
Non-convex inverse problems: programming
exercises

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

January and February 2023

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear
norm minimization.
1. We first consider the problem of matrix completion, for matrices of size

d× d (for some d ∈ N∗) and rank 1 :

recover X0 ∈ Rd×d

from (X0)ij,∀(i, j) ∈ Ω, (Matrix Completion)
knowing that rank(X0) = 1.

We will perform tests for random matrices X0, generated as

X0 = (uivj)1≤i,j≤d,

where u1, . . . , ud, v1, . . . , vd are independent random variables, with uni-
form distribution in [−1; 1].
a) Write a function which, given d and m, generates a random X0 ∈ Rd×d

as above, and a random subset Ω of {1, . . . , d}2 containing m elements
chosen uniformly at random.

b) Write a function which, given d, ((X0)ij)(i,j)∈Ω and Ω, returns the
solution Xcvx of the following convex problem :

minimize ||X||∗
for X ∈ Rd×d, (Convex MC)

such that Xij = (X0)ij,∀(i, j) ∈ Ω.

[See below for indications on how to solve such problems in Julia and
Python.]

1

waldspurger@ceremade.dauphine.fr

c) Test the previous function for a random X0 ∈ R10×10 and Ω of size 50.
Check whether Xcvx is equal to X0 or not. 1

[Hint : run the test several times. If your implementation is correct,
Xcvx and X0 should be equal in roughly half of the trials.]

d) For d = 10 and each m = 20, 30, ..., 100, try to solve 10 random
instances of (Matrix Completion) using (Convex MC). For each m,
compute the empirical probability that Xcvx = X0. What is the smal-
lest m for which the probability is above 50% ? Which percentage of
entries of X0 does it correspond to ?

e) Same question for d = 20 and m = 80, 100, ..., 200, then for d = 40
and m = 270, 310, ..., 390.

2. In this question, we consider phase retrieval problems :

reconstruct x0 ∈ Cd (Phase Retrieval)
from | 〈x0, vj〉 |, ∀j = 1, . . . ,m,

where (v1, . . . , vm) is a (known) family of measurement vectors.
We will perform tests for random problems, where x0, v1, . . . , vm ∈ Cd

are generated according to independent standard normal complex dis-
tributions 2.
a) Write a function which, given (| 〈x0, vj〉 |)j≤m and (vj)j≤m, computes

the solution Xcvx of the convex relaxation

minimize Tr(X)

for X ∈ Cd×d (PhaseLift)
such that v∗jXvj = | 〈x0, vj〉 |2,∀j = 1, . . . ,m,

X � 0.

b) As seen during the lecture, if the relaxation is tight, then

Xcvx = x0x
∗
0.

Assuming this equality holds, write a function which, given Xcvx, com-
putes x0.

c) Show that, for any z1, z2 ∈ Cd, the distance up to global phase between
z1 and z2 satisfies

dist(z1, z2)
def
= min

φ∈R
||eiφz1 − z2||2 =

√
||z1||2 − 2| 〈z1, z2〉 |+ ||z2||2.

Write a function to compute this distance.

1. You can consider that Xcvx = X0 is ||Xcvx−X0||F ≤ 0.01||X0||F . This is an arbitrary
but reasonable rule.

2. A random variable z follows a standard normal complex distribution if Re(z) and
Im(z) are independent normal variables, both with mean 0 and variance 1/2.

2

d) Using the functions you just implemented, try to solve a random phase
retrieval problem with d = 10 and m = 50. Is the solution xcvx you
obtain equal 3 to x0 ?
[Hint : if your implementation is correct, xcvx and x0 should almost
always be equal.]

e) For d = 10 and each m = 25, 30, . . . , 50, try to solve 10 random
instances of (Phase Retrieval) using (PhaseLift). For eachm, compute
the empirical probability that xcvx = x0. What is the smallest m for
which the probability is above 50% ?
[Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift)
solver ; otherwise, some instances will take a long time.]

f) Same question for d = 20 and m = 50, 60, . . . , 100.

1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

minimize ||X||∗
over all X ∈ Rd1×d2 (1)

such that Tr(XAT
i) = yi,∀i ≤ m,

where A1, . . . , Am ∈ Rd1×d2 and y1, . . . , ym ∈ R are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use
Convex.jl and SCS.jl.

using Convex, SCS

Convex.jl provides an interface to describe optimization problems and call a
solver ; SCS.jl is a particular solver.
A possible code for solving Problem (1) with these packages would be as
follows :

1 X = Variable(d1,d2)
2 for k=1:m
3 add_constraint!(X, tr(X * A[k]') == y[k])
4 end
5 problem = minimize(nuclearnorm(X))
6 solve!(problem,SCS.Optimizer)
7 X_sol = evaluate(X)

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl.
Line 1 declares the type of the unknown X. Here, it is a matrix with size
d1 × d2 and real coefficients. For complex coefficients, one would use

3. As before, we declare that xcvx and x0 are equal if dist(xcvx, x0) ≤ 0.01||x0||2

3

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl

X = ComplexVariable(d1,d2)

Lines 2 to 4 declare the constraints which must be satisfied by X. Many other
types of constraints exist. For instance, if d1 = d2, it is possible to require X
to be semidefinite positive using

add_constraint!(X, X in :SDP)

Line 5 declares the objective function. Line 6 calls the SCS solver and Line
7 returns the optimal X found by the solver.
It is possible to pass options to the solver. To avoid information display, one
would use

solve!(problem,SCS.Optimizer; silent_solver=true)

To set a time limit of 5 seconds, it would be

solve!(problem,Convex.MOI.OptimizerWithAttributes(
SCS.Optimizer, "time_limit_secs" => 5.))

1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package
provides an interface to define convex optimization problems and pass them
to solvers.

import cvxpy as cp

A possible code for solving Problem (1) using CVXPY is as follows :

1 X = cp.Variable((d1,d2))
2 constraints = [cp.trace(X @ A[:,:,k].T) == y[k]
3 for k in range(m)]
4 objective = cp.Minimize(cp.norm(X,"nuc"))
5 problem = cp.Problem(objective,constraints)
6 problem.solve(solver=cp.SCS)
7 return X.value

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py.
Line 1 declares the variable X, here a variable of size d1 × d2 with real
coordinates. To declare a matrix of size d1 × d2 with complex coordinates,
one would have used

X = cp.Variable((d1,d2),complex=True)

And to additionally constrain X to be Hermitian,

X = cp.Variable((d,d),hermitian=True)

4

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py

Lines 2 and 3 declare the list of constraints. Other types of constraints than
linear are possible. For instance, to constrain a symmetric or Hermitian ma-
trix to be semidefinite positive, one can add

constraints.append(X >> 0)

Line 4 declares the objective function. Line 5 and 6 define the problem and
call the solver 4. Line 7 returns the optimal X found by the solver.
To set a time limit for the solver, use

problem.solve(solver=cp.SCS,time_limit_secs=5.)

2 Gradient descent on non-convex objectives

We consider the function

f : R2 → R
x → 4x4 + 4x2y2 + 3y4 − 6x3 − 2y3 + x2 − 3y2.

[Note : we consider this specific function because it has a nice landscape of
critical points, but it is not especially interesting otherwise.]
1. Compute its gradient.
2. Write functions f, grad_fx and grad_fy which compute the value of f

and the two components of its gradient at a given point.
3. Choose several points p0 uniformly at random in the square [−2; 2] ×

[−2; 2]. For each one of them, run 400 steps of gradient descent with
stepsize 1

150
, starting at p0. Check that each run converges towards one

of the following three points :

M1 = (1, 0), M2 = (0, 1), M3 =

(
0,−1

2

)
.

4. Show that M1,M2,M3 are second-order critical points of f .
5. Show that P1 = (0, 0) and P2 = (1/8, 0) are first-order, but not second-

order critical points of f .
It is possible to show that f has only two other first-order critical points,

P3 ≈ (0.275,−0.465) and P4 ≈ (0.899, 0.396),

which are also not second-order critical points.
6. What is the global minimum of f ?

4. Here, the solver is SCS so as to match the code proposed for Julia users, but other
solvers are of course possible.

5

7. a) For each p ∈ [−2; 2], we define

limit = k for k ∈ {1, 2, 3}

if the 400-th gradient descent iterate, with starting point p, is at dis-
tance at most 0.1 from Mk. We define

limit = 0 otherwise.

Compute limit for all points on a grid with spacing 0.01 in [−2; 2]×
[−2; 2]. Display it as an image.

b) On the same plot, display the negative gradient as a vector field, at
each point of a grid with spacing 0.2. Normalize each gradient to
improve the readibility of the figure.
[In Python, you can plot a vector field using quiver(U,V,X,Y) from
the matplotlib.pyplot library, where U, V are the origins of the ar-
rows and X, Y their coordinates. This function is also available in the
Julia PyPlot module.]

8. Repeat the last question on a grid with spacing 0.001 (0.025 for the
gradient) in [−0.1, 0.3]× [−0.2, 0.2].

9. Comment the pictures : what do they look like in the neighborhood of
critical points ? Which signs indicate whether a critical point is first or
second-order ? Using the information visible on the pictures, can you
draw the shape of the gradient descent trajectories, in the different re-
gions of the plane ?

6

	Convexification for low-rank matrix recovery
	Semidefinite programming in Julia and Python
	In Julia, with Convex.jl and SCS.jl
	In Python, with CVXPY

	Gradient descent on non-convex objectives

