Non-convex inverse problems : correction

March 20, 2023

Exercice 1

1. First, if x_{0} is an eigenvector of M with norm 1 , associated to eigenvalue λ_{1}, it is a feasible point for Problem (Min Eig), with objective value

$$
\left\langle M x_{0}, x_{0}\right\rangle=\left\langle\lambda_{1} x_{0}, x_{0}\right\rangle=\lambda_{1}\left\|x_{0}\right\|_{2}^{2}=\lambda_{1}
$$

Therefore, the optimal value is at most λ_{1}.
Now, let $x \in \mathbb{R}^{n}$ be any vector with unit norm. We have

$$
\begin{align*}
\langle M x, x\rangle & =\sum_{i=1}^{n} \lambda_{i} x_{i}^{2} \\
& \geq \sum_{i=1}^{n} \lambda_{1} x_{i}^{2} \tag{1}\\
& =\lambda_{1}\|x\|_{2}^{2} \\
& =\lambda_{1}
\end{align*}
$$

This shows that the optimal value is at least λ_{1}, hence exactly λ_{1}.
As unit-normed eigenvectors associated with eigenvalue λ_{1} reach value λ_{1}, they are minimizers. Let us show that they are the only minimizers. Let $x \in \mathbb{R}^{n}$ be a minimizer. Then Inequality (1) must be an equality, that is :

$$
\lambda_{i} x_{i}^{2}=\lambda_{1} x_{i}^{2} \text { for all } i=1, \ldots, n
$$

which is equivalent to

$$
x_{i}=0 \text { if } \lambda_{i} \neq \lambda_{1} .
$$

Therefore,

$$
M x=\left(\begin{array}{c}
\lambda_{1} x_{1} \\
\lambda_{2} x_{2} \\
\vdots \\
\lambda_{n} x_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} x_{1} \\
\lambda_{1} x_{2} \\
\vdots \\
\lambda_{1} x_{n}
\end{array}\right)=\lambda_{1} x
$$

so x is an eigenvector of M associated to eigenvalue λ_{1}, and, as it is feasible for (Min Eig), it has norm 1.
2. The objective function is a priori not convex (it is convex if and only if $M \succeq 0$) and the constraint set (the unit sphere) is not convex.
3. Let X_{0} be a feasible matrix for Problem (Low Rank). Since it is semidefinite positive with rank 1, it can be written as

$$
X_{0}=x_{0} x_{0}^{*}
$$

for some $x_{0} \in \mathbb{R}^{n}$. This vector satisfies

$$
1=\operatorname{Tr}\left(X_{0}\right)=\sum_{i}\left(x_{0}\right)_{i}^{2}=\left\|x_{0}\right\|_{2}^{2}
$$

Therefore, $\left\|x_{0}\right\|_{2}=1$ and x_{0} is feasible for Problem (Min Eig). It holds

$$
\begin{aligned}
\operatorname{Tr}\left(M X_{0}\right) & =\operatorname{Tr}\left(M x_{0} x_{0}^{*}\right) \\
& =\left\langle M x_{0}, x_{0}\right\rangle \\
& \geq \text { optimal value (Min Eig) } \\
& =\lambda_{1} .
\end{aligned}
$$

This shows that the minimal value of (Low Rank) is at least λ_{1} and that, if X_{0} reaches the objective value λ_{1}, then X_{0} is of the form $X_{0}=x_{0} x_{0}^{*}$ for some minimizer $x_{0} \in \mathbb{R}^{n}$ of (Min Eig).
Now, let $x_{0} \in \mathbb{R}^{n}$ be a minimizer of (Min Eig). Let us set $X_{0}=x_{0} x_{0}^{*}$. This matrix is feasible for Problem (Low Rank) : we have seen in class that matrices of this form are semidefinite positive and have rank 1. In addition,

$$
\operatorname{Tr}\left(X_{0}\right)=\sum_{i=1}^{n}\left(X_{0}\right)_{i i}=\sum_{i=1}^{n}\left(x_{0}\right)_{i}^{2}=\left\|x_{0}\right\|_{2}^{2}=1 .
$$

The objective value associated to X_{0} is

$$
\operatorname{Tr}\left(M X_{0}\right)=\operatorname{Tr}\left(M x_{0} x_{0}^{*}\right)=\left\langle M x_{0}, x_{0}\right\rangle=\lambda_{1} .
$$

Therefore, the optimal value of (Low Rank) is at most λ_{1}, hence exactly λ_{1} and, if x_{0} is a minimizer of (Min Eig), $X_{0}=x_{0} x_{0}^{*}$ is a minimizer of (Low Rank).
4. a) For any matrix X which is feasible for (Relaxation), it holds $\|X\|_{*}=$ $\operatorname{Tr}(X)=1$, because $X \succeq 0$. Adding a constraint on the nuclear norm would therefore be redundant.
b) If X_{0} is a minimizer of (Low Rank), then X_{0} is feasible for (Relaxation) and

$$
\operatorname{Tr}\left(M X_{0}\right)=\lambda_{1} .
$$

As a consequence, the optimal value of (Relaxation) is at most λ_{1} and, if we can show that it is exactly λ_{1}, then we know that minimizers of (Low Rank) are also minimizers of (Relaxation).
Let us show that the optimal value of (Relaxation) is at least λ_{1}. Let $X \in \operatorname{Sym}_{n}$ be a feasible matrix for (Relaxation). Then

$$
\begin{align*}
\operatorname{Tr}(M X) & =\sum_{i=1}^{n} \lambda_{i} X_{i i} \\
& \geq \sum_{i=1}^{n} \lambda_{1} X_{i i} \tag{2}\\
& =\lambda_{1} \operatorname{Tr}(X) \\
& =\lambda_{1}
\end{align*}
$$

Equation (2) is true because, for each $i, \lambda_{1} \leq \lambda_{i}$ and $X_{i i} \geq 0$ (since $X \succeq 0$), hence $\lambda_{i} X_{i i} \geq \lambda_{1} X_{i i}$. As a consequence, the optimal value of (Relaxation)is at least λ_{1}.
5. a) Let $X \in \operatorname{Sym}_{n}$ be feasible for (Relaxation). Let $H \in \operatorname{Sym}_{n}, a \in \mathbb{R}$ be such that $H \succeq 0$. Let us show that $\operatorname{Tr}(M X) \geq \mathcal{L}(X, H, a)$.
First, $\operatorname{Tr}(X)=1$, hence $a(\operatorname{Tr}(X)-1)=0$. Second, $X \succeq 0$ and $H \succeq 0$, hence $\operatorname{Tr}(H X) \geq 0^{1}$ This implies

$$
\mathcal{L}(X, H, a)=\operatorname{Tr}(M X)-\operatorname{Tr}(H X) \leq \operatorname{Tr}(M X)
$$

b) Let $H \in \operatorname{Sym}_{\mathrm{n}}, a \in \mathbb{R}$ be fixed. For any $X \in \operatorname{Sym}_{n}$,

$$
\mathcal{L}(X, H, a)=\operatorname{Tr}\left(\left(M-H+a I_{n}\right) X\right)-a
$$

Therefore, if $M-H+a I_{n}=0$, then

$$
\inf _{X \in \operatorname{Sym}_{n}} \mathcal{L}(X, H, a)=\inf _{X \in \operatorname{Sym}_{n}}-a=-a .
$$

If, on the other hand, $M-H+a I_{n} \neq 0$, then, for any $t \in \mathbb{R}$,

$$
\mathcal{L}\left(t\left(M-H+a I_{n}\right), H, a\right)=t\left\|M-H+a I_{n}\right\|_{F}^{2}-a
$$

In particular, for any $t \in \mathbb{R}$,

$$
\inf _{X \in \operatorname{Sym}_{n}} \mathcal{L}(X, H, a) \leq t\left\|M-H+a I_{n}\right\|_{F}^{2}-a
$$

[^0]which, by considering values of t going to $-\infty$, implies that
$$
\inf _{X \in \operatorname{Sym}_{n}} \mathcal{L}(X, H, a)=-\infty .
$$
c) We set $H_{0}=M-\lambda_{1} I_{n}, a_{0}=-\lambda_{1}$. We indeed have $H_{0}=M+a_{0} I_{n}$ and
\[

H_{0}=\left($$
\begin{array}{lll}
0 & & \\
\lambda_{2}-\lambda_{1} & & \\
& & \ddots \\
\\
& & \lambda_{n}-\lambda_{1}
\end{array}
$$\right)
\]

so H_{0} is a diagonal matrix with nonnegative entries : it is semidefinite positive. We have shown that $\left(H_{0}, a_{0}\right)$ is feasible for (Dual). To conclude the question, we simply recall that $\operatorname{Tr}\left(M x_{0} x_{0}^{*}\right)=\left\langle M x_{0}, x_{0}\right\rangle=$ λ_{1} since x_{0} is a minimizer of (Min Eig), and $\lambda_{1}=-a$.
d) We define H_{0}, a_{0} as in the previous question. For any $X \in \operatorname{Sym}_{n}$ which is feasible for Problem (Relaxation),

$$
\begin{aligned}
\operatorname{Tr}(M X) & \geq \sup _{\substack{H \in \operatorname{Sym}_{n}, a \in \mathbb{R} \\
\text { s.t. } H \succeq 0}} \mathcal{L}(X, H, a) \\
& \geq \mathcal{L}\left(X, H_{0}, a_{0}\right) \\
& \geq \inf _{X \in \operatorname{Sym}_{n}} \mathcal{L}\left(X, H_{0}, a_{0}\right) \\
& =-a_{0} \\
& =\operatorname{Tr}\left(M x_{0} x_{0}^{*}\right) .
\end{aligned}
$$

Therefore, as $x_{0} x_{0}^{*}$ is also feasible for Problem (Relaxation), it is a minimizer : no matrix X reaches a lower objective value.

Exercice 2

1. First, we show that the minimum of F is zero. As F is a sum of squares, $\inf _{(\alpha, \theta) \in \mathbb{R}^{2}} F(\alpha, \theta) \geq 0$. On the other hand,

$$
F(1,0)=\sum_{k=-N}^{N}|1-1|^{2}=0 .
$$

Consequently, $\min _{(\alpha, \theta) \in \mathbb{R}^{2}} F(\alpha, \theta)=0$.
Now, let (α, θ) be any global minimizer. We show that $\alpha=1$ and $\theta \in \mathbb{Z}$. As the minimum is zero, we must have $F(\alpha, \theta)=0$, hence

$$
\alpha e^{-2 \pi i k \theta}=\hat{\mu}_{*}[k]=1, \quad \forall k=-N, \ldots, N .
$$

In particular, for $k=0$, we get $\alpha=1$. And for $k=-1$, we have $e^{2 \pi i \theta}=1$, hence θ is an integer.
Conversely, if $\alpha=1$ and $\theta \in \mathbb{Z}$, then $\alpha e^{-2 \pi i k \theta}=1$ for all $k \in \mathbb{Z}$, hence $F(\alpha, \theta)=0$, and (α, θ) is a global minimizer.
2. a) It is a local convergence result.
b) For all α, θ,

$$
\begin{aligned}
F(\alpha, \theta) & =\sum_{k=-N}^{N}\left|\alpha e^{-2 \pi i k \theta}-1\right|^{2} \\
& =\sum_{k=-N}^{N}|\alpha(\cos (2 \pi k \theta)-i \sin (2 \pi k \theta))-1|^{2} \\
& =\sum_{k=-N}^{N}|\alpha \cos (2 \pi k \theta)-1|^{2}+|\alpha \sin (2 \pi k \theta)|^{2} \\
& =\sum_{k=-N}^{N} \alpha^{2} \cos ^{2}(2 \pi k \theta)-2 \alpha \cos (2 \pi k \theta)+1+\alpha^{2} \sin ^{2}(2 \pi k \theta) \\
& =\sum_{k=-N}^{N} \alpha^{2}-2 \alpha \cos (2 \pi k \theta)+1 \\
& =(2 N+1) \alpha^{2}-2 \alpha \sum_{k=-N}^{N} \cos (2 \pi k \theta)+(2 N+1) \\
& =(2 N+1) \alpha^{2}-2 \alpha D_{N}(\theta)+(2 N+1) .
\end{aligned}
$$

c) For all $(\alpha, \theta) \in \mathbb{R}^{2}$,

$$
\begin{gathered}
\frac{\partial F}{\partial \alpha}(\alpha, \theta)=2(2 N+1) \alpha-2 D_{N}(\theta)=2\left((2 N+1) \alpha-D_{N}(\theta)\right), \\
\frac{\partial F}{\partial \theta}(\alpha, \theta)=-2 \alpha D_{N}^{\prime}(\theta)
\end{gathered}
$$

d) For all t,

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}-\tau \frac{\partial F}{\partial \theta}\left(\alpha_{t}, \theta_{t}\right) \\
& =\theta_{t}+2 \tau \alpha_{t} D_{N}^{\prime}\left(\theta_{t}\right) .
\end{aligned}
$$

Let us assume that $\left.\left(\alpha_{t}, \theta_{t}\right) \in\right] 0 ; 2[\times]-\frac{1}{2 N+1} ; \frac{1}{2 N+1}[$.

If $\theta_{t} \geq 0$, then $D_{N}^{\prime}\left(\theta_{t}\right) \leq 0$. Therefore,

$$
\begin{aligned}
\theta_{t} & \geq \theta_{t+1} \\
& \geq \theta_{t}-8(2 N+1)^{3} \tau \alpha_{t}\left|\theta_{t}\right| \\
& \geq \theta_{t}-16(2 N+1)^{3} \tau\left|\theta_{t}\right| \\
& \geq \theta_{t}-2\left|\theta_{t}\right| \\
& =-\theta_{t} .
\end{aligned}
$$

Consequently, $\left|\theta_{t+1}\right| \leq\left|\theta_{t}\right|$. The reasoning is almost identical if $\theta_{t}<0$.
e) Let us assume that $\left(\alpha_{t}, \theta_{t}\right)$ belongs to $] 0 ; 2[\times]-\frac{1}{2 N+1} ; \frac{1}{2 N+1}[$ for some t. Then, from the previous question, θ_{t+1} belongs to $]-\frac{1}{2 N+1} ; \frac{1}{2 N+1}[$. Let us show that $0<\alpha_{t+1}<2$. We have

$$
\begin{aligned}
\alpha_{t+1} & =\alpha_{t}-\tau \frac{\partial F}{\partial \alpha}\left(\alpha_{t}, \theta_{t}\right) \\
& =\alpha_{t}-2 \tau\left((2 N+1) \alpha_{t}-D_{N}\left(\theta_{t}\right)\right) \\
& =(1-2(2 N+1) \tau) \alpha_{t}+2 \tau D_{N}\left(\theta_{t}\right) .
\end{aligned}
$$

From the condition on $\tau, 1-2(2 N+1) \tau>0$. Since it also holds $\tau>0$ and $D_{N}\left(\theta_{t}\right)>0$, we have

$$
\alpha_{t+1}>0
$$

On the other hand, $D_{N}\left(\theta_{t}\right)=\sum_{k=-N}^{N} \cos (2 \pi k \theta) \leq \sum_{k=-N}^{N} 1=2 N+$ 1 , hence

$$
\begin{aligned}
\alpha_{t+1} & \leq(1-2(2 N+1) \tau) \alpha_{t}+2(2 N+1) \tau \\
& \leq(1-2(2 N+1) \tau) \times 2+2(2 N+1) \tau \\
& =2-2(2 N+1) \tau \\
& <2 .
\end{aligned}
$$

f) Let us assume that $\left(\alpha_{0}, \theta_{0}\right)$ belongs to $] 0 ; 2[\times]-\frac{1}{2 N+1} ; \frac{1}{2 N+1}[$. From the previous question, $\left(\alpha_{t}, \theta_{t}\right)$ belongs to this set for all t. Therefore, from Question d), the sequence $\left(\left|\theta_{t}\right|\right)_{t \in \mathbb{N}}$ is non-increasing, so it converges to some limit $\eta<\frac{1}{2 N+1}$.
Let us show that $\alpha_{t} \rightarrow \frac{D_{N}(\eta)}{2 N+1}$ when $t \rightarrow+\infty$. For any t, it holds

$$
\alpha_{t+1}-\frac{D_{N}(\eta)}{2 N+1}=(1-2 \tau(2 N+1))\left(\alpha_{t}-\frac{D_{N}(\eta)}{2 N+1}\right)
$$

$$
+2 \tau\left(D_{N}\left(\theta_{t}\right)-D_{N}(\eta)\right)
$$

As $D_{N}\left(\theta_{t}\right)=D_{N}\left(\left|\theta_{t}\right|\right) \xrightarrow{t+\infty} D_{N}(\eta)$, we can say that, for any $\epsilon>0$, it holds for all t large enough :

$$
\left|\alpha_{t+1}-\frac{D_{N}(\eta)}{2 N+1}\right| \leq(1-2 \tau(2 N+1))\left|\alpha_{t}-\frac{D_{N}(\eta)}{2 N+1}\right|+\epsilon
$$

Let T be a rank above which this inequality holds true. For any $t \geq T$, we can show iteratively that

$$
\left|\alpha_{t}-\frac{D_{N}(\eta)}{2 N+1}\right| \leq(1-2 \tau(2 N+1))^{t-T}\left|\alpha_{T}-\frac{D_{N}(\eta)}{2 N+1}\right|+\frac{\epsilon}{2 \tau(2 N+1)}
$$

Taking the limit $t \rightarrow+\infty$ yields

$$
\limsup _{t \rightarrow+\infty}\left|\alpha_{t}-\frac{D_{N}(\eta)}{2 N+1}\right| \leq \frac{\epsilon}{2 \tau(2 N+1)}
$$

This is true for every ϵ, so

$$
\alpha_{t} \xrightarrow{t \rightarrow+\infty} \frac{D_{N}(\eta)}{2 N+1} .
$$

We have seen in Question d) that, for all t,

$$
\theta_{t+1}=\theta_{t}+2 \alpha_{t} \tau D_{N}^{\prime}\left(\theta_{t}\right)
$$

and $\theta_{t}, D_{N}^{\prime}\left(\theta_{t}\right)$ have opposite signs, hence

As $\left|\theta_{t}\right| \rightarrow \eta$ and $\alpha_{t} \rightarrow \frac{D_{N}(\eta)}{2 N+1}$ when $t \rightarrow+\infty$, we must have

$$
\left|\eta-2 \tau \frac{D_{N}(\eta)}{2 N+1}\right| D_{N}^{\prime}(\eta)| |=\eta
$$

Therefore, either

$$
\eta-2 \tau \frac{D_{N}(\eta)}{2 N+1}\left|D_{N}^{\prime}(\eta)\right|=-\eta
$$

or

$$
\eta-2 \tau \frac{D_{N}(\eta)}{2 N+1}\left|D_{N}^{\prime}(\eta)\right|=\eta
$$

If $\eta=0$, the two equalities are identical. Otherwise, the first equality is not possible :

$$
\begin{aligned}
2 \tau \frac{D_{N}(\eta)}{2 N+1}\left|D_{N}^{\prime}(\eta)\right| & \leq 8 \tau(2 N+1)^{3} \eta \frac{D_{N}(\eta)}{2 N+1} \\
& \leq 8 \tau(2 N+1)^{3} \eta \\
& \leq \eta \\
& <2 \eta .
\end{aligned}
$$

Therefore, the second inequality is necessarily true, which means that

$$
2 \tau \frac{D_{N}(\eta)}{2 N+1}\left|D_{N}^{\prime}(\eta)\right|=0
$$

As τ and $D_{N}(\eta)$ are positive, we must have $D_{N}^{\prime}(\eta)=0$, implying $\eta=$ 0 . Therefore, $\left|\theta_{t}\right| \rightarrow 0$ when $t \rightarrow+\infty$, so $\theta_{t} \rightarrow 0$. And $\alpha_{t} \rightarrow \frac{D_{N}(\eta)}{2 N+1}=1$.

[^0]: 1. Short proof : if $X, H \succeq 0$, there exist $V, W \in \mathbb{R}^{n \times n}$ such that $H=V V^{T}, X=W W^{T}$. Then $\operatorname{Tr}(H X)=\operatorname{Tr}\left(V V^{T} W W^{T}\right)=\operatorname{Tr}\left(W^{T} V V^{T} W\right)=\left\|V^{T} W\right\|_{F}^{2} \geq 0$.
