Let $m, n \in \mathbb{N}^*$ be fixed integers.

Definition 0.1: Moore-Penrose pseudo-inverse

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. We say that a matrix $B \in \mathbb{R}^{n \times m}$ is a *Moore-Penrose pseudo-inverse* of A if it satisfies all following conditions:

- \bullet ABA = A;
- BAB = B;
- AB is symmetric;
- \bullet BA is symmetric.

Proposition 0.2

Any matrix A has a unique Moore-Penrose pseudo-inverse. We usually denote it A^{\dagger} .

Proof. Let $A \in \mathbb{R}^{m \times n}$ be fixed. We denote $a : \mathbb{R}^n \to \mathbb{R}^m$ the linear map whose representer matrix (in the canonical basis) is A.

Let us denote $\tilde{a}: \operatorname{Ker}(a)^{\perp} \to \operatorname{Range}(a)$ the restriction of a to $\operatorname{Ker}(a)^{\perp}$. It is injective (as $\operatorname{Ker}(a)^{\perp}$ contains no non-zero element of $\operatorname{Ker}(a)$). As, from the rank theorem,

$$\dim(\operatorname{Range}(a)) = n - \dim(\operatorname{Ker}(a)) = \dim(\operatorname{Ker}(a)^{\perp}),$$

it is actually bijective. We denote \tilde{a}^{-1} : Range $(a) \to \operatorname{Ker}(a)^{\perp}$ its inverse. We define $b: \mathbb{R}^m \to \mathbb{R}^n$ as the only linear map such that

$$b(x) = \tilde{a}^{-1}(x), \forall x \in \text{Range}(a);$$

= 0, \forall x \in \text{Range}(a)^{\perp}.

The linear map $a \circ b$ is the orthogonal projector onto Range(a): from its definition, it is the identity on Range(a) and zero on Range(a)^{\perp}. This implies that $a \circ b$ is symmetric, and that $(a \circ b) \circ a = a$.

Similarly, $b \circ a$ is the orthogonal projector onto $\operatorname{Ker}(a)^{\perp} = \operatorname{Range}(b)$. This implies that $b \circ a$ is symmetric and $(b \circ a) \circ b = b$.

Consequently, if we define B as the matrix representing b in the canonical basis, B satisfies all properties required by the definition of the Moore-Penrose pseudo-inverse. Consequently, we have shown existence.

Let us now show uniqueness. Let C be another matrix satisfying the same properties. Let c be the associated linear map. Let us show that c = b.

Since $(c \circ a) \circ c = c$, we must have Range $(c) \subset \text{Range}(c \circ a) \subset \text{Range}(c)$, hence Range $(c) = \text{Range}(c \circ a)$. Similarly, $\text{Ker}(c) = \text{Ker}(a \circ c)$.

As $a \circ c$ is self-adjoint, $\operatorname{Ker}(a \circ c) = \operatorname{Range}(a \circ c)^{\perp} \supset \operatorname{Range}(a)^{\perp}$, from which we deduce

$$\operatorname{Range}(a)^{\perp} \subset \operatorname{Ker}(c).$$

In particular, for any $x \in \text{Range}(a)^{\perp}$, c(x) = 0 = b(x).

As $c \circ a$ is self-adjoint, Range $(c \circ a) = \operatorname{Ker}(c \circ a)^{\perp} \subset \operatorname{Ker}(a)^{\perp}$. From this, we deduce that

$$\operatorname{Range}(c) \subset \operatorname{Ker}(a)^{\perp}$$
.

In particular, for any $x = a(y) \in \text{Range}(a)$, c(x) is an element of $\text{Ker}(a)^{\perp}$ such that $\tilde{a}(c(x)) = a(c(a(y))) = a(y) = x$. Therefore, $c(x) = \tilde{a}^{-1}(x) = b(x)$.

We have shown that b = c on Range(a) and Range(a)^{\perp}. The equality follows on all \mathbb{R}^m by linearity.

Proposition 0.3

For any matrix A,

- if A is invertible, then $A^{\dagger} = A^{-1}$;
- if A^TA is invertible, then $A^{\dagger} = (A^TA)^{-1}A^T$;
- if AA^T is invertible, then $A^{\dagger} = A^T (AA^T)^{-1}$.

Proof. It suffices to check, in each case, that the four properties of the definition hold. \Box

Proposition 0.4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $b \in \mathbb{R}^m$ be a vector. Then $A^{\dagger}b$ is a minimizer of the map

$$f: x \in \mathbb{R}^n \to \frac{1}{2}||Ax - b||_2^2.$$

(Even more, it is the minimizer with the smallest norm.)

Proof. Let us consider an arbitrary $x \in \mathbb{R}^n$. We write $x = z + A^{\dagger}b$. Then, from the properties of A^{\dagger} ,

$$f(x) = \frac{1}{2} ||Az + AA^{\dagger}b - b||_{2}^{2}$$

$$= \frac{1}{2} ||Az||_{2}^{2} + \langle Az, AA^{\dagger}b \rangle - \langle Az, b \rangle + f(A^{\dagger}b)$$

$$= \frac{1}{2} ||Az||_{2}^{2} + \langle AA^{\dagger}Az, b \rangle - \langle Az, b \rangle + f(A^{\dagger}b)$$

$$= \frac{1}{2} ||Az||_{2}^{2} + \langle Az, b \rangle - \langle Az, b \rangle + f(A^{\dagger}b)$$

$$= \frac{1}{2} ||Az||_{2}^{2} + f(A^{\dagger}b)$$

$$= \frac{1}{2} ||Az||_{2}^{2} + f(A^{\dagger}b)$$

$$\geq f(A^{\dagger}b).$$

Therefore, $f(A^{\dagger}b) = \min f$.

From the previous inequalities, we also see that $f(x) = f(A^{\dagger}b) = \min f$ if and only if Az = 0. In this case,

$$\begin{split} ||x||_2^2 &= ||z||_2^2 + 2 \left\langle z, A^\dagger b \right\rangle + ||A^\dagger b||_2^2 \\ &= ||z||_2^2 + 2 \left\langle z, A^\dagger A A^\dagger b \right\rangle + ||A^\dagger b||_2^2 \\ &= ||z||_2^2 + 2 \left\langle A^\dagger A z, A^\dagger b \right\rangle + ||A^\dagger b||_2^2 \\ &= ||z||_2^2 + 2 \left\langle A^\dagger 0, A^\dagger b \right\rangle + ||A^\dagger b||_2^2 \\ &= ||z||_2^2 + ||A^\dagger b||_2^2 \\ &\geq ||A^\dagger b||_2^2, \end{split}$$

with equality if and only if z = 0. Consequently, $A^{\dagger}b$ has minimal norm among all minimizers of f.