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1 Exercises

Exercise 1: linear inverse problems

Let d, m be positive integers, with d < m. Let A € R™*? be a matrix. For a
given y € R™, we consider the inverse problem

find x € R? such that Az = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
and partial uniqueness of orthogonal matrices U € R™*™ V ¢ R¥x4,
and nonnegative numbers \; > --- > \; € R, such that

A=UDV,

with

A O 0

0 o :

0

0 . 0
This decomposition of A is called the singular value decomposition (SVD).
The numbers Ay, ..., \; are the singular values.
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a) Let v; € R? be such that ||v;|]» = 1 and

|[Avi|[z = max [|Av|]s.
veERY ||v]|2=1

Then, let vy, . .., vg be such that, for any k, ||vg||o = 1, v, € Vect{vy, ..., vp_1},
and

| Avgl|2 = max || Av]]2.
veVect{vy,...,u_1}+

[lv]|2=1
Show that this definition is valid (i.e. that the maximums exist) and
that (v1,...,vq) is an orthonormal basis of R.

b) Show that, for any k, k" € {1,...,d} with k # k', (Avy, Avp) = 0.
[Hint: assume k < k’. Show that, from the definition of vy, it holds
for any 6 € R that ||A(cos(0)vy + sin(f)ve)||2 < [|Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to # must be 0 at 6 = 0.]

c) For any k = 1,...,d, let us set A\, = ||Auvg||o. Show that the )\ are
nonnegative, and that Ay > Xy > --- > A4

d) Show that there exists an orthonormal basis (ug,...,u,) of R™ such
that

vk S d, Avk == )\kuk

e) Let D be defined as in Equation (1), U be the matrix whose columns
are uy, . .., Uy, and V the matrix whose rows are vy, ..., vy. Show that
U,V are orthogonal matrices, and

A=UDV.

f) Show that the singular values are uniquely defined: if UV, A, M
is another SVD of A, then A =\, for any k.

. We assume that A,y satisfy the conditions of Question 1, and denote

z, the solution of Problem (Lin-inverse). For e € R™ such that y + ¢

also satisfies the conditions of Question 1, we denote z, the solution of

Problem (Lin-inverse) when y is replaced with y + e.

a) Assuming y # 0, show that, for any e,

[|we = @alla _ Aa [lell2
lzllz = Aallyll2




b) Show that the inequality is tight (that is, it is not true anymore if f\‘—;

is replaced with a smaller constant).

This inequality tells us that the number ;\—;, which is called the condition

number of A, controls the stability of the problem: if i—cll is close to 1, then
a small error € on y only causes a small error on x,. If, on the other hand,
i‘—i > 1, then z. can be very different from z, even if € is small.

Exercise 2: intersection of convex sets

Let d € N* be fixed. Let C4,...,Cs C R? be closed convex non-empty sets.
We consider the problem

find z € R,
such that x € C5,Vs < S. (2)

For any s < S, we denote P, the projector onto Cj: for any z € R, P,(2) is
the point of C; which is at minimal distance from z:

Py(z) — = mi — zllo.
[1P5(2) = z[l2 = min ||a — 2|2
It is a classical result from convex analysis that Ps is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets C; are sufficiently simple so that the corresponding projections can be

numerically computed.
The goal of the exercise is to present an algorithm to solve (2).

1. We consider any s € {1,...,5}.
a) Show that, for all z € R a € Cj,

(a — Ps(z),z — Ps(2)) <0
b) Show that, for all z, 2’ € R?,
(Py(2") — Py(2),2 — 2" — Py(2) + Ps(2")) <0
c) Show that, for all z, 2’ € R,
1Ps(2) = Ps()IIP + ||Ps(2) = Po(2) — 2+ 2|1* < |2 = 2|
d) Deduce from the previous question that, for all z, 2’ € R?,

1P:(2) = P(NI < [lz = 2],

/

and that the inequality is strict, unless Py(2) — Ps(2') = z — 2.
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The algorithm starts with an arbitrary initial point zy € RY. It then com-
putes iteratively a sequence of iterates (zy)ren defined by

Vn € N,Vs € {1,...,5}, :En5+5:PS(JIns+(S,1)).
We assume that Problem (2) has at least one solution:

CinCyn---NCy # 0.

2. a) Show that, for any z, € Ny<sCs, the sequence (||zy — x.||)ken is non-
increasing, hence that it converges. Let us call ¢(z,) € R the limit.
b) Show that (74s)ren has a converging subsequence. We denote o, € R?
the limit.
c¢) Show that . € Ng<gCs.
[Hint: show that P;(z) is a limit point of (zxs11)ken, then that, for
any . € Ny<sCs,

|00 = 2| = [ P1(7o0) — ]| = £(2).

Using Question 1.d), show that z,, € Cj. Iterate the reasoning to

show that =, € Cs for any s < S|

d) Show that xj gy Too-

Exercise 3: real phase retrieval

This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex) coordinates.

A real phase retrieval problem is any problem of the form

find z € R?
such that | (z,vs) | = ys, Vs < m, (Real-PR)
where v, ..., v, is a known family of vectors of R%, 4, ..., ¥, are given and

denotes the absolute value.

Since multiplication by —1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by —1.

We say that a family of vectors (vy, ..., v,,) satisfies the complement property
if, for any S C {1,...,m},

(L| |77

Vect{vs }ses = R?  or Vect{vs}s¢s = R



1. In this question, we show that (vi,...,v,,) satisfies the complement
property if and only if, for any w,...,ymn, the solution of Problem
(Real-PR) (when it exists) is unique.

a) Let us assume that (vq,...,v,,) satisfies the complement property.
Let 41,...,Ym be any numbers. Let z, 2’ € R? be such that, for any
s <m,

[ (2, vs) | = ys = [ {2/, 05) |.

Show that x = 2’ or x = —2/.
[Hint: apply the complement property for S = {s, (x,vs) = (2/, vs) }.]
b) Let us assume that (vq,. .., v, ) does not satisfy the complement prop-

erty. Show the existence of 21,2y € R?\ {0} such that
Vs <m, (z,v5)=0 or (z,vs) =0.

c¢) Define z = 21 + 29,2" = 21 — 25 and show that Problem (Real-PR)
may have a non-unique solution.

2. a) Show that, if Problem (Real-PR) has a unique solution for any y1, . . ., Y,
then m > 2d — 1.

b) Conversely, we assume that m > 2d — 1. Show that, for almost any
(v1,...,vp) € (RY)™ Problem (Real-PR) has a unique solution for
any yi, - - -, Ym-

3. Provide an explicit example of a family (vi,vs,v3) € (R?)? and of a

family (v, ve,vs3,v4,v5) € (R3)® for which Problem (Real-PR) has a

unique solution for any vy, ..., Ypm.

Exercise 4: correctness guarantees for Basis Pursuit

Let d, m, k be positive integers. For some matrix A € R™*?, we consider the
problem

minimize ||z||;
for z € R? (Basis Pursuit)
such that Ax = y.

We assume that the 4k-restricted isometry constant of A satisfies

1
54k < Z



Let x, be any vector with at most k& non-zero coordinates. We consider
Problem (Basis Pursuit) for y = Ax,. Let xpp be any solution. The goal of
the exercise is to show that, necessarily,

TBp = Ty.
1. We define
h = 2xgp — T,
T, = {i,z. #0}.
Show that

[hrelly < [|he.

(For any vector z € R and £ C {1,...,d}, zg is the vector obtained
from z by setting to 0 all coordinates corresponding to indices outside

2. Up to permuting the coordinates of x,,zgp and the columns of A, we
can assume that

1-

T.={1,2,...,Card(T.)}

and that the coordinates of h are non-increasing, in absolute value, out-
side T:
\hcara(ry+1] = |hearar)+2| = - = |hal.

Let us partition {Card(T,) +1,...,d} into sets Ty, Ts, ..., Ty, of size 3k:

Ty = {Card(7\) + 1,. .., Card(Ty) + 3k},
T, = {Card(T.) + 3k + 1,...,Card(7}) + 6k},

a) Show that, for any [ € {2,...,L},

|7, |13
| < Pl
[Hint: for each s € T}, show that |h,| < ”hng;lHl ]

b) Show that

1

- i3
E b ||, < 1L
l:2H TzHQ— \/@
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¢) Deduce from the last question that

L
||, |2
|hglls < —=—.
; : V3

3. a) Show that Ah = 0.
b) Show that

L
1AR||2 = (1= du)l|hrom |l2 — (1 + 6ak) D [Py 2.

=2

c¢) Conclude.

Exercise 5: guarantees for nuclear norm minimization

Let dy,ds, m,r be positive integers. For some linear operator £ : Rhxdz —
R™, we consider the problem

minimize || X||.
for X € Réx (Nuclear-min)
such that £(X) = y.

We assume that the 5r-restricted isometry constant of £ satisfies

|
5o < —.
<10

Let X, be a matrix with rank at most r. Let X be a solution of Problem
(Nuclear-min) with y = £(X.). The goal of the exercise is to show that

Xnu = X

To simplify notation, we assume d; > ds. If we multiply the matrices to
the left and to the right by suitably chosen orthogonal matrices (the inverse
of the orthogonal matrices of the SVD of X,), we can assume that X, is
diagonal:

A0 ... 0
0 A2
X, = .
0
0 D



We can assume that the A\, are nonnegative and ordered: A\; > Ay > ... >
A, > 0.

1. Show that A\,;1 =--- = Ay, = 0.
We set H = Xy — X, and write its block decomposition

<L> d(:’f’
I Hy Hpp\lr
Hyy Hy)ldi—r'

We set
_ (Hu Hi (0 0
Hy = (H21 0 and H,= 0 Hy)
We assume that Hso is diagonal, with nonnegative ordered diagonal entries.
(This is only for simplicity. In the general case, the same reasoning is valid; it

suffices to add at the right place multiplications by the orthogonal matrices
appearing in the SVD of Has.)

pr 0 . 0
0 w2
H22: : '._'._'ud2_r , WlthMIZZMdQ—TZO
0
0 . o« 0

We define matrices H, 1, ..., H. such that, for any [, H.; is equal to H.,
except that coefficients pg have been replaced with 0 for all

s¢{3(l—1r+1,...,3lr}.

With this definition, H.1, ..., H. are a sequence of diagonal matrices, such

that
L
H,=> H,.
=1

2. Show that
|[Holl« > [|Hcl[«

[Hint: || X, + He||s = [| X+ + [|Hel]+]



3. a) Following the reasoning of the previous exercise, show that

L
|[Ho|l.

|Hegl|r < :
; v 3r

b) Show that rank(H,) < 2r and

|| Holl« < V2r[|Ho| -

c¢) Deduce that
- 2
D lHalle < 3 I1Holl-
1=2

4. a) Show that

L
IC(H)|l2 > (1= 85,)|[Ho + Heallr — (14 05) Y || Hedl|r-

=2

b) Conclude.

Exercise 6: Prony’s method for super-resolution

Let S € N* be fixed. We want to recover a measure

s
Mo = E a85TS7
s=1
where aq,...,ag are non-zero complex numbers, and 7, ..., 7 are distinct

elements of [0; 1[. We assume that we have access to its 2.5 lowest-frequency
Fourier coeflicients:

1 S
folk] = / e M A (t) = Zase’%“ﬂs, for k=—(S—-1),...,8S.
0 s=1

In this exercise, we present a purely non-convex algorithm to perform the
reconstruction, called Prony’s method.



1. Show that there exists a unique polynomial P with degree S and leading
coefficient equal to 1 such that

P(e%m) =0, Vs=1,...,8
Express it as a function of 7, ... 7s.

2. Let P be the polynomial defined in the previous question. We call
Do, - --,ps € C its coefficients:

S
P(X) =) p.X*.
s=0

Po
The goal is to show that p ) < : ) is the unique (up to scalar multi-

ps
plication) element in the kernel of

fo[=(S—1)] a[=(S=2)] ... fo[l]
i | RS2 RS 3] - ol
ol Al ... jold)

a) Show that p € Ker(M).
0
b) We now prove uniqueness. Let ¢ = ( : ) be in Ker(M). We define

qs

S
QX) =) X"
s=0

Show that, for any d =0,...,5 — 1,
S
Z 672m'd7'5a—8Q (6271’1'7'5) —0.
s=1

¢) Deduce from the previous question that ¢ = Ap for some A € C.
[Hint: use the fact that the so-called Vandermonde matriz

1 1 .. 1
6—27riT1 e—27ri7'2 L e—27ri7'5
e—27ri(5’—1)71 6—271'1'(5—1)7'2 o e—27ri(S—1)7's

is invertible.]
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3. Using the previous question, propose an algorithm to recover .

Compared to the total variation approach seen in class, this algorithm is much
simpler. In addition, it succeeds whatever the values of a1, ...,aq,71,...,7s.
However, it is difficult to use as such in practice, since it is very sensitive
to noise, and therefore requires a high precision on the measures jiplk]. In
addition, it cannot handle some natural generalizations of the problem, like
the case where some Fourier measurements are missing.

Exercise 7: super-resolution via semidefinite program-
ming
In this exercise, we discuss one method for solving the total variation mini-

mization problem

minimize ||u||7y
for p € M([0;1]), (Min TV)
such that k] = yg, VE = —N,..., N.

In the lecture, we have introduced the dual of (Min TV):

maximize Re (z,y)

for z € C*N*H! (Dual TV)
N
such that Z 2™ <1Vt € R.
k=—N

We have seen that both problems have the same optimal value, and (more or
less) that the minimizers of (Min TV) can be recovered from the maximizers
of (Dual TV). We can therefore focus on solving (Dual TV), which is a
convex problem with an infinite number of constraints.

We admit the following result.
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Theorem 1 : Fejér-Riesz

Let P (e*™) = 2Ny Dke™* be a trigonometric polynomial
with degree at most 2N. The following two properties are equivalent.

1. P has real nonnegative values on the unit circle (that is,
P (e*™) € RY for all t € R).

2. There exists a finite number of trigonometric polynomials
Q1,...,Q,, each with degree at most N, such that

J2 (627rit) _ Z |Qk <627rit) |2‘
k=1

1. Let z € C?>N*! be any vector. Show that ‘Zsz_N zke%ikt‘ < 1 for

all t € R if and only if there exists a finite number of trigonometric
polynomials P, ..., P, with degree at most N such that

N

2 2pe 2mikt

k=—N

2 n
+3 IR (P =1, VteR. (3)
=1

2. Let P,..., P, be trigonometric polynomials with degree at most N. Let
pM ... p™ € C?N*! be the vectors of their coefficients:

N

P, (ezm't) _ Z pl(cl)€27rikt.
k=—N

Show that the polynomials satisfy Equality (3) if and only if the ma-
trix A = z2* + > pWpl* € CEN+DXENHD gatisfies, for all d =
—2N,...,2N,

2N+1—max(0,—d)

> Awa=0ifd#0

k=14+max(0,d)
=1ifd=0.

12



3. Show that a matrix A € CCNTUXEN+D) can be written as A = z2* +
S, pWpW* for some vectors pM), ..., p™ € C2N*L if and only if A —
zz" = 0.

4. Show that a matrix A € CENTDXEN+1) gatisfies the inequality A—zz* >
0 if and only if

Z-N
4 = 0.
ZN
5. Deduce from the previous questions that Problem (Dual TV) is equiva-

lent to

maximize Re (z,y)

over all z € C2N*1 4 e CEN+DXEN+D)

2N+1—max(0,—d)
such that > Apra=0forallde{-2N,....2N}\ {0},
k=1+max(0,d)
2N+1

> A =1,
k=1

which is a classical (finite-dimensional) semidefinite optimization prob-
lem.

Exercise 8: Fejér-Riesz theorem

In this exercise, we prove Fejér-Riesz’ theorem, stated in the previous exer-
cise. Let N € N* be fixed.

1. Let P be a trigonometric polynomial with degree at most 2N. We
assume it can be written as the sum of the squared modulus of trigono-
metric polynomials Q1, ..., Qy:

J2 (627rit) _ Z ‘Qk (e2m't) ‘2 '
k=1
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Show that, for all t € R, P (e*™*) belongs to R.

2. Conversely, let P (e2™) = S22V pre?™ be a trigonometric polyno-

mial with degree at most 2N, such that P (e*™) € R for all ¢t € R.

We assume poy # 0.

Let P(X) = X2V ZZZX_QN peX ¥ be the “standard” polynomial associated

to P. It has degree 4N.

a) Let z1,...,z4n be the roots of P in C (counted with multiplicity).
Express P as a function of z1, ..., z4y and pay.

b) Show that, for any z € C,

e - z4N15(—i>.

z

[Hint: use the fact that P (e?™) is a real number, for any ¢ € R.|

¢) Deduce from the previous question that, for any z € C, if z is a root
of P, then % is also a root of P, with the same multiplicity.

d) Show that, for any z € C such that |z| = 1, if z is a root of P, its
multiplicity is even.
[Hint: show that, if the multiplicity is odd, the sign of P changes in
the neighborhood of 2t % 2.

e) Show that there exists a trigonometric polynomial ¢ with degree N
such that

P(e27rit) _ ‘Q (€2m't) |2.
|[Remark: this establishes the second property of Fejér-Riesz’ theorem
with n = 1.]
Exercise 9: alternating projections for phase retrieval

We consider a generic phase retrieval problem:

find z € C¢
such that |Lg(z)| = ys, Vs < m, (PR)
where Ly, ..., L,, : C* = C are known linear maps, and v, ...,y € R are

given.

! This is without loss of generality. If poy = 0, the same reasoning is true; it essentially
suffices to replace 2N with the index of the smallest integer D for which pp # 0.
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We define A : x € C? — (Ly(2))s=1...m € C™ and
E ={h € C" such that |hs| = y,,Vs=1,...,m}.

1. a) Show that, if x is a solution of (PR), then A(x) is a solution of the
following problem:

find z € Range (A) NE. (Set intersection)

b) Conversely, show that, if z is a solution of (Set intersection), then
z = A(x) for some solution z of (PR).

This shows that, to solve Problem (PR), it suffices to solve (Set intersection).

2. Give the explicit expression of a function projg : C™ — C™ such that,
Vz € C™, projg(z) € argmingg||h — z||2.

We call proje a projection onto £.

We define projgange(a) the standard orthogonal projection onto Range(.A).
The alternating projections algorithm, introduced in [Gerchberg and Sax-
ton, 1972|, addresses Problem (Set intersection) as follows: it starts at an
arbitrary point zp € C™, and iteratively defines, for all ¢t € N,

Rt+1 = prOjRange(A) © pl"Ojg(Zt)-
3. Show that the sequence of iterates (z;)en is bounded and satisfies

|[proje(ze+1) — ze+1ll2 < |[proje(ze) — zll2, vVt € N*.

Exercise 10: rank 1 approximation (local convergence)

This exercise and the next one are inspired by [Chi, Lu, and Chen, 2019].
Let M € R%? be a positive semidefinite matrix. We consider the problem
of finding the rank 1 matrix which best approximates M in Frobenius norm.
As any semidefinite matrix with rank at most 1 can be written as za? for
some vector # € R?, this amounts to finding a minimizer of

1
frzeR— ZH:ch — M]||%.
(The constant i is only here to make formulas slightly nicer.)
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1. Let A1, Ao, ..., A\g > 0 be the eigenvalues of M, sorted in nonincreasing
order. We assume that 1 = \; > A\s.
Let (uq,...,uq) be an orthonormal basis of eigenvectors.
a) Show that, for any z, f(z) = § (||2||3 — 2 (z, M) + || M][}).
b) Show that f has at least one minimizer.
c¢) Show that, for all z € R,

V(@) = |lzl[3z — Ma.

d) Show that the minimizers of f are u; and —u;.
We imagine that we run gradient descent on f, with stepsize 7 < %, starting
at a point zy € R? such that
1— X
=

|20 — uall2 <

It yields a sequence of iterates (z;);en. We are going to show that it converges
to u; exponentially fast, more precisely that, for all t € N,

1— )7\’
o=l < (1= L5220 oo — e (@)

For all ¢, we define oy € R, v; € R? such that

r; = oquy + v, and v € Vect{ug, ..., uq}.

2. For any t, express ||x; — u1||2 as a function of |ay — 1| and ||vy]o-
3. a) Show that, for any ¢,

a1 = (1+ 7)oy — 7af — Tou||ve]]3;
U1 = (1= 7(0f + |[v]]3))ve + TM vy

b) Show that the first of these equalities is equivalent to
1 — 1= (1 = 7Toy(ay + 1)) (ap — 1) — Toy||ve] 3.

From now on, we assume that Inequality (4) is true up to some step t.
4. Show that 1 — (:22) <y < 1+ (22) and |y}, < 2.

16



5. Using Question 3.b), show that

) 8
|Oét+1 — 1| S (1 — ?(1 — /\2>T> |Oét — ].l + E(l — )\2)T||’Ut||2.

6. a) Using Question 3.a), show that
loeallz < (=707 + [[oel[5 = A2)[vell2-

[Hint: decompose v; onto the orthogonal basis (uq, ..., ug).]
b) Show that 0 <1 —7(af + [|ve]]3 — A2) <1 —2(1 = Xo)7.
7. a) Combine Questions 5 and 6 and show that

1— )7
Vi =1+ ol < (1- B2 i =1+

b) Conclude.

Exercise 11: rank 1 approximation (global convergence)

We keep the notation of the previous exercice. In particular, we still consider
the function .
firzeR— ZHUWT — M]||%,

and still assume that 1 = Ay > Aq.
1. Show that, for any z € R,

Hessf(r) = ||x||514 + 2v2” — M.

2. a) Compute the first-order critical points of f.
b) Compute the second-order critical points of f.

3. Show that, for almost any xg, if we choose a small enough stepsize, the
sequence of gradient descent iterates converges to a minimizer of f.
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2 Answers

Answer of Exercise 1

1. Problem (Lin-inverse) has at least one solution if and only if y € Range(A).
This solution, which we denote x,, is unique if the set

{z € R? such that Az = Ax,} = {2, + h,h € Ker(A)}

is the singleton {z,}. This happens if and only if A is injective (that is
Ker(A) = {0}).
2. a) The application v € R* — ||Av||; € R is continuous. The unit sphere
of R? is compact. Therefore, the maximum
max  ||Avl|a
veER? ||v||2=1
exists (i.e. there is a vector v; at which the maximum is attained).
Similarly, for any k € {2,...,d}, the set

{v € Vect{vy,...,ve_1}",]l|v]]2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v € R? — ||Av||y € R is still continuous. Therefore,
the maximum in the definition of v, exists.
From the definition, the family (v1,...,v4) contains d vectors of RY,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k" € {1,...,d} be such that k # k’. We can assume that k < &'
Let us show that

(Avy, Avg) = 0.

From the definition of v,
Vg € VeCt{Ul, .. ,Uk/_l}L C \/Ye(jt{vk}L = <'Uk’7 Uk> = 0.

As a consequence, for any 6 € R,

|| cos(0)vy, + sin(@) vy ||z = \/COSQ(G)HUICH% + sinQ(Q)HUk/H% =1. (5)

In addition, vy is in Vect{vy, ..., vp_1 }* and vy is in Vect{vy, ..., vp_1}+ C
Vect{vy,...,vp_1}F, 50
cos(0)vy + sin(@)vy € Vect{vy, ..., vp_1}+. (6)
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Equations (5) and (6), together with the definition of vy, imply:
|| A (cos(8)vg + sin(Q)vi) |2 < ||Avk]|2, VO € R.
We raise this inequality to the square: for all § € R,
|| A (cos(0)vy + sin(0)vw) |5
= cos?(0)|| Avi||3 + 2sin(0) cos(8) (Avy, Avy) + sin?(0)|| Avi | |3
< || Avk]3-
This means that the map 6 — cos?(0)|| Avy|[3+2 sin(6) cos(0) (Avy,, Avy)+

sin?(0)|| Avy| |2 reaches its maximum at = 0. In particular, its deriva-
tive at 0 must be 0:

0 = —2cos(0) sin(0) || Avg| |3 + 2(cos*(0) — sin?(0)) (Avy, Avy')
+ 25in(0) cos(0) || Avy| |3
= 2 (Avy, Avyr) .
Therefore, (Avy, Avg) = 0.
c) The Ay are nonnegative because a norm is always nonnegative. To
show that (A, ..., A\g) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k" € {1,...,d}

with k < k', we have seen that vj, belongs to Vect{v,...,vp_1}*+, and
lloir||2 = 1. Hence, from the definition of vy,

Mo = [[Avg|l > [[Avp||a = Aw.

d) Let D be the smallest index such that A\p = 0 (it is possible that
Ar # 0 for all £ < d, in which case we set D =d + 1).
Forany k=1,...,D — 1, we set
. Avk o Avk
[Avgll A
This is an orthonormal family of R™: for any k < D, ||ug|| = 1, and
for any k, k' < D with k # k', it holds
<A’Uk, A’Uk/> o
>\k/\k’ a
from Question 2.b). We complete it to an orthonormal basis (uy, . .., u,)
of R™, which defines up, ..., u,.

For any k < D, we have Avy = A\yug by construction. And for any
k= D,....d, since \;, = ||Avg|| = 0, it also holds Avy, = 0 = A\juy.

Uk

<uk7 uk’> -
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e) The matrices U,V are orthogonal because their columns (resp. rows,
for V') form an orthonormal basis of R™ (resp. R?).
The equation
vk S d, Avk = )\kuk

reads, in matricial form,

A0 0
0 Ao
A(v1 vd):(ul um) - BV E
0
b b

which is equivalent to
AVT =UD,

which is in turn equivalent, since V'V = VVT =1d, to
A=UDV.

f) Let U, V, M, ..., A be another SVD of A. Let us denote

A O 0
0 X2
D = ' _
Ad
0
0o ... .. 0

From the definition of the SVD,

A=UDV =UDV
= ATA=VTDTDV =VTDTDV.

The matrix DT D is diagonal, with coefficients on the diagonal A2, ... \2.
The matrices V and V7 are inverse one from each other, since V is an
orthogonal matrix. As a consequence, VT (DT D)V is the eigenvector
decomposition of ATA and A}, ..., )\ are the eigenvalues of AT A.

For the same reason, 5\%, cee :\3 are the eigenvalues of AT A. Since the
eigenvalues of a matrix are uniquely defined and A2, ..., \3 as well as
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A2 ..., A% are ordered (they are non-increasing sequences), we must
have
2 _ 32 2 32
A=A, o, AI= AL

which implies, since the A\, and A, are nonnegative,

3. a) We assume that A,y and A,y + € satisfy the conditions of Question
1, that is A is injective, and y, y + € belong to Range(A).
We consider the SVD of A, as in Question 2. We observe that \; #
0,..., g # 0, otherwise D would not be injective, and A would not
be either.
We have

UDVzx,=Ax, =y and UDVzx.= Ax. =1y +e¢,
= D(Vz,)=U"y and D(Va)=U"(y+e)=U"y+U"ec
(7)

We respectively denote (zvi)k<d, (x%ﬁ’)k)kgd, (Yo )k<m and (euk)k<m
the coordinates of V., V., UTy and UTe. From Equation (7), for
all k < d,

(€)
ATy = Yo and )\kxv,k =Yukr + €vk,

. €
Yok ond 2 — YUk €Uk

= Ty = =
s )\k Vk /\k )\k

and, forall k =d—+1,...,m,

yur = €k = 0.

From these equalities we deduce

k=1 k=1
i 9 \ /2 m 1/2 .
Ytk 1 5 U yll2
> UK - _ = Jlz



and

V(@ =zl = (

Therefore,
V(. =zl _ Au[[U"ell2
WVadla 7= Aa Uyl
and, since V,U are orthogonal matrices, hence preserve the norm of
vectors,

|z —zella _ A1 [lef]2
lzalla 7~ Adllyll2
b) Let us consider the following y and e:

ytel, €:U€d,

where ey, e4 respectively denote the first and d-th vector in the canon-
ical basis of R™. Then
1 1 1
L= —V%Te, x.=—VTe + Ve,
T /\1 €1 T )\1 €1 )\d €q

where €1, €4 respectively denote the first and d-th vector in the canon-
ical basis of R?. Therefore,

|2, —zcll2 ﬁHVTéde C A A el

lzdlle AdllVTéll: A Aallylle’

Answer of Exercise 4

1. The vector z, is feasible for the problem (Basis Pursuit): Az, = y.
Therefore, its /!-norm is at least as large as the optimal value of the
problem:

|lz:llv = l[zsp[h = |lz. + A1
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As a consequence,

D lal = [l

€Ty
> ||z + Ay

=Yl + i

i€ i¢ T
> (|l = [hal) + > [hl
1€y 1¢Ty
= Z || = [z ]+ [[hre |2
i€T,
This implies ||k, [[1 > [|hrel|1

2. a) For any s € T;,8' € T;_1, because the coordinates of h are non-

increasing outside 7,
|h5’| > |h5|.

This implies that, for any s € T;,
1Az lli =Y |he| > (Card(Ti1))|hs| = 3k|hy|.
s'€T; 1
From this, we deduce that

1hz, |5 = Bl

seT

Z Hth 1||1

seT;
_ ||thle%
(3k)?
_ I8
- 3k

(Card(T}))

L1
Z ||hry |2 < Z ||hr,|l  from the previous question
V3k i3
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<

ZHhTzHl

=1

&

*q

T¢Il

2

|| I,

1

< from the first question.

2

¢) By Cauchy-Schwarz,

1 S \/Card(T*)HhT*

Combined with the previous question, it yields

||, o < V||,

2.

2

L
||hr
[hg ]2 < —

3. a) As xpp is a feasible point of Problem (Basis Pursuit), we have Axpp =
y = Ax, = A(xgp — h) = Azgp — Ah. Consequently, Ah = 0.
b) As h = hT*UTl + hT2 +---+ hTL, we have

L
|1Ahls = ||Ahr.un +Abr,+- -+ Abr || > [|Ahr,on o= Y || Aha]ls.

=2

The vector hr,ur, has at most Card(7y) 4+ Card(Ty) < k + 3k = 4k
non-zero coordinates. From the definition of the restricted isometry
constant,

[[Ahr.un ]2 = (1 = dar)[|Arom | |2-
Similarly, for any [ € {2,..., L},

[[Ahg|[2 < (1 + 6a) [Pz ||2-

This gives the desired inequality:

L
1AR| |2 > (1= da)l|h.om |2 — (L4 6ax) D [ |2

=2
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c¢) Together, the previous two subquestions imply

L
(1= Sl hz.omll2 < (14 6ak) D [ l2
=2

Using also Question 2.c,

(1 = dar) |1 [|2 <

< (1 + O4x)

(1 = bar) [|Prim |2
|||

V3

Since 64, < 1/4, this implies

3\f

5HhT* HhT

2 < 1 3
Since %3 > 1, this implies ||h7, ||z = 0: the coordinates of h with

indices in T, are zero. From the first question, the coordinates of h
with indices in T are therefore also zero, so h = 0 and

||hT*

< [[hz. ]2

rpp — Tk.

Answer of Exercise 7

1.
N
Z ¥R <1, Yt eR,
k——
N 2
= | ) ™ <1, VteR,
k=—N
N 2
= 1-| ) zn™| eRT VteR
k=—N

From Fejér-Riesz’ theorem, this property holds if and only if there exists

trigonometric polynomiales Py, ..., P, with degree at most N such that,
for all t € R,
N
1— Z 27rzkt Z |P
k=—N
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2 .
+ X0 [P (@) = 1.

L , N :
which is equivalent to ‘Z ey 2ReZTR

. Let a_sp,...,asn denote the coefficients of the polynomial in Equality

(3):

2

2N N n
}: 2midt }: 2mikt }: omit |2
adewz — Zkewz + |B(€m)‘
d=—2N k=—N =1
N
— § 27rzkt E — —27rzkt
k=—N
N
(0 2mikt () —2mikt
5 Z P D ne
I=1 \k=—-N k=—N
N N
E E E 27rz k—k')t
= Zka/ + pk pk/ )
k=—N k'=—N
2N
_ E E = E @, ) 2midt
= Zp k! + pk pk./ €
d=—2N —N<kk'<N =1
k—k'=d
2N n N
_ E : E : > E : (OMO)] 2midt
= Zk2k—d t+ P Pr_q | €
d=—2N  —N<k<N =1
s.t. —N<k—d<N
N—max(0,—d)
_ 2midt
= E E <2k2kd+§ pkpkd €
d=—2N k=—N+max(0,d)
2N N—max(0,—d)
2midt
= E E Ak;+N+1,k+N+1—d e
d=—2N \ k=—N+max(0,d)
2N 2N+1—max(0,—d)
— E : E : Akk J 627rz'dt
d=—2N \ k=1+max(0,d)
2N+1— (0,—d)
As a consequence, ag = 1—max( Akk gforalld = =N, ..., N,

k=1+max(0,d)
and Equality (3) holds if and only if, for any d = —N;, . ..

2N+1—max(0,—d)

aq = Z Ak,kz—d =1lifd= 0,

k=1+max(0,d)

N

? ?
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= 0 otherwise.

3. If A =22+ > pUp* for some vectors ptM), ... p™ € C2N*1| then
A—zzr=3%1", pWp®* which is semidefinite positive:

Vo € CN* p¥ (A — 220)x = Z | (p", z) > > 0.
=1

Conversely, let us assume that A — zz* = 0. Let B € CEN+DxEN+1) e
a square root of A — zz* (that is, a matrix such that BB* = A — 22*).?2
Let p®, ..., p@®N*D be the column vectors of B. Then

2N+1

A—zzr =3 plptr,
=1

which implies A = zz* + > pWp®.
4. Let us denote

c CN+2)x(2N+2)

and show, as required, that A — zz* > 0 if and only if G > 0.

(G = 0) (Vh € C*N*2 h*Gh > 0)

vhe CN L ueC, (1) G (1)) =0)

u<h,z>) +Jul? > o)

It Ah + 2Re <te’¢ <;3, z>> +|te']? > o)

/

(R

(
(Viz € C2N+1 4y € C, h*Ah + 2Re
(

Vh e CN*tL i e R, ¢ € R,

!

(vﬁeCQN“,teR,d)eR,

h* Ah + 2tRe (ei‘Zﬁ <f~z, z>> + 12> 0)

2All semidefinite positive matrices have square roots; it is most easily proved when
writing the semidefinite matrix in an eigenvector basis.
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& (vie e g e ritan - (e (e (h)))" 2 0)
PUN (vBeC2N+1,B*Aﬁ—|</},z 1220)

<~

N

Vh e C**L ¥ (A — z2%)h > O)
— A—2z2z">0.
Equivalence (a) is true because, for any h and ¢, it holds that the poly-

nomial t — h*Ah + 2tRe (ew <;L, z>> + t? is nonnegative over R if and

only if its discriminant is nonpositive:
s 2 .
4 (Re <e’¢ <h, z>>> — 4i* AR <0,

which is exactly h*Ah — (Re <ei¢ <l~z, z>>)2 > 0.

- - . s 2
Equivalence (b) is true because, for any h, we have h* Ah— (Re (e“l5 <h, z>>> >
0 for all ¢ € R if and only if the minimum over ¢ of this quantity is non-
negative, and the minimum is precisely

B A — | <hz> 2,

. Since both problems have the same objective function, it suffices to show
that z is feasible for (Dual TV) if and only if z is feasible for the other
problem, that is there exists A € CENTUXEN+1) gych that

2N+1—max(0,—d)
> Agg_a=0forall d € {-2N,...,2N}\ {0},
k=14max(0,d)
2N+1

> A =1,
k=1

and

Let us first assume that z is feasible for (Dual TV): ‘Zszf N zke%ikt‘ <1
for all ¢ € R. From Question 1, there exists trigonometric polynomials
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with degree at most N, Py,..., P,, such that

2

+Z ‘-Pl (627rit)’2 = 1.

=1

N

E 2k62mkt

k=—N

We denote p(l), .. ,p(”) the vectors of their coefficients and set A =
22+ > pOpl*. From Question 2, we have

2N+1—max(0,—d)
> Agg_a=0for all d € {-2N,...,2N}\ {0},
k=1+max(0,d)
2N+1

Z A =1.
k=1

From Question 3, A — zz* > 0, hence from Question 4,

The existence of A is proved.
Conversely, let us assume the existence of A, and show that ’Ziv:, N 2Reim | <

1 for all t € R. From Question 4, A— zz* > 0. Therefore, from Question
3, there exist pV, ..., p™ such that

A=z22"+ Zp(l)p(l)*.
I=1

Let us denote Py, ..., P, the corresponding trigonometric polynomials.
From Question 2, they satisfy Equality (3)

N
2 : Zk€2mkt

2 n
+3 P ()P =1, VteR.
k=—N =1

From Question 1, this means that ‘Z]kvz_ ~ 2e€2™ R < 1 for all t € R.
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Answer of Exercise 10

1. a) For any z € R,

flax) = llaa” — M1
= My (@ — M) (2" — M)
= —Tr (z2"za” — Maz” — za" M + MM™)
(Tr (za”z2”) — 2Tr (Maz™) + Tr (MMT))

(Tr (z"2z"z) — 2Tr (2" (M2)) + || M][3)

I S Bl S > S

([l = 2 (&, M) + |M]|7) -
b) For any = € R%, ||[Mx||y < M\i||x]|2, hence | (z, Mz) | < \i||z||3, and

flz) > [lzllz A3

= 4 2
_ Llells (Nl
2 2

— 400 when ||z]|s = +o0.

This shows that f is coercive. It is also continuous, hence has a
minimizer.
c) For all =, h € RY,

fla+h) =2 (llz+hll; = 2(z +h, Mz + h)) +||M][})

I N S

(2113 +2 (. h) +[1h]3)°

— 2 ({z, Mx) + (h, Mz) + (x, Mh) + (h, MR)) + || M||})
= i (Hlll2 + 4ll2|[3 (z, k) — 2 (@, Ma) — 4 (Ma, h) + || M|[% + o(][]]2))
= f(z) + ([|2][3x — Mz, 1) + o(|[A]]2).

Therefore, V f(z) = ||z||32 — Mz.

30



d) Let us first consider an arbitrary minimizer x,,;,. We must have
2

As a consequence, MTpin = ||Tmin||3Tmin, Which means that x,,;, is
an eigenvector of M, with eigenvalue ||Z,,]]3. In particular, there
exists k = 1,...,d such that

® 1., is an eigenvector of M with eigenvalue \;
o ||Zmin|[3 = Ak, that is, ||Zmin|| = VAs.
This shows that minimizers of f are necessarily of the form x,,;, =

VA, for v a unitary eigenvector associated to the eigenvalue A.
Now, we compute the minimizers. For £ < d and v as above,

f@ﬁ@)ziQhﬁ@j—a<¢EuM¢E@+me)

1
— 1 (A 1M

This is minimal if and only if A, = A\j(= 1) and v is an eigenvector
associated to the eigenvalue A\, that is to say v = f+wuy. Therefore,
the minimizers are u; and —uy.

2. Asxy—uy = (o — 1)uy + vy and uy L vy, the norm is

e — il = 4/l — 12 + [[ue] 2
3. a)

Tir1 =1 — TV f(24)
= apuy + vy — 7(||e||570 — My)
= aguy + v — 7|2 [3 (s + v) — ayMuy — Muy)
= oy (1 = 7l|zel[)ur + (1 = 7|2 [)ve + Towus + 7 M

= oy (1 = 7(af + [[oel3) + T)us + (1 = 7(af + [[ve] [*))vor + 7 My
As v, and Mv,; belong to Vect{us, ..., uq},

a1 = a(L = 7(0f + ||ve][3) +7) = (L+ 7)oy — 70} — Tau|Jvg]]3;
v = (1 — T(af + | ve] ) ve + T My
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b)

(14+7)ay — TOZ? — TatHthg =1+ [(1 + 7)oy — Taf — TatHthg — 1]

=1+ [at —14+704(1— af) — TatHth%]
=1 + [(1 — TOét(O{t + 1))(@15 — 1) — TOétH’UtHg] .

4. We have

1= ay| <[l — ]
< ||zo — uql||]z  from Eq. (4)
1— X
=

Therefore, 1 — (%) <l—-|l—-| <o <l+|l—-w <1+ (%)
And (||| < [z
5. From Question 3.b),

i — 1 < 1= rap(ap + 1) Jag — 1] + e [|ve][5-
We prove the result by showing
1 — 7oy +1)] < 1-%(142)7; (8a)
Tlae| [Juel [ < 489(1 = A7 [vi[2- (8b)
For Equation (8a), we must show

— (1 — g(l —/\2)T> S 1 —T()ét(Oét+1> S 1-— g(l —>\2)T.

The left-hand side is equivalent to

T (Oét(Oét +1 1 — )\2 )
<

which is true because 7 § L, <1+ (1 ’\2)
5 1 /8 15 5 155
1 1—A — - = — < 2.
T(Oét(Oét+ )—1-7( 2))_2(7X7—|—7) o3 =

32
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The right-hand side is equivalent to
5)
at(ozt + 1) Z ?(1 — )\2),
which is true because o, > 1 — (%) > g, SO
6
O{t(Oét + ]_) Z ? X

Equation (8a) is proved.
For Equation (8b), we must show that

8
el < 5 (1= %)

We have already said that oy < %, and we know from the previous

question that ||v,|[» < 1522,

8 1—-2X 8
aullnlla < 2 % == = (1= ).

6. a) From Question 3.a), v;.1 = Hv;, where
Ht = (1 — T(Oé? + ||’Ut||§)> Id + 7M.

On the subspace Vect{us, ..., uq}, which v; belongs to, M represents a
symmetric linear operator with eigenvalues Ao, ..., A\y. Therefore, H;
is a symmetric linear operator, with eigenvalues (1 — 7(a? + ||v||3)) +
TA for k=2,...,d.

All these eigenvalues are nonnegative,® hence the operator norm of H,
(still restricted to the subspace Vect{ua, ..., us}) is its largest eigen-
value:

(1= 7(af +[wl2) + TAe = 1 = 7(af + [[ue|5 = A2),
which implies

[veall2 < (1 =70 + [uellz = A2)) [fvell2.

2
3Observe that 7(a? + ||v|?) < %||xt||§ < %(1 + ||xs — u1||2)2 < % (%) <1.
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b) We have seen in the previous question (in footnote) that 0 < 7A,
1 —7(a? + ||ve]|3 — X2). Let us show that 1 — 7(a? + [|vg]|2 — A2)
1 —3(1 — Ay)7, which is equivalent to

5 2
of + [|vll3 > = =2t

IAIA

\]

We recall that oy > 1 — (%)

-2\ \?
at +llal = (1- (522))
1—X  (1-2)\?
—1-2
()

5 2 1—X)\2
=—+~Ay+( 2)

T T 7
5 2
> — 4 =)o
_7+7 2

7. a) Combining the last questions, we get

5 8
g — 1] < (1 - (- AQ)T) e = 1+ 75 (1= Aa)7ffell2;

5
forslle < (1= 20207l
Expressed in terms of ¢2-norms, this implies

[|(awra = 1] foeall2)l

(1= 2= 2017 o = 11 i) + (351 = Aol 0)

<

2

5 8
< 1_;u—A»QHo%—lmmwgm+1yl—&ﬁwwb

(triangular inequality)

5 8
<(1- —(1—)\2)7—1-@(1 _)\2)7) (e = 11, [forll2)]]
27
zzl—Eu—&ﬁ)m%—wamm
1—A
31—( zﬁT)m%—uwmmm-
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b) We prove Inequality (4) by iteration over t. For t = 0, it is true. Now,
if it is true for some ¢, the previous question implies

s = wrlls = 4/ otesr = 12+ o]

1— )7
< (1-5520) Vo= 1+

2
1—X)7
— (1_%) ||$t—U1H2
1— )7 t+1
s@—ijfL)|m—mm
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