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Exercise

This exercise is about phase retrieval problems. During the lecture, we have
given the definition of general complex phase retrieval problems, where the
goal is to recover a vector with complex coordinates from the modulus of
linear measurements. In the exercise, for simplicity, we restrict ourselves to
real phase retrieval problems:

recover x∗ ∈ Rn from | 〈x∗, v1〉 |, . . . , | 〈x∗, vm〉 | ?

Here, v1, . . . , vm are known vectors in Rn, “〈., .〉” denotes the usual Euclidean
scalar product and “|.|” is the absolue value.
Observe that | 〈x∗, vk〉 | = | 〈−x∗, vk〉 | for any k = 1, . . . ,m, hence recovery
of x∗ is at best possible up to sign.

1. We define yk = | 〈x∗, vk〉 | for any k = 1, . . . ,m and

L : Rn → R
x →

∑m
k=1(〈x, vk〉

2 − y2k)2.

Show that a vector x ∈ Rn is a global minimizer of L if and only if

| 〈x, vk〉 | = | 〈x∗, vk〉 |, ∀k = 1, . . . ,m.

2. Show that L is C∞ and that, for all x, h ∈ Rn,

∇L(x) = 4
m∑
k=1

(〈x, vk〉2 − y2k) 〈x, vk〉 vk,

∇2f(x) · (h, h) = 4
m∑
k=1

(3 〈x, vk〉2 − y2k) 〈h, vk〉2 .
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3. From now on, we assume that v1, . . . , vm are chosen at random accord-
ing to independent normal distributions (that is, each coordinate of
each vk is independently chosen according to the law N (0, 1)).

Show that, for any x, h ∈ Rn,

E(∇L(x)) = 4m
((

3||x||2 − ||x∗||2
)
x− 2 〈x∗, x〉x∗

)
,

E(∇2L(x) · (h, h)) = 4m
(
6 〈x, h〉2 − 2 〈x∗, h〉2

+(3||x||2 − ||x∗||2)||h||2
)
.

[Hint: you can admit that, for arbitrary a, b ∈ Rn and any k,

E(〈a, vk〉2 〈b, vk〉 vk) = 2 〈a, b〉 a + ||a||2b,
E(〈a, vk〉2 〈b, vk〉2) = 2 〈a, b〉2 + ||a||2||b||2.

Do not treat y1, . . . , ym as constants: they depend on v1, . . . , vm.]

4. Assuming, for simplicity, x∗ 6= 0, compute the first and second order
stationary points of EL.

[Remark : for any x, h ∈ Rn, it holds ∇(EL)(x) = E(∇L(x)) and
∇2(EL)(x) · (h, h) = E(∇2L(x) · (h, h)).]
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