Non-convex optimization: exercise

Irène Waldspurger*

December 8, 2022

Exercise

This exercise is about phase retrieval problems. During the lecture, we have given the definition of general *complex* phase retrieval problems, where the goal is to recover a vector with *complex* coordinates from the *modulus* of linear measurements. In the exercise, for simplicity, we restrict ourselves to *real* phase retrieval problems:

recover
$$x_* \in \mathbb{R}^n$$
 from $|\langle x_*, v_1 \rangle|, \dots, |\langle x_*, v_m \rangle|$?

Here, v_1, \ldots, v_m are known vectors in \mathbb{R}^n , " $\langle ., . \rangle$ " denotes the usual Euclidean scalar product and "|.|" is the absolue value.

Observe that $|\langle x_*, v_k \rangle| = |\langle -x_*, v_k \rangle|$ for any $k = 1, \ldots, m$, hence recovery of x_* is at best possible up to sign.

1. We define $y_k = |\langle x_*, v_k \rangle|$ for any $k = 1, \ldots, m$ and

$$\mathcal{L} : \mathbb{R}^n \to \mathbb{R} \\ x \to \sum_{k=1}^m (\langle x, v_k \rangle^2 - y_k^2)^2.$$

Show that a vector $x \in \mathbb{R}^n$ is a global minimizer of \mathcal{L} if and only if

$$|\langle x, v_k \rangle| = |\langle x_*, v_k \rangle|, \quad \forall k = 1, \dots, m.$$

2. Show that \mathcal{L} is C^{∞} and that, for all $x, h \in \mathbb{R}^n$,

$$\nabla \mathcal{L}(x) = 4 \sum_{k=1}^{m} (\langle x, v_k \rangle^2 - y_k^2) \langle x, v_k \rangle v_k,$$
$$\nabla^2 f(x) \cdot (h, h) = 4 \sum_{k=1}^{m} (3 \langle x, v_k \rangle^2 - y_k^2) \langle h, v_k \rangle^2.$$

^{*}waldspurger@ceremade.dauphine.fr

3. From now on, we assume that v_1, \ldots, v_m are chosen at random according to independent normal distributions (that is, each coordinate of each v_k is independently chosen according to the law $\mathcal{N}(0, 1)$).

Show that, for any $x, h \in \mathbb{R}^n$,

$$\mathbb{E}(\nabla \mathcal{L}(x)) = 4m \left((3||x||^2 - ||x_*||^2) x - 2 \langle x_*, x \rangle x_* \right),$$

$$\mathbb{E}(\nabla^2 \mathcal{L}(x) \cdot (h, h)) = 4m \left(6 \langle x, h \rangle^2 - 2 \langle x_*, h \rangle^2 + (3||x||^2 - ||x_*||^2)||h||^2 \right).$$

[Hint: you can admit that, for arbitrary $a, b \in \mathbb{R}^n$ and any k,

$$\mathbb{E}(\langle a, v_k \rangle^2 \langle b, v_k \rangle v_k) = 2 \langle a, b \rangle a + ||a||^2 b,$$

$$\mathbb{E}(\langle a, v_k \rangle^2 \langle b, v_k \rangle^2) = 2 \langle a, b \rangle^2 + ||a||^2 ||b||^2.$$

Do not treat y_1, \ldots, y_m as constants: they depend on v_1, \ldots, v_m .]

4. Assuming, for simplicity, $x_* \neq 0$, compute the first and second order stationary points of $\mathbb{E}\mathcal{L}$.

[Remark : for any $x, h \in \mathbb{R}^n$, it holds $\nabla(\mathbb{E}\mathcal{L})(x) = \mathbb{E}(\nabla\mathcal{L}(x))$ and $\nabla^2(\mathbb{E}\mathcal{L})(x) \cdot (h, h) = \mathbb{E}(\nabla^2\mathcal{L}(x) \cdot (h, h))$.]