f(x) = M.
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We assume that f is convex, which is equivalent to M being semidefinite
positive (that is, all its eigenvalues are nonnegative). In this case, you have
seen in a lecture by Gabriel Peyré that, when λmin(M) > 0, gradient descent
converges to a minimizer and the convergence rate is geometric (that is,
fast). When λmin(M) = 0, this may not be true but (f(xt))t∈N nevertheless
converges to (f(x∗)), with convergence rate at least O(1/t). This is what the
following theorem says.

Théorème 1.3. Let us consider the sequence of iterates (xt)t∈N generated by
gradient descent with constant stepsize α < 2

λmax(M)
.

• If λmin(M) > 0, it holds for any t that

||xt − x∗|| ≤ ρt||x0 − x∗||

for some ρ ∈]0; 1[.

• Even if λmin(M) = 0, it holds for any t that

f(xt)− f(x∗) ≤
||x0 − x∗||

4τt
.

2 Convergence analysis

The goal of this section is to extend to general convex functions the results
you have seen in the quadratic case, and to see which convergence guarantees
it is possible to establish depending on the assumptions we can make over f .

2.1 Smooth functions

To start with, let us not assume that f is convex. We only assume that
f is smooth, in the sense of the following definition, and see what we can say
of the behavior of gradient descent.

Définition 2.1. For any L > 0, we say that f is L-smooth if ∇f is L-
Lipschitz, that is

∀x, y ∈ Rn, ||∇f(x)−∇f(y)|| ≤ L||x− y||.

Remarque 2.2. When f is twice differentiable, it is L-smooth if and only
if, for any x ∈ Rn,

|||Hess f(x)||| ≤ L.
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[For any symmetric matrix M , |||M ||| denotes the spectral norm, which is
equal to maxk=1,...,n |λk(M)|.]

Démonstration. Let us assume f to be twice differentiable.
If f is L-smooth, then, for any x ∈ Rn, it holds for any h ∈ Rn that

| 〈Hess f(x)h, h〉 | =
∣∣∣∣limε→0

1

ε
〈∇f(x+ εh)−∇f(x), h〉

∣∣∣∣
≤ ||h|| lim sup

ε→0

||∇f(x+ εh)−∇f(x)||
ε

≤ L||h||2,

which implies that |||Hess f(x)||| ≤ L.
Conversely, if |||Hess f(x)||| ≤ L for any x ∈ Rn, it holds for any x, y ∈ Rn

that

||∇f(x)−∇f(y)|| =
∣∣∣∣∣∣∣∣∫ 1

0

Hess f(x+ t(y − x))(y − x)dt

∣∣∣∣∣∣∣∣
≤
∫ 1

0

|||Hess f(x+ t(y − x))||| ||y − x||dt

≤ L||x− y||
∫ 1

0

1dt

= L||x− y||.

Exemple 2.3. For any L, our quadratic function f : x→ 1
2
〈x,Mx〉+ 〈x, b〉

is L-smooth if and only if
|||M ||| ≤ L,

that is −L ≤ λmin(M) ≤ λmax(M) ≤ L.

When f is smooth, it turns out that (f(xt))t∈N is nonincreasing. Moreover,
we can analyze the decay of f(xt) at each iteration thanks to the following
lemma.

Lemme 2.4. Let L > 0 be fixed. If f is L-smooth, then, for any x, y ∈ Rn,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2.
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Démonstration. For any x, y ∈ Rn,

f(y) = f(x) +

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉 dt

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

||∇f(x+ t(y − x))−∇f(x)|| ||y − x||dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

Lt||y − x||2dt

= f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2.

Corollaire 2.5. Let f be L-smooth, for some L > 0.
We consider gradient descent with constant stepsize : αt = 1

L
for all t.

Then, for any t,

f(xt+1) ≤ f(xt)−
1

2L
||∇f(xt)||2.

Corollaire 2.6. With the same hypotheses as in the previous corollary, and
additionally assuming that f is lower bounded,

1. (f(xt))t∈N converges to a finite value ;

2. ||∇f(xt)||
t→+∞→ 0.

Démonstration. The first property holds because, from Corollary 2.5, (f(xt))t∈N
is a non-increasing sequence, which is lower bounded because f is. The second
one is because, from the same corollary,

∀t ∈ N, ||∇f(xt)||2 ≤ 2L (f(xt)− f(xt+1)) .

Therefore, for any T ∈ N,

T−1∑
t=0

||∇f(xt)||2 ≤ 2L (f(x0)− f(xT )) ≤ 2L(f(x0)− inf f).

Therefore, the sum
∑

t≥0 ||∇f(xt)||2 converges, and (||∇f(xt)||)t∈N must go
to zero.
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The guarantee that ||∇f(xt)|| → 0 when t→ +∞ is quite weak (although
useful in some settings, as we will see tomorrow). In particular, it does not
imply that (f(xt))t∈N converges to f(x∗). If we want to be able to guarantee
that this convergence happens, we need f to satisfy a much stronger property
than smoothness. The simplest and most widely studied example of such a
property is convexity.

2.2 Smooth convex functions

Définition 2.7. We say that f is convex if

∀x, y ∈ Rn, t ∈ [0; 1], f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Proposition 2.8. When f is differentiable, it is convex if and only if

∀x, y ∈ Rn, f(y) ≥ f(x) + 〈∇f(x), y − x〉 .

Remarque 2.9. When f is twice differentiable, it is convex if and only if,
for any x ∈ Rn,

Hess f(x) � 0.

Exemple 2.10. The quadratic function f : x→ 1
2
〈x,Mx〉+ 〈x, b〉 is convex

if and only if M is semidefinite positive.

As announced, if we assume that f , in addition to being smooth, is
convex, we can prove that (f(xt))t∈N converges to f(x∗). Moreover, we have
guarantees on the convergence rate, as described by the following theorem.

Théorème 2.11. Let f be convex and L-smooth, for some L > 0.
We consider gradient descent with constant stepsize : αt = 1

L
for all t.

Then, for any t ∈ N,

f(xt)− f(x∗) ≤
2L||x0 − x∗||2

t+ 4
.

Démonstration. First step : We show that the sequence of iterates gets closer
to the minimizer x∗ at each step : For any t ∈ N, 2

||x∗ − xt+1|| ≤ ||x∗ − xt||.

2. We do not need it for our proof, but a stronger inequality actually holds : ∀t ∈
N, ||x∗ − xt+1||2 ≤ ||x∗ − xt||2 − ||xt+1 − xt||2.
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Let t be fixed. We find upper and lower bounds for f(x∗) using the
convexity and L-smoothness of f . First, by convexity,

f(x∗) ≥ f(xt) + 〈∇f(xt), x∗ − xt〉 = f(xt) + L 〈xt − xt+1, x∗ − xt〉 .

Then, using L-smoothness through Corollary 2.5, and also the fact that x∗
is a minimizer of f ,

f(x∗) ≤ f(xt+1)

≤ f(xt)−
1

2L
||∇f(xt)||2

= f(xt)−
L

2
||xt+1 − xt||2.

Combining the two bounds yields

f(xt) + L 〈xt − xt+1, x∗ − xt〉 ≤ f(x∗) ≤ f(xt)−
L

2
||xt+1 − xt||2

⇒ 2 〈xt − xt+1, x∗ − xt〉+ ||xt+1 − xt||2 ≤ 0

⇐⇒ ||x∗ − xt+1||2 ≤ ||x∗ − xt||2.

Second step : We can now find an inequality relating f(xt+1)− f(x∗) and
f(xt) − f(x∗) which, applied iteratively, will prove the result. First, from
corollary 2.5,

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L
||∇f(xt)||2. (4)

In addition, because f is convex, as we have already seen in the first part,

f(xt)− f(x∗) ≤ 〈∇f(xt), xt − x∗〉 .

Using now Cauchy-Schwarz as well as the first step of the proof :

f(xt)− f(x∗) ≤ ||∇f(xt)|| ||xt − x∗|| ≤ ||∇f(xt)|| ||x0 − x∗||.

In other words, ||∇f(xt)|| ≥ f(xt)−f(x∗)
||x0−x∗|| . We plug this into Equation (4) :

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)−
1

2L

(f(xt)− f(x∗))
2

||x0 − x∗||2
.

8



Taking the inverse (and defining, by convention, 1
0

= +∞), we get

1

f(xt+1)− f(x∗)
≥ 1

f(xt)− f(x∗)
× 1

1− 1
2L

f(xt)−f(x∗)
||x0−x∗||2

≥ 1

f(xt)− f(x∗)

(
1 +

1

2L

f(xt)− f(x∗)

||x0 − x∗||2

)
=

1

f(xt)− f(x∗)
+

1

2L||x0 − x∗||2
.

For the second inequality, we have used the fact that 1
1−x ≥ 1 + x for any

x ∈ [0; 1].
Consequently, by iteration, it holds for any t ∈ N that

1

f(xt)− f(x∗)
≥ 1

f(x0)− f(x∗)
+

t

2L||x0 − x∗||2
.

Corollary 2.5, together with the fact that ∇f(x∗) = 0, ensures that

f(x0)− f(x∗) ≤
L

2
||x0 − x∗||2,

so for any t ∈ N,

1

f(xt)− f(x∗)
≥ 2

L||x0 − x∗||2
+

t

2L||x0 − x∗||2

=
t+ 4

2L||x0 − x∗||2
,

that is

f(xt)− f(x∗) ≤
2L||x0 − x∗||2

t+ 4
.

If we treat ||x0 − x∗|| as a constant, the previous theorem guarantees
that f(xt)− f(x∗) = O(1/t). Therefore, if we want to find an ε-approximate
minimizer (that is, an xt such that f(xt) − f(x∗) ≤ ε), we can do so with
O(1/ε) iterations of gradient descent. This is nice for problems where we
do not need a high-precision solution, but when ε is very small, this is too
much. Unfortunately, Theorem 2.11 is essentially optimal : There are smooth
and convex functions f for which the inequality is an equality (up to minor
changes in the constants).
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2.3 Smooth strongly convex functions

In the previous paragraph, we have seen that gradient descent allows
to approximately minimize any smooth convex function, but at a relatively
slow rate. We will now see a subclass of smooth convex functions for which
gradient descent converges much faster : the class of smooth strongly convex
functions.

Définition 2.12. Let µ > 0 be fixed. If f is differentiable, we say that it is
µ-strongly convex if, for any x, y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
||y − x||2.

We observe that, if f is strongly convex, then it is convex. But strong
convexity is a more powerful property than convexity : If we know the value
and gradient at a point x of a strongly convex function, we know a quadratic
lower bound for f (which, in particular, grows to +∞ away from x) instead
of a simple linear lower bound as for simply convex functions.

Remarque 2.13. For any µ > 0, a differentiable function f is µ-strongly
convex if and only if the function fµ : x→ f(x)− µ

2
||x||2 is convex.

Démonstration. The function fµ is convex if and only if, for any x, y ∈ Rn,

fµ(y) ≥ fµ(x) + 〈∇fµ(x), y − x〉 ;

⇐⇒ f(y)− µ

2
||y||2 ≥ f(x)− µ

2
||x||2 + 〈∇f(x)− µx, y − x〉 ;

⇐⇒ f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2

(
||y||2 − 2 〈x, y − x〉 − ||x||2

)
;

⇐⇒ f(y) ≥ f(x) + 〈∇f(x)− µx, y − x〉+
µ

2
||y − x||2.

Remarque 2.14. As a consequence from Remarks 2.9 and 2.13, a twice
differentiable function f is µ-strongly convex if and only if, for any x ∈ Rn,

Hess f(x)− µId � 0,

or, in other words, all eigenvalues of Hess f(x) are larger than µ.
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Exemple 2.15. We consider again the quadratic function f : x ∈ Rn →
1
2
〈x,Mx〉 + 〈x, b〉. Its Hessian at any point is M . We denote λ1 ≥ λ2 ≥
· · · ≥ λn the ordered eigenvalues of M . From the previous remark, if λn > 0,
f is λn-strongly convex. If λn ≤ 0, f is not µ-strongly convex, whatever the
value of µ > 0.

Théorème 2.16. Let 0 < µ < L be fixed. Let f be L-smooth and µ-strongly
convex.

We consider gradient descent with constant stepsize : αt = 1
L

for all t.
Then, for any t ∈ N,

f(xt)− f(x∗) ≤
L

2

(
1− µ

L

)t
||x0 − x∗||2.

Démonstration. The first part of the proof is similar to the one of Theorem
2.11. In the proof of Theorem 2.11, we had shown that (||xt − x∗||)t∈N was a
non-increasing sequence. With the same reasoning but using strong convexity
instead of plain convexity, we improve this result and show that (||xt−x∗||)t∈N
actually goes to zero at a geometric rate.

Let t be fixed. By strong convexity,

f(x∗) ≥ f(xt) + 〈∇f(xt), x∗ − xt〉+
µ

2
||x∗ − xt||2

= f(xt) + L 〈xt − xt+1, x∗ − xt〉+
µ

2
||x∗ − xt||2.

And using L-smoothness as in the proof of Theorem 2.11,

f(x∗) ≤ f(xt)−
L

2
||xt+1 − xt||2.

We combine the two bounds :

2 〈xt − xt+1, x∗ − xt〉+ ||xt+1 − xt||2 +
µ

L
||x∗ − xt||2 ≤ 0

⇐⇒ ||x∗ − xt+1||2 ≤
(

1− µ

L

)
||x∗ − xt||2.

We can conclude : From Lemma 2.4 and because ∇f(x∗) = 0,

f(xt) ≤ f(x∗) +
L

2
||xt − x∗||2.

As a consequence,

f(xt)− f(x∗) ≤
L

2

(
1− µ

L

)t
||x∗ − x0||2.
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Hence, when f is smooth and strongly convex, (f(xt)− f(x∗))t∈N decays
geometrically, with rate at least 1 − µ

L
. An ε-approximate minimizer can be

found in O((log ε)/ log(1−µ/L)) gradient descent iterations, much less than
the O(ε) obtained without the strong convexity assumption.

We call L
µ
≥ 1 the condition number of f . The closer to 1 it is, the faster

the convergence.

Remarque 2.17. The rate 1 − µ
L

in the previous theorem is not optimal.
With a more sophisticated proof, we could have shown that, for any t ∈ N,

f(xt)− f(x∗) ≤
L

2

(
L− µ
L+ µ

)t
||x∗ − x0||2.

3 Acceleration

To conclude this lecture, we go back to the setting where f is L-smooth,
for some L > 0, and convex. We have seen in Theorem 2.11 that f(xt) −
f(x∗) = O(1/t). As we said, this theorem cannot be significantly improved
without additional assumptions on f , like strong convexity : In the worst
situations, gradient descent really converges at rate O(1/t).

However, gradient descent may not be the best possible algorithm. Are
there other algorithms, that, from only the knowledge of ∇f at some points,
achieve a faster convergence rate ? The answer is yes. An example of such an
algorithm has been provided by Yurii Nesterov.

Two essential ideas for understanding the algorithm are :

1. At each time step, gradient descent evaluates the gradient of f at
the current iterate xt and defines xt+1 from this information only. It
completely discards the information obtained at previous time steps. A
better method must take this previous information into account.

2. Computing the gradient of f precisely at xt is the most intuitive choice,
but maybe not the most intelligent one. There may be another point
where ∇f carries more information on x∗ and f(x∗).

Therefore, in Nesterov’s algorithm, two sequences (xt)t∈N and (yt)t∈N are
defined. The first one, (xt)t∈N, is the sequence of approximate minimizers : If
we stop our algorithm at time t, it returns xt. The second one, (yt)t∈N, is the
sequence of points at which we compute ∇f . These sequences are defined by
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the following iteration formulas :

xt+1 = yt −
1

L
∇f(yt);

yt+1 = xt+1 + γt(xt+1 − xt),

with x0 = y0 an arbitrary starting point, and where (γt)t∈N is a carefully
chosen sequence of real numbers, whose exact (and admittedly mysterious,
at first sight) definition, is

λ−1 = 0,

∀t ∈ N, λt =
1 +

√
1 + 4λ2t−1
2

,

∀t, γt =
λt − 1

λt+1

.

The following theorem provides a convergence rate for Nesterov’s algorithm.

Théorème 3.1. For any t ∈ N,

f(xt)− f(x∗) ≤
2L

(t+ 1)2
||x0 − x∗||2.

The convergence rate of Nesterov’s algorithm is thereforeO(1/t2), compared
to O(1/t) for gradient descent. One can show that this convergence rate is
optimal among all algorithms that only exploit gradient information about
f (called first-order algorithms).

4 References

The main sources used to prepare this lecture are two classical books :

• Convex optimization, by S. Boyd and L. Vandenberghe, which is a relatively
easy-to-read introduction to optimization ;

• Introductory lectures on convex optimization : a basic course, by Y. Nesterov,
which is more technical and theoretical than the previous one.

For the part on acceleration, two blog posts by S. Bubek have also been
useful :

• http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/

• http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-

for-nesterovs-momentum/
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