Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function. We assume that

1. f is convex ;
2. f has a global minimizer x_{*};
3. f is differentiable and, for any $x \in \mathbb{R}^{d}$,

$$
\|\nabla f(x)\|_{2} \leq 1
$$

We fix a starting point x_{0} and run gradient descent from this point, with a sequence of positive stepsizes $\left(h_{k}\right)_{k \in \mathbb{N}}$:

$$
x_{k+1}=x_{k}-h_{k} \nabla f\left(x_{k}\right) .
$$

1. a) Show that, for any $k \in \mathbb{N}$,

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle
$$

b) Show that, for any $k \in \mathbb{N}$,

$$
\left\|x_{k+1}-x_{*}\right\|_{2}^{2} \leq\left\|x_{k}-x_{*}\right\|_{2}^{2}-2 h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right)+h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
$$

c) Show that, for any $n \in \mathbb{N}$,

$$
2 \sum_{k=0}^{n} h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

d) For any n, let $k_{n} \in\{0, \ldots, n\}$ be such that

$$
f\left(x_{k_{n}}\right)=\min _{k=0, \ldots, n} f\left(x_{k}\right) .
$$

Show that, for any n,

$$
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
$$

e) Show that, for any n,

$$
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2} .
$$

2. In this question, we assume that, for any $k, h_{k}=\frac{1}{\sqrt{k+1}}$. Show that, for any n,

$$
f\left(x_{k_{n}}\right)-f\left(x_{*}\right) \leq \frac{\left\|x_{0}-x_{*}\right\|_{2}^{2}+2+\log (n)}{\sqrt{n+2}}
$$

Hint: You can use the fact that, for any n,

$$
\sum_{k=1}^{n+1} \frac{1}{k} \leq 2+\log (n) \quad \text { and } \quad \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \geq \frac{\sqrt{n+2}}{2}
$$

3. In this question, we assume that the sequence of stepsizes is constant: there exists $\eta>0$ such that, for any $k \in \mathbb{N}, h_{k}=\eta$.

Give an example of a function f satisfying properties $1,2,3$, and a starting point x_{0} such that

$$
f\left(x_{k_{n}}\right)-f\left(x_{*}\right) \stackrel{n \rightarrow+\infty}{\nrightarrow} 0 .
$$

Hint : Define

$$
\begin{array}{ll}
f: x \in \mathbb{R} \rightarrow & |x|-\frac{\epsilon}{2} \\
& \frac{x^{2}}{2 \epsilon}
\end{array} \quad \text { if }|x| \geq \epsilon ;
$$

for some $\epsilon>0$ small enough.

