
Non-convex optimization

Irène Waldspurger∗

December 8, 2022

1 Introduction
Let us consider a general unconstrained minimization problem:

find x∗ such that f(x∗) = minx∈Rn f(x),

for some f : Rn → R. We assume that at least one minimizer, x∗, exists. We
also assume througout the lecture that f is C∞, to avoid regularity issues.

In the past lectures, you have seen many ways to find a good approxima-
tion of a minimizer, under various structural assumptions on f , but mostly
under the hypothesis that f is convex. The goal of this lecture is to study
what we can do when f is not convex.

1.1 Why non-convex optimization is difficult

We first try to give an intuition of why non-convex optimization is much
more difficult than convex optimization.

We consider the one-dimensional case, n = 1. Let us imagine that we run
a first-order algorithm (that is, an algorithm which can access the value of
f and ∇f at any desired point, and must return an approximate minimizer
based on this information only). After some time, the algorithm has queried
the values of f and ∇f at several points, for instance

{
−3,−1,−1

2
, 3
2
, 3
}
.

The gathered information is represented on Figure 1.

∗waldspurger@ceremade.dauphine.fr

1

waldspurger@ceremade.dauphine.fr

−4 −2 0 2 4

0

2

4

6

8

Figure 1: Values of f and ∇f at −3,−1,−1
2
, 3
2
, 3.

−4 −2 0 2 4

0

2

4

6

8

Figure 2: Upper and lower bounds on f , deduced from the information on
Figure 1, under the assumption that f is convex; the graph of f must be
entirely contained in the shaded zone.

2

−4 −2 0 2 4

0

2

4

6

8

−4 −2 0 2 4

0

2

4

6

8

Figure 3: Two possible non-convex functions compatible with the information
displayed on Figure 1.

If f is convex, this already gives significant information on the minimum and
minimizer of f . Indeed, the graph of f is above its tangents, and below its
chords, which provides upper and lower bounds for f , as shown on Figure 2.
One can use them to estimate the minimum and minimizer of f . For instance,
from the upper and lower bounds of Figure 2, one can deduce that

1. the minimum of f is between −3/8 and 1/8;

2. the minimizer(s) of f belong(s) to the interval [−1/2; 5/6].

In particular, from this information, one knows1 the value of min f with
precision 1

4
and the minimizer with precision 2

3
.

But if f is not convex, this information does not allow to distinguish, for
instance, the two functions plotted in Figure 3.

The function represented on the left reaches its minimum at 1/2, and
this minimum is 0. The function on the right reaches its minimum at −2,
and this minimum is −1. The difference between the minimums of these
two functions is 1, and the difference between the minimizers is 2.5: one
cannot produce estimations for the minimal value and minimizer of f with a
precision comparable to the convex setting.

1The minimum is in the interval
[
− 3

8 ;
1
8

]
. The middle point of this interval, − 1

8 , is
therefore an approximation of min f which is at most 1

4 away from the truth.

3

Intuitively, to compute a trustworthy approximation of min f or argminf
without the convexity assumption, one needs to sample f on a fine grid. As
soon as there is a “hole” in the sampling set2, one cannot know whether the
function takes large or small values in this hole, hence one cannot compute
a precise estimate of min f or argminf . In 1D, it may be possible to sample
f on a fine grid, but if n is large, this is out of question: the number of
sampling points on a fine grid grows exponentially with the dimension.

As a consequence, if f is not convex, we must give up the idea of finding
an approximate minimizer. In the rest of the lecture, we will see which kind
of points we can hope to find, and how.

2 Critical points
A first idea is to look for a local minimizer instead of a global one. It turns
out that this is also out of reach, at least for pathological functions. Thus,
we lower our expectations again: instead of looking for a local minimizer,
we simply look for a point at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

Proposition 1

For any x ∈ Rn, we denote Hess f(x) the Hessian of f at x, that is the
n× n matrix whose (i, j)-th coefficient is ∂2f

∂xi∂xj
(x).

If x is a local minimizer of f , then

∇f(x) = 0 and Hess f(x) � 0.

Almost conversely, if ∇f(x) = 0 and Hess f(x) � 0, then x is a local
minimizer of f .

2The sampling set is the set of points at which the algorithm queries the values of f
and ∇f . In our example, it is {−3,−1,−1/2, 3/2, 3}.

4

Definition 1

We say that an element x of Rn is

• a first-order critical point of f if ∇f(x) = 0,

• a second-order critical point of f if∇f(x) = 0 and Hess f(x) � 0.

Example

We consider the map f : (x1, x2) ∈ R2 → x21 − x22 ∈ R.
Its gradient and Hessian have the following formulas:

∀x = (x1, x2) ∈ R2, ∇f(x) = (2x1,−2x2) and Hess f(x) = (2 0
0 −2) .

Therefore, f has a single first-order critical point, which is (0, 0). This
point is not a second-order critical point, because (2 0

0 −2) is not semidef-
inite positive.

Although second-order critical points are not always local minimizers3,
the two notions nevertheless coincide for many functions f . In addition,
it has been observed4 that, in various interesting situations (including the
training of neural networks), f has no local minimizer other than its global
one, or, at least, all its local minimizers are approximate global minimizers
(meaning f(x) ≈ f(x∗)). It is thus of practical importance to be able to find
critical points.

3 Convergence of gradient descent
Let us first consider the simplest first-order algorithm, gradient descent. You
have studied, in the previous lectures, its convergence properties in the convex
setting. How does it perform in the non-convex one?

We assume that f is L-smooth for some L > 0: For any x, y ∈ Rn,

||∇f(x)−∇f(y)|| ≤ L||x− y||.
3The map (x→ x3) has a second-order critical point at 0, but no local minimizer.
4At least numerically; theoretical justifications have been proposed, but only in quite

specific settings.

5

We consider gradient descent with constant stepsize, equal to 1/L: start-
ing from an arbitrary x0 ∈ Rn, we define a sequence (xt)t∈N by

xt+1 = xt −
1

L
∇f(xt).

3.1 Convergence to a first-order critical point

Theorem 1

Let T ∈ N be fixed. We consider the following algorithm:

1. Run T steps of gradient descent, which defines a sequence
(x0, x1, . . . , xT).

2. Compute Tmin = argmin0≤t≤T ||∇f(xt)|| and define x̃T = xTmin
.

3. Return x̃T .

Then

||∇f(x̃T)|| ≤
√

2L(f(x0)− f(x∗))
T

.

We say that x̃T is a O(1/
√
T)-approximate first-order critical point.

Proof. For all x, h ∈ Rn,

f(x+ h) = f(x) +

∫ 1

0

〈∇f(x+ th), h〉 dt

= f(x) +

∫ 1

0

〈∇f(x) + (∇f(x+ th)−∇f(x)), h〉 dt

= f(x) + 〈∇f(x), h〉+
∫ 1

0

〈∇f(x+ th)−∇f(x), h〉 dt

≤ f(x) + 〈∇f(x), h〉+
∫ 1

0

||∇f(x+ th)−∇f(x)|| ||h||dt

(triangular inequality)

≤ f(x) + 〈∇f(x), h〉+ L

∫ 1

0

||h||2tdt

(L-smoothness of f)

6

= f(x) + 〈∇f(x), h〉+ L

2
||h||2.

(This is a classical property of L-smooth functions.)
We apply this inequality to x = xt and h = − 1

L
∇f(xt):

∀t ∈ N, f(xt+1) ≤ f(xt)−
1

2L
||∇f(xt)||2.

Consequently,

T−1∑
t=0

||∇f(xt)||2 ≤ 2L
T−1∑
t=0

(f(xt)− f(xt+1))

= 2L(f(x0)− f(xT))
≤ 2L(f(x0)− f(x∗)).

Since ||∇f(x̃T)|| ≤ ||∇f(xt)|| for any t ≤ T ,

T ||∇f(x̃T)||2 ≤ 2L(f(x0)− f(x∗)),

which implies

||∇f(x̃T)|| ≤
√

2L(f(x0)− f(x∗))
T

.

3.2 Convergence to a second-order critical point

The previous theorem shows that gradient descent allows to find approximate
first-order critical points, and even provides a convergence rate. For second-
order critical points, the picture is more complicated.

For some choices of initial points x0, it may happen that gradient descent
does not get close to an approximate second-order critical point, even when
run for an infinite number of steps. For instance, if x0 is a first-order critical
point of f , but not a second-order critical point, then

x0 = x1 = x2 = . . . ,

because ∇f(x0) = 0, hence gradient descent stays stuck at x0 and never
reaches a second-order critical point.

7

The following theorem shows that this phenomenon is very rare: for “gen-
eral” initializations, it does not happen, and gradient descent converges to a
second-order critical point.

Theorem 2: Lee, Simchowitz, Jordan, Recht (2016)

Let f be an L-smooth function. We assume that

• f has only a finite number of first-order critical points;

• for any M ∈ R, {x ∈ Rn, f(x) ≤M} is bounded.

We consider gradient descent with constant stepsize α ∈]0; 1
L
[.

For almost any x0 a, (xt)t∈N converges to a second-order critical point.
athat is, for all x0 outside a zero-Lebesgue measure set

Intuition of proof. The finiteness of the critical set and the boundedness of
the level sets of f imply that (xt)t∈N converges to a first-order critical point
whatever x0. We admit this fact for simplicity.

We must show that, if xcrit is a first-order but not a second-order critical
point of f , then (xt)t∈N does not converge to xcrit, for almost any x0. We
consider such a critical point; up to translation, we can assume that it is 0.

We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, whose radius we call r0:

∀x ∈ B(0, r0), f(x) =
1

2
〈x,Mx〉+ 〈x, b〉 ,

for some n× n symmetric matrix M .
For any x ∈ B(0, r0), ∇f(x) = Mx + b. Since 0 is a first-order critical

point, we necessarily have b = 0. In addition, Hess f(x) = M for any x ∈
B(0, r0). The assumption that 0 is not a second-order critical point is then
equivalent to the fact that M 6� 0.

The matrix M can be diagonalized in an orthonormal basis:

M = UT

(λ1 ... 0
...
0 ... λn

)
U,

with λ1 ≥ · · · ≥ λn the eigenvalues of M and U an orthonomal matrix. Up
to a change of coordinates, we can assume U = Id. Since M 6� 0, at least
the smallest eigenvalue of M is negative: λn < 0.

8

If the sequence (xt)t∈N of gradient descent iterates converges to xcrit = 0,
then xt belongs to B(0, r0) for any t large enough, in which case

xt+1 = xt − α∇f(xt)
= xt − αMxt

=

(
(1−αλ1)xt,1

...
(1−αλn)xt,n

)
.

We fix t0 such that this relation holds for any t ≥ t0. Then, for any s ∈ N,

xt0+s =

(
(1−αλ1)sxt0,1

...
(1−αλn)sxt0,n

)
.

If the sequence converges to 0, all the coordinates of xt0+s must go to 0 when
s goes to +∞ (for any fixed t), which means that

∀k ∈ {1, . . . , n}, (1− αλk)sxt0,k
s→+∞→ 0. (1)

We have said that λn < 0, hence 1 < 1− αλn and (1− αλn)s 6→ 0 when
s→ +∞. In order for Property (1) to hold, we must therefore have

xt0,n = 0.

To summarize, we have shown that, if (xt)t∈N converges to 0, then, for
some t0,

xt0 ∈ E
def
= {z ∈ B(0, r0) such that zn = 0}.

As a consequence,
x0 ∈ (Id− α∇f)−t0 (E).

(For any map g : Rn → Rn, we define g−t0(E) as the set of points x such
that gt0(x) = g ◦ t0 times. . . ◦ g(x) ∈ E .) Therefore, the set of initial points x0 for
which the gradient descent iterates may converge to 0 is included in⋃

t∈N

(Id− α∇f)−t(E).

The set E has zero Lebesgue measure and one can check that Id− α∇f is a
diffeomorphism, hence (Id − α∇f)−t(E) has zero Lebesgue measure for any
t ∈ N, and the set of “problematic” initial points also has zero Lebesgue
measure.

9

4 A second-order method
The theorem stated in the previous paragraph only states that gradient de-
scent converges to a second-order critical point (for almost any initial point
x0). It does not say anything about the convergence rate. And it turns out
that there are functions f for which the convergence is terribly slow.

To overcome this possible slow convergence, several strategies are possible.
One of them is to add “noise” to gradient iterates from time to time, to help
them get away faster from first-order critical points. The interested reader
will find a description in How to escape saddle points efficiently, by C. Jin,
R. Ge, P. Netrapalli, S. Kakade and M. Jordan (ICML 2017)

Another one is to explicitely exploit the information provided by second-
order derivatives. This yields the family of second-order methods. In this sec-
tion, we briefly describe one member of this family: the trust-region method.

Second-order derivatives provide local quadratic approximations of f .
Proposition 2

For any x ∈ Rn,

f(x+ h) = f(x) + 〈h,∇f(x)〉+ 1

2
〈h,Hess f(x)h〉+ o(||h||2). (2)

To define xt+1 from xt, it is therefore reasonable to set

ht = argmin
||h||≤Rt

(
f(xt) + 〈h,∇f(xt)〉+

1

2
〈h,Hess f(xt)h〉

)
and xt+1 = xt + ht. In the definition of ht, Rt is a positive number, the
trust radius. Intuitively, it represents the radius of the region over which the
quadratic approximation (2) is valid. Choosing it properly is important for
the good behavior of the algorithm.

We provide convergence guarantees for this algorithm under the assump-
tion that Hess f is L2-Lipschitz for some L2 > 0:

∀x, y, h ∈ Rn, ||(Hess f(x)− Hess f(y))h|| ≤ L2||x− y|| ||h||.

10

Theorem 3

Let ε > 0 be fixed.
We run the trust-region algorithm as described above, with Rt =

√
ε

L2

for any t. We stop the algorithm if

||∇f(xt) + Hess f(xt)ht||
||ht||

≤
√
ε

and return xt+1.
For any x0 ∈ Rn, the algorithm stops after at most O

(
L2
2(f(x0)−f(x∗))

ε3/2

)
iterations and the output xfinal is an approximate second-order critical
point, in the sense that

||∇f(xfinal)|| .
ε

L2

and λmin (Hess f(xfinal)) & −
√
ε.

(The notation “.” means “smaller up to a moderate multiplicative
constant” and λmin is the smallest eigenvalue.)

5 Example: phase retrieval
In the last part of this lecture, we give an example of a non-convex problem
where it turns out that all second-order critical points are global minimizers
and, moreover, it is possible to rigorously prove this fact. This example is
phase retrieval.

In phase retrieval, one wants to recover an unknown vector xtrue ∈ Cn.
Some linear maps L1, . . . , Lm : Cn → C are fixed and one has access to

y1 = |L1(xtrue)|, . . . , ym = |Lm(xtrue)|.

Here, the double bar, « |.| » denotes the standard complex modulus. This
problem is notably motivated by applications in imaging.

Since, for any α ∈ R, k ≤ m, |Lk(eiαxtrue)| = |eiα| |Lk(xtrue)| = |Lk(xtrue)|,
it is not possible to distinguish xtrue from eiαxtrue from the knowledge of
y1, . . . , ym. However, when m ≥ 4n, it is possible to prove that, for almost
all linear forms L1, . . . , Lm, xtrue is uniquely determined by y1, . . . , ym up
to multiplication by some unitary complex number eiα. In this case, which
algorithm can recover xtrue?

11

Recovering xtrue is equivalent to finding x ∈ Cn such that

|L1(x)| = y1, . . . , |Lm(x)| = ym.

The modulus is non-differentiable, but its square is, so it is simpler to rewrite
these equalities as

|L1(x)|2 = y21, . . . , |Lm(x)|2 = y2m.

An intuitive idea to find such an x is to minimize the square-norm error
between (|L1(x)|2, . . . , |Lm(x)|2) and (y21, . . . , y

2
m), that is

L(x) =
m∑
k=1

(
|Lk(x)|2 − y2k

)2
.

The function L is not convex. Therefore, attempting to minimize it with
a first or second-order algorithm may fail: the algorithm will typically find
a second-order critical point, but this critical point may not be the global
minimizer xtrue.

Numerically, it can indeed happen that the algorithm returns a point
which is not close to xtrue. However, when m is large enough compared to n
and the linear maps L1, . . . , Lm are sufficiently “incoherent” with each other,
it empirically seems that “bad” critical points do not exist5.

This fact can be rigorously established, although under strong assump-
tions on L1, . . . , Lm. Specifically, we assume that L1, . . . , Lm are generated
randomly and independently according to a normal distribution (that is, for
each k, the coordinates of Lk in the canonical basis are independent real-
izations of complex Gaussian variables with unit variance). We also assume
that

m ≥ Cn log3(n).

Theorem 4: Sun, Qu, Wright (2018)

Under the above assumptions, the second-order critical points of L
are exactly its global minimizers {eiαxtrue, α ∈ R}, with probability at
least 1− 1

m
.

As a consequence, in this setting, it is possible to recover xtrue by simply
running gradient descent on L, since Theorem 2 guarantees that gradient
descent converges to a second-order critical point for almost any initialization.

5or, at least, are sufficiently rare so that a first or second-order algorithm does not find
them

12

6 References
• Gradient descent only converges to minimizers, by J. D. Lee, M. Sim-

chowitz, M. Jordan and B. Recht, in the Conference on Learning The-
ory (COLT), 2016.

• Second order optimization algorithms I, lecture notes by Y. Ye, avail-
able at http://web.stanford.edu/class/msande311/2017lecture
13.pdf.

• Computing a trust region step, by J. J. Moré and D. C. Sorensen, in
the SIAM journal on scientific and statistical computing, volume 4,
number 3, 1983.

• A geometric analysis of phase retrieval, by J. Sun, Q. Qu and J. Wright,
in Foundations of Computational Mathematics, volume 18, number 5,
2018.

13

http://web.stanford.edu/class/msande311/2017lecture13.pdf
http://web.stanford.edu/class/msande311/2017lecture13.pdf

	Introduction
	Why non-convex optimization is difficult

	Critical points
	Convergence of gradient descent
	Convergence to a first-order critical point
	Convergence to a second-order critical point

	A second-order method
	Example: phase retrieval
	References

