
Let f : Rd → R be a function. We assume that
1. f is convex ;
2. f has a global minimizer x∗ ;
3. f is differentiable and, for any x ∈ Rd,

||∇f(x)||2 ≤ 1.

We fix a starting point x0 and run gradient descent from this point, with
a sequence of positive stepsizes (hk)k∈N :

xk+1 = xk − hk∇f(xk).

1. a) Show that, for any k ∈ N,

f(xk) − f(x∗) ≤ ⟨∇f(xk), xk − x∗⟩ .

b) Show that, for any k ∈ N,

||xk+1 − x∗||22 ≤ ||xk − x∗||22 − 2hk(f(xk) − f(x∗)) + h2
k||∇f(xk)||22.

c) Show that, for any n ∈ N,

2
n∑

k=0

hk(f(xk) − f(x∗)) ≤ ||x0 − x∗||22 − ||xn+1 − x∗||22 +
n∑

k=0

h2
k||∇f(xk)||22.

d) For any n, let kn ∈ {0, . . . , n} be such that

f(xkn) = min
k=0,...,n

f(xk).

Show that, for any n,

2(f(xkn)−f(x∗))

(
n∑

k=0

hk

)
≤ ||x0 −x∗||22 −||xn+1 −x∗||22 +

n∑
k=0

h2
k||∇f(xk)||22.

e) Show that, for any n,

2(f(xkn) − f(x∗))

(
n∑

k=0

hk

)
≤ ||x0 − x∗||22 +

n∑
k=0

h2
k.
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2. In this question, we assume that, for any k, hk = 1√
k+1 . Show that, for

any n,

f(xkn) − f(x∗) ≤ ||x0 − x∗||22 + 2 + log(n)√
n + 2

.

Hint : You can use the fact that, for any n,

n+1∑
k=1

1
k

≤ 2 + log(n) and
n+1∑
k=1

1√
k

≥
√

n + 2
2

.

3. In this question, we assume that the sequence of stepsizes is constant :
there exists η > 0 such that, for any k ∈ N, hk = η.

Give an example of a function f satisfying properties 1, 2, 3, and a starting
point x0 such that

f(xkn) − f(x∗)
n→+∞

̸→ 0.

Hint : Define

f : x ∈ R → |x| − ϵ

2
if |x| ≥ ϵ;

x2

2ϵ
if |x| ≤ ϵ,

for some ϵ > 0 small enough.
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1. a) Let k be fixed. We apply the characterization of convexity for diffe-
rentiable functions : at x∗, f is above its tangent at xk, that is

f(x∗) ≥ f(xk) + ⟨∇f(xk), x∗ − xk⟩ ,

which is equivalent to the desired inequality.
b) For any k,

||xk+1 − x∗||22 = ||xk − x∗ − hk∇f(xk)||22
= ||xk − x∗||22 − 2hk ⟨∇f(xk), xk − x∗⟩ + h2

k||∇f(xk)||22
1.a)
≤ ||xk − x∗||22 − 2hk(f(xk) − f(x∗)) + h2

k||∇f(xk)||22.

c) We deduce from the previous question that, for any k ∈ N,

2hk(f(xk) − f(x∗)) ≤ ||xk − x∗||22 − ||xk+1 − x∗||22 + h2
k||∇f(xk)||22.

Therefore, for any n ∈ N,

2
n∑

k=0

hk(f(xk) − f(x∗)) ≤
n∑

k=0

(||xk − x∗||22 − ||xk+1 − x∗||22) +
n∑

k=0

h2
k||∇f(xk)||22

= ||x0 − x∗||22 − ||xn+1 − x∗||2 +
n∑

k=0

h2
k||∇f(xk)||22.

d) Let n be fixed. For any k ≤ n, we have, from the definition of kn,
f(xkn) ≤ f(xk). As a consequence, for any k ≤ n,

2hk(f(xkn) − f(x∗)) ≤ 2hk(f(xk) − f(xk)).

and

2(f(xkn) − f(x∗))

(
n∑

k=0

hk

)
≤ 2

n∑
k=0

hk(f(xk) − f(xk))

1.c)
≤ ||x0 − x∗||22 − ||xn+1 − x∗||2 +

n∑
k=0

h2
k||∇f(xk)||22.
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e) From our third assumption on f , ||∇f(xk)||2 ≤ 1 for any k ∈ N.
Therefore, for any n ∈ N,

n∑
k=0

h2
k||∇f(xk)||22 ≤

n∑
k=0

h2
k.

Since, in addition, −||xn+1 − x∗||22 ≤ 0, we deduce from question 1.d) that

2(f(xkn) − f(x∗))

(
n∑

k=0

hk

)
≤ ||x0 − x∗||22 +

n∑
k=0

h2
k.

2. For any n ∈ N,
n∑

k=0

h2
k =

n+1∑
k=1

1
k

≤ 2 + log(n);

n∑
k=0

hk =
n+1∑
k=1

1√
k

≥
√

n + 2
2

.

Plugging these inequalities into the one established at question 1.e) yields

(f(xkn) − f(x∗))
√

n + 2 ≤ 2(f(xkn) − f(x∗))

(
n∑

k=0

hk

)
≤ ||x0 − x∗||22 +

n∑
k=0

h2
k

≤ ||x0 − x∗||22 + 2 + log(n).

Therefore,

f(xkn) − f(x∗) ≤ ||x0 − x∗||22 + 2 + log(n)√
n + 2

.

3. We set ϵ = η
2 and define f as suggested :

f : x ∈ R → |x| − ϵ

2
if |x| ≥ ϵ;

x2

2ϵ
if |x| ≤ ϵ,

Let us show that f satisfies properties 1, 2, 3.
We start with property 2. For any x ∈ R such that |x| ≥ ϵ,

f(x) ≥ ϵ − ϵ

2
> 0.
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For any x ∈ R such that |x| < ϵ,

f(x) = x2

2ϵ
≥ 0.

Therefore, f is nonnegative over R. Since f(0) = 0, it implies that x∗ = 0 is
a global minimizer of f .

Let us now show that f is differentiable and compute its derivative. The
function |.| is differentiable over R−{0} so f is differentiable over ]−∞; −ϵ]∪
[ϵ; +∞[, with derivative

f ′(x) = −1 ∀x ∈] − ∞; −ϵ];
f ′(x) = 1 ∀x ∈ [ϵ; +∞[.

(The derivative is only a left derivative when x = −ϵ and a right derivative
when x = ϵ.)

The square function is differentiable over R so f is differentiable over
[−ϵ; ϵ], with derivative

f ′(x) = x

ϵ
∀x ∈ [−ϵ; ϵ].

(The derivative is only a right derivative when x = −ϵ and a left derivative
when x = ϵ.)

Since the left and right derivatives coincide in x = −ϵ and x = ϵ, the
function f is differentiable at −ϵ and ϵ and therefore differentiable over R.

For any x such that |x| ≥ ϵ, we have |f ′(x)| = 1 and, for any x such that
|x| ≤ ϵ, we have |f ′(x)| = |x|

ϵ
≤ 1. As a consequence, the norm of the gradient

(that is, in this case, the derivative), is always at most 1 and Property 3 holds.
Now that we have computed the derivative, we can easily show that f

is convex : its derivative is continuous, nondecreasing (actually constant)
over ] − ∞; −ϵ], increasing over [−ϵ; ϵ], nondecreasing again over [ϵ; +∞[.
Therefore, the derivative is nondecreasing over R and f is convex.

We consider the starting point x0 = η
2 = ϵ. With this definition,

x1 = x0 − h0f
′(x0)

= ϵ − η × 1
= −ϵ
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and

x2 = x1 − h0f
′(x1)

= −ϵ − η × (−1)
= ϵ.

We can iteratively reapply this result and we obtain that xk = −ϵ for all odd
k and xk = ϵ for all even k. In particular, xk ̸→ x∗ = 0 when k → +∞.
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