Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function. We assume that

1. f is convex ;
2. f has a global minimizer x_{*};
3. f is differentiable and, for any $x \in \mathbb{R}^{d}$,

$$
\|\nabla f(x)\|_{2} \leq 1
$$

We fix a starting point x_{0} and run gradient descent from this point, with a sequence of positive stepsizes $\left(h_{k}\right)_{k \in \mathbb{N}}$:

$$
x_{k+1}=x_{k}-h_{k} \nabla f\left(x_{k}\right) .
$$

1. a) Show that, for any $k \in \mathbb{N}$,

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle
$$

b) Show that, for any $k \in \mathbb{N}$,

$$
\left\|x_{k+1}-x_{*}\right\|_{2}^{2} \leq\left\|x_{k}-x_{*}\right\|_{2}^{2}-2 h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right)+h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
$$

c) Show that, for any $n \in \mathbb{N}$,

$$
2 \sum_{k=0}^{n} h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

d) For any n, let $k_{n} \in\{0, \ldots, n\}$ be such that

$$
f\left(x_{k_{n}}\right)=\min _{k=0, \ldots, n} f\left(x_{k}\right) .
$$

Show that, for any n,

$$
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
$$

e) Show that, for any n,

$$
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2} .
$$

2. In this question, we assume that, for any $k, h_{k}=\frac{1}{\sqrt{k+1}}$. Show that, for any n,

$$
f\left(x_{k_{n}}\right)-f\left(x_{*}\right) \leq \frac{\left\|x_{0}-x_{*}\right\|_{2}^{2}+2+\log (n)}{\sqrt{n+2}}
$$

Hint: You can use the fact that, for any n,

$$
\sum_{k=1}^{n+1} \frac{1}{k} \leq 2+\log (n) \quad \text { and } \quad \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \geq \frac{\sqrt{n+2}}{2}
$$

3. In this question, we assume that the sequence of stepsizes is constant: there exists $\eta>0$ such that, for any $k \in \mathbb{N}, h_{k}=\eta$.

Give an example of a function f satisfying properties $1,2,3$, and a starting point x_{0} such that

$$
f\left(x_{k_{n}}\right)-f\left(x_{*}\right) \stackrel{n \rightarrow+\infty}{\nrightarrow} 0 .
$$

Hint : Define

$$
\begin{array}{ll}
f: x \in \mathbb{R} \rightarrow & |x|-\frac{\epsilon}{2} \\
& \frac{x^{2}}{2 \epsilon}
\end{array} \quad \text { if }|x| \geq \epsilon ;
$$

for some $\epsilon>0$ small enough.

1. a) Let k be fixed. We apply the characterization of convexity for differentiable functions : at x_{*}, f is above its tangent at x_{k}, that is

$$
f\left(x_{*}\right) \geq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{*}-x_{k}\right\rangle,
$$

which is equivalent to the desired inequality.
b) For any k,

$$
\begin{aligned}
\left\|x_{k+1}-x_{*}\right\|_{2}^{2} & =\left\|x_{k}-x_{*}-h_{k} \nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& =\left\|x_{k}-x_{*}\right\|_{2}^{2}-2 h_{k}\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle+h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \text { 1.a) }\left\|x_{k}-x_{*}\right\|_{2}^{2}-2 h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right)+h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

c) We deduce from the previous question that, for any $k \in \mathbb{N}$,

$$
2 h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right) \leq\left\|x_{k}-x_{*}\right\|_{2}^{2}-\left\|x_{k+1}-x_{*}\right\|_{2}^{2}+h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
$$

Therefore, for any $n \in \mathbb{N}$,

$$
\begin{aligned}
2 \sum_{k=0}^{n} h_{k}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right) & \leq \sum_{k=0}^{n}\left(\left\|x_{k}-x_{*}\right\|_{2}^{2}-\left\|x_{k+1}-x_{*}\right\|_{2}^{2}\right)+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& =\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} .
\end{aligned}
$$

d) Let n be fixed. For any $k \leq n$, we have, from the definition of k_{n}, $f\left(x_{k_{n}}\right) \leq f\left(x_{k}\right)$. As a consequence, for any $k \leq n$,

$$
2 h_{k}\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right) \leq 2 h_{k}\left(f\left(x_{k}\right)-f\left(x_{k}\right)\right) .
$$

and

$$
\begin{aligned}
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) & \leq 2 \sum_{k=0}^{n} h_{k}\left(f\left(x_{k}\right)-f\left(x_{k}\right)\right) \\
& \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}-\left\|x_{n+1}-x_{*}\right\|^{2}+\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

e) From our third assumption on $f,\left\|\nabla f\left(x_{k}\right)\right\|_{2} \leq 1$ for any $k \in \mathbb{N}$. Therefore, for any $n \in \mathbb{N}$,

$$
\sum_{k=0}^{n} h_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \leq \sum_{k=0}^{n} h_{k}^{2}
$$

Since, in addition, $-\left\|x_{n+1}-x_{*}\right\|_{2}^{2} \leq 0$, we deduce from question 1.d) that

$$
2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2} .
$$

2. For any $n \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{k=0}^{n} h_{k}^{2}=\sum_{k=1}^{n+1} \frac{1}{k} \leq 2+\log (n) \\
& \sum_{k=0}^{n} h_{k}=\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \geq \frac{\sqrt{n+2}}{2}
\end{aligned}
$$

Plugging these inequalities into the one established at question 1.e) yields

$$
\begin{aligned}
\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right) \sqrt{n+2} & \leq 2\left(f\left(x_{k_{n}}\right)-f\left(x_{*}\right)\right)\left(\sum_{k=0}^{n} h_{k}\right) \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}+\sum_{k=0}^{n} h_{k}^{2} \\
& \leq\left\|x_{0}-x_{*}\right\|_{2}^{2}+2+\log (n)
\end{aligned}
$$

Therefore,

$$
f\left(x_{k_{n}}\right)-f\left(x_{*}\right) \leq \frac{\left\|x_{0}-x_{*}\right\|_{2}^{2}+2+\log (n)}{\sqrt{n+2}}
$$

3. We set $\epsilon=\frac{\eta}{2}$ and define f as suggested :

$$
\begin{aligned}
f: x \in \mathbb{R} \rightarrow & \text { if }|x| \geq \epsilon \\
& \frac{x^{2}}{2 \epsilon}
\end{aligned} \quad \text { if }|x| \leq \epsilon
$$

Let us show that f satisfies properties $1,2,3$.
We start with property 2 . For any $x \in \mathbb{R}$ such that $|x| \geq \epsilon$,

$$
f(x) \geq \epsilon-\frac{\epsilon}{2}>0
$$

For any $x \in \mathbb{R}$ such that $|x|<\epsilon$,

$$
f(x)=\frac{x^{2}}{2 \epsilon} \geq 0
$$

Therefore, f is nonnegative over \mathbb{R}. Since $f(0)=0$, it implies that $x_{*}=0$ is a global minimizer of f.

Let us now show that f is differentiable and compute its derivative. The function $|$.$| is differentiable over \mathbb{R}-\{0\}$ so f is differentiable over $]-\infty ;-\epsilon] \cup$ $[\epsilon ;+\infty[$, with derivative

$$
\begin{array}{cc}
f^{\prime}(x)=-1 & \forall x \in]-\infty ;-\epsilon] ; \\
f^{\prime}(x)=1 & \forall x \in[\epsilon ;+\infty[.
\end{array}
$$

(The derivative is only a left derivative when $x=-\epsilon$ and a right derivative when $x=\epsilon$.)

The square function is differentiable over \mathbb{R} so f is differentiable over $[-\epsilon ; \epsilon]$, with derivative

$$
f^{\prime}(x)=\frac{x}{\epsilon} \quad \forall x \in[-\epsilon ; \epsilon] .
$$

(The derivative is only a right derivative when $x=-\epsilon$ and a left derivative when $x=\epsilon$.)

Since the left and right derivatives coincide in $x=-\epsilon$ and $x=\epsilon$, the function f is differentiable at $-\epsilon$ and ϵ and therefore differentiable over \mathbb{R}.

For any x such that $|x| \geq \epsilon$, we have $\left|f^{\prime}(x)\right|=1$ and, for any x such that $|x| \leq \epsilon$, we have $\left|f^{\prime}(x)\right|=\frac{|x|}{\epsilon} \leq 1$. As a consequence, the norm of the gradient (that is, in this case, the derivative), is always at most 1 and Property 3 holds.

Now that we have computed the derivative, we can easily show that f is convex : its derivative is continuous, nondecreasing (actually constant) over $]-\infty ;-\epsilon]$, increasing over $[-\epsilon ; \epsilon]$, nondecreasing again over $[\epsilon ;+\infty[$. Therefore, the derivative is nondecreasing over \mathbb{R} and f is convex.

We consider the starting point $x_{0}=\frac{\eta}{2}=\epsilon$. With this definition,

$$
\begin{aligned}
x_{1} & =x_{0}-h_{0} f^{\prime}\left(x_{0}\right) \\
& =\epsilon-\eta \times 1 \\
& =-\epsilon
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-h_{0} f^{\prime}\left(x_{1}\right) \\
& =-\epsilon-\eta \times(-1) \\
& =\epsilon .
\end{aligned}
$$

We can iteratively reapply this result and we obtain that $x_{k}=-\epsilon$ for all odd k and $x_{k}=\epsilon$ for all even k. In particular, $x_{k} \nrightarrow x_{*}=0$ when $k \rightarrow+\infty$.

