Corrigé de l'exercice 2.6

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

On considère l'application de $\mathbb{R}\setminus\{-1\}$ dans \mathbb{R}^2 donnée par

$$f(t) = \left(\frac{3t}{1+t^3}, \frac{3t^2}{1+t^3}\right).$$

(i) Montrer que f est une immersion de \mathbb{R} sur \mathbb{R}^2 de classe C^{∞} .

Les deux composantes de f sont des fractions rationnelles ; c'est donc une application C^{∞} . Pour tout $t \in \mathbb{R}$,

$$f'(t) = \left(\frac{3(1-2t^3)}{(1+t^3)^2}, \frac{3t(2-t^3)}{(1+t^3)^2}\right).$$

Cette expression permet de voir que $f'(t) \neq 0$ pour tout $t \in \mathbb{R}$. En effet, la première coordonnée de f' s'annule seulement en $2^{-1/3}$ et la deuxième seulement en 0 et $2^{1/3}$; les deux ne sont donc jamais simultanément nulles.

(ii) Montrer que f est injective.

Soient $t, s \in \mathbb{R}$ tels que f(t) = f(s). Si t = 0, alors

$$\left(\frac{3s}{1+s^3}, \frac{3s^2}{1+s^3}\right) = f(s) = f(t) = 0,$$

donc s = 0 = t. De même, si s = 0, alors t = 0 donc t = s.

Supposons maintenant $t \neq 0$ et $s \neq 0$. Notons f_1, f_2 les deux coordonnées de f. Alors $f_1(t) \neq 0$ et $f_1(s) \neq 0$. On a donc

$$t = \frac{f_2(t)}{f_1(t)} = \frac{f_2(s)}{f_1(s)} = s.$$

1

Dans tous les cas, on a donc t = s.

(iii) Montrer que $f\left(\frac{1}{t}\right) = (3t^2, 3t) + o(t^2)$ lorsque $t \to 0$.

Pour tout $t \in \mathbb{R} \setminus \{-1, 0\}$,

$$f\left(\frac{1}{t}\right) = \left(\frac{3t^2}{t^3 + 1}, \frac{3t}{t^3 + 1}\right)$$
$$= \left(3t^2(1 + O(t^3)), 3t(1 + O(t^3))\right)$$
$$= (3t^2, 3t) + o(t^2).$$

(iv) Soit $\epsilon \in]0;1[$ quelconque. Montrer que, pour tout t tel que $\epsilon \leq |t| \leq \frac{1}{\sqrt{\epsilon}},$

$$f(t) \notin]-\epsilon; \epsilon[\times \mathbb{R}.$$

Pour tout $t \in \mathbb{R} \setminus \{-1\}$ tel que $\epsilon \le |t| \le \frac{1}{\sqrt{\epsilon}}$,

$$|f_1(t)| = \left| \frac{3t}{1+t^3} \right|$$

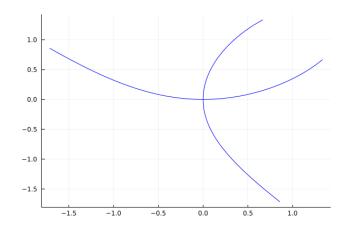
$$\geq \frac{3|t|}{2\max(1,|t|^3)}$$

$$= \frac{3}{2}\min\left(|t|,\frac{1}{|t|^2}\right)$$

$$\geq \frac{3}{2}\epsilon$$

$$\geq \epsilon.$$

(v) Dessiner l'allure de $f(\mathbb{R})$ au voisinage de f(0).



(vi) Montrer que $f(\mathbb{R})$ n'est pas une sous-variété de \mathbb{R}^2 .

Raisonnons par l'absurde et supposons que $f(\mathbb{R})$ est une sous-variété de \mathbb{R}^2 , en nous inspirant en partie de l'exercice 2.10.

Considérons les fonctions suivantes :

$$\gamma_1:]-1;1[\rightarrow \mathbb{R}^2$$

$$t \rightarrow f(t);$$

$$2:]-1;1[\rightarrow \mathbb{R}^2$$

 $\gamma_2:]-1;1[\rightarrow \mathbb{R}^2$ $t \rightarrow f(0) \quad \text{si } t=0,$ $t \rightarrow f(\frac{1}{t}) \quad \text{si } t \neq 0.$

L'application γ_1 est de classe C^1 (et même C^{∞}) car f l'est. L'application γ_2 est dérivable sur $]-1;1[-\{0\}]$ avec, pour tout t,

$$\gamma_2'(t) = -\frac{1}{t^2} f'\left(\frac{1}{t}\right) = \left(-\frac{3t(t^3 - 2)}{(t^3 + 1)^2}, -\frac{3(2t^3 - 1)}{(t^3 + 1)^2}\right).$$

D'après la question (iii), elle est également dérivable en 0, de dérivée

$$\gamma_2'(0) = (0,3).$$

L'application γ_2 est donc dérivable sur tout son ensemble de définition, et même C^1 puisque $\gamma_2'(t) \to \gamma_2'(0)$ quand $t \to 0$.

Ainsi, d'après la définition de l'espace tangent, $\gamma'_1(0) = (3,0)$ et $\gamma'_2(0) = (0,3)$ appartiennent à l'espace tangent de la variété en (0,0). Comme $\gamma'_1(0)$ et $\gamma'_2(0)$ forment une base de \mathbb{R}^2 , cela signifie que l'espace tangent est \mathbb{R}^2 tout entier. La variété doit donc être de dimension 2.

Mais si la variété est de dimension 2, c'est un ouvert de \mathbb{R}^2 , d'après l'exercice 2.1. En particulier, puisqu'elle contient (0,0), c'est un voisinage de (0,0). Ceci est faux : comme $f_1(t) \neq 0$ pour tout $t \neq 0$, on peut par exemple remarquer que $(0,y) \notin f(\mathbb{R})$ pour tout $y \neq 0$.

On a donc abouti à une contradiction.