
Non-convex optimization

Irène Waldspurger

October 16, 2020

1 Introduction

Let us consider a general unconstrained minimization problem :

find x∗ such that f(x∗) = minx∈Rn f(x),

for some function f : Rn → R. We assume that at least one minimizer exists,
which we call x∗. We also assume througout the lecture that f is C∞, to avoid
all possible regularity issues.

In the past lectures, we have seen how to find a good approximation of a
minimizer, under the assumption that f is convex. The goal of this lecture
is to study what we can do when f is not convex.

1.1 Why non-convex optimization is difficult

We first try to give an intuition of the difference between convex and
non-convex optimization, and why the latter one is much more difficult.

We consider the one-dimensional case, n = 1. Let us imagine that we run
a first-order algorithm (that is, an algorithm which can access the value of
f and ∇f at any desired point, and must return an approximate minimizer
based on this information only). After some time, the algorithm has queried
the values of f and ∇f at several points, for instance

{
−3,−1,−1

2
, 3
2
, 3
}

. The
gathered information is represented on the following picture.

1

−4 −2 0 2 4

0

2

4

6

8

If f is convex, this already gives significant information on the minimum and
minimizer of f . Indeed, the graph of f is above its tangents, and below its
chords, which provides upper and lower bounds for f . In the specific example
considered here, these upper and lower bounds are respectively represented
in orange and red on the following picture. One can use them to deduce the
following two properties :

1. The minimum of f is between −3/8 and 1/8.

2. The minimizer(s) of f belong(s) to the interval [−1/2; 5/6].

In particular, from this information, one knows the value of min f up to
precision 0.5 and the minimizer up to precision 1.325.

−4 −2 0 2 4

0

2

4

6

8

2

But if f is not convex, this information does not allow to distinguish, for
instance, the following two functions.

−4 −2 0 2 4

0

2

4

6

8

−4 −2 0 2 4

0

2

4

6

8

The function represented on the left reaches its minimum at 1/2, and this
minimum is 0. The function on the right reaches its minimum at −2, and this
minimum is −1. The difference between the minimums of these two functions
is 1, and the difference between the minimizers is 2.5 : One cannot produce
estimations for the minimal value and minimizer of f comparable to the
convex setting.

Intuitively, to compute a trustworthy approximation of min f or argmin f
without the convexity assumption, one needs to sample f on a fine grid. As
soon as there is a “hole” in the sampling set 1, one cannot know whether the
function takes large or small values in this hole, hence one cannot compute a
precise estimate of min f or argmin f . In the one-dimensional case, it may be
possible to sample f on a fine grid, but if n is large, this is out of question :
The number of sampling points on a fine grid grows exponentially with the
dimension.

As a consequence, if f is not convex, we must give up the idea of finding
an approximate minimizer. In the rest of the lecture, we will see which kind
of points we can hope to find, and how.

1. The sampling set is the set of points at which the algorithm queries the values of f
and ∇f . In our example, it is {−3,−1,−1/2, 3/2, 3}.

3

2 Critical points

A first idea is to look for a local minimizer instead of a global one. It turns
out that this is also out of reach, at least for pathological functions. Thus,
we lower our expectations again : instead of looking for a local minimizer,
we simply look for a point at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

Proposition 2.1. For any x ∈ Rn, we denote Hess f(x) the Hessian of f at

x, that is the n× n matrix whose (i, j)-th coefficient is ∂2f
∂xi∂xj

(x).

If x is a local minimizer of f , then

∇f(x) = 0 and Hess f(x) � 0.

Conversely, if ∇f(x) = 0 and Hess f(x) � 0, then x is a local minimizer
of f .

Définition 2.2. We say that an element x of Rn is

• a first-order critical point of f if ∇f(x) = 0,

• a second-order critical point of f if ∇f(x) = 0 and Hess f(x) � 0.

Exemple 2.3. We consider the map f : (x1, x2) ∈ R2 → x21 − x22 ∈ R.
Its gradient and Hessian have the following formulas :

∀x = (x1, x2) ∈ R2, ∇f(x) = (2x1,−2x2) and Hess f(x) = (2 0
0 −2) .

Therefore, f has a single first-order critical point, which is (0, 0). This
point is not a second-order critical point, because (2 0

0 −2) is not semidefinite
positive.

Although second-order critical points are not always local minimizers 2,
the two notions nevertheless coincide for many functions f . In addition, it has
been observed 3 that, in various interesting situations (including the training
of neural networks), f has no local minimizer other than its global one, or,
at least, all its local minimizers are approximate global minimizers (meaning
f(x) ≈ f(x∗)). It is thus of practical importance to be able to find critical
points.

2. The map (x→ x3) has a second-order critical point at 0, but no local minimizer.
3. At least numerically ; theoretical justifications have been proposed, but only in quite

specific settings.

4

3 Convergence of gradient descent

Let us first consider the simplest first-order algorithm, gradient descent.
We have studied, in the previous lecture, its convergence properties in the
convex setting. How does it perform in the non-convex one ?

We assume that f is L-smooth for some L > 0 : For any x, y ∈ Rn,

||∇f(x)−∇f(y)|| ≤ L||x− y||.

We consider gradient descent with constant stepsize, equal to 1/L : starting
from an arbitrary x0 ∈ Rn, we define a sequence (xt)t∈N by

xt+1 = xt −
1

L
∇f(xt).

3.1 Convergence to a first-order critical point

Théorème 3.1. Let T ∈ N be fixed. We consider the following algorithm :

1. Run T steps of gradient descent, which defines a sequence (x0, x1, . . . , xT).

2. Compute Tmin = argmin0≤t≤T ||∇f(xt)|| and define x̃T = xTmin
.

3. Return x̃T .

Then

||∇f(x̃T)|| ≤
√

2L(f(x0)− f(x∗))

T
.

We say that x̃T is a O(1/
√
T)-approximate first-order critical point.

Démonstration. Because f is L-smooth, it holds

∀t ∈ N, f(xt+1) ≤ f(xt)−
1

2L
||∇f(xt)||2.

Consequently,

T−1∑
t=0

||∇f(xt)||2 ≤ 2L
T−1∑
t=0

f(xt)− f(xt+1)

= 2L(f(x0)− f(xT))

≤ 2L(f(x0)− f(x∗)).

5

Since ||∇f(x̃T)|| ≤ ||∇f(xt)|| for any t ≤ T ,

T ||∇f(x̃T)||2 ≤ 2L(f(x0)− f(x∗)),

which implies

||∇f(x̃T)|| ≤
√

2L(f(x0)− f(x∗))

T
.

3.2 Convergence to a second-order critical point

The previous theorem shows that gradient descent allows to find approximate
first-order critical points, and even provides a convergence rate. For second-
order critical points, the picture is more complicated.

For some choices of initial points x0, it may happen that gradient descent
does not get close to an approximate second-order critical point, even when
run for an infinite number of steps. For instance, if x0 is a first-order critical
point of f , but not a second-order critical point, then

x0 = x1 = x2 = . . . ,

because ∇f(x0) = 0, hence gradient descent stays stuck at x0 and never
reaches a second-order critical point.

Théorème 3.2 (Lee, Simchowitz, Jordan, Recht 2016). We assume that

• f has only a finite number of first-order critical points ;

• for any M ∈ R, {x ∈ Rn, f(x) ≤M} is bounded.

We consider gradient descent with constant stepsize α ∈]0; 1
L

[.
For almost any x0 (that is, for all x0 outside a zero-Lebesgue measure

set), (xt)t∈N converges to a second-order critical point.

Intuition of proof. The finiteness of the critical set and the boundedness of
the level sets of f imply that (xt)t∈N converges to a first-order critical point
whatever x0. We admit this fact for simplicity.

We must show that, if xcrit is a first-order but not a second-order critical
point of f , then (xt)t∈N does not converge to xcrit, for almost any x0. We
consider such a critical point ; up to translation, we can assume that it is 0.

6

We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, whose radius we call r0 :

∀x ∈ B(0, r0), f(x) =
1

2
〈x,Mx〉+ 〈x, b〉 ,

for some n× n symmetric matrix M .
For any x ∈ B(0, r0), ∇f(x) = Mx + b. Since 0 is a first-order critical

point, we necessarily have b = 0. In addition, Hess f(x) = M for any x ∈
B(0, r0). The assumption that 0 is not a second-order critical point is then
equivalent to the fact that M 6� 0.

The matrix M can be diagonalized in an orthonormal basis :

M = UT

(λ1 ... 0
...

...
...

0 ... λn

)
U,

with λ1 ≥ · · · ≥ λn the eigenvalues of M and U an orthonomal matrix. Up
to a change of coordinates, we can assume U = Id. Since M 6� 0, at least the
smallest eigenvalue of M is negative : λn < 0.

If the sequence (xt)t∈N of gradient descent iterates converges to 0, then
xt belongs to B(0, r0) for any t large enough, in which case

xt+1 = xt − α∇f(xt)

= xt − αMxt

=

(
(1−αλ1)xt,1

...
(1−αλn)xt,n

)
.

We fix t0 such that this relation holds for any t ≥ t0. Then, for any s ∈ N,

xt0+s =

(
(1−αλ1)sxt0,1

...
(1−αλn)sxt0,n

)
.

If the sequence converges to 0, all the coordinates of xt0+s must go to 0 when
s goes to +∞ (for any fixed t), which means that

∀k ∈ {1, . . . , n}, (1− αλk)sxt0,k
s→+∞→ 0. (1)

We have said that λn < 0, hence 1 < 1− αλn and (1− αλn)s 6→ 0 when
s→ +∞. In order for Property (1) to hold, we must therefore have

xt0,n = 0.

7

To summarize, we have shown that, if (xt)t∈N converges to 0, then, for
some t0,

xt0 ∈ E
def
= {z ∈ B(0, r0) such that zn = 0}.

As a consequence,
x0 ∈ (Id− α∇f)−t0 (E).

(For any map g : Rn → Rn, we define g−t0(E) as the set of points x such that
gt0(x) = g ◦ · · · ◦ g(x) ∈ E .) Therefore, the set of initial points x0 for which
the gradient descent iterates may converge to 0 is included in⋃

t∈N

(Id− α∇f)−t(E).

The set E has zero Lebesgue measure and one can check that Id− α∇f is a
diffeomorphism, hence (Id − α∇f)−t(E) has zero Lebesgue measure for any
t ∈ N, and the set of “problematic” initial points also has zero Lebesgue
measure.

4 A second-order method

The theorem stated in the previous paragraph only states that gradient
descent reaches a second-order critical point “in the limit” (for almost any
initial point x0). It does not provide complexity estimates. This is unavoidable :
in high dimension, gradient descent may converge extremely slowly in the
worst case.

To overcome this possible slow convergence, several strategies are possible.
One of them is to add “noise” to gradient iterates from time to time, to help
them get away faster from first-order critical points. The interested reader
will find a description in How to escape saddle points efficiently, by C. Jin,
R. Ge, P. Netrapalli, S. Kakade and M. Jordan (ICML 2017)

Another one is to explicitely exploit the information provided by second-
order derivatives. This yields the family of second-order methods. In this
section, we briefly describe one member of this family : the trust-region
method.

The starting point is that, in the same way that ∇f provides a linear
approximation of f around any point, Hess f provides a (more precise) quadratic
approximation.

8

Proposition 4.1. For any x ∈ Rn,

f(x+ h) = f(x) + 〈h,∇f(x)〉+
1

2
〈h,Hess f(x)h〉+ o(||h||2).

To define xt+1 from xt, it is therefore reasonable to set

ht = argmin
||h||≤Rt

(
f(x) + 〈h,∇f(x)〉+

1

2
〈h,Hess f(x)h〉

)
and xt+1 = xt +ht. (In the definition of ht, Rt is a positive number, the trust
radius, whose choice is important for the good behavior of the algorithm.)

We provide convergence guarantees for this algorithm under the assumption
that Hess f is L2-Lipschitz for some L2 > 0 :

∀x, y, h ∈ Rn, ||(Hess f(x)− Hess f(y))h|| ≤ L2||x− y|| ||h||.

Théorème 4.2. Let ε > 0 be fixed.
We run the trust-region algorithm as described above, with Rt =

√
ε

L2
for

any t. We stop the algorithm if

||∇f(xt) + Hess f(xt)ht||
||ht||

≤
√
ε

and return xt+1.

For any x0 ∈ Rn, the algorithm stops after at most O
(
L2
2(f(x0)−f(x∗))

ε3/2

)
iterations and the output xfinal is an approximate second-order critical point,
in the sense that

||∇f(xfinal)|| .
ε

L2

and λmin (Hess f(xfinal)) & −
√
ε.

(The notation “.” means “smaller up to a moderate multiplicative constant”
and λmin is the smallest eigenvalue.)

5 Example : phase retrieval

In the last part of this lecture, we give an example of a non-convex
problem where it turns out that all second-order critical points are global
minimizers and, moreover, it is possible to rigorously prove this fact. This
example is phase retrieval.

9

In phase retrieval, one wants to recover an unknown vector xtrue ∈ Cn.
Some linear maps L1, . . . , Lm : Cn → C are fixed and one has access to

y1 = |L1(xtrue)|, . . . , ym = |Lm(xtrue)|.

Here, the double bar, � |.| � denotes the standard complex modulus. This
problem is notably motivated by applications in imaging.

Since, for any α ∈ R, k ≤ m, |Lk(eiαxtrue)| = |eiα| |Lk(xtrue)| = |Lk(xtrue)|,
it is not possible to distinguish xtrue from eiαxtrue from the knowledge of
y1, . . . , ym. However, when m ≥ 4n, it is possible to prove that, for almost
all linear forms L1, . . . , Lm, xtrue is uniquely determined by y1, . . . , ym up
to multiplication by some unitary complex number eiα. In this case, which
algorithm can recover xtrue ?

Recovering xtrue is equivalent to finding x ∈ Cn such that

|L1(x)| = y1, . . . , |Lm(x)| = ym.

The modulus is non-differentiable, but its square is, so it is simpler to rewrite
these equalities as

|L1(x)|2 = y21, . . . , |Lm(x)|2 = y2m.

An intuitive idea to find such an x is to minimize the square-norm error
between (|L1(x)|2, . . . , |Lm(x)|2) and (y21, . . . , y

2
m), that is

L(x) =
m∑
k=1

(
|Lk(x)|2 − y2k

)2
.

The function L is not convex. Therefore, attempting to minimize it with a
first or second-order algorithm may fail : the algorithm will typically find
a second-order critical point, but this critical point may not be the global
minimizer xtrue.

Numerically, this issue “critical point” issue can arise or not. However,
when m is large enough compared to n and the linear maps L1, . . . , Lm are
sufficiently “incoherent” with each other, it empirically seems that “bad”
critical points do not exist 4.

4. or, at least, are sufficiently rare so that a first or second-order algorithm does not
find them

10

This fact can be rigorously established, although under strong assumptions
on L1, . . . , Lm. Specifically, we assume that L1, . . . , Lm are generated randomly
and independently according to a normal distribution (that is, for each k,
the coordinates of Lk in the canonical basis are independent realizations of
complex Gaussian variables with unit variance). We also assume that

m ≥ Cn log3(n).

Théorème 5.1 (A geometric analysis of phase retrieval, de J. Sun, Q. Qu
et J. Wright (Foundations of computational mathematics, 2018)). Under the
above assumptions, the second-order critical points of L are exactly its global
minimizers {eiαxtrue, α ∈ R}, with probability at least 1− 1

m
.

As a consequence, in this setting, it is possible to recover xtrue by simply
running gradient descent on L.

6 References

• Gradient descent only converges to minimizers, by J. D. Lee, M. Simchowitz,
M. Jordan and B. Recht, in the Conference on Learning Theory (COLT),
2016.

• Second order optimization algorithms I, lecture notes by Y. Ye, available
at http://web.stanford.edu/class/msande311/2017lecture13.pdf.

• Computing a trust region step, by J. J. Moré and D. C. Sorensen, in the
SIAM journal on scientific and statistical computing, volume 4, number 3,
1983.

11

http://web.stanford.edu/class/msande311/2017lecture13.pdf

	Introduction
	Why non-convex optimization is difficult

	Critical points
	Convergence of gradient descent
	Convergence to a first-order critical point
	Convergence to a second-order critical point

	A second-order method
	Example: phase retrieval
	References

