
On gradient descent

Irène Waldspurger∗

October 2023

In the whole lecture, we imagine that we want to find a minimizer of a
function f : Rn → R :

find x∗ such that f(x∗) = min
x∈Rn

f(x). (1)

We assume that at least one minimizer exists (which is for example guaran-
teed if f is continuous and coercive1) and denote one of them by x∗.

Throughout the lecture, we will assume that f is differentiable. Minimiz-
ing non-differentiable functions is is called non-smooth optimization. It is of
course also of interest, but it requires a specific theory, which we will not
have time to cover here.

1 Basic gradient descent

1.1 Reminders
Definition 1.1

For any x, the gradient of f at x is

∇f(x) def=
(

∂f

∂x1
(x), . . . ,

∂f

∂xn

(x)
)

∈ Rn.

(It exists, because we have assumed that f is differentiable.)

∗waldspurger@ceremade.dauphine.fr
1or even if f is only lower-semicontinuous and coercive

1

waldspurger@ceremade.dauphine.fr

If f is twice differentiable, we also define its Hessian at any point x as

Hess f(x) =
(

∂2f

∂xi∂xj

)
1≤i,j≤n

∈ Rn×n.

As explained in a previous lecture, the gradient at a point x ∈ Rn provides
a linear approximation of f in a neighborhood of f : informally,

∀y close to x, f(y) ≈ f(x) + ⟨∇f(x), y − x⟩ . (2)

Consequently, −∇f(x) is the direction along which f decays the most around
x. This motivates the definition of gradient descent: starting at any x0 ∈ Rn,
we define (xt)t∈N by

xt+1 = xt − αt∇f(xt), ∀t ∈ N.

Here αt is a positive number, called the stepsize. In this lecture, we will
restrict ourselves to constant stepsizes, except in Subsection 1.5, where we
discuss better ways to choose the stepsize.

Input: A starting point x0, a number of iterations T , a
sequence of stepsizes (αt)0≤t≤T −1

for t = 0, . . . , T − 1 do
Define xt+1 = xt − αt∇f(xt).

end
Output: xT

Algorithm 1: Gradient descent

Since our goal is to find a minimizer of f , we hope that

xt
t→+∞→ x∗

or, at least,
f(xt)

t→+∞→ f(x∗)

The goal of today’s lecture in to understand under which assumptions on f we
can guarantee that this happens, and, when it does, what is the convergence
rate.

2

Before stating the main results, let us review what you have seen in
the previous lectures about the convergence of gradient descent when f is
quadratic.

Let n > 0 be an integer, C a symmetric n × n matrix, and b ∈ Rn a
vector. Let f be defined as

∀x ∈ Rn, f(x) = 1
2

⟨x, Cx⟩ + ⟨x, b⟩ .

We assume that f is convex, which is equivalent to

C ⪰ 0.

In this case, you have seen that, when λmin(C) > 0, gradient descent
converges to a minimizer and the convergence rate is geometric (that is,
fast). When λmin(C) = 0, this may not be true but (f(xt))t∈N nevertheless
converges to (f(x∗)), with convergence rate at least O(1/t). This is what the
following theorem says.

Theorem 1.2

Let us consider the sequence of iterates (xt)t∈N generated by gradient
descent with constant stepsize α < 2

λmax(C) .

• If λmin(C) > 0, it holds for any t that

f(xt) − f(x∗) ≤ ρt(f(x0) − f(x∗))

for some ρ ∈]0; 1[.
(Actually, you have even seen that the sequence of iterates (xt)t∈N
converges geometrically to x∗.)

• Even if λmin(C) = 0, it holds for any t that

f(xt) − f(x∗) ≤ ||x0 − x∗||
4τt

.

1.2 Convergence guarantees for general functions
The goal of this lecture is to extend to general convex functions the results
stated in the quadratic case. More precisely, we will show the following
guarantees.

3

• When f is convex and ∇f is Lipschitz, (f(xt))t∈N goes to f(x∗) at speed
O
(1

t

)
(Theorem 1.11). This result generalizes the situation where f is

quadratic and λmin(C) may be zero.

• When f is strongly convex and ∇f is Lipschitz, (f(xt))t∈N goes to
f(x∗) at a geometric rate (Theorem 1.14). This result generalizes the
situation where f is quadratic and λmin(C) > 0.

1.2.1 Smooth functions

Let us first see what we can say of the behavior of gradient descent without
assuming that f is convex. Consequently, we let f be a general differentiable
function, and make only one hypothesis: f has some amount of regularity.
More precisely, we assume that ∇f is Lipschitz.

Definition 1.3 : smoothness

For any L > 0, we say that f is L-smooth if ∇f is L-Lipschitz, that is

∀x, y ∈ Rn, ||∇f(x) − ∇f(y)|| ≤ L||x − y||.

Remark

For any L > 0, when f is twice differentiable, it is L-smooth if and
only if, for any x ∈ Rn,

|||Hess f(x)||| ≤ L.

[The notation |||.||| stands for the operator norm: for any
symmetric n × n matrix C, |||C||| = sup||u||2=1 ||Cu||2 =
max (|λmin(C)|, |λmax(C)|).]

Proof. Let us assume f to be twice differentiable.
If f is L-smooth, then, for any x ∈ Rn, it holds for any h ∈ Rn that

| ⟨Hess f(x)h, h⟩ | =
∣∣∣∣limϵ→0

1
ϵ

⟨∇f(x + ϵh) − ∇f(x), h⟩
∣∣∣∣

≤ ||h|| lim sup
ϵ→0

||∇f(x + ϵh) − ∇f(x)||
ϵ

≤ L||h||2,

4

which implies that |||Hess f(x)||| ≤ L.
Conversely, if |||Hess f(x)||| ≤ L for any x ∈ Rn, it holds for any x, y ∈ Rn

that

||∇f(x) − ∇f(y)|| =
∣∣∣∣∣∣∣∣∫ 1

0
Hess f(x + t(y − x))(y − x)dt

∣∣∣∣∣∣∣∣
≤
∫ 1

0
|||Hess f(x + t(y − x))||| ||y − x||dt

≤ L||x − y||
∫ 1

0
1dt

= L||x − y||.

Example 1.4

For any L, our quadratic function f : x → 1
2 ⟨x, Cx⟩+⟨x, b⟩ is L-smooth

if and only if
|||C||| ≤ L,

that is −L ≤ λmin(C) ≤ λmax(C) ≤ L.

When f is smooth, the main two statements about gradient descent (with
suitable constant stepsize) are given by Corollary 1.7.

• (f(xt))t∈N is nonincreasing (in particular, it converges);

• (∇f(xt))t∈N goes to 0.

Let us state and prove these results.

Lemma 1.5

Let L > 0 be fixed. If f is L-smooth, then, for any x, y ∈ Rn,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2
||y − x||2.

5

Proof. For any x, y ∈ Rn,

f(y) = f(x) +
∫ 1

0
⟨∇f(x + t(y − x)), y − x⟩ dt

= f(x) + ⟨∇f(x), y − x⟩ +
∫ 1

0
⟨∇f(x + t(y − x)) − ∇f(x), y − x⟩ dt

≤ f(x) + ⟨∇f(x), y − x⟩ +
∫ 1

0
||∇f(x + t(y − x)) − ∇f(x)|| ||y − x||dt

≤ f(x) + ⟨∇f(x), y − x⟩ +
∫ 1

0
Lt||y − x||2dt

= f(x) + ⟨∇f(x), y − x⟩ + L

2
||y − x||2.

Corollary 1.6

Let f be L-smooth, for some L > 0.
We consider gradient descent with constant stepsize: αt = 1

L
for all t.

Then, for any t,

f(xt+1) ≤ f(xt) − 1
2L

||∇f(xt)||2.

Corollary 1.7

With the same hypotheses as in the previous corollary, and additionally
assuming that f is lower bounded,

1. (f(xt))t∈N converges to a finite value;

2. ||∇f(xt)||
t→+∞→ 0.

Proof. The first property holds because, from Corollary 1.6, (f(xt))t∈N is a
non-increasing sequence, which is lower bounded because f is. The second
one is because, from the same corollary,

∀t ∈ N, ||∇f(xt)||2 ≤ 2L (f(xt) − f(xt+1)) .

6

Therefore, for any T ∈ N,
T −1∑
t=0

||∇f(xt)||2 ≤ 2L (f(x0) − f(xT)) ≤ 2L(f(x0) − inf f).

Therefore, the sum
∑

t≥0 ||∇f(xt)||2 converges, and (||∇f(xt)||)t∈N must go
to zero.

The guarantee that ||∇f(xt)|| → 0 when t → +∞ is quite weak (although
useful in some settings, as we will see in the lecture on non-convex optimiza-
tion). In particular, it does not imply that (f(xt))t∈N converges to f(x∗). To
guarantee convergence to f(x∗), we need stronger assumptios on f . This is
where convexity comes into play.

1.3 Smooth convex functions
Definition 1.8

We say that f is convex if

∀x, y ∈ Rn, t ∈ [0; 1], f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y). (3)

Proposition 1.9

When f is differentiable, it is convex if and only if

∀x, y ∈ Rn, f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ . (4)

Convexity is a strong structural property. From Equations (3) and (4), if
we have access to the value of f and ∇f at a few points, then we have upper
and lower bounds for the value of f at many other points. This allows to
precisely estimate the minimum and minimizer of f from only a few values.
This is why optimization is possible for convex functions, while it is quite
difficult for non-convex ones.

Remark

When f is twice differentiable, it is convex if and only if, for any x ∈ Rn,

Hess f(x) ⪰ 0.

7

Example 1.10

The quadratic function f : x → 1
2 ⟨x, Cx⟩ + ⟨x, b⟩ is convex if and only

if C ⪰ 0.

As announced, if we assume that f , in addition to being smooth, is con-
vex, we can prove that (f(xt))t∈N converges to f(x∗). Moreover, we have
guarantees on the convergence rate, as described by the following theorem.

Theorem 1.11

Let f be convex and L-smooth, for some L > 0.
We consider gradient descent with constant stepsize: αt = 1

L
for all t.

Then, for any t ∈ N,

f(xt) − f(x∗) ≤ 2L||x0 − x∗||2

t + 4
.

Proof. First step: We show that the sequence of iterates gets closer to the
minimizer x∗ at each step: For any t ∈ N,2

||x∗ − xt+1|| ≤ ||x∗ − xt||.

Let t be fixed. We find upper and lower bounds for f(x∗) using the
convexity and L-smoothness of f . First, by convexity,

f(x∗) ≥ f(xt) + ⟨∇f(xt), x∗ − xt⟩ = f(xt) + L ⟨xt − xt+1, x∗ − xt⟩ .

Then, using L-smoothness through Corollary 1.6, and also the fact that x∗
is a minimizer of f ,

f(x∗) ≤ f(xt+1)

≤ f(xt) − 1
2L

||∇f(xt)||2

= f(xt) − L

2
||xt+1 − xt||2.

2We do not need it for our proof, but a stronger inequality actually holds: ∀t ∈ N, ||x∗ −
xt+1||2 ≤ ||x∗ − xt||2 − ||xt+1 − xt||2.

8

Combining the two bounds yields

f(xt) + L ⟨xt − xt+1, x∗ − xt⟩ ≤ f(x∗) ≤ f(xt) − L

2
||xt+1 − xt||2

⇒ 2 ⟨xt − xt+1, x∗ − xt⟩ + ||xt+1 − xt||2 ≤ 0
⇐⇒ ||x∗ − xt+1||2 ≤ ||x∗ − xt||2.

Second step: We can now find an inequality relating f(xt+1) − f(x∗) and
f(xt) − f(x∗) which, applied iteratively, will prove the result. First, from
corollary 1.6,

f(xt+1) − f(x∗) ≤ f(xt) − f(x∗) − 1
2L

||∇f(xt)||2. (5)

In addition, because f is convex, as we have already seen in the first part,

f(xt) − f(x∗) ≤ ⟨∇f(xt), xt − x∗⟩ .

Using now Cauchy-Schwarz as well as the first step of the proof:

f(xt) − f(x∗) ≤ ||∇f(xt)|| ||xt − x∗|| ≤ ||∇f(xt)|| ||x0 − x∗||.

In other words, ||∇f(xt)|| ≥ f(xt)−f(x∗)
||x0−x∗|| . We plug this into Equation (5):

f(xt+1) − f(x∗) ≤ f(xt) − f(x∗) − 1
2L

(f(xt) − f(x∗))2

||x0 − x∗||2
.

Taking the inverse (and defining, by convention, 1
0 = +∞), we get

1
f(xt+1) − f(x∗)

≥ 1
f(xt) − f(x∗)

× 1
1 − 1

2L
f(xt)−f(x∗)
||x0−x∗||2

≥ 1
f(xt) − f(x∗)

(
1 + 1

2L

f(xt) − f(x∗)
||x0 − x∗||2

)
= 1

f(xt) − f(x∗)
+ 1

2L||x0 − x∗||2
.

For the second inequality, we have used the fact that 1
1−x

≥ 1 + x for any
x ∈ [0; 1].

Consequently, by iteration, it holds for any t ∈ N that
1

f(xt) − f(x∗)
≥ 1

f(x0) − f(x∗)
+ t

2L||x0 − x∗||2
.

9

Corollary 1.6, together with the fact that ∇f(x∗) = 0, ensures that

f(x0) − f(x∗) ≤ L

2
||x0 − x∗||2,

so for any t ∈ N,

1
f(xt) − f(x∗)

≥ 2
L||x0 − x∗||2

+ t

2L||x0 − x∗||2

= t + 4
2L||x0 − x∗||2

,

that is
f(xt) − f(x∗) ≤ 2L||x0 − x∗||2

t + 4
.

If we treat ||x0 −x∗|| as a constant, the previous theorem guarantees that
f(xt) − f(x∗) = O(1/t). Therefore, if we want to find an ϵ-approximate
minimizer (that is, an xt such that f(xt) − f(x∗) ≤ ϵ), we can do so with
O(1/ϵ) iterations of gradient descent. This is nice for problems where we
do not need a high-precision solution, but when ϵ is very small, this is too
much. Unfortunately, Theorem 1.11 is essentially optimal: There are smooth
and convex functions f for which the inequality is an equality (up to minor
changes in the constants).

1.4 Smooth strongly convex functions
We will now see a subclass of smooth convex functions for which gradient
descent converges much faster than the slow O(1/t) rate described in the last
section: the class of smooth strongly convex functions. It generalizes the case
of quadratic functions when the smallest eigenvalue is strictly positive (see
Example 1.13).

Definition 1.12

Let µ > 0 be fixed. If f is differentiable, we say that it is µ-strongly
convex if, for any x, y ∈ Rn,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2
||y − x||22.

10

We observe that, if f is strongly convex, then it is convex. But strong
convexity is a more powerful property than convexity: If we know the value
and gradient at a point x of a strongly convex function, we know a quadratic
lower bound for f (which, in particular, grows to +∞ away from x) instead
of a simple linear lower bound as for simply convex functions.

Remark

For any µ > 0, a differentiable function f is µ-strongly convex if and
only if the function fµ : x → f(x) − µ

2 ||x||2 is convex.

Proof. The function fµ is convex if and only if, for any x, y ∈ Rn,

fµ(y) ≥ fµ(x) + ⟨∇fµ(x), y − x⟩ ;

⇐⇒ f(y) − µ

2
||y||22 ≥ f(x) − µ

2
||x||22 + ⟨∇f(x) − µx, y − x⟩ ;

⇐⇒ f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2
(
||y||22 − 2 ⟨x, y − x⟩ − ||x||22

)
;

⇐⇒ f(y) ≥ f(x) + ⟨∇f(x) − µx, y − x⟩ + µ

2
||y − x||22.

Remark

As a consequence from the previous remark, as well as the one following
Definition 1.8, a twice differentiable function f is µ-strongly convex if
and only if, for any x ∈ Rn,

Hess f(x) − µId ⪰ 0,

or, in other words, all eigenvalues of Hess f(x) are larger than µ.

Example 1.13

We consider again the quadratic function f : x ∈ Rn → 1
2 ⟨x, Cx⟩ +

⟨x, b⟩. Its Hessian at any point is C. We denote λ1 ≥ λ2 ≥ · · · ≥ λn

the ordered eigenvalues of C. From the previous remark, if λn > 0, f
is λn-strongly convex. If λn ≤ 0, f is not µ-strongly convex, whatever
the value of µ > 0.

11

Theorem 1.14

Let 0 < µ < L be fixed. Let f be L-smooth and µ-strongly convex.
We consider gradient descent with constant stepsize: αt = 1

L
for all t.

Then, for any t ∈ N,

||xt − x∗||2 ≤
(

1 − µ

L

)t

||x0 − x∗||2; (6)

f(xt) − f(x∗) ≤ L

2

(
1 − µ

L

)2t

||x0 − x∗||22.

Proof. It is enough to prove Equation (6). Indeed, if this equation holds, it
implies (from Lemma 1.5 and because ∇f(x∗) = 0),

f(xt) ≤ f(x∗) + L

2
||xt − x∗||22. ⇒ f(xt) − f(x∗) ≤ L

2

(
1 − µ

L

)2t

||x∗ − x0||22.

To prove Equation (6), it suffices to prove that, for any t ∈ N,

||xt+1 − x∗||2 ≤
(

1 − µ

L

)
||xt − x∗||2.

Let us fix t ∈ N and establish this inequality.
Given that xt+1 = xt − 1

L
∇f(xt), we must simply upper bound

||xt+1 − x∗||2 = 1
L

||∇f(xt) − L(xt − x∗)||2

with a multiple of ||xt − x∗||2.
We must therefore establish an inequality involving only xt, x∗ and ∇f(xt).

For this, we first look at which inequlities we can write on these quantities. In
particular, we consider the inequality defining µ-strong convexity (Definition
1.12), at x = xt or x = x∗: for all y ∈ Rn,

f(y) ≥ f(xt) + ⟨∇f(xt), y − xt⟩ + µ

2
||y − xt||22; (7a)

f(y) ≥ f(x∗) + µ

2
||y − x∗||22. (7b)

And considering also the inequality of Lemma 1.5, we have, for all y ∈ Rn,

f(y) ≤ f(xt) + ⟨∇f(xt), y − xt⟩ + L

2
||y − xt||22; (8a)

f(y) ≤ f(x∗) + L

2
||y − x∗||22. (8b)

12

In particular, for all y ∈ Rn, combining (7a) and (8b), it holds that

f(x∗) + L

2
||y − x∗||22 − f(xt) − ⟨∇f(xt), y − xt⟩ − µ

2
||y − xt||22 ≥ 0.

The minimum of this expression is reached at y = Lx∗−µxt+∇f(xt)
L−µ

, and its
value is

f(x∗)−f(xt)−
||∇f(xt)||22
2(L − µ)

−
〈

∇f(xt),
L(x∗ − xt)

L − µ

〉
− Lµ

2(L − µ)
||xt−x∗||22 ≥ 0.

Similarly, combining (7b) and (8a), we get for all y ∈ Rn

f(xt) + ⟨∇f(xt), y − xt⟩ + L

2
||y − xt||22 − f(x∗) − µ

2
||y − x∗||22 ≥ 0.

The minimum of this expression is reached at y = Lxt−µx∗−∇f(xt)
L−µ

, and its
value is

f(xt)−f(x∗)− ||∇f(xt)||22
2(L − µ)

+
〈

∇f(xt),
µ(xt − x∗)

L − µ

〉
− Lµ

2(L − µ)
||xt−x∗||22 ≥ 0.

If we combine the two minima, we get

(L + µ) ⟨∇f(xt), xt − x∗⟩ ≥ ||∇f(xt)||22 + Lµ||xt − x∗||22

⇐⇒
∣∣∣∣∣∣∣∣∇f(xt) − L + µ

2
(xt − x∗)

∣∣∣∣∣∣∣∣
2

≤ L − µ

2
||xt − x∗||2.

Together with the triangular inequality, this proves the result:

1
L

||∇f(xt) − L(xt − x∗)||2

≤ 1
L

∣∣∣∣∣∣∣∣∇f(xt) − L + µ

2
(xt − x∗)

∣∣∣∣∣∣∣∣
2

+ 1
L

∣∣∣∣∣∣∣∣L + µ

2
(xt − x∗) − L(xt − x∗)

∣∣∣∣∣∣∣∣
2

≤ L − µ

2L
||xt − x∗||2 + L − µ

2L
||xt − x∗||2

=
(

1 − µ

L

)
||xt − x∗||2.

13

Hence, when f is smooth and strongly convex, (f(xt) − f(x∗))t∈N decays
geometrically, with rate at least

(
1 − µ

L

)2. An ϵ-approximate minimizer can
be found in O((log ϵ)/ log(1 − µ/L)) gradient descent iterations, much less
than the O(ϵ) obtained without the strong convexity assumption.

We call L
µ

≥ 1 the condition number of f . The closer to 1 it is, the faster
the convergence.

Remark

The rate
(
1 − µ

L

)2 in the previous theorem is tight, in the sense that
it is not possible to establish the same theorem for a strictly smaller
convergence rate. Indeed, when applied to a µ-strongly convex and
L-smooth quadratic function, the gradient descent iterates go to zero
at this exact rate.

1.5 Choice of stepsizes
Properly choosing the stepsizes (αt)t∈N is crucial: if they are too large, then
xt+1 is outside the domain where the approximation (2) holds, and the al-
gorithm may diverge. On the contrary, if they are too small, xt needs many
time steps to move away from x0, and convergence can be slow.

What a good stepsize choice is depends on the properties of f . Let us
however mention some common strategies:

1. Fixed schedule: the stepsizes are chosen in advance; αt generally de-
pends on t through a simple equation, like

∀t, αt = η, for some η > 0, (Constant stepsize)

or ∀t, αt = 1
t + 1

. (Monotonically decreasing stepsize)

2. Exact line search: for any t, choose αt such that

f(xt − αt∇f(xt)) = min
a∈R

f(xt − a∇f(xt)).

3. Backtracking line search: unless f has very particular properties, it is
a priori difficult to minimize f on a line. The exact line search strategy
is therefore difficult to implement. Instead, one can simply choose αt

14

such that f(xt − αt∇f(xt)) is “sufficiently smaller than f(xt)” The
approximation (2) implies, for αt small enough,

f(xt − αt∇f(xt)) ≈ f(xt) − αt||∇f(xt)||2.

If we consider that “being sufficiently smaller than f(xt)” means that
the previous approximation holds, up to the introduction of a multi-
plicative constant, the following algorithm describes a way to find a
suitable αt.

Input: Parameters c, τ ∈]0; 1[, maximal stepsize value
amax

Define αt = amax.
while f(xt − αt∇f(xt)) > f(xt) − cαt||∇f(xt)||2 do

Set αt = ταt.
end
Output: αt

Algorithm 2: Backtracking line search

2 Gradient descent with momentum
Gradient descent is by far the most well-known optimization algorithm. Be-
cause of its simplicity and flexibility, it is a method of choice for many prob-
lems. However, it is oftentimes unconveniently slow. In this lecture, we will
see that it is possible to speed up gradient descent by incorporating in it a
term called momentum. We will present two forms of momentum, leading to
the following two algorithms:

• heavy ball, which is the simplest form of gradient descent with momen-
tum, and already provides significant speed-ups,

• Nesterov’s method, which is slightly more complex, but performs much
better than gradient descent on a larger range of problems than heavy
ball.

2.1 Motivation of momentum
In this section, we motivate the introduction of momentum: we consider a
simple function f for which gradient descent converges slowly, explain why

15

convergence is slow, and why momentum can speed it up.
Let f be a simple quadratic function over R2:

∀(x1, x2) ∈ R2, f(x1, x2) = 1
2
(
λ1x

2
1 + λ2x

2
2
)

,

for parameters 0 < λ1 < λ2. The unique minimizer of f is

x∗ = (0, 0).

The gradient of f is

∀(x1, x2) ∈ R2, ∇f(x1, x2) = (λ1x1, λ2x2).

If we run gradient descent with a constant stepsize α > 0, the relation be-
tween iterates xt = (xt,1, xt,2) and xt+1 = (xt+1,1, xt+1,2) is

(xt+1,1, xt+1,2) = xt − α∇f(xt)
= (xt,1, xt,2) − α(λ1xt,1, λ2xt,2)
= ((1 − αλ1)xt,1, (1 − αλ2)xt,2) .

Since we want the iterates to go as fast as possible to zero, we would like
to choose α such that

|1 − αλ1| ≪ 1 and |1 − αλ2| ≪ 1.

If λ1 and λ2 are of the same order, this is fine: it suffices to pick α of the
order of 1

λ1
∼ 1

λ2
.

But if λ1 is much smaller than λ2 (that is, the problem is ill-conditioned),
there is no good choice of α. If we set α ≈ 1

λ1
, then

1 − αλ2 = 1 − λ2

λ1
< −1

and the second coordinate of the iterates, xt,2, diverges when t → ∞. If, on
the other hand, we set α ≈ 1

λ2
, then the second coordinate goes to 0, and

fast, but the first one converges very slowly:

1 − αλ1 = 1 − λ1

λ2
≈ 1.

16

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−2

−1

0

1

2

(a) Standard gradient descent

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−2

−1

0

1

2

(b) Gradient descent with momentum

Figure 1: First 15 iterates of gradient descent, for λ1 = 0.1, λ2 = 1

In this situation, gradient descent is slow. Figure 1a displays the first fifteen
iterates in the case where λ1 = 0.1 and λ2 = 1, for α = 4/3 (that is, of the
order of 1

λ2
). As expected, the second coordinate goes fast to zero, but the

first one decays only slowly.
A possible remedy to this slow convergence is to use the information

given by the past gradients when we define xt+1 from xt: instead of moving
in the direction given by −∇f(xt), we move in a direction mt+1 which is a
(weighted) average between −∇f(xt) and the previous gradients −∇f(x0),
..., −∇f(xt−1). Concretely, this yields the following iteration formula:

mt+1 = γtmt + (1 − γt)∇f(xt),
xt+1 = xt − αtmt+1.

Here, γt and αt are respectively the momentum and stepsize parameters.
The quantity mt, which is the average of all gradients until step t, is called
momentum.

Remark

An equivalent iteration formula is

xt+1 = xt − α̃t∇f(xt) + β̃t(xt − xt−1), (10)

with α̃t = αt(1 − γt) and β̃t = αtγt

αt−1
.

17

Proof of the remark. From the second equation in the iteration formula:

∀t ∈ N, mt+1 = xt − xt+1

αt

,

⇒ ∀t ∈ N − {0}, mt = xt−1 − xt

αt−1
.

We plug these equalities into the first iteration formula:

∀t ∈ N − {0},
xt − xt+1

αt

= γt

(
xt−1 − xt

αt−1

)
+ (1 − γt)∇f(xt),

⇒ ∀t ∈ N − {0}, xt+1 = xt − αt(1 − γt)∇f(xt) + αtγt

αt−1
(xt − xt−1) .

Using momentum instead of plain gradient in the iteration formula al-
lows to use a larger stepsize. Indeed, for large stepsizes, αt∇f(xt) diverges
when t grows, which causes the divergence of plain gradient descent. But
it is possible that αtmt stays bounded, in which case gradient descent with
momentum does not diverge: αtmt is an average of potentially large gradi-
ents pointing to different directions, which may therefore compensate each
other. This can be seen in Figure 1b: compared to Figure 1a, the stepsize is
larger; consequently, the first coordinate converges faster towards zero, but
the second coordinate does not diverge.

2.2 Heavy ball
The simplest version of gradient descent with momentum is when the mo-
mentum and stepsize parameters are constant. It is due to Polyak, and often
called heavy ball3.

3The name comes from the fact that the momentum term can be seen as an inertia
term, which reminds of the movement of a heavy ball falling down a mountain towards a
valley.

18

Input: Starting point x0, number of iterations T , stepsize α,
momentum parameter γ.

Set m0 = ∇f(x0);
for t = 0, . . . , T − 1 do

define

mt+1 = γmt + (1 − γ)∇f(xt);
xt+1 = xt − αmt+1.

end
return xT

Algorithm 3: Heavy ball

For proper choices of parameters, heavy ball exhibits a faster convergence
rate than plain gradient descent on many natural problems. We will prove
this fact for quadratic strongly convex functions.

Theorem 2.1 : heavy ball - quadratic case

Let 0 < µ < L be fixed. Let f be a quadratic function, which is
L-smooth and µ-strongly convex. We set

α = 1√
µL

, γ =

(√
L − √

µ
√

L + √
µ

)2

.

There exists a constant Cµ,L > 0 such that, for any t ∈ N,

f(xt) − f(x∗) ≤ Cµ,Lt2

(√
L − √

µ
√

L + √
µ

)2t

||x0 − x∗||2.

Before proving the theorem, let us compare the convergence rate with gra-
dient descent. From Theorem 1.14, gradient descent converges geometrically,
with decay rate

1 − µ

L
.

Theorem 2.1, on the other hand, guarantees for heavy ball a convergence

19

with decay rate (√
L − √

µ
√

L + √
µ

)2

≈ 1 − 4
√

µ

L
when µ ≪ L.

For ill-conditioned problems,
√

µ
L

is much larger than µ
L

, resulting in a sig-
nificant speed-up. As an example, if µ

L
= 0.01, dividing f(xt) − f(x∗) by a

factor 10 necessitates around
ln(10)

− ln
(
1 − µ

L

) ≈ 230

iterations with gradient descent, and only

ln(10)

− ln
((√

L−√
µ√

L+√
µ

)2
) ≈ 6

with heavy ball.

Proof of Theorem 2.1. Up to a change of coordinates, we can assume that f
is of the form

f(x1, . . . , xn) = 1
2
(
λ1x

2
1 + · · · + λnx2

n

)
,

where
L ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ µ > 0

are the eigenvalues of the matrix representing f .
Denoting xt = (xt,1, xt,2, . . . , xt,n), we have, for each t,

∇f(xt) = (λ1xt,1, . . . , λnxt,n),

hence the evolution equation of heavy ball is, for each t ∈ N,

∀k ≤ n, mt+1,k = γmt,k + (1 − γ)λkxt,k;
xt+1,k = xt,k − αmt+1,k = (1 − α(1 − γ)λk)xt,k − αγmt,k.

This can be written in matricial form: for each t ∈ N, k ∈ {1, . . . , n},(
mt+1,k

xt+1,k

)
= Mk

(
mt,k

xt,k

)
, with Mk =

(
γ (1 − γ)λk

−αγ 1 − α(1 − γ)λk

)
⇒

(
mt,k

xt,k

)
= M t

k

(
m0,k

x0,k

)
.

20

For any k, the matrix Mk can be triangularized in a (complex) orthonormal
basis: for some unitary matrix Gk, we can write it under the form

Mk = Gk

(
σ

(1)
k gk

0 σ
(2)
k

)
G−1

k .

For all t ∈ N, (
mt,k

xt,k

)
= Gk

(
(σ(1)

k)t gt,k

0 (σ(2)
k)t

)
G−1

k

(
m0,k

x0,k

)
,

with gt,k = ((σ(1)
k)t−1 + (σ(1)

k)t−2σ
(2)
k + · · · + (σ(2)

k)t−1)gk.

As Gk is unitary, it does not change the norm:∣∣∣∣∣∣∣∣(mt,k

xt,k

)∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

(σ(1)
k)t gk,t

0 (σ(2)
k)t

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣∣∣(m0,k

x0,k

)∣∣∣∣∣∣∣∣ .
(The triple bar denotes the spectral norm.)

For some constants C, C ′ > 0, the spectral norm can be upper bounded
by ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
(

(σ(1)
k)t gk,t

0 (σ(2)
k)t

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ C max

(
|σ(1)

k |t, |σ(2)
k |t, |gk,t|

)
≤ C ′t max

(
|σ(1)

k |, |σ(2)
k |
)t

.

We must compute max
(

|σ(1)
k |, |σ(2)

k |
)

, where we recall that σ
(1)
k , σ

(2)
k are

the eigenvalues of Mk. These eigenvalues are the roots of the characteristic
polynomial of Mk. A (slightly tedious) computation shows that the polyno-
mial has a negative discriminant. The eigenvalues are therefore complex and
conjugate one from each other:

|σ(1)
k |2 = |σ(2)

k |2 = σ
(1)
k σ

(2)
k = det(Mk) = γ.

21

In particular, max
(

|σ(1)
k |, |σ(2)

k |
)

= √
γ, and we get

∀k,

∣∣∣∣∣∣∣∣(mt,k

xt,k

)∣∣∣∣∣∣∣∣ ≤ C ′tγt/2
∣∣∣∣∣∣∣∣(m0,k

x0,k

)∣∣∣∣∣∣∣∣
⇒ |xt,k| ≤ C ′tγt/2

√
x2

0,k + m2
0,k ≤ C ′tγt/2

√
1 + L2|x0,k|

⇒ f(xt) − f(x∗) =
n∑

k=1

λkx2
t,k ≤ L(1 + L2)C ′2t2γt||x0||2.

If we set Cµ,L = L(1 + L2)C ′2 and recall that

γ =

(√
L − √

µ
√

L + √
µ

)2

,

we get the announced result:

f(xt) − f(x∗) ≤ Cµ,Lt2

(√
L − √

µ
√

L + √
µ

)2t

||x0 − x∗||2.

The theorem we just proved does not extend from strongly convex quadratic
functions to general strongly convex functions. Indeed, there are unfavorable
strongly convex functions, on which gradient descent with momentum is not
faster than its standard version (or even where it diverges whereas plain
gradient descent converges). Fortunately, many “interesting” functions are
either quadratic or, more frequently, approximately quadratic in the neigh-
borhood of a minimizer. For these functions, heavy ball is usually better
than plain gradient descent.

2.3 Nesterov’s method
In the previous section, we have said that heavy ball has a faster convergence
rate than gradient descent for quadratic problems, but not for all strongly
convex problems. In addition, it does not apply when the objective function
is not strongly convex. In this final section, we present an algorithm which
solves both these issues. As it has been found by Yurii Nesterov, it is often
called “Nesterov’s method”.

22

The iteration formula for this algorithm is

xt+1 = xt − αt∇f(xt + βt(xt − xt−1)) + βt(xt − xt−1), (11)

for a proper choice of parameters αt, βt. We see that it is very similar to the
general form of gradient descent with momentum, as described in Equation
(10), with the (important) difference that the gradient is not evaluated at
point xt, but at xt + βt(xt − xt−1).

If f is assumed to be L-smooth and µ-strongly convex, a simple choice is
possible for coefficients αt, βt:

∀t, αt = 1
L

and βt =
√

L − √
µ

√
L + √

µ
.

This yields the following algorithm.

Input: Starting point x0, number of iterations T , smoothness
parameter L, strong convexity parameter µ.

Set x−1 = x0, α = 1
L

, β =
√

L−√
µ√

L+√
µ
;

for t = 0, . . . , T − 1 do
define

xt+1 = xt − α∇f (xt + β(xt − xt−1)) + β(xt − xt−1).

end
return xT

Algorithm 4: Nesterov’s algorithm with constant parameters

With this choice, Nesterov’s method converges to the minimizer linearly,
with decay rate

1 −
√

µ

L
,

which is similar to the convergence rate of heavy ball, but true for all strongly
convex functions, not only quadratic ones!

23

Theorem 2.2 : Nesterov’s method: smooth strongly convex
case

Let 0 < µ < L be fixed. Let f be an L-smooth and µ-strongly convex
function.
Let (xt)t∈N be the sequence computed by Algorithm 4. For all t ∈ N,

f(xt) − f(x∗) ≤ 2
(

1 −
√

µ

L

)t

(f(x0) − f(x∗)) .

When f is not strongly convex, it is not possible to set parameters αt and
βt to constant values. A more complicated (and admittedly mysterious, at
first sight) definition must be used, described in the following algorithm.

Input: Starting point x0, number of iterations T , smoothness
parameter L.

Set x−1 = x0, α = 1
L

, λ−1 = 0;
for t = 0, . . . , T − 1 do

define

λt =
1 +

√
1 + 4λ2

t−1

2
;

βt = λt−1 − 1
λt

;

xt+1 = xt − α∇f (xt + βt(xt − xt−1)) + βt(xt − xt−1).

end
return xT

Algorithm 5: Nesterov’s algorithm with changing parameters

The convergence rate of this algorithm is given in the following theorem.

Theorem 2.3 : Nesterov’s method: smooth convex case

Let L > 0 be fixed. Let f be an L-smooth convex function.
Let (xt)t∈N be the sequence computed by Algorithm 5. For all t ∈ N,

f(xt) − f(x∗) ≤ 2L

(t + 1)2 ||x0 − x∗||2.

24

Comparing the rates in Theorems 1.11 and 2.3 shows the superiority of
Nesterov’s method over gradient descent for smooth convex functions f :

gradient descent rate: O

(
1
t

)
;

Nesterov’s method rate: O

(
1
t2

)
.

Actually, it is possible to show that Nesterov’s method is optimal for
smooth convex functions among all first-order algorithms. In other words, for
any first order algorithm (that is, an algorithm which only exploits gradient
information about f), there exists an “adversarial” objective function f ,
which is L-smooth and convex, such that, after t steps,

f(xt) − f(x∗) ≥ 3L

32(t + 1)2 ||x0 − x∗||2.

This means that, up to the constant, no first-order algorithm can achieve a
better convergence rate than the one in Theorem 2.3.

Nesterov’s method is also optimal for smooth strongly convex functions
among all first-order algorithms: no first-order algorithm can achieve a better
convergence rate, for L-smooth and µ-strongly convex functions, than the one
guaranteed by Theorem 2.2.

3 References
The main references used to prepare these notes are the original article where
Polyak introduced the heavy ball algorithm,

• Some methods of speeding up the convergence of iteration methods,
by B. T. Polyak, Ussr computational mathematics and mathematical
physics, volume 4(5), pages 1-17 (1964),

three classical books on optimization,

• Introductory lectures on convex optimization: a basic course, by Y.
Nesterov, Springer Science & Business Media, volume 87 (2003),

• Convex optimization, by S. Boyd and L. Vandenberghe, Cambridge
University Press (2004),

25

• Optimization for data analysis, by S. J. Wright and B. Recht, Cam-
bridge University Press (2022).

and two blog posts by S. Bubek on Nesterov’s method for smooth convex
functions,

• http://blogs.princeton.edu/imabandit/2013/04/01/accelerat
edgradientdescent/,

• http://blogs.princeton.edu/imabandit/2018/11/21/a-short-p
roof-for-nesterovs-momentum/.

Interested readers can read the following research article for more infor-
mation on the convergence issues of Heavy Ball on non-quadratic functions:

• Provable non-accelerations of the Heavy-Ball method, de B. Goujaud,
A. Taylor et A. Dieuleveut, arXiv preprint arXiv:2307.11291, 2023.

For another presentation of the advanced aspects of gradient descent, the
reader can also refer to

• Lecture notes on advanced gradient descent, by C. Royer, https://ww
w.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML
-GD.pdf (2021).

26

http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf

	Basic gradient descent
	Reminders
	Convergence guarantees for general functions
	Smooth functions

	Smooth convex functions
	Smooth strongly convex functions
	Choice of stepsizes

	Gradient descent with momentum
	Motivation of momentum
	Heavy ball
	Nesterov's method

	References

