Let $f : \mathbb{R}^d \to \mathbb{R}$ be a function. We assume that

- 1. f is convex;
- 2. f has a global minimizer x_* ;
- 3. f is differentiable and, for any $x \in \mathbb{R}^d$,

$$||\nabla f(x)||_2 \le 1.$$

We fix a starting point x_0 and run gradient descent from this point, with a sequence of positive stepsizes $(h_k)_{k \in \mathbb{N}}$:

$$x_{k+1} = x_k - h_k \nabla f(x_k).$$

1. a) Show that, for any $k \in \mathbb{N}$,

$$f(x_k) - f(x_*) \le \langle \nabla f(x_k), x_k - x_* \rangle$$

b) Show that, for any $k \in \mathbb{N}$,

$$||x_{k+1} - x_*||_2^2 \le ||x_k - x_*||_2^2 - 2h_k(f(x_k) - f(x_*)) + h_k^2||\nabla f(x_k)||_2^2.$$

c) Show that, for any $n \in \mathbb{N}$,

$$2\sum_{k=0}^{n} h_k(f(x_k) - f(x_*)) \le ||x_0 - x_*||_2^2 - ||x_{n+1} - x_*||_2^2 + \sum_{k=0}^{n} h_k^2 ||\nabla f(x_k)||_2^2.$$

d) For any n, let $k_n \in \{0, \ldots, n\}$ be such that

$$f(x_{k_n}) = \min_{k=0,\dots,n} f(x_k).$$

Show that, for any n,

$$2(f(x_{k_n}) - f(x_*))\left(\sum_{k=0}^n h_k\right) \le ||x_0 - x_*||_2^2 - ||x_{n+1} - x_*||_2^2 + \sum_{k=0}^n h_k^2 ||\nabla f(x_k)||_2^2.$$

e) Show that, for any n,

$$2(f(x_{k_n}) - f(x_*))\left(\sum_{k=0}^n h_k\right) \le ||x_0 - x_*||_2^2 + \sum_{k=0}^n h_k^2.$$

2. In this question, we assume that, for any k, $h_k = \frac{1}{\sqrt{k+1}}$. Show that, for any n,

$$f(x_{k_n}) - f(x_*) \le \frac{||x_0 - x_*||_2^2 + 2 + \log(n)}{\sqrt{n+2}}.$$

Hint : You can use the fact that, for any n,

$$\sum_{k=1}^{n+1} \frac{1}{k} \le 2 + \log(n) \quad \text{and} \quad \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \ge \frac{\sqrt{n+2}}{2}.$$

3. In this question, we assume that the sequence of stepsizes is constant : there exists $\eta > 0$ such that, for any $k \in \mathbb{N}$, $h_k = \eta$.

Give an example of a function f satisfying properties 1, 2, 3, and a starting point x_0 such that

$$f(x_{k_n}) - f(x_*) \xrightarrow{n \to +\infty} 0.$$

Hint : Define

$$f: x \in \mathbb{R} \quad \to \quad |x| - \frac{\epsilon}{2} \qquad \qquad \text{if } |x| \ge \epsilon;$$
$$\frac{x^2}{2\epsilon} \qquad \qquad \text{if } |x| \le \epsilon,$$

for some $\epsilon > 0$ small enough.

1. a) Let k be fixed. We apply the characterization of convexity for differentiable functions : at x_* , f is above its tangent at x_k , that is

$$f(x_*) \ge f(x_k) + \left\langle \nabla f(x_k), x_* - x_k \right\rangle,$$

which is equivalent to the desired inequality.

b) For any k,

$$\begin{aligned} ||x_{k+1} - x_*||_2^2 &= ||x_k - x_* - h_k \nabla f(x_k)||_2^2 \\ &= ||x_k - x_*||_2^2 - 2h_k \left\langle \nabla f(x_k), x_k - x_* \right\rangle + h_k^2 ||\nabla f(x_k)||_2^2 \\ &\stackrel{\text{1.a}}{\leq} ||x_k - x_*||_2^2 - 2h_k (f(x_k) - f(x_*)) + h_k^2 ||\nabla f(x_k)||_2^2. \end{aligned}$$

c) We deduce from the previous question that, for any $k \in \mathbb{N}$,

$$2h_k(f(x_k) - f(x_*)) \le ||x_k - x_*||_2^2 - ||x_{k+1} - x_*||_2^2 + h_k^2 ||\nabla f(x_k)||_2^2.$$

Therefore, for any $n \in \mathbb{N}$,

$$2\sum_{k=0}^{n} h_k(f(x_k) - f(x_*)) \le \sum_{k=0}^{n} (||x_k - x_*||_2^2 - ||x_{k+1} - x_*||_2^2) + \sum_{k=0}^{n} h_k^2 ||\nabla f(x_k)||_2^2$$
$$= ||x_0 - x_*||_2^2 - ||x_{n+1} - x_*||^2 + \sum_{k=0}^{n} h_k^2 ||\nabla f(x_k)||_2^2.$$

d) Let n be fixed. For any $k \leq n$, we have, from the definition of k_n , $f(x_{k_n}) \leq f(x_k)$. As a consequence, for any $k \leq n$,

$$2h_k(f(x_{k_n}) - f(x_*)) \le 2h_k(f(x_k) - f(x_k)).$$

and

$$2(f(x_{k_n}) - f(x_*))\left(\sum_{k=0}^n h_k\right) \le 2\sum_{k=0}^n h_k(f(x_k) - f(x_k))$$

$$\stackrel{1.c)}{\le} ||x_0 - x_*||_2^2 - ||x_{n+1} - x_*||^2 + \sum_{k=0}^n h_k^2 ||\nabla f(x_k)||_2^2.$$

e) From our third assumption on f, $||\nabla f(x_k)||_2 \leq 1$ for any $k \in \mathbb{N}$. Therefore, for any $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} h_k^2 ||\nabla f(x_k)||_2^2 \le \sum_{k=0}^{n} h_k^2.$$

Since, in addition, $-||x_{n+1} - x_*||_2^2 \leq 0$, we deduce from question 1.d) that

$$2(f(x_{k_n}) - f(x_*))\left(\sum_{k=0}^n h_k\right) \le ||x_0 - x_*||_2^2 + \sum_{k=0}^n h_k^2.$$

2. For any $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} h_k^2 = \sum_{k=1}^{n+1} \frac{1}{k} \le 2 + \log(n);$$
$$\sum_{k=0}^{n} h_k = \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} \ge \frac{\sqrt{n+2}}{2}.$$

Plugging these inequalities into the one established at question 1.e) yields

$$(f(x_{k_n}) - f(x_*))\sqrt{n+2} \le 2(f(x_{k_n}) - f(x_*))\left(\sum_{k=0}^n h_k\right) \le ||x_0 - x_*||_2^2 + \sum_{k=0}^n h_k^2 \le ||x_0 - x_*||_2^2 + 2 + \log(n).$$

Therefore,

$$f(x_{k_n}) - f(x_*) \le \frac{||x_0 - x_*||_2^2 + 2 + \log(n)}{\sqrt{n+2}}.$$

3. We set $\epsilon=\frac{\eta}{2}$ and define f as suggested :

$$\begin{array}{rcl} f: x \in \mathbb{R} & \rightarrow & |x| - \frac{\epsilon}{2} & & \text{if } |x| \geq \epsilon; \\ & & \frac{x^2}{2\epsilon} & & \text{if } |x| \leq \epsilon, \end{array}$$

Let us show that f satisfies properties 1, 2, 3.

We start with property 2. For any $x \in \mathbb{R}$ such that $|x| \ge \epsilon$,

$$f(x) \ge \epsilon - \frac{\epsilon}{2} > 0.$$

For any $x \in \mathbb{R}$ such that $|x| < \epsilon$,

$$f(x) = \frac{x^2}{2\epsilon} \ge 0.$$

Therefore, f is nonnegative over \mathbb{R} . Since f(0) = 0, it implies that $x_* = 0$ is a global minimizer of f.

Let us now show that f is differentiable and compute its derivative. The function |.| is differentiable over $\mathbb{R} - \{0\}$ so f is differentiable over $] - \infty; -\epsilon] \cup [\epsilon; +\infty[$, with derivative

$$f'(x) = -1 \quad \forall x \in] -\infty; -\epsilon];$$

$$f'(x) = 1 \quad \forall x \in [\epsilon; +\infty].$$

(The derivative is only a left derivative when $x = -\epsilon$ and a right derivative when $x = \epsilon$.)

The square function is differentiable over \mathbb{R} so f is differentiable over $[-\epsilon;\epsilon]$, with derivative

$$f'(x) = \frac{x}{\epsilon} \quad \forall x \in [-\epsilon; \epsilon].$$

(The derivative is only a right derivative when $x = -\epsilon$ and a left derivative when $x = \epsilon$.)

Since the left and right derivatives coincide in $x = -\epsilon$ and $x = \epsilon$, the function f is differentiable at $-\epsilon$ and ϵ and therefore differentiable over \mathbb{R} .

For any x such that $|x| \ge \epsilon$, we have |f'(x)| = 1 and, for any x such that $|x| \le \epsilon$, we have $|f'(x)| = \frac{|x|}{\epsilon} \le 1$. As a consequence, the norm of the gradient (that is, in this case, the derivative), is always at most 1 and Property 3 holds.

Now that we have computed the derivative, we can easily show that f is convex : its derivative is continuous, nondecreasing (actually constant) over $] - \infty; -\epsilon]$, increasing over $[-\epsilon; \epsilon]$, nondecreasing again over $[\epsilon; +\infty[$. Therefore, the derivative is nondecreasing over \mathbb{R} and f is convex.

We consider the starting point $x_0 = \frac{\eta}{2} = \epsilon$. With this definition,

$$x_1 = x_0 - h_0 f'(x_0)$$

= $\epsilon - \eta \times 1$
= $-\epsilon$

and

$$x_2 = x_1 - h_0 f'(x_1)$$

= $-\epsilon - \eta \times (-1)$
= ϵ .

We can iteratively reapply this result and we obtain that $x_k = -\epsilon$ for all odd k and $x_k = \epsilon$ for all even k. In particular, $x_k \not\rightarrow x_* = 0$ when $k \rightarrow +\infty$.