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Exercice 1

1. First, if x0 is an eigenvector of M with norm 1, associated to eigenvalue
λ1, it is a feasible point for Problem (Min Eig), with objective value

〈Mx0, x0〉 = 〈λ1x0, x0〉 = λ1||x0||22 = λ1.

Therefore, the optimal value is at most λ1.
Now, let x ∈ Rn be any vector with unit norm. We have

〈Mx, x〉 =
n∑
i=1

λix
2
i

≥
n∑
i=1

λ1x
2
i (1)

= λ1||x||22
= λ1.

This shows that the optimal value is at least λ1, hence exactly λ1.
As unit-normed eigenvectors associated with eigenvalue λ1 reach value
λ1, they are minimizers. Let us show that they are the only minimizers.
Let x ∈ Rn be a minimizer. Then Inequality (1) must be an equality,
that is :

λix
2
i = λ1x

2
i for all i = 1, . . . , n,

which is equivalent to
xi = 0 if λi 6= λ1.

Therefore,

Mx =

 λ1x1
λ2x2
...

λnxn

 =

 λ1x1
λ1x2
...

λ1xn

 = λ1x,

so x is an eigenvector of M associated to eigenvalue λ1, and, as it is
feasible for (Min Eig), it has norm 1.

2. The objective function is a priori not convex (it is convex if and only if
M � 0) and the constraint set (the unit sphere) is not convex.
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3. Let X0 be a feasible matrix for Problem (Low Rank). Since it is semi-
definite positive with rank 1, it can be written as

X0 = x0x
∗
0

for some x0 ∈ Rn. This vector satisfies

1 = Tr(X0) =
∑
i

(x0)
2
i = ||x0||22.

Therefore, ||x0||2 = 1 and x0 is feasible for Problem (Min Eig). It holds

Tr(MX0) = Tr(Mx0x
∗
0)

= 〈Mx0, x0〉
≥ optimal value (Min Eig)
= λ1.

This shows that the minimal value of (Low Rank) is at least λ1 and that,
if X0 reaches the objective value λ1, then X0 is of the form X0 = x0x

∗
0

for some minimizer x0 ∈ Rn of (Min Eig).
Now, let x0 ∈ Rn be a minimizer of (Min Eig). Let us set X0 = x0x

∗
0.

This matrix is feasible for Problem (Low Rank) : we have seen in class
that matrices of this form are semidefinite positive and have rank 1. In
addition,

Tr(X0) =
n∑
i=1

(X0)ii =
n∑
i=1

(x0)
2
i = ||x0||22 = 1.

The objective value associated to X0 is

Tr(MX0) = Tr(Mx0x
∗
0) = 〈Mx0, x0〉 = λ1.

Therefore, the optimal value of (Low Rank) is at most λ1, hence exactly
λ1 and, if x0 is a minimizer of (Min Eig), X0 = x0x

∗
0 is a minimizer of

(Low Rank).
4. a) For any matrix X which is feasible for (Relaxation), it holds ||X||∗ =

Tr(X) = 1, because X � 0. Adding a constraint on the nuclear norm
would therefore be redundant.

b) If X0 is a minimizer of (Low Rank), then X0 is feasible for (Relaxa-
tion) and

Tr(MX0) = λ1.
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As a consequence, the optimal value of (Relaxation) is at most λ1 and,
if we can show that it is exactly λ1, then we know that minimizers of
(Low Rank) are also minimizers of (Relaxation).
Let us show that the optimal value of (Relaxation) is at least λ1. Let
X ∈ Symn be a feasible matrix for (Relaxation). Then

Tr(MX) =
n∑
i=1

λiXii

≥
n∑
i=1

λ1Xii (2)

= λ1Tr(X)

= λ1.

Equation (2) is true because, for each i, λ1 ≤ λi and Xii ≥ 0 (since
X � 0), hence λiXii ≥ λ1Xii. As a consequence, the optimal value of
(Relaxation)is at least λ1.

5. a) Let X ∈ Symn be feasible for (Relaxation). Let H ∈ Symn, a ∈ R be
such that H � 0. Let us show that Tr(MX) ≥ L(X,H, a).
First, Tr(X) = 1, hence a(Tr(X)−1) = 0. Second, X � 0 and H � 0,
hence Tr(HX) ≥ 0 1 This implies

L(X,H, a) = Tr(MX)− Tr(HX) ≤ Tr(MX).

b) Let H ∈ Symn, a ∈ R be fixed. For any X ∈ Symn,

L(X,H, a) = Tr((M −H + aIn)X)− a.

Therefore, if M −H + aIn = 0, then

inf
X∈Symn

L(X,H, a) = inf
X∈Symn

−a = −a.

If, on the other hand, M −H + aIn 6= 0, then, for any t ∈ R,

L(t(M −H + aIn), H, a) = t||M −H + aIn||2F − a.

In particular, for any t ∈ R,

inf
X∈Symn

L(X,H, a) ≤ t||M −H + aIn||2F − a,

1. Short proof : if X,H � 0, there exist V,W ∈ Rn×n such that H = V V T , X = WWT .
Then Tr(HX) = Tr(V V TWWT ) = Tr(WTV V TW ) = ||V TW ||2F ≥ 0.
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which, by considering values of t going to −∞, implies that

inf
X∈Symn

L(X,H, a) = −∞.

c) We set H0 = M − λ1In, a0 = −λ1. We indeed have H0 = M + a0In
and

H0 =

 0
λ2−λ1

. . .
λn−λ1

 ,

so H0 is a diagonal matrix with nonnegative entries : it is semidefi-
nite positive. We have shown that (H0, a0) is feasible for (Dual). To
conclude the question, we simply recall that Tr(Mx0x

∗
0) = 〈Mx0, x0〉 =

λ1 since x0 is a minimizer of (Min Eig), and λ1 = −a.
d) We define H0, a0 as in the previous question. For any X ∈ Symn

which is feasible for Problem (Relaxation),

Tr(MX) ≥ sup
H∈Symn,a∈R

s.t. H�0

L(X,H, a)

≥ L(X,H0, a0)

≥ inf
X∈Symn

L(X,H0, a0)

= −a0
= Tr(Mx0x

∗
0).

Therefore, as x0x∗0 is also feasible for Problem (Relaxation), it is a
minimizer : no matrix X reaches a lower objective value.

Exercice 2

1. First, we show that the minimum of F is zero. As F is a sum of squares,
inf(α,θ)∈R2 F (α, θ) ≥ 0. On the other hand,

F (1, 0) =
N∑

k=−N
|1− 1|2 = 0.

Consequently, min(α,θ)∈R2 F (α, θ) = 0.
Now, let (α, θ) be any global minimizer. We show that α = 1 and θ ∈ Z.
As the minimum is zero, we must have F (α, θ) = 0, hence

αe−2πikθ = µ̂∗[k] = 1, ∀k = −N, . . . , N.
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In particular, for k = 0, we get α = 1. And for k = −1, we have
e2πiθ = 1, hence θ is an integer.
Conversely, if α = 1 and θ ∈ Z, then αe−2πikθ = 1 for all k ∈ Z, hence
F (α, θ) = 0, and (α, θ) is a global minimizer.

2. a) It is a local convergence result.
b) For all α, θ,

F (α, θ) =
N∑

k=−N
|αe−2πikθ − 1|2

=
N∑

k=−N
|α(cos(2πkθ)− i sin(2πkθ))− 1|2

=
N∑

k=−N
|α cos(2πkθ)− 1|2 + |α sin(2πkθ)|2

=

N∑
k=−N

α2 cos2(2πkθ)− 2α cos(2πkθ) + 1 + α2 sin2(2πkθ)

=

N∑
k=−N

α2 − 2α cos(2πkθ) + 1

= (2N + 1)α2 − 2α

N∑
k=−N

cos(2πkθ) + (2N + 1)

= (2N + 1)α2 − 2αDN (θ) + (2N + 1).

c) For all (α, θ) ∈ R2,

∂F

∂α
(α, θ) = 2(2N + 1)α− 2DN (θ) = 2 ((2N + 1)α−DN (θ)) ,

∂F

∂θ
(α, θ) = −2αD′N (θ).

d) For all t,

θt+1 = θt − τ
∂F

∂θ
(αt, θt)

= θt + 2ταtD
′
N (θt).

Let us assume that (αt, θt) ∈]0; 2[×
]
− 1

2N+1 ;
1

2N+1

[
.
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If θt ≥ 0, then D′N (θt) ≤ 0. Therefore,

θt ≥ θt+1

≥ θt − 8(2N + 1)3ταt|θt|
≥ θt − 16(2N + 1)3τ |θt|
≥ θt − 2|θt|
= −θt.

Consequently, |θt+1| ≤ |θt|. The reasoning is almost identical if θt < 0.
e) Let us assume that (αt, θt) belongs to ]0; 2[×

]
− 1

2N+1 ;
1

2N+1

[
for some

t. Then, from the previous question, θt+1 belongs to
]
− 1

2N+1 ;
1

2N+1

[
.

Let us show that 0 < αt+1 < 2. We have

αt+1 = αt − τ
∂F

∂α
(αt, θt)

= αt − 2τ ((2N + 1)αt −DN (θt))

= (1− 2(2N + 1)τ)αt + 2τDN (θt).

From the condition on τ , 1−2(2N+1)τ > 0. Since it also holds τ > 0
and DN (θt) > 0, we have

αt+1 > 0.

On the other hand, DN (θt) =
∑N

k=−N cos(2πkθ) ≤
∑N

k=−N 1 = 2N+
1, hence

αt+1 ≤ (1− 2(2N + 1)τ)αt + 2(2N + 1)τ

≤ (1− 2(2N + 1)τ)× 2 + 2(2N + 1)τ

= 2− 2(2N + 1)τ

< 2.

f) Let us assume that (α0, θ0) belongs to ]0; 2[×
]
− 1

2N+1 ;
1

2N+1

[
. From

the previous question, (αt, θt) belongs to this set for all t. There-
fore, from Question d), the sequence (|θt|)t∈N is non-increasing, so it
converges to some limit η < 1

2N+1 .
Let us show that αt → DN (η)

2N+1 when t→ +∞. For any t, it holds

αt+1 −
DN (η)

2N + 1
= (1− 2τ(2N + 1))

(
αt −

DN (η)

2N + 1

)
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+ 2τ (DN (θt)−DN (η)) .

As DN (θt) = DN (|θt|)
t+∞−→ DN (η), we can say that, for any ε > 0, it

holds for all t large enough :∣∣∣∣αt+1 −
DN (η)

2N + 1

∣∣∣∣ ≤ (1− 2τ(2N + 1))

∣∣∣∣αt − DN (η)

2N + 1

∣∣∣∣+ ε.

Let T be a rank above which this inequality holds true. For any t ≥ T ,
we can show iteratively that∣∣∣∣αt − DN (η)

2N + 1

∣∣∣∣ ≤ (1− 2τ(2N + 1))t−T
∣∣∣∣αT − DN (η)

2N + 1

∣∣∣∣+ ε

2τ(2N + 1)
.

Taking the limit t→ +∞ yields

limsupt→+∞

∣∣∣∣αt − DN (η)

2N + 1

∣∣∣∣ ≤ ε

2τ(2N + 1)
.

This is true for every ε, so

αt
t→+∞−→ DN (η)

2N + 1
.

We have seen in Question d) that, for all t,

θt+1 = θt + 2αtτD
′
N (θt),

and θt, D′N (θt) have opposite signs, hence

|θt+1| =
∣∣|θt| − 2αtτ |D′N (θt)|

∣∣
=
∣∣|θt| − 2αtτ |D′N (|θt|)|

∣∣ .
As |θt| → η and αt → DN (η)

2N+1 when t→ +∞, we must have∣∣∣∣η − 2τ
DN (η)

2N + 1
|D′N (η)|

∣∣∣∣ = η.

Therefore, either

η − 2τ
DN (η)

2N + 1
|D′N (η)| = −η

or
η − 2τ

DN (η)

2N + 1
|D′N (η)| = η.
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If η = 0, the two equalities are identical. Otherwise, the first equality
is not possible :

2τ
DN (η)

2N + 1
|D′N (η)| ≤ 8τ(2N + 1)3η

DN (η)

2N + 1

≤ 8τ(2N + 1)3η

≤ η
< 2η.

Therefore, the second inequality is necessarily true, which means that

2τ
DN (η)

2N + 1
|D′N (η)| = 0.

As τ and DN (η) are positive, we must have D′N (η) = 0, implying η =

0. Therefore, |θt| → 0 when t→ +∞, so θt → 0. And αt → DN (η)
2N+1 = 1.
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