Non-convex optimization: exercise

Irène Waldspurger*

December 8, 2022

Exercise

This exercise is about phase retrieval problems. During the lecture, we have given the definition of general complex phase retrieval problems, where the goal is to recover a vector with complex coordinates from the modulus of linear measurements. In the exercise, for simplicity, we restrict ourselves to real phase retrieval problems:

$$
\text { recover } x_{*} \in \mathbb{R}^{n} \text { from }\left|\left\langle x_{*}, v_{1}\right\rangle\right|, \ldots,\left|\left\langle x_{*}, v_{m}\right\rangle\right| \text { ? }
$$

Here, v_{1}, \ldots, v_{m} are known vectors in \mathbb{R}^{n}, " $\langle.,$.$\rangle " denotes the usual Euclidean$ scalar product and ".|" is the absolue value.
Observe that $\left|\left\langle x_{*}, v_{k}\right\rangle\right|=\left|\left\langle-x_{*}, v_{k}\right\rangle\right|$ for any $k=1, \ldots, m$, hence recovery of x_{*} is at best possible up to sign.

1. We define $y_{k}=\left|\left\langle x_{*}, v_{k}\right\rangle\right|$ for any $k=1, \ldots, m$ and

$$
\begin{array}{rlc}
\mathcal{L}: \mathbb{R}^{n} & \rightarrow & \mathbb{R} \\
x & \rightarrow \sum_{k=1}^{m}\left(\left\langle x, v_{k}\right\rangle^{2}-y_{k}^{2}\right)^{2} .
\end{array}
$$

Show that a vector $x \in \mathbb{R}^{n}$ is a global minimizer of \mathcal{L} if and only if

$$
\left|\left\langle x, v_{k}\right\rangle\right|=\left|\left\langle x_{*}, v_{k}\right\rangle\right|, \quad \forall k=1, \ldots, m .
$$

2. Show that \mathcal{L} is C^{∞} and that, for all $x, h \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\nabla \mathcal{L}(x) & =4 \sum_{k=1}^{m}\left(\left\langle x, v_{k}\right\rangle^{2}-y_{k}^{2}\right)\left\langle x, v_{k}\right\rangle v_{k} \\
\nabla^{2} f(x) \cdot(h, h) & =4 \sum_{k=1}^{m}\left(3\left\langle x, v_{k}\right\rangle^{2}-y_{k}^{2}\right)\left\langle h, v_{k}\right\rangle^{2}
\end{aligned}
$$

[^0]3. From now on, we assume that v_{1}, \ldots, v_{m} are chosen at random according to independent normal distributions (that is, each coordinate of each v_{k} is independently chosen according to the law $\mathcal{N}(0,1)$).
Show that, for any $x, h \in \mathbb{R}^{n}$,
\[

$$
\begin{aligned}
& \mathbb{E}(\nabla \mathcal{L}(x))=4 m\left(\left(3\|x\|^{2}-\left\|x_{*}\right\|^{2}\right) x-2\left\langle x_{*}, x\right\rangle x_{*}\right), \\
& \mathbb{E}\left(\nabla^{2} \mathcal{L}(x) \cdot(h, h)\right)=4 m\left(6\langle x, h\rangle^{2}-2\left\langle x_{*}, h\right\rangle^{2}\right. \\
&\left.+\left(3\|x\|^{2}-\left\|x_{*}\right\|^{2}\right)\|h\|^{2}\right) .
\end{aligned}
$$
\]

[Hint: you can admit that, for arbitrary $a, b \in \mathbb{R}^{n}$ and any k,

$$
\begin{array}{r}
\mathbb{E}\left(\left\langle a, v_{k}\right\rangle^{2}\left\langle b, v_{k}\right\rangle v_{k}\right)=2\langle a, b\rangle a+\|a\|^{2} b, \\
\mathbb{E}\left(\left\langle a, v_{k}\right\rangle^{2}\left\langle b, v_{k}\right\rangle^{2}\right)=2\langle a, b\rangle^{2}+\|a\|^{2}\|b\|^{2} .
\end{array}
$$

Do not treat y_{1}, \ldots, y_{m} as constants: they depend on v_{1}, \ldots, v_{m}.]
4. Assuming, for simplicity, $x_{*} \neq 0$, compute the first and second order stationary points of $\mathbb{E} \mathcal{L}$.
$\left[\right.$ Remark : for any $x, h \in \mathbb{R}^{n}$, it holds $\nabla(\mathbb{E} \mathcal{L})(x)=\mathbb{E}(\nabla \mathcal{L}(x))$ and $\left.\nabla^{2}(\mathbb{E} \mathcal{L})(x) \cdot(h, h)=\mathbb{E}\left(\nabla^{2} \mathcal{L}(x) \cdot(h, h)\right).\right]$

[^0]: *waldspurger@ceremade.dauphine.fr

