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1 Exercises

Exercise 1: linear inverse problems
Let d,m be positive integers, with d ≤ m. Let A ∈ Rm×d be a matrix. For a
given y ∈ Rm, we consider the inverse problem

find x ∈ Rd such that Ax = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
and partial uniqueness of orthogonal matrices U ∈ Rm×m, V ∈ Rd×d,
and nonnegative numbers λ1 ≥ · · · ≥ λd ∈ R+, such that

A = UDV,

with

D =


λ1 0 ... 0

0 λ2
...

... ... ...
λd

... 0
...

...
0 ... ... 0

 . (1)

This decomposition ofA is called the singular value decomposition (SVD).
The numbers λ1, . . . , λd are the singular values.
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a) Let v1 ∈ Rd be such that ||v1||2 = 1 and

||Av1||2 = max
v∈Rd,||v||2=1

||Av||2.

Then, let v2, . . . , vd be such that, for any k, ||vk||2 = 1, vk ∈ Vect{v1, . . . , vk−1}⊥,
and

||Avk||2 = max
v∈Vect{v1,...,vk−1}⊥

||v||2=1

||Av||2.

Show that this definition is valid (i.e. that the maximums exist) and
that (v1, . . . , vd) is an orthonormal basis of Rd.

b) Show that, for any k, k′ ∈ {1, . . . , d} with k 6= k′, 〈Avk, Avk′〉 = 0.
[Hint: assume k < k′. Show that, from the definition of vk, it holds
for any θ ∈ R that ||A(cos(θ)vk + sin(θ)vk′)||2 ≤ ||Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to θ must be 0 at θ = 0.]

c) For any k = 1, . . . , d, let us set λk = ||Avk||2. Show that the λk are
nonnegative, and that λ1 ≥ λ2 ≥ · · · ≥ λd.

d) Show that there exists an orthonormal basis (u1, . . . , um) of Rm such
that

∀k ≤ d, Avk = λkuk.

e) Let D be defined as in Equation (1), U be the matrix whose columns
are u1, . . . , um, and V the matrix whose rows are v1, . . . , vd. Show that
U, V are orthogonal matrices, and

A = UDV.

f) Show that the singular values are uniquely defined: if Ũ , Ṽ , λ̃1, . . . , λ̃d
is another SVD of A, then λ̃k = λk for any k.

3. We assume that A, y satisfy the conditions of Question 1, and denote
x∗ the solution of Problem (Lin-inverse). For ε ∈ Rm such that y + ε
also satisfies the conditions of Question 1, we denote xε the solution of
Problem (Lin-inverse) when y is replaced with y + ε.
a) Assuming y 6= 0, show that, for any ε,

||xε − x∗||2
||x∗||2

≤ λ1

λd

||ε||2
||y||2

.

2



b) Show that the inequality is tight (that is, it is not true anymore if λ1
λd

is replaced with a smaller constant).
This inequality tells us that the number λ1

λd
, which is called the condition

number of A, controls the stability of the problem: if λ1
λd

is close to 1, then
a small error ε on y only causes a small error on x∗. If, on the other hand,
λ1
λd
� 1, then xε can be very different from x∗ even if ε is small.

Exercise 2: intersection of convex sets
Let d ∈ N∗ be fixed. Let C1, . . . , CS ⊂ Rd be closed convex non-empty sets.
We consider the problem

find x ∈ Rd,

such that x ∈ Cs,∀s ≤ S. (2)

For any s ≤ S, we denote Ps the projector onto Cs: for any z ∈ Rd, Ps(z) is
the point of Cs which is at minimal distance from z:

||Ps(z)− z||2 = min
a∈Cs

||a− z||2.

It is a classical result from convex analysis that Ps is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets Cs are sufficiently simple so that the corresponding projections can be
numerically computed.
The goal of the exercise is to present an algorithm to solve (2).
1. We consider any s ∈ {1, . . . , S}.

a) Show that, for all z ∈ Rd, a ∈ Cs,

〈a− Ps(z), z − Ps(z)〉 ≤ 0

b) Show that, for all z, z′ ∈ Rd,

〈Ps(z′)− Ps(z), z − z′ − Ps(z) + Ps(z
′)〉 ≤ 0

c) Show that, for all z, z′ ∈ Rd,

||Ps(z)− Ps(z′)||2 + ||Ps(z)− Ps(z′)− z + z′||2 ≤ ||z − z′||2.

d) Deduce from the previous question that, for all z, z′ ∈ Rd,

||Ps(z)− Ps(z′)|| ≤ ||z − z′||,

and that the inequality is strict, unless Ps(z)− Ps(z′) = z − z′.
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The algorithm starts with an arbitrary initial point x0 ∈ Rd. It then com-
putes iteratively a sequence of iterates (xk)k∈N defined by

∀n ∈ N,∀s ∈ {1, . . . , S}, xnS+s = Ps(xnS+(s−1)).

We assume that Problem (2) has at least one solution:

C1 ∩ C2 ∩ · · · ∩ CS 6= ∅.

2. a) Show that, for any x∗ ∈ ∩s≤SCs, the sequence (||xk − x∗||)k∈N is non-
increasing, hence that it converges. Let us call `(x∗) ∈ R the limit.

b) Show that (xkS)k∈N has a converging subsequence. We denote x∞ ∈ Rd

the limit.
c) Show that x∞ ∈ ∩s≤SCs.

[Hint: show that P1(x∞) is a limit point of (xkS+1)k∈N, then that, for
any x∗ ∈ ∩s≤SCs,

||x∞ − x∗|| = ||P1(x∞)− x∗|| = `(x∗).

Using Question 1.d), show that x∞ ∈ C1. Iterate the reasoning to
show that x∞ ∈ Cs for any s ≤ S.]

d) Show that xk
k→+∞−→ x∞.

Exercise 3: real phase retrieval
This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex ) coordinates.
A real phase retrieval problem is any problem of the form

find x ∈ Rd

such that | 〈x, vs〉 | = ys,∀s ≤ m, (Real-PR)

where v1, . . . , vm is a known family of vectors of Rd, y1, . . . , ym are given and
“|.|” denotes the absolute value.
Since multiplication by −1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by −1.
We say that a family of vectors (v1, . . . , vm) satisfies the complement property
if, for any S ⊂ {1, . . . ,m},

Vect{vs}s∈S = Rd or Vect{vs}s/∈S = Rd.
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1. In this question, we show that (v1, . . . , vm) satisfies the complement
property if and only if, for any y1, . . . , ym, the solution of Problem
(Real-PR) (when it exists) is unique.
a) Let us assume that (v1, . . . , vm) satisfies the complement property.

Let y1, . . . , ym be any numbers. Let x, x′ ∈ Rd be such that, for any
s ≤ m,

| 〈x, vs〉 | = ys = | 〈x′, vs〉 |.

Show that x = x′ or x = −x′.
[Hint: apply the complement property for S = {s, 〈x, vs〉 = 〈x′, vs〉}.]

b) Let us assume that (v1, . . . , vm) does not satisfy the complement prop-
erty. Show the existence of z1, z2 ∈ Rd \ {0} such that

∀s ≤ m, 〈z1, vs〉 = 0 or 〈z2, vs〉 = 0.

c) Define x = z1 + z2, x
′ = z1 − z2 and show that Problem (Real-PR)

may have a non-unique solution.
2. a) Show that, if Problem (Real-PR) has a unique solution for any y1, . . . , ym,

then m ≥ 2d− 1.
b) Conversely, we assume that m ≥ 2d − 1. Show that, for almost any

(v1, . . . , vm) ∈ (Rd)m, Problem (Real-PR) has a unique solution for
any y1, . . . , ym.

3. Provide an explicit example of a family (v1, v2, v3) ∈ (R2)3 and of a
family (v1, v2, v3, v4, v5) ∈ (R3)5 for which Problem (Real-PR) has a
unique solution for any y1, . . . , ym.

Exercise 4: correctness guarantees for Basis Pursuit
Let d,m, k be positive integers. For some matrix A ∈ Rm×d, we consider the
problem

minimize ||x||1
for x ∈ Rd (Basis Pursuit)

such that Ax = y.

We assume that the 4k-restricted isometry constant of A satisfies

δ4k <
1

4
.
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Let x∗ be any vector with at most k non-zero coordinates. We consider
Problem (Basis Pursuit) for y = Ax∗. Let xBP be any solution. The goal of
the exercise is to show that, necessarily,

xBP = x∗.

1. We define

h = xBP − x∗,
T∗ = {i, x∗i 6= 0}.

Show that
||hT c

∗ ||1 ≤ ||hT∗ ||1.

(For any vector z ∈ Rd and E ⊂ {1, . . . , d}, zE is the vector obtained
from z by setting to 0 all coordinates corresponding to indices outside
E.)

2. Up to permuting the coordinates of x∗, xBP and the columns of A, we
can assume that

T∗ = {1, 2, . . . ,Card(T∗)}

and that the coordinates of h are non-increasing, in absolute value, out-
side T∗:

|hCard(T∗)+1| ≥ |hCard(T∗)+2| ≥ ... ≥ |hd|.

Let us partition {Card(T∗) + 1, . . . , d} into sets T1, T2, . . . , TL of size 3k:

T1 = {Card(T∗) + 1, . . . ,Card(T∗) + 3k},
T2 = {Card(T∗) + 3k + 1, . . . ,Card(T∗) + 6k},

. . .

a) Show that, for any l ∈ {2, . . . , L},

||hTl ||22 ≤
||hTl−1

||21
3k

.

[Hint: for each s ∈ Tl, show that |hs| ≤
||hTl−1

||1
3k

.]
b) Show that

L∑
l=2

||hTl ||2 ≤
||hT∗||1√

3k
.
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c) Deduce from the last question that
L∑
l=2

||hTl ||2 ≤
||hT∗||2√

3
.

3. a) Show that Ah = 0.
b) Show that

||Ah||2 ≥ (1− δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑
l=2

||hTl ||2.

c) Conclude.

Exercise 5: guarantees for nuclear norm minimization
Let d1, d2,m, r be positive integers. For some linear operator L : Rd1×d2 →
Rm, we consider the problem

minimize ||X||∗
for X ∈ Rd1×d2 (Nuclear-min)

such that L(X) = y.

We assume that the 5r-restricted isometry constant of L satisfies

δ5r <
1

10
.

Let X∗ be a matrix with rank at most r. Let XNM be a solution of Problem
(Nuclear-min) with y = L(X∗). The goal of the exercise is to show that

XNM = X∗.

To simplify notation, we assume d1 ≥ d2. If we multiply the matrices to
the left and to the right by suitably chosen orthogonal matrices (the inverse
of the orthogonal matrices of the SVD of X∗), we can assume that X∗ is
diagonal:

X∗ =


λ1 0 ... 0

0 λ2
...

... ... ...
λd2

... 0
...

...
0 ... ... 0

 .

7



We can assume that the λs are nonnegative and ordered: λ1 ≥ λ2 ≥ ... ≥
λd2 ≥ 0.
1. Show that λr+1 = · · · = λd2 = 0.

We set H = XNM −X∗ and write its block decomposition

H =

(
H11 H12 l r
H21 H22 l d1 − r

)r d2−r

.

We set
H0 =

(
H11 H12

H21 0

)
and Hc =

(
0 0
0 H22

)
.

We assume that H22 is diagonal, with nonnegative ordered diagonal entries.
(This is only for simplicity. In the general case, the same reasoning is valid; it
suffices to add at the right place multiplications by the orthogonal matrices
appearing in the SVD of H22.)

H22 =


µ1 0 ... 0

0 µ2
...

... ... ...
µd2−r

... 0
...

...
0 ... ... 0

 , with µ1 ≥ · · · ≥ µd2−r ≥ 0.

We define matrices Hc,1, . . . , Hc,L such that, for any l, Hc,l is equal to Hc,
except that coefficients µs have been replaced with 0 for all

s /∈ {3(l − 1)r + 1, . . . , 3lr}.

With this definition, Hc,1, . . . , Hc,L are a sequence of diagonal matrices, such
that

Hc =
L∑
l=1

Hc,l.

2. Show that
||H0||∗ ≥ ||Hc||∗.

[Hint: ||X∗ +Hc||∗ = ||X∗||∗ + ||Hc||∗.]
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3. a) Following the reasoning of the previous exercise, show that

L∑
l=2

||Hc,l||F ≤
||H0||∗√

3r
.

b) Show that rank(H0) ≤ 2r and

||H0||∗ ≤
√

2r||H0||F .

c) Deduce that
L∑
l=2

||Hc,l||F ≤
√

2

3
||H0||F .

4. a) Show that

||L(H)||2 ≥ (1− δ5r)||H0 +Hc,1||F − (1 + δ5r)
L∑
l=2

||Hc,l||F .

.
b) Conclude.

Exercise 6: Prony’s method for super-resolution
Let S ∈ N∗ be fixed. We want to recover a measure

µ0 =
S∑
s=1

asδτs ,

where a1, . . . , aS are non-zero complex numbers, and τ1, . . . , τS are distinct
elements of [0; 1[. We assume that we have access to its 2S lowest-frequency
Fourier coefficients:

µ̂0[k] =

∫ 1

0

e−2πiktdµ(t) =
S∑
s=1

ase
−2πikτs , for k = −(S − 1), . . . , S.

In this exercise, we present a purely non-convex algorithm to perform the
reconstruction, called Prony’s method.
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1. Show that there exists a unique polynomial P with degree S and leading
coefficient equal to 1 such that

P
(
e2πiτs

)
= 0, ∀s = 1, . . . , S

Express it as a function of τ1, . . . , τS.
2. Let P be the polynomial defined in the previous question. We call

p0, . . . , pS ∈ C its coefficients:

P (X) =
S∑
s=0

psX
s.

The goal is to show that p def
=

( p0
...
pS

)
is the unique (up to scalar multi-

plication) element in the kernel of

M
def
=


µ̂0[−(S − 1)] µ̂0[−(S − 2)] . . . µ̂0[1]

µ̂0[−(S − 2)] µ̂0[−(S − 3)] . . . µ̂0[2]
...

...
µ̂0[0] µ̂0[1] . . . µ̂0[S]

 .

a) Show that p ∈ Ker(M).

b) We now prove uniqueness. Let q =

( q0
...
qS

)
be in Ker(M). We define

Q(X) =
S∑
s=0

qsX
s.

Show that, for any d = 0, . . . , S − 1,
S∑
s=1

e−2πidτsasQ
(
e2πiτs

)
= 0.

c) Deduce from the previous question that q = λp for some λ ∈ C.
[Hint: use the fact that the so-called Vandermonde matrix

1 1 . . . 1
e−2πiτ1 e−2πiτ2 . . . e−2πiτS

...
...

e−2πi(S−1)τ1 e−2πi(S−1)τ2 . . . e−2πi(S−1)τS


is invertible.]
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3. Using the previous question, propose an algorithm to recover µ0.
Compared to the total variation approach seen in class, this algorithm is much
simpler. In addition, it succeeds whatever the values of a1, . . . , aS, τ1, . . . , τS.
However, it is difficult to use as such in practice, since it is very sensitive
to noise, and therefore requires a high precision on the measures µ̂0[k]. In
addition, it cannot handle some natural generalizations of the problem, like
the case where some Fourier measurements are missing.

Exercise 7: super-resolution via semidefinite program-
ming
In this exercise, we discuss one method for solving the total variation mini-
mization problem

minimize ||µ||TV
for µ ∈M([0; 1[), (Min TV)

such that µ̂[k] = yk,∀k = −N, . . . , N.

In the lecture, we have introduced the dual of (Min TV):

maximize Re 〈z, y〉
for z ∈ C2N+1 (Dual TV)

such that

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣ ≤ 1,∀t ∈ R.

We have seen that both problems have the same optimal value, and (more or
less) that the minimizers of (Min TV) can be recovered from the maximizers
of (Dual TV). We can therefore focus on solving (Dual TV), which is a
convex problem with an infinite number of constraints.
We admit the following result.
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Theorem 1 : Fejér-Riesz

Let P (e2πit) =
∑2N

k=−2N pke
2πikt be a trigonometric polynomial

with degree at most 2N . The following two properties are equivalent.

1. P has real nonnegative values on the unit circle (that is,
P (e2πit) ∈ R+ for all t ∈ R).

2. There exists a finite number of trigonometric polynomials
Q1, . . . , Qn, each with degree at most N , such that

P
(
e2πit

)
=

n∑
k=1

∣∣Qk

(
e2πit

)∣∣2 .
1. Let z ∈ C2N+1 be any vector. Show that

∣∣∣∑N
k=−N zke

2πikt
∣∣∣ ≤ 1 for

all t ∈ R if and only if there exists a finite number of trigonometric
polynomials P1, . . . , Pn with degree at most N such that∣∣∣∣∣

N∑
k=−N

zke
2πikt

∣∣∣∣∣
2

+
n∑
l=1

∣∣Pl (e2πit
)∣∣2 = 1, ∀t ∈ R. (3)

2. Let P1, . . . , Pn be trigonometric polynomials with degree at most N . Let
p(1), . . . , p(n) ∈ C2N+1 be the vectors of their coefficients:

Pl
(
e2πit

)
=

N∑
k=−N

p
(l)
k e

2πikt.

Show that the polynomials satisfy Equality (3) if and only if the ma-
trix A = zz∗ +

∑n
l=1 p

(l)p(l)∗ ∈ C(2N+1)×(2N+1) satisfies, for all d =
−2N, . . . , 2N ,

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 if d 6= 0

= 1 if d = 0.
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3. Show that a matrix A ∈ C(2N+1)×(2N+1) can be written as A = zz∗ +∑n
l=1 p

(l)p(l)∗ for some vectors p(1), . . . , p(n) ∈ C2N+1 if and only if A −
zz∗ � 0.

4. Show that a matrix A ∈ C(2N+1)×(2N+1) satisfies the inequality A−zz∗ �
0 if and only if 

z−N
...
zN

z−N . . . zN 1

A � 0.

5. Deduce from the previous questions that Problem (Dual TV) is equiva-
lent to

maximize Re 〈z, y〉
over all z ∈ C2N+1, A ∈ C(2N+1)×(2N+1)

such that
2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},

2N+1∑
k=1

Ak,k = 1,

and


1


z∗

zA � 0,

which is a classical (finite-dimensional) semidefinite optimization prob-
lem.

Exercise 8: Fejér-Riesz theorem
In this exercise, we prove Fejér-Riesz’ theorem, stated in the previous exer-
cise. Let N ∈ N∗ be fixed.
1. Let P be a trigonometric polynomial with degree at most 2N . We

assume it can be written as the sum of the squared modulus of trigono-
metric polynomials Q1, . . . , Qn:

P
(
e2πit

)
=

n∑
k=1

∣∣Qk

(
e2πit

)∣∣2 .
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Show that, for all t ∈ R, P (e2πit) belongs to R+.
2. Conversely, let P (e2πit) =

∑2N
k=−2N pke

2πikt be a trigonometric polyno-
mial with degree at most 2N , such that P (e2πit) ∈ R+ for all t ∈ R.
We assume p2N 6= 0.1
Let P̃ (X) = X2N

∑2N
k=−2N pkX

k be the “standard” polynomial associated
to P . It has degree 4N .
a) Let z1, . . . , z4N be the roots of P̃ in C (counted with multiplicity).

Express P as a function of z1, . . . , z4N and p2N .
b) Show that, for any z ∈ C,

P̃ (z) = z4N P̃

(
1

z̄

)
.

[Hint: use the fact that P (e2πit) is a real number, for any t ∈ R.]
c) Deduce from the previous question that, for any z ∈ C, if z is a root

of P̃ , then 1
z̄
is also a root of P̃ , with the same multiplicity.

d) Show that, for any z ∈ C such that |z| = 1, if z is a root of P̃ , its
multiplicity is even.
[Hint: show that, if the multiplicity is odd, the sign of P changes in
the neighborhood of e2πit def

= z.]
e) Show that there exists a trigonometric polynomial Q with degree N

such that
P (e2πit) =

∣∣Q (e2πit
)∣∣2 .

[Remark: this establishes the second property of Fejér-Riesz’ theorem
with n = 1.]

Exercise 9: alternating projections for phase retrieval
We consider a generic phase retrieval problem:

find x ∈ Cd

such that |Ls(x)| = ys,∀s ≤ m, (PR)

where L1, . . . , Lm : Cd → C are known linear maps, and y1, . . . , ym ∈ R+ are
given.

1This is without loss of generality. If p2N = 0, the same reasoning is true; it essentially
suffices to replace 2N with the index of the smallest integer D for which pD 6= 0.
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We define A : x ∈ Cd → (Ls(x))s=1,...,m ∈ Cm and

E = {h ∈ Cm such that |hs| = ys,∀s = 1, . . . ,m} .

1. a) Show that, if x is a solution of (PR), then A(x) is a solution of the
following problem:

find z ∈ Range (A) ∩ E . (Set intersection)

b) Conversely, show that, if z is a solution of (Set intersection), then
z = A(x) for some solution x of (PR).

This shows that, to solve Problem (PR), it suffices to solve (Set intersection).
2. Give the explicit expression of a function projE : Cm → Cm such that,

∀z ∈ Cm, projE(z) ∈ argminh∈E ||h− z||2.

We call projE a projection onto E .
We define projRange(A) the standard orthogonal projection onto Range(A).
The alternating projections algorithm, introduced in [Gerchberg and Sax-
ton, 1972], addresses Problem (Set intersection) as follows: it starts at an
arbitrary point z0 ∈ Cm, and iteratively defines, for all t ∈ N,

zt+1 = projRange(A) ◦ projE(zt).

3. Show that the sequence of iterates (zt)t∈N is bounded and satisfies

||projE(zt+1)− zt+1||2 ≤ ||projE(zt)− zt||2, ∀t ∈ N∗.

Exercise 10: rank 1 approximation (local convergence)
This exercise and the next one are inspired by [Chi, Lu, and Chen, 2019].
Let M ∈ Rd×d be a positive semidefinite matrix. We consider the problem
of finding the rank 1 matrix which best approximates M in Frobenius norm.
As any semidefinite matrix with rank at most 1 can be written as xxT for
some vector x ∈ Rd, this amounts to finding a minimizer of

f : x ∈ Rd → 1

4
||xxT −M ||2F .

(The constant 1
4
is only here to make formulas slightly nicer.)
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1. Let λ1, λ2, . . . , λd ≥ 0 be the eigenvalues of M , sorted in nonincreasing
order. We assume that 1 = λ1 > λ2.
Let (u1, . . . , ud) be an orthonormal basis of eigenvectors.
a) Show that, for any x, f(x) = 1

4
(||x||42 − 2 〈x,Mx〉+ ||M ||2F ).

b) Show that f has at least one minimizer.
c) Show that, for all x ∈ Rd,

∇f(x) = ||x||22x−Mx.

d) Show that the minimizers of f are u1 and −u1.
We imagine that we run gradient descent on f , with stepsize τ ≤ 1

2
, starting

at a point x0 ∈ Rd such that

||x0 − u1||2 <
1− λ2

7
.

It yields a sequence of iterates (xt)t∈N. We are going to show that it converges
to u1 exponentially fast, more precisely that, for all t ∈ N,

||xt − u1||2 ≤
(

1− (1− λ2)τ

2

)t
||x0 − u1||2. (4)

For all t, we define αt ∈ R, vt ∈ Rd such that

xt = αtu1 + vt and vt ∈ Vect{u2, . . . , ud}.

2. For any t, express ||xt − u1||2 as a function of |αt − 1| and ||vt||2.
3. a) Show that, for any t,

αt+1 = (1 + τ)αt − τα3
t − ταt||vt||22;

vt+1 = (1− τ(α2
t + ||vt||22))vt + τMvt.

b) Show that the first of these equalities is equivalent to

αt+1 − 1 = (1− ταt(αt + 1)) (αt − 1)− ταt||vt||22.

From now on, we assume that Inequality (4) is true up to some step t.
4. Show that 1−

(
1−λ2

7

)
≤ αt ≤ 1 +

(
1−λ2

7

)
and ||vt||2 ≤ 1−λ2

7
.
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5. Using Question 3.b), show that

|αt+1 − 1| ≤
(

1− 5

7
(1− λ2)τ

)
|αt − 1|+ 8

49
(1− λ2)τ ||vt||2.

6. a) Using Question 3.a), show that

||vt+1||2 ≤ (1− τ(α2
t + ||vt||22 − λ2))||vt||2.

[Hint: decompose vt onto the orthogonal basis (u1, . . . , ud).]
b) Show that 0 ≤ 1− τ(α2

t + ||vt||22 − λ2) ≤ 1− 5
7
(1− λ2)τ .

7. a) Combine Questions 5 and 6 and show that√
|αt+1 − 1|2 + ||vt+1||22 ≤

(
1− (1− λ2)τ

2

)√
|αt − 1|2 + ||vt||22.

b) Conclude.

Exercise 11: rank 1 approximation (global convergence)
We keep the notation of the previous exercice. In particular, we still consider
the function

f : x ∈ Rd → 1

4
||xxT −M ||2F ,

and still assume that 1 = λ1 > λ2.
1. Show that, for any x ∈ Rd,

Hessf(x) = ||x||22Id + 2xxT −M.

2. a) Compute the first-order critical points of f .
b) Compute the second-order critical points of f .

3. Show that, for almost any x0, if we choose a small enough stepsize, the
sequence of gradient descent iterates converges to a minimizer of f .
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2 Answers

Answer of Exercise 1
1. Problem (Lin-inverse) has at least one solution if and only if y ∈ Range(A).

This solution, which we denote x∗, is unique if the set

{x ∈ Rd such that Ax = Ax∗} = {x∗ + h, h ∈ Ker(A)}

is the singleton {x∗}. This happens if and only if A is injective (that is
Ker(A) = {0}).

2. a) The application v ∈ Rd → ||Av||2 ∈ R is continuous. The unit sphere
of Rd is compact. Therefore, the maximum

max
v∈Rd,||v||2=1

||Av||2

exists (i.e. there is a vector v1 at which the maximum is attained).
Similarly, for any k ∈ {2, . . . , d}, the set

{v ∈ Vect{v1, . . . , vk−1}⊥, |||v||2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v ∈ Rd → ||Av||2 ∈ R is still continuous. Therefore,
the maximum in the definition of vk exists.
From the definition, the family (v1, . . . , vd) contains d vectors of Rd,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k′ ∈ {1, . . . , d} be such that k 6= k′. We can assume that k < k′.
Let us show that

〈Avk, Avk′〉 = 0.

From the definition of vk′ ,

vk′ ∈ Vect{v1, . . . , vk′−1}⊥ ⊂ Vect{vk}⊥ ⇒ 〈vk′ , vk〉 = 0.

As a consequence, for any θ ∈ R,

|| cos(θ)vk + sin(θ)vk′||2 =
√

cos2(θ)||vk||22 + sin2(θ)||vk′ ||22 = 1. (5)

In addition, vk is in Vect{v1, . . . , vk−1}⊥ and vk′ is in Vect{v1, . . . , vk′−1}⊥ ⊂
Vect{v1, . . . , vk−1}⊥, so

cos(θ)vk + sin(θ)vk′ ∈ Vect{v1, . . . , vk−1}⊥. (6)

18



Equations (5) and (6), together with the definition of vk, imply:

||A (cos(θ)vk + sin(θ)vk′) ||2 ≤ ||Avk||2, ∀θ ∈ R.

We raise this inequality to the square: for all θ ∈ R,

||A (cos(θ)vk + sin(θ)vk′) ||22
= cos2(θ)||Avk||22 + 2 sin(θ) cos(θ) 〈Avk, Avk′〉+ sin2(θ)||Avk′||22
≤ ||Avk||22.

This means that the map θ → cos2(θ)||Avk||22+2 sin(θ) cos(θ) 〈Avk, Avk′〉+
sin2(θ)||Avk′||22 reaches its maximum at θ = 0. In particular, its deriva-
tive at 0 must be 0:

0 = −2 cos(0) sin(0)||Avk||22 + 2(cos2(0)− sin2(0)) 〈Avk, Avk′〉
+ 2 sin(0) cos(0)||Avk′ ||22

= 2 〈Avk, Avk′〉 .

Therefore, 〈Avk, Avk′〉 = 0.
c) The λk are nonnegative because a norm is always nonnegative. To

show that (λ1, . . . , λd) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k′ ∈ {1, . . . , d}
with k < k′, we have seen that vk′ belongs to Vect{v1, . . . , vk−1}⊥, and
||vk′||2 = 1. Hence, from the definition of vk,

λk = ||Avk||2 ≥ ||Avk′||2 = λk′ .

d) Let D be the smallest index such that λD = 0 (it is possible that
λk 6= 0 for all k ≤ d, in which case we set D = d+ 1).
For any k = 1, . . . , D − 1, we set

uk =
Avk
||Avk||

=
Avk
λk

.

This is an orthonormal family of Rm: for any k < D, ||uk|| = 1, and
for any k, k′ < D with k 6= k′, it holds

〈uk, uk′〉 =
〈Avk, Avk′〉
λkλk′

= 0

from Question 2.b). We complete it to an orthonormal basis (u1, . . . , um)
of Rm, which defines uD, . . . , um.
For any k < D, we have Avk = λkuk by construction. And for any
k = D, ..., d, since λk = ||Avk|| = 0, it also holds Avk = 0 = λkuk.
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e) The matrices U, V are orthogonal because their columns (resp. rows,
for V ) form an orthonormal basis of Rm (resp. Rd).
The equation

∀k ≤ d, Avk = λkuk

reads, in matricial form,

A
(
v1 . . . vd

)
=
(
u1 . . . um

)


λ1 0 ... 0

0 λ2
...

... ... ...
λd

... 0
...

...
0 ... ... 0

 ,

which is equivalent to
AV T = UD,

which is in turn equivalent, since V TV = V V T = Id, to

A = UDV.

f) Let Ũ , Ṽ , λ̃1, . . . , λ̃d be another SVD of A. Let us denote

D̃ =



λ̃1 0 ... 0

0 λ̃2
...

... ... ...
λ̃d

... 0
...

...
0 ... ... 0

 .

From the definition of the SVD,

A = UDV = ŨD̃Ṽ

⇒ ATA = V TDTDV = Ṽ T D̃T D̃Ṽ .

The matrixDTD is diagonal, with coefficients on the diagonal λ2
1, . . . , λ

2
d.

The matrices V and V T are inverse one from each other, since V is an
orthogonal matrix. As a consequence, V T (DTD)V is the eigenvector
decomposition of ATA and λ2

1, . . . , λ
2
d are the eigenvalues of ATA.

For the same reason, λ̃2
1, . . . , λ̃

2
d are the eigenvalues of ATA. Since the

eigenvalues of a matrix are uniquely defined and λ2
1, . . . , λ

2
d as well as
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λ̃2
1, . . . , λ̃

2
d are ordered (they are non-increasing sequences), we must

have
λ2

1 = λ̃2
1, . . . , λ2

d = λ̃2
d,

which implies, since the λk and λ̃k are nonnegative,

λ1 = λ̃1, . . . , λd = λ̃d,

3. a) We assume that A, y and A, y + ε satisfy the conditions of Question
1, that is A is injective, and y, y + ε belong to Range(A).
We consider the SVD of A, as in Question 2. We observe that λ1 6=
0, . . . , λd 6= 0, otherwise D would not be injective, and A would not
be either.
We have

UDV x∗ = Ax∗ = y and UDV xε = Axε = y + ε,

⇒ D(V x∗) = UTy and D(V xε) = UT (y + ε) = UTy + UT ε.
(7)

We respectively denote (xV,k)k≤d, (x
(ε)
V,k)k≤d, (yU,k)k≤m and (εU,k)k≤m

the coordinates of V x∗, V xε, UTy and UT ε. From Equation (7), for
all k ≤ d,

λkxV,k = yU,k and λkx
(ε)
V,k = yU,k + εU,k,

⇒ xV,k =
yU,k
λk

and x
(ε)
V,k =

yU,k
λk

+
εU,k
λk

and, for all k = d+ 1, . . . ,m,

yU,k = εU,k = 0.

From these equalities we deduce

||V x∗||2 =

(
d∑

k=1

x2
V,k

)1/2

=

(
d∑

k=1

y2
U,k

λ2
k

)1/2

≥

(
d∑

k=1

y2
U,k

λ2
1

)1/2

=
1

λ1

(
m∑
k=1

y2
U,k

)1/2

=
||UTy||2
λ1
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and

||V (x∗ − xε)||2 =

(
d∑

k=1

(
xV,k − x(ε)

V,k

)2
)1/2

=

(
d∑

k=1

ε2U,k
λ2
k

)1/2

≤

(
d∑

k=1

ε2U,k
λ2
d

)1/2

=
1

λd

(
m∑
k=1

ε2U,k

)1/2

=
||UT ε||2
λd

.

Therefore,
||V (x∗ − xε)||2
||V x∗||2

≤ λ1

λd

||UT ε||2
||UTy||2

and, since V, U are orthogonal matrices, hence preserve the norm of
vectors,

||x∗ − xε||2
||x∗||2

≤ λ1

λd

||ε||2
||y||2

.

b) Let us consider the following y and ε:

y = Ue1, ε = Ued,

where e1, ed respectively denote the first and d-th vector in the canon-
ical basis of Rm. Then

x∗ =
1

λ1

V T ẽ1, xε =
1

λ1

V T ẽ1 +
1

λd
V T ẽd,

where ẽ1, ẽd respectively denote the first and d-th vector in the canon-
ical basis of Rd. Therefore,

||x∗ − xε||2
||x∗||2

=
λ1

λd

||V T ẽd||2
||V T ẽ1||2

=
λ1

λd
=
λ1

λd

||ε||2
||y||2

.

Answer of Exercise 4
1. The vector x∗ is feasible for the problem (Basis Pursuit): Ax∗ = y.

Therefore, its `1-norm is at least as large as the optimal value of the
problem:

||x∗||1 ≥ ||xBP ||1 = ||x∗ + h||1.
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As a consequence,∑
i∈T∗

|x∗i| = ||x∗||1

≥ ||x∗ + h||1
=
∑
i

|(x∗ + h)i|

=
∑
i∈T∗

|x∗i + hi|+
∑
i/∈T∗

|hi|

≥
∑
i∈T∗

(|x∗i| − |hi|) +
∑
i/∈T∗

|hi|

=
∑
i∈T∗

|x∗i| − ||hT∗||1 + ||hT c
∗ ||1.

This implies ||hT∗||1 ≥ ||hT c
∗ ||1.

2. a) For any s ∈ Tl, s
′ ∈ Tl−1, because the coordinates of h are non-

increasing outside T∗,
|hs′ | ≥ |hs|.

This implies that, for any s ∈ Tl,

||hTl−1
||1 =

∑
s′∈Tl−1

|hs′ | ≥ (Card(Tl−1))|hs| = 3k|hs|.

From this, we deduce that

||hTl ||22 =
∑
s∈Tl

|hs|2

≤
∑
s∈Tl

||hTl−1
||21

(3k)2

=
||hTl−1

||21
(3k)2

(Card(Tl))

≤
||hTl−1

||21
3k

.

b)
L∑
l=2

||hTl ||2 ≤
1√
3k

L−1∑
l=1

||hTl ||1 from the previous question
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≤ 1√
3k

L∑
l=1

||hTl ||1

=
||hT c

∗ ||1√
3k

≤ ||hT∗ ||1√
3k

from the first question.

c) By Cauchy-Schwarz,

||hT∗||1 ≤
√

Card(T∗)||hT∗ ||2 ≤
√
k||hT∗||2.

Combined with the previous question, it yields

L∑
l=2

||hTl ||2 ≤
||hT∗||2√

3
.

3. a) As xBP is a feasible point of Problem (Basis Pursuit), we have AxBP =
y = Ax∗ = A(xBP − h) = AxBP − Ah. Consequently, Ah = 0.

b) As h = hT∗∪T1 + hT2 + · · ·+ hTL , we have

||Ah||2 = ||AhT∗∪T1 +AhT2 +· · ·+AhTL||2 ≥ ||AhT∗∪T1||2−
L∑
l=2

||AhTl ||2.

The vector hT∗∪T1 has at most Card(T∗) + Card(T1) ≤ k + 3k = 4k
non-zero coordinates. From the definition of the restricted isometry
constant,

||AhT∗∪T1||2 ≥ (1− δ4k)||hT∗∪T1||2.

Similarly, for any l ∈ {2, . . . , L},

||AhTl ||2 ≤ (1 + δ4k)||hTl ||2.

This gives the desired inequality:

||Ah||2 ≥ (1− δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑
l=2

||hTl ||2.
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c) Together, the previous two subquestions imply

(1− δ4k)||hT∗∪T1||2 ≤ (1 + δ4k)
L∑
l=2

||hTl ||2

Using also Question 2.c,

(1− δ4k)||hT∗||2 ≤ (1− δ4k)||hT∗∪T1||2

≤ (1 + δ4k)
||hT∗||2√

3
.

Since δ4k < 1/4, this implies

3

4
||hT∗ ||2 ≤

5

4

||hT∗||2√
3

⇒ 3
√

3

5
||hT∗ ||2 ≤ ||hT∗ ||2.

Since 3
√

3
5

> 1, this implies ||hT∗||2 = 0: the coordinates of h with
indices in T∗ are zero. From the first question, the coordinates of h
with indices in T c∗ are therefore also zero, so h = 0 and

xBP = x∗.

Answer of Exercise 7
1. ∣∣∣∣∣

N∑
k=−N

zke
2πikt

∣∣∣∣∣ ≤ 1, ∀t ∈ R,

⇐⇒

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣
2

≤ 1, ∀t ∈ R,

⇐⇒ 1−

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣
2

∈ R+ ∀t ∈ R.

From Fejér-Riesz’ theorem, this property holds if and only if there exists
trigonometric polynomiales P1, . . . , Pn with degree at most N such that,
for all t ∈ R,

1−

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣
2

=
n∑
l=1

∣∣Pl (e2πit
)∣∣2 ,
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which is equivalent to
∣∣∣∑N

k=−N zke
2πikt

∣∣∣2 +
∑n

l=1 |Pl (e2πit)|2 = 1.

2. Let a−2N , . . . , a2N denote the coefficients of the polynomial in Equality
(3):

2N∑
d=−2N

ade
2πidt =

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣
2

+
n∑
l=1

∣∣Pl (e2πit
)∣∣2

=

(
N∑

k=−N

zke
2πikt

)(
N∑

k=−N

zke
−2πikt

)

+
n∑
l=1

(
N∑

k=−N

p
(l)
k e

2πikt

)(
N∑

k=−N

p
(l)
k e
−2πikt

)

=
N∑

k=−N

N∑
k′=−N

(
zkzk′ +

n∑
l=1

p
(l)
k p

(l)
k′

)
e2πi(k−k′)t

=
2N∑

d=−2N

∑
−N≤k,k′≤N
k−k′=d

(
zkzk′ +

n∑
l=1

p
(l)
k p

(l)
k′

)
e2πidt

=
2N∑

d=−2N

∑
−N≤k≤N

s.t. −N≤k−d≤N

(
zkzk−d +

n∑
l=1

p
(l)
k p

(l)
k−d

)
e2πidt

=
2N∑

d=−2N

N−max(0,−d)∑
k=−N+max(0,d)

(
zkzk−d +

n∑
l=1

p
(l)
k p

(l)
k−d

)
e2πidt

=
2N∑

d=−2N

 N−max(0,−d)∑
k=−N+max(0,d)

Ak+N+1,k+N+1−d

 e2πidt

=
2N∑

d=−2N

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d

 e2πidt.

As a consequence, ad =
∑2N+1−max(0,−d)

k=1+max(0,d) Ak,k−d for all d = −N, ..., N ,
and Equality (3) holds if and only if, for any d = −N, . . . , N ,

ad =

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 1 if d = 0,

26



= 0 otherwise.

3. If A = zz∗ +
∑n

l=1 p
(l)p(l)∗ for some vectors p(1), . . . , p(n) ∈ C2N+1, then

A− zz∗ =
∑n

l=1 p
(l)p(l)∗, which is semidefinite positive:

∀x ∈ C2N+1, x∗(A− zz∗)x =
n∑
l=1

|
〈
p(l), x

〉
|2 ≥ 0.

Conversely, let us assume that A− zz∗ � 0. Let B ∈ C(2N+1)×(2N+1) be
a square root of A− zz∗ (that is, a matrix such that BB∗ = A− zz∗).2
Let p(1), . . . , p(2N+1) be the column vectors of B. Then

A− zz∗ =
2N+1∑
l=1

p(l)p(l)∗,

which implies A = zz∗ +
∑n

l=1 p
(l)p(l)∗.

4. Let us denote

G =


1


z∗

zA ∈ C(2N+2)×(2N+2)

and show, as required, that A− zz∗ � 0 if and only if G � 0.

(G � 0) ⇐⇒ (∀h ∈ C2N+2, h∗Gh ≥ 0)

⇐⇒
(
∀h̃ ∈ C2N+1, u ∈ C,

(
h̃
u

)∗
G
(
h̃
u

)
) ≥ 0

)
⇐⇒

(
∀h̃ ∈ C2N+1, u ∈ C, h̃∗Ah̃+ 2Re

(
u
〈
h̃, z
〉)

+ |u|2 ≥ 0
)

⇐⇒
(
∀h̃ ∈ C2N+1, t ∈ R, φ ∈ R,

h̃∗Ah̃+ 2Re
(
teiφ

〈
h̃, z
〉)

+ |teiφ|2 ≥ 0
)

⇐⇒
(
∀h̃ ∈ C2N+1, t ∈ R, φ ∈ R,

h̃∗Ah̃+ 2tRe
(
eiφ
〈
h̃, z
〉)

+ t2 ≥ 0
)

2All semidefinite positive matrices have square roots; it is most easily proved when
writing the semidefinite matrix in an eigenvector basis.
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(a)⇐⇒
(
∀h̃ ∈ C2N+1, φ ∈ R, h̃∗Ah̃−

(
Re
(
eiφ
〈
h̃, z
〉))2

≥ 0

)
(b)⇐⇒

(
∀h̃ ∈ C2N+1, h̃∗Ah̃− |

〈
h̃, z
〉
|2 ≥ 0

)
⇐⇒

(
∀h̃ ∈ C2N+1, h̃∗(A− zz∗)h̃ ≥ 0

)
⇐⇒ A− zz∗ � 0.

Equivalence (a) is true because, for any h̃ and φ, it holds that the poly-
nomial t → h̃∗Ah̃ + 2tRe

(
eiφ
〈
h̃, z
〉)

+ t2 is nonnegative over R if and
only if its discriminant is nonpositive:

4
(

Re
(
eiφ
〈
h̃, z
〉))2

− 4h̃∗Ah̃ ≤ 0,

which is exactly h̃∗Ah̃−
(

Re
(
eiφ
〈
h̃, z
〉))2

≥ 0.

Equivalence (b) is true because, for any h̃, we have h̃∗Ah̃−
(

Re
(
eiφ
〈
h̃, z
〉))2

≥
0 for all φ ∈ R if and only if the minimum over φ of this quantity is non-
negative, and the minimum is precisely

h̃∗Ah̃− |
〈
h̃, z
〉
|2.

5. Since both problems have the same objective function, it suffices to show
that z is feasible for (Dual TV) if and only if z is feasible for the other
problem, that is there exists A ∈ C(2N+1)×(2N+1) such that

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},

2N+1∑
k=1

Ak,k = 1,

and


1


z∗

zA � 0.

Let us first assume that z is feasible for (Dual TV):
∣∣∣∑N

k=−N zke
2πikt

∣∣∣ ≤ 1

for all t ∈ R. From Question 1, there exists trigonometric polynomials
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with degree at most N , P1, . . . , Pn, such that∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣
2

+
n∑
l=1

∣∣Pl (e2πit
)∣∣2 = 1.

We denote p(1), . . . , p(n) the vectors of their coefficients and set A =
zz∗ +

∑n
l=1 p

(l)p(l)∗. From Question 2, we have

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},

2N+1∑
k=1

Ak,k = 1.

From Question 3, A− zz∗ � 0, hence from Question 4,
1


z∗

zA � 0.

The existence of A is proved.
Conversely, let us assume the existence ofA, and show that

∣∣∣∑N
k=−N zke

2πikt
∣∣∣ ≤

1 for all t ∈ R. From Question 4, A−zz∗ � 0. Therefore, from Question
3, there exist p(1), . . . , p(n) such that

A = zz∗ +
n∑
l=1

p(l)p(l)∗.

Let us denote P1, . . . , Pn the corresponding trigonometric polynomials.
From Question 2, they satisfy Equality (3)∣∣∣∣∣

N∑
k=−N

zke
2πikt

∣∣∣∣∣
2

+
n∑
l=1

∣∣Pl (e2πit
)∣∣2 = 1, ∀t ∈ R.

From Question 1, this means that
∣∣∣∑N

k=−N zke
2πikt

∣∣∣ ≤ 1 for all t ∈ R.
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Answer of Exercise 10
1. a) For any x ∈ Rd,

f(x) =
1

4
||xxT −M ||2F

=
1

4
Tr
(
(xxT −M)(xxT −M)T

)
=

1

4
Tr
(
xxTxxT −MxxT − xxTM +MMT

)
=

1

4

(
Tr
(
xxTxxT

)
− 2Tr

(
MxxT

)
+ Tr

(
MMT

))
=

1

4

(
Tr
(
xTxxTx

)
− 2Tr

(
xT (Mx)

)
+ ||M ||2F

)
=

1

4

(
||x||42 − 2 〈x,Mx〉+ ||M ||2F

)
.

b) For any x ∈ Rd, ||Mx||2 ≤ λ1||x||2, hence | 〈x,Mx〉 | ≤ λ1||x||22, and

f(x) ≥ ||x||
4
2

4
− λ1||x||22

2

=
||x||22

2

(
||x||22

2
− λ1

)
→ +∞ when ||x||2 → +∞.

This shows that f is coercive. It is also continuous, hence has a
minimizer.

c) For all x, h ∈ Rd,

f(x+ h) =
1

4

(
||x+ h||42 − 2 〈x+ h,M(x+ h)〉+ ||M ||2F

)
=

1

4

( (
||x||22 + 2 〈x, h〉+ ||h||22

)2

− 2 (〈x,Mx〉+ 〈h,Mx〉+ 〈x,Mh〉+ 〈h,Mh〉) + ||M ||2F
)

=
1

4

(
||x||42 + 4||x||22 〈x, h〉 − 2 〈x,Mx〉 − 4 〈Mx, h〉+ ||M ||2F + o(||h||2)

)
= f(x) +

〈
||x||22x−Mx, h

〉
+ o(||h||2).

Therefore, ∇f(x) = ||x||22x−Mx.
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d) Let us first consider an arbitrary minimizer xmin. We must have

0 = ∇f(xmin) = ||xmin||22xmin −Mxmin.

As a consequence, Mxmin = ||xmin||22xmin, which means that xmin is
an eigenvector of M , with eigenvalue ||xmin||22. In particular, there
exists k = 1, . . . , d such that

• xmin is an eigenvector of M with eigenvalue λk;
• ||xmin||22 = λk, that is, ||xmin|| =

√
λk.

This shows that minimizers of f are necessarily of the form xmin =√
λkv, for v a unitary eigenvector associated to the eigenvalue λk.

Now, we compute the minimizers. For k ≤ d and v as above,

f
(√

λkv
)

=
1

4

(∣∣∣∣∣∣√λkv
∣∣∣∣∣∣4

2
− 2

〈√
λkv,M

√
λkv
〉

+ ||M ||2F
)

=
1

4

(
−λ2

k + ||M ||2F
)
.

This is minimal if and only if λk = λ1(= 1) and v is an eigenvector
associated to the eigenvalue λ1, that is to say v = ±u1. Therefore,
the minimizers are u1 and −u1.

2. As xt − u1 = (αt − 1)u1 + vt and u1 ⊥ vt, the norm is

||xt − u1||2 =
√
|αt − 1|2 + ||vt||22.

3. a)

xt+1 = xt − τ∇f(xt)

= αtu1 + vt − τ(||xt||22xt −Mxt)

= αtu1 + vt − τ(||xt||22(αtu1 + vt)− αtMu1 −Mvt)

= αt(1− τ ||xt||22)u1 + (1− τ ||xt||2)vt + ταtu1 + τMvt

= αt(1− τ(α2
t + ||vt||22) + τ)u1 + (1− τ(α2

t + ||vt||2))vt + τMvt.

As vt and Mvt belong to Vect{u2, . . . , ud},

αt+1 = αt(1− τ(α2
t + ||vt||22) + τ) = (1 + τ)αt − τα3

t − ταt||vt||22;

vt+1 = (1− τ(α2
t + ||vt||2))vt + τMvt.
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b)

(1 + τ)αt − τα3
t − ταt||vt||22 = 1 +

[
(1 + τ)αt − τα3

t − ταt||vt||22 − 1
]

= 1 +
[
αt − 1 + ταt(1− α2

t )− ταt||vt||22
]

= 1 +
[
(1− ταt(αt + 1))(αt − 1)− ταt||vt||22

]
.

4. We have

|1− αt| ≤ ||xt − u1||2
≤ ||x0 − u1||2 from Eq. (4)

<
1− λ2

7
.

Therefore, 1−
(

1−λ2
7

)
< 1− |1− αt| ≤ αt ≤ 1 + |1− αt| < 1 +

(
1−λ2

7

)
.

And ||vt|| ≤ ||xt − u1||2 < 1−λ2
7

.
5. From Question 3.b),

|αt+1 − 1| ≤ |1− ταt(αt + 1)| |αt − 1|+ τ |αt| ||vt||22.

We prove the result by showing

|1− ταt(αt + 1)| ≤ 1− 5

7
(1− λ2)τ ; (8a)

τ |αt| ||vt||22 ≤
8

49
(1− λ2)τ ||vt||2. (8b)

For Equation (8a), we must show

−
(

1− 5

7
(1− λ2)τ

)
≤ 1− ταt(αt + 1) ≤ 1− 5

7
(1− λ2)τ.

The left-hand side is equivalent to

τ

(
αt(αt + 1) +

5

7
(1− λ2)

)
≤ 2,

which is true because τ ≤ 1
2
, αt ≤ 1 +

(
1−λ2

7

)
≤ 8

7
and 1− λ2 ≤ 1, hence

τ

(
αt(αt + 1) +

5

7
(1− λ2)

)
≤ 1

2

(
8

7
× 15

7
+

5

7

)
=

155

98
≤ 2.
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The right-hand side is equivalent to

αt(αt + 1) ≥ 5

7
(1− λ2),

which is true because αt ≥ 1−
(

1−λ2
7

)
≥ 6

7
, so

αt(αt + 1) ≥ 6

7
× 13

7
≥ 5

7
≥ 5

7
(1− λ2).

Equation (8a) is proved.
For Equation (8b), we must show that

|αt| ||vt||2 ≤
8

49
(1− λ2).

We have already said that αt ≤ 8
7
, and we know from the previous

question that ||vt||2 < 1−λ2
7

.

|αt| ||vt||2 ≤
8

7
× 1− λ2

7
=

8

49
(1− λ2).

6. a) From Question 3.a), vt+1 = Htvt, where

Ht =
(
1− τ(α2

t + ||vt||22)
)

Id + τM.

On the subspace Vect{u2, . . . , ud}, which vt belongs to,M represents a
symmetric linear operator with eigenvalues λ2, . . . , λd. Therefore, Ht

is a symmetric linear operator, with eigenvalues (1− τ(α2
t + ||vt||22))+

τλk for k = 2, . . . , d.
All these eigenvalues are nonnegative,3 hence the operator norm of Ht

(still restricted to the subspace Vect{u2, . . . , ud}) is its largest eigen-
value: (

1− τ(α2
t + ||vt||22)

)
+ τλ2 = 1− τ(α2

t + ||vt||22 − λ2),

which implies

||vt+1||2 ≤
(
1− τ(α2

t + ||vt||22 − λ2)
)
||vt||2.

3Observe that τ(α2
t + ||vt||2) ≤ 1

2 ||xt||
2
2 ≤ 1

2 (1 + ||xt − u1||2)
2 ≤ 1

2

(
8
7

)2
< 1.
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b) We have seen in the previous question (in footnote) that 0 ≤ τλ2 ≤
1 − τ(α2

t + ||vt||22 − λ2). Let us show that 1 − τ(α2
t + ||vt||22 − λ2) ≤

1− 5
7
(1− λ2)τ , which is equivalent to

α2
t + ||vt||22 ≥

5

7
+

2

7
λ2

We recall that αt ≥ 1−
(

1−λ2
7

)
.

α2
t + ||vt||22 ≥

(
1−

(
1− λ2

7

))2

= 1− 2
1− λ2

7
+

(
1− λ2

7

)2

=
5

7
+

2

7
λ2 +

(
1− λ2

7

)2

≥ 5

7
+

2

7
λ2.

7. a) Combining the last questions, we get

|αt+1 − 1| ≤
(

1− 5

7
(1− λ2)τ

)
|αt − 1|+ 8

49
(1− λ2)τ ||vt||2;

||vt+1||2 ≤
(

1− 5

7
(1− λ2)τ

)
||vt||2.

Expressed in terms of `2-norms, this implies

||(|αt+1 − 1| , ||vt+1||2)||2

≤
∣∣∣∣∣∣∣∣(1− 5

7
(1− λ2)τ

)
(|αt − 1| , ||vt||2) +

(
8

49
(1− λ2)τ ||vt||2, 0

)∣∣∣∣∣∣∣∣
2

≤
(

1− 5

7
(1− λ2)τ

)
||(|αt − 1| , ||vt||2)||2 +

8

49
(1− λ2)τ ||vt||2

(triangular inequality)

≤
(

1− 5

7
(1− λ2)τ +

8

49
(1− λ2)τ

)
||(|αt − 1| , ||vt||2)||2

=

(
1− 27

49
(1− λ2)τ

)
||(|αt − 1| , ||vt||2)||2

≤
(

1−
(

1− λ2

2

)
τ

)
||(|αt − 1| , ||vt||2)||2 .
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b) We prove Inequality (4) by iteration over t. For t = 0, it is true. Now,
if it is true for some t, the previous question implies

||xt+1 − u1||2 =
√
|αt+1 − 1|2 + ||vt+1||22

≤
(

1− (1− λ2)τ

2

)√
|αt − 1|2 + ||vt||22

=

(
1− (1− λ2)τ

2

)
||xt − u1||2

≤
(

1− (1− λ2)τ

2

)t+1

||x0 − u1||2.
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