
Non-convex inverse problems: exam
March 20, 2023

1h30

You can use any written or printed material.

The subject is long, but you do not need to answer every question. Correctly
answering all questions until 2.a) in Exercise 2 should be enough to get the
maximal grade.

Exercice 1
Let n ∈ N∗ be fixed, and let Symn denote the set of symmetric n×nmatrices.
Given M ∈ Symn, we assume that we want to find its smallest eigenvalue
by solving the following problem:

minimize 〈Mx, x〉
over all x ∈ Rn (Min Eig)

such that ||x||2 = 1.

To simplify notation, we assume that M is diagonal:

M =

(
λ1

. . .
λn

)
,

where λ1 ≤ λ2 ≤ · · · ≤ λn are the ordered eigenvalues.
1. Show that the optimal value of Problem (Min Eig) is λ1, and that the

minimizers are exactly the eigenvectors of M with norm 1, associated
to eigenvalue λ1.

2. Why can we call Problem (Min Eig) non-convex?
[Be careful: there are two reasons.]

3. Show that Problem (Min Eig) is equivalent to the following low-rank
matrix recovery problems (that is, the two problems have the same op-
timal value, and the minimizers of (Low Rank) are exactly the matrices
of the form x0x

∗
0 ∈ Rn×n for x0 ∈ Rn a minimizer of (Min Eig)):

minimize Tr(MX)

over all X ∈ Symn,

such that Tr(X) = 1, (Low Rank)
X � 0,

rank(X) = 1.
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4. We drop the rank 1 constraint to get the following convex relaxation:

minimize Tr(MX)

over all X ∈ Symn, (Relaxation)
such that Tr(X) = 1,

X � 0.

a) Why haven’t we added a nuclear norm somewhere?
b) Show that (Low Rank) and (Relaxation) have the same optimal value

and that minimizers of (Low Rank) are also minimizers of (Relaxation).
5. Let x0 ∈ Rn be a solution of (Min Eig). In this question, we construct

a dual certificate to show that x0x∗0 is a solution of (Relaxation).1

Let us introduce the Lagrangian function

L : Symn × Symn × R → R
(X,H, a) → Tr(MX)− Tr(HX) + a(Tr(X)− 1).

a) Show that, for anyX ∈ Symn which is feasible for Problem (Relaxation),
it holds

Tr(MX) ≥ sup
H∈Symn,a∈R

s.t. H�0

L(X,H, a).

b) Show that for any H ∈ Symn, a ∈ R,

inf
X∈Symn

L(X,H, a) = −a if M −H + aIn = 0

= −∞ otherwise.

[Hint: observe that, for all a,X, aTr(X) = Tr(aInX).]
c) From the previous question, we define the dual of (Relaxation) as

maximize − a
over all a ∈ R, H ∈ Symn, (Dual)

such that H =M + aIn,

H � 0.

Show that H0 = M − λ1In, a0 = −λ1 is a feasible pair for Problem
(Dual), and that

−a0 = Tr(Mx0x
∗
0).

d) Deduce from the previous question that x0x∗0 is a solution of (Relaxation).
1From the previous question, we already know that x0x

∗
0 is a solution of (Relaxation);

the point here is to give a different proof.
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Exercice 2

We consider a super-resolution problem, where we want to recover an un-
known measure µ? over [0; 1[, which is the sum of a few diracs, from its
low-frequency Fourier coefficients:

µ̂?[k] =

∫ 1

0
e−2πiktdµ?(t), k = −N, . . . , N.

Here, N is a (strictly) positive integer.
We assume that we know that

• µ? is the sum of only one dirac;

• the coefficient of this dirac is a real number.

We define the objective function

F : R2 → R
(α, θ) →

∑N
k=−N |(α̂δθ)[k]− µ̂?[k]|2

=
∑N

k=−N |αe−2πikθ − µ̂?[k]|2.

To simplify the exercise, we assume that µ? = δ0, hence µ̂?[k] = 1 for all k.
1. Show that (α, θ) is a global minimizer of F if and only if α = 1 and

θ ∈ Z.
2. We imagine that we run gradient descent on F , with a stepsize τ ∈]

0; 1
8(2N+1)3

[
, starting at some (α0, θ0). This defines a sequence of iter-

ates (αt, θt)t∈N.
In this question, we show that, if (α0, θ0) ∈ ]0; 2[×

]
− 1

2N+1 ;
1

2N+1

[
, then

(αt, θt)
t→+∞−→ (1, 0).

a) What is the name of this type of results?
b) For any θ, we define DN (θ) =

∑N
k=−N cos(2πkθ). Check that

F (α, θ) = (2N + 1)α2 − 2αDN (θ) + (2N + 1), ∀(α, θ) ∈ R2.

c) Check that, for all (α, θ) ∈ R2,

∇F (α, θ) = 2

(
(2N + 1)α−DN (θ)

−αD′N (θ)

)
.
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Here are a few properties of DN that you can use with no proof in the
remaining questions.

• DN (θ) > 0 for all θ ∈
]
− 1

2N+1 ;
1

2N+1

[
.

• D′N (0) = 0.

• D′N (θ) < 0 for all θ ∈
]
0; 1

2N+1

[
.

• D′N (θ) > 0 for all θ ∈
]
− 1

2N+1 ; 0
[
.

• |D′N (θ)| ≤ 4(2N + 1)3|θ| for all θ ∈
]
− 1

2N+1 ;
1

2N+1

[
.

−1
2

1
2

2N + 1

1
2N+1

−1
2

1
2

(2N + 1)2

Figure 1: On the left, DN ; on the right, D′N .

d) For any t ∈ N, show that, if (αt, θt) ∈ ]0; 2[×
]
− 1

2N+1 ;
1

2N+1

[
, then

|θt+1| ≤ |θt|.

e) For any t ∈ N, show that, if (αt, θt) belongs to ]0; 2[×
]
− 1

2N+1 ;
1

2N+1

[
,

then (αt+1, θt+1) also does.
f) (Difficult) Show that, if (α0, θ0) ∈ ]0; 2[×

]
− 1

2N+1 ;
1

2N+1

[
, then

(αt, θt)→ (1, 0) when t→ +∞.
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