
Non-convex inverse problems: projects

Irène Waldspurger
waldspurger@ceremade.dauphine.fr

Due date: April 12, 2023

Common instructions for all projects
Each project is about a different non-convex inverse problem. The goal is to
propose and implement an algorithm, then to numerically study its behavior.

• You must propose a sensible (i.e. better than a random guess) algorithm.
However, the project is about studying the behavior of an algorithm, not
about designing a highly efficient one, so do not worry if the recovery rate
is low.

• If you can’t find a sensible algorithm by yourself, you can look for an
algorithm in the scientific literature. In this case, cite the article where
you have found the algorithm.

• For the question “can you tell why the algorithm failed?”, you are expected
to identify - if possible - a general failure cause, for instance:

– my convex relaxation was not tight;
– my iterative non-convex algorithm failed to converge;
– my gradient descent got stuck at a non-optimal critical point ...

• You should provide your code. You should notably include the instructions
you used to generate the pictures, so that I can reproduce them.

• The subjects may contain errors, or be miscalibrated in terms of difficulty.
If you are stuck, please send me an email describing your problem; I will
try to help.

• You can write in either French or English.

1

waldspurger@ceremade.dauphine.fr

Sparse phase retrieval
A general (real) sparse phase retrieval problem is a mixture of phase retrieval
and sparse recovery:

find x ∈ Rd,

such that | 〈vj, x〉 | = yj, ∀j = 1, . . . ,m, (Sparse PR)
and ||x||0 ≤ k.

Here, v1, . . . , vm ∈ Rd are known measurement vectors ; y1, . . . , ym are the
given measurements. The integer k is known. The regime of interest is

k < m < d.

In this project, we consider random (Sparse PR) problems. The measure-
ment vectors follow independent standard normal distributions:

v1, . . . , vm ∼ N (0, Id).

We assume that the (unknown) solution xsol is distributed according to the
following law: a subset S ⊂ {1, . . . , d} is chosen uniformly at random among
all subsets with cardinality k; for each s ∈ S, xsol,s is chosen according to a
normal law N (0, 1) and, for each s /∈ S, xsol,s = 0.
1. Propose and describe an algorithm for Problem (Sparse PR).
2. Implement your algorithm.
3. a) Test your algorithm on the random instances described above, for

several values of k,m, d. Choose two runs, one where the algorithm
succeeds in recovering xsol, and the other one where it fails. Each
time, indicate the values of k,m, d, plot xsol and the recovered vector
x. Provide the distance between (| 〈vj, x〉 |)j=1,...,m and y. You may
include other plots if you find it interesting.

b) For the second run, can you tell why the algorithm failed?
4. a) Choose an integer d ≥ 100. Plot, as a function of k, the minimal

number m of measurements necessary so that your algorithm succeeds
with probability at least (roughly) 50%.
[We say that the algorithm “succeeds” if it returns x such that min(||x−
xsol||2, ||x+ xsol||2) ≤ 0.01||xsol||2.]

b) Comment the plot.

2

Robust PCA
In a Robust PCA problem, one observes a low-rank matrix where a few coef-
ficients have been “corrupted”: they have been replaced with arbitrary values.
The goal is to recover the true low-rank matrix. This can be formulated as

find M ∈ Rd×d

such that rank(M) ≤ r (Robust PCA)
and ||M − Y ||0 ≤ k,

where Y ∈ Rd×d is the observed corrupted matrix, and k, r are known.
In this project, we consider random (Robust PCA) problems. The (un-
known) solution Msol is generated as

Msol =
3√
r
UV T ,

where U, V ∈ Rd×r are matrices whose coefficients are realizations of inde-
pendent uniform random variables over [−1; 1].1 A subset S ⊂ {1, . . . , d}2 is
then chosen at random among all subsets with cardinality k, and we choose

Ys,s′ ∼ N (0, 1), ∀(s, s′) ∈ S,
= (Msol)s,s′ , ∀(s, s′) ∈ {1, . . . , d}2 \ S.

1. Propose and describe an algorithm for Problem (Robust PCA).
2. Implement your algorithm.
3. a) Test your algorithm on the random instances described above, for

several values of k, r, d. Choose two runs, one where the algorithm
succeeds in recovering Msol, and the other one where it fails. Each
time, indicate the values of k, r, d, display Msol, the recovered matrix
M , Msol−Y andMsol−M as images. Plot the singular values ofMsol

and M . You may include other plots if you find it interesting.
b) For the second run, can you tell why the algorithm failed?

4. a) Choose an integer d ≥ 50. Plot, as a function of r, the maximal
number k of corrupted entries below which your algorithm succeeds
with probability at least (roughly) 50%.
[We say that the algorithm “succeeds” if it returns M such that ||M −
Msol||F ≤ 0.01||Msol||F .]

1The normalization 3√
r
ensures that the coefficients of Msol have zero-mean and unit

variance.

3

b) Comment the plot.

Short-and-sparse deconvolution
Given two vectors a ∈ Rd, x ∈ Rn, with d ≤ n, we define their convolution
a ? x ∈ Rn by

(a ? x)k =
d−1∑
s=0

asxk−s, ∀k = 0, . . . , n− 1.

(Here, the coordinates of vectors are indexed by integers between 0 and n−1
(or d− 1), and the indices of x are considered modulo n: x−1 = xn−1.)
A short-and-sparse deconvolution problem consists in recovering a and x from
a ? x, under the assumption that a is “short” (d� n) and x is sparse:

find a ∈ Rd, x ∈ Rn,

such that a ? x = y, (SaS)
and ||x||0 ≤ k.

Here, y is given and k is known. The regime of interest is

k, d� n.

1. Show that, for any a ∈ Rd, x ∈ Rn, λ ∈ R∗,

a ? x = (λa) ?
(x
λ

)
.

Because of this scaling ambiguity, we normalize all pairs (a, x) in such a way
that

||a||2 = 1,

that is, we replace each pair (a, x) with
(

1
||a||2a, ||a||2x

)
. This leaves only a

sign ambiguity on the solution.
In this project, we consider random problems of the form (SaS). We assume
that the unknown solution (asol, xsol) is distributed according to the following
law: asol is a realization of a standard normal distribution N (0, Id). For xsol,
a subset S ⊂ {1, . . . , n} is chosen uniformly at random among all subsets
with cardinality k. For each s ∈ S, xsol,s is chosen according to a normal law
N (0, 1) and, for each s /∈ S, xsol,s = 0.

4

2. Propose and describe an algorithm for Problem (SaS).
3. Implement your algorithm.
4. a) Test your algorithm on the random instances described above, for

several values of k, d, n. Choose two runs, one where the algorithm
succeeds in recovering (asol, xsol) (up to sign), and the other one where
it fails. Each time, indicate the values of k, d, n, plot asol, xsol, asol?xsol
and a, x, a ? x. You may include other plots if you find it interesting.

b) For the second run, can you tell why the algorithm failed?
5. a) Choose an integer n ≥ 200. Plot, as a function of d, the maximal

sparsity k below which your algorithm succeeds with probability at
least (roughly) 50%.
[We say that the algorithm “succeeds” if it returns (a, x) such that
min(||(a, x)−(asol, xsol)||2, ||(a, x)+(asol, xsol)||2) ≤ 0.01||(asol, xsol)||2.]

b) Comment the plot.

Gaussian mixture clustering
A clustering problem consists in grouping data points into classes based on
their proximity. Here, we consider problems with only two classes, and as-
sume that the distribution of data points in each class follows a Gaussian
distribution, with identity covariance, and mean depending on the class:

recover ε ∈ {0, 1}m

knowing that xk ∼ N (vεk ,∆Id), for all k = 1, . . . ,m, (Clustering)

where

• v0, v1 ∈ Rd are unknown unit-normed vectors (the means of the two
classes, called centroids);

• x1, . . . , xm ∈ Rd are the given data points;

• ∆ > 0 is a known parameter (which quantifies the closeness between
the data points and the centroid of their class).

We assume that each coordinate of the (unknown) solution εsol is 0 or 1
with probability 1

2
, independently from the other coordinates, and that the

unknown v0, v1 are uniformly distributed over the unit sphere of Rd.

5

We consider the regime

m = d and
1

d
< ∆ ≤ 1.

Observe that, even if we perfectly recover the clusters, we cannot say which
one has label 0 and which has label 1: we cannot distinguish εsol and 1 −
εsol. Even up to this simple ambiguity the sole knowledge of x1, . . . , xm
is not enough to perfectly recover all labels; at best, we can recover only
a “significant” fraction of them. Therefore, we evaluate the quality of a
candidate solution ε to Problem (Clustering) through the following quantity:

sym overlap(ε, εsol) = max(overlap(ε, εsol), overlap(1− ε, εsol)),

where overlap(ε, εsol) =
〈ε, εsol〉

max (||ε||1, ||εsol||1)
.

1. Show that 0 ≤ sym overlap(ε, εsol) ≤ 1, and sym overlap(ε, εsol) = 1 if
and only if ε = εsol or ε = 1− εsol.

Note that, except for very small values of m, if the candidate solution ε is
simply chosen at random, we expect

sym overlap(ε, εsol) ≈
1

2
.

2. Propose and describe an algorithm for Problem (Clustering).
3. Implement your algorithm.
4. a) Test your algorithm on the random instances described above, for

several values of m,∆. Choose two runs, one where the algorithm
succeeds in recovering a reasonable approximation of εsol, and the
other one where it fails. Each time, indicate the values of m,∆, plot
the points x1, . . . , xm (projected onto the plane Vect{v0, v1}, to make
them two-dimensional), with different colors and marker shapes to
indicate the true and recovered classes. You may include other plots
if you find it interesting.

b) For the second run, can you tell why the algorithm failed?
5. a) Choose an integer d ≥ 100. Plot, as a function of ∆, the average

sym overlap(ε, εsol) obtained with your algorithm.
b) Comment the plot.

6

