Non-convex inverse problems: programming exercises

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

January and February 2023

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear norm minimization.

1. We first consider the problem of matrix completion, for matrices of size $d \times d$ (for some $d \in \mathbb{N}^*$) and rank 1 :

recover $X_0 \in \mathbb{R}^{d \times d}$ from $(X_0)_{ij}, \forall (i, j) \in \Omega$, (Matrix Completion) knowing that rank $(X_0) = 1$.

We will perform tests for random matrices X_0 , generated as

$$X_0 = (u_i v_j)_{1 \le i,j \le d},$$

where $u_1, \ldots, u_d, v_1, \ldots, v_d$ are independent random variables, with uniform distribution in [-1; 1].

- a) Write a function which, given d and m, generates a random $X_0 \in \mathbb{R}^{d \times d}$ as above, and a random subset Ω of $\{1, \ldots, d\}^2$ containing m elements chosen uniformly at random.
- b) Write a function which, given d, $((X_0)_{ij})_{(i,j)\in\Omega}$ and Ω , returns the solution X_{cvx} of the following convex problem :

minimize
$$||X||_*$$

for $X \in \mathbb{R}^{d \times d}$, (Convex MC)
such that $X_{ij} = (X_0)_{ij}, \forall (i, j) \in \Omega$.

[See below for indications on how to solve such problems in Julia and Python.]

- c) Test the previous function for a random $X_0 \in \mathbb{R}^{10 \times 10}$ and Ω of size 50. Check whether X_{cvx} is equal to X_0 or not.¹ [Hint : run the test several times. If your implementation is correct, X_{cvx} and X_0 should be equal in roughly half of the trials.]
- d) For d = 10 and each m = 20, 30, ..., 100, try to solve 10 random instances of (Matrix Completion) using (Convex MC). For each m, compute the empirical probability that $X_{cvx} = X_0$. What is the smallest m for which the probability is above 50%? Which percentage of entries of X_0 does it correspond to?
- e) Same question for d = 20 and m = 80, 100, ..., 200, then for d = 40 and m = 270, 310, ..., 390.
- 2. In this question, we consider phase retrieval problems :

reconstruct
$$x_0 \in \mathbb{C}^d$$
 (Phase Retrieval)
from $|\langle x_0, v_j \rangle|, \forall j = 1, \dots, m,$

where (v_1, \ldots, v_m) is a (known) family of *measurement vectors*. We will perform tests for random problems, where $x_0, v_1, \ldots, v_m \in \mathbb{C}^d$ are generated according to independent standard normal complex distributions².

a) Write a function which, given $(|\langle x_0, v_j \rangle |)_{j \leq m}$ and $(v_j)_{j \leq m}$, computes the solution X_{cvx} of the convex relaxation

minimize
$$\operatorname{Tr}(X)$$

for $X \in \mathbb{C}^{d \times d}$ (PhaseLift)
such that $v_j^* X v_j = |\langle x_0, v_j \rangle|^2, \forall j = 1, \dots, m,$
 $X \succeq 0.$

b) As seen during the lecture, if the relaxation is tight, then

$$X_{cvx} = x_0 x_0^*.$$

Assuming this equality holds, write a function which, given X_{cvx} , computes x_0 .

c) Show that, for any $z_1, z_2 \in \mathbb{C}^d$, the distance up to global phase between z_1 and z_2 satisfies

dist
$$(z_1, z_2) \stackrel{\text{def}}{=} \min_{\phi \in \mathbb{R}} ||e^{i\phi} z_1 - z_2||_2 = \sqrt{||z_1||^2 - 2|\langle z_1, z_2 \rangle| + ||z_2||^2}.$$

Write a function to compute this distance.

^{1.} You can consider that $X_{cvx} = X_0$ is $||X_{cvx} - X_0||_F \le 0.01 ||X_0||_F$. This is an arbitrary but reasonable rule.

^{2.} A random variable z follows a standard normal complex distribution if $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are independent normal variables, both with mean 0 and variance 1/2.

- d) Using the functions you just implemented, try to solve a random phase retrieval problem with d = 10 and m = 50. Is the solution x_{cvx} you obtain equal³ to x_0 ? [Hint : if your implementation is correct, x_{cvx} and x_0 should almost always be equal.]
- e) For d = 10 and each m = 25, 30, ..., 50, try to solve 10 random instances of (Phase Retrieval) using (PhaseLift). For each m, compute the empirical probability that x_{cvx} = x₀. What is the smallest m for which the probability is above 50%?
 [Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift) solver; otherwise, some instances will take a long time.]
- f) Same question for d = 20 and $m = 50, 60, \dots, 100$.

1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

minimize
$$||X||_*$$

over all $X \in \mathbb{R}^{d_1 \times d_2}$ (1)
such that $\operatorname{Tr}(XA_i^T) = y_i, \forall i \le m$,

where $A_1, \ldots, A_m \in \mathbb{R}^{d_1 \times d_2}$ and $y_1, \ldots, y_m \in \mathbb{R}$ are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use Convex.jl and SCS.jl.

using Convex, SCS

Convex.jl provides an interface to describe optimization problems and call a solver; SCS.jl is a particular solver.

A possible code for solving Problem (1) with these packages would be as follows :

```
X = Variable(d1,d2)
for k=1:m
add_constraint!(X, tr(X * A[k]') == y[k])
end
problem = minimize(nuclearnorm(X))
solve!(problem,SCS.Optimizer)
X_sol = evaluate(X)
```

A complete example using this code is available at https://www.ceremade. dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl. Line 1 declares the type of the unknown X. Here, it is a matrix with size $d_1 \times d_2$ and real coefficients. For complex coefficients, one would use

^{3.} As before, we declare that x_{cvx} and x_0 are equal if $dist(x_{cvx}, x_0) \leq 0.01 ||x_0||_2$

X = ComplexVariable(d1,d2)

Lines 2 to 4 declare the constraints which must be satisfied by X. Many other types of constraints exist. For instance, if $d_1 = d_2$, it is possible to require X to be semidefinite positive using

```
add_constraint!(X, X in :SDP)
```

Line 5 declares the objective function. Line 6 calls the SCS solver and Line 7 returns the optimal X found by the solver.

It is possible to pass options to the solver. To avoid information display, one would use

```
solve!(problem,SCS.Optimizer; silent_solver=true)
```

To set a time limit of 5 seconds, it would be

```
solve!(problem,Convex.MOI.OptimizerWithAttributes(
    SCS.Optimizer, "time_limit_secs" => 5.))
```

1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package provides an interface to define convex optimization problems and pass them to solvers.

```
import cvxpy as cp
```

A possible code for solving Problem (1) using CVXPY is as follows :

```
X = cp.Variable((d1,d2))
constraints = [cp.trace(X @ A[:,:,k].T) == y[k]
for k in range(m)]
objective = cp.Minimize(cp.norm(X,"nuc"))
problem = cp.Problem(objective,constraints)
problem.solve(solver=cp.SCS)
return X.value
```

A complete example using this code is available at https://www.ceremade. dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py. Line 1 declares the variable X, here a variable of size $d_1 \times d_2$ with real coordinates. To declare a matrix of size $d_1 \times d_2$ with complex coordinates, one would have used

X = cp.Variable((d1,d2),complex=True)

And to additionally constrain X to be Hermitian,

X = cp.Variable((d,d),hermitian=True)

Lines 2 and 3 declare the list of constraints. Other types of constraints than linear are possible. For instance, to constrain a symmetric or Hermitian matrix to be semidefinite positive, one can add

```
constraints.append(X >> 0)
```

Line 4 declares the objective function. Line 5 and 6 define the problem and call the solver⁴. Line 7 returns the optimal X found by the solver. To set a time limit for the solver, use

```
problem.solve(solver=cp.SCS,time_limit_secs=5.)
```

2 Gradient descent on non-convex objectives

We consider the function

[Note : we consider this specific function because it has a nice landscape of critical points, but it is not especially interesting otherwise.]

- 1. Compute its gradient.
- 2. Write functions f, grad_fx and grad_fy which compute the value of f and the two components of its gradient at a given point.
- 3. Choose several points p_0 uniformly at random in the square $[-2; 2] \times [-2; 2]$. For each one of them, run 400 steps of gradient descent with stepsize $\frac{1}{150}$, starting at p_0 . Check that each run converges towards one of the following three points :

$$M_1 = (1,0), \quad M_2 = (0,1), \quad M_3 = \left(0, -\frac{1}{2}\right).$$

- 4. Show that M_1, M_2, M_3 are second-order critical points of f.
- 5. Show that $P_1 = (0,0)$ and $P_2 = (1/8,0)$ are first-order, but not second-order critical points of f.

It is possible to show that f has only two other first-order critical points,

$$P_3 \approx (0.275, -0.465)$$
 and $P_4 \approx (0.899, 0.396)$,

which are also not second-order critical points.

6. What is the global minimum of f?

^{4.} Here, the solver is SCS so as to match the code proposed for Julia users, but other solvers are of course possible.

7. a) For each $p \in [-2; 2]$, we define

$$limit = k \text{ for } k \in \{1, 2, 3\}$$

if the 400-th gradient descent iterate, with starting point p, is at distance at most 0.1 from M_k . We define

$$limit = 0$$
 otherwise.

Compute limit for all points on a grid with spacing 0.01 in $[-2; 2] \times [-2; 2]$. Display it as an image.

b) On the same plot, display the negative gradient as a vector field, at each point of a grid with spacing 0.2. Normalize each gradient to improve the readibility of the figure.
[In Python, you can plot a vector field using quiver(U,V,X,Y) from the matplotlib.pyplot library, where U, V are the origins of the ar-

the matplotlib.pyplot library, where U, V are the origins of the arrows and X, Y their coordinates. This function is also available in the Julia PyPlot module.]

- 8. Repeat the last question on a grid with spacing 0.001 (0.025 for the gradient) in $[-0.1, 0.3] \times [-0.2, 0.2]$.
- 9. Comment the pictures : what do they look like in the neighborhood of critical points? Which signs indicate whether a critical point is first or second-order? Using the information visible on the pictures, can you draw the shape of the gradient descent trajectories, in the different regions of the plane?