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Exercise

1. For any z € R™, L(z) > 0 (since it is a sum of squares). In addition,

L) =3 (@ ve) = | o o) ) = 0.

Consequently, min £ = 0 and, for any z € R",

x is a global minimizer of £

< L(z)=0
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— |(x,vp) | = | (xs,vr) |, VE=1,....m

2. The map L is polynomial in the coordinates of z. It is thus C*°.
Let us compute its derivatives.

For any = € R™, the gradient VL(x) is the only vector such that

L(zx+w)=L(x)+ (VL(x),w) + o||w]]).
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And, for any x, w,
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+4 ((z, v)? — yi) (z, vp) (w, vg) + O(HWH)]
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We thus have
m
42 x, vk —yk :U ?Jk>vk-
k=1

As to the Hessian at a point x € R", it is the only quadratic function
such that, for any [ € R",

(VL(x + h),l) = (VL(x),1) + V2L(x) - (h,1) + o(||h]]).

For any z, h, [,
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+ (3w, o) — wi) (i) (o 1) ] + o([[]])

= (VL)1) +4) (3w, v0)” = i) (o, b) (v, 1) + o[ [A])-

k=1

Consequently

Ve Z x, Uk y2) (h, o) (1, vg)

k=1

which implies that, for any x, h,
V2L(z) - (h,h) —42 z,vp) — y2) (h,ug)?.

Another possibility to solve the question would have been to compute
the partial derivatives. Indeed, we know that, for any x, h € R",
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4. We start with the first-order stationary points. For any z € R",
V(EL)(xz) = 0 if and only if

Am ((3]|z]]* = |z.]]?) © — 2 (s, x) 2,) = 0.
This happens if and only if
Bllzl* = [|2.|* = (2, 2) =0 (1)
or

2 (x4, )
L. (2)
Bfa|* — [l

The set of vectors x satisfying Equation (1) is

e Ll —
{ 7 u|u€{x*} |ull = 1}.

Additionally, a vector z satisfies Equation (2) if and only if it is colinear
to x, (that is, x = Az, for some A € R) and the colinearity factor A is
such that

Bll=ll* = l|l2][* #0 and =

0 3[Az|* — [l = (37" = D) |

and
ATy =2
 2(m, Azy)
3l 2 — |22
2\
Tl

These two equations are equivalent to the following conditions:

(a) 3A2 —1 £ 0;
(b) A =52, that is A\ =0or 1 = 57—, that is A € {—1,0,1}.

Consequently, the set of vectors x which satisfy Equation (2) is

{—2.,0,2,}.



We have therefore shown that the set of first order critical points of EL
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A second order critical point of EL is a point x such that

u € {x, ) ||u|| = 1} U{—=x,,0,z.}.

(a) z is first order critical;

(b) V2EL(z) = 0.

Let us consider a first order critical point z, and determine whether
VZEL(z) = 0.

e First case: x = ”\%Hu for some unit-normed vector u orthogonal

to x..

For any h,

V2EL(z) - (h, h)

—4m (6 < ||\x/*§||u, h> —2(x,, h)* + (3 ’
=dm (2||z.|* (u, h)? — 2 (x., h)?) .
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In particular,
V2EL(z) - (24, 2.) = —8m||x.||* < 0.

Therefore, VZEL(z) ¥ 0.

e Second case: x = 0.
For any h,

VZEL() - (h, h) = —4m(2 (2., h) + [[z.|*[|2]?).
In particular,
V2ZEL(z) - (24, 2.) = —12||z.||* < 0.

Therefore, VZEL(z) # 0.



e Third case: x = +ux,.
For any h,

VZEL(z) - (h,h) = 8m (2 (x., h)> + ||2.|[*[|R]]?) -
This is a sum of squares, hence always nonnegative: VZEL(z) = 0.

The only second-order critical points are —z, and z,.



