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Exercise 1

Let µ, L be real numbers such that 0 < µ < L. Let f : Rn → R be a
L-smooth and µ-strongly convex function.
We consider Nesterov’s algorithm applied to f : for any x0 ∈ R, we define

xt+1 = xt −
1

L
∇f (xt + β(xt − xt−1)) + β(xt − xt−1),

where we have set x−1 = x0 and β =
√
L−√µ√
L+
√
µ
.

We assume that f has a minimizer. The goal of this exercise is to prove
the theorem seen during the class on the convergence speed of Nesterov’s
algorithm to the minimizer.
Without loss of generality, we assume that the minimizer is 0, and f(0) = 0.
For any t ∈ N, we define

yt = xt + β(xt − xt−1),

Vt = f(xt) +
L

2

∣∣∣∣∣∣∣∣xt − (1−
√
µ

L

)
xt−1

∣∣∣∣∣∣∣∣2 .
1. (a) Show that, for any a, b ∈ Rn,

f(a) = f(b) +

∫ 1

0

〈∇f(b+ t(a− b)), a− b〉 dt.

(b) Deduce that

f(a) ≤ f(b) + 〈∇f(b), a− b〉+
L

2
||a− b||2.
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2. (a) Show that, for all t,

f(xt+1) ≤ f(yt)−
L

2
||xt+1 − yt||2.

(b) Deduce that

Vt+1 ≤ f(yt) + L

〈
xt+1, yt −

(
1−

√
µ

L

)
xt

〉
+
L

2

(
1−

√
µ

L

)2

||xt||2 −
L

2
||yt||2.

3. (a) Show that, for all t,

f(yt) ≤ L 〈yt − xt+1, yt〉 −
µ

2
||yt||2.

[Hint: apply the strong convexity assumption at points 0 and yt.]

(b) Deduce that

Vt+1 ≤
(

1−
√
µ

L

)(
f(yt) + L 〈xt+1, yt − xt〉

+
L

2

(
1−

√
µ

L

)
||xt||2 −

L

2

(
1−

√
µ

L
− µ

L

)
||yt||2

)
.

4. (a) Show that, for all t,

f(yt) ≤ f(xt) + L 〈yt − xt+1, yt − xt〉 −
µ

2
||yt − xt||2.

[Hint: apply the strong convexity assumption at points xt and yt.]

(b) Deduce that

Vt+1 ≤
(

1−
√
µ

L

)(
f(xt) +

L

2

∣∣∣∣∣∣∣∣(1 +

√
µ

L

)
yt − xt

∣∣∣∣∣∣∣∣2
− 1

2

(√
µL+ µ

)
||xt − yt||2

)
.
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5. (a) Show that, for all t,

xt −
(

1−
√
µ

L

)
xt−1 =

(
1 +

√
µ

L

)
yt − xt

(b) Deduce that

Vt+1 ≤
(

1−
√
µ

L

)
Vt.

6. Show that, for all t, f(xt) ≤ 2
(
1−

√
µ
L

)t
f(x0).

Exercise 2

Let L > 0 be fixed.
The goal of this exercise is to show that, up to a multiplicative constant, no
first-order algorithm has a better convergence rate than Nesterov’s method
on the class of L-smooth convex functions.
Let Alg be a first-order algorithm. For any n ∈ N, L-smooth convex function
f : Rn → R and starting point x0, we denote (xfk)k∈N the sequence generated
by Alg. We make a simplifying assumption on Alg:

(H): For any n, f, x0, for all k ∈ N, xfk − x0 ∈ Vect{∇f(x0), . . . ,∇f(xk−1)}.

[Remark: standard gradient descent and heavy ball, for instance, satisfy this
assumption. Nesterov’s method does too, after slight reformulations.]
Let k be fixed. We define

f : R2k+1 → R
(s1, . . . , s2k+1) → L

4

(
s21
2

+ 1
2

∑2k
i=1(si+1 − si)2 +

s22k+1

2
− s1

)
.

1. Show that f is convex.

2. Compute ∇f and show that it is L-Lipschitz.

3. Show that the only minimizer of f is

x∗ =
1

2(k + 1)
(2k + 1, 2k, ..., 1)

and that

f(x∗) = −L
8

(
1− 1

2(k + 1)

)
.
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4. We set x0 = 0. Show that, for any t = 1, . . . , 2k,

xft ∈ {(s1, . . . , st, 0, . . . , 0)|s1, . . . , st ∈ R}.

5. Compute
min{f(s1, . . . , sk, 0, . . . , 0)|s1, . . . , sk ∈ R}.

6. Show that

f(xfk)− f(x∗) ≥
L

16(k + 1)
.

7. Deduce that

f(xfk)− f(x∗) ≥
3L

32(k + 1)2
||x0 − x∗||2.

[On rappelle que, pour tout ` ∈ N,
∑`

r=1 r
2 = `(`+1)(2`+1)

6
.]

8. (Difficult) Show the same result without Assumption (H).
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