Let m,n € N* be fixed integers.

Definition 0.1: Moore-Penrose pseudo-inverse

Let A € R™*" be a matrix. We say that a matrix B € R"*"™ is a Moore-
Penrose pseudo-inverse of A if it satisfies all following conditions:

e ABA=A;
e BAB=DB;
e AB is symmetric ;

BA is symmetric.

Proposition 0.2

Any matrix A has a unique Moore-Penrose pseudo-inverse. We usually
denote it AT.

Proof. Let A € R™*™ be fixed. We denote a : R" — R™ the linear map
whose representer matrix (in the canonical basis) is A.

Let us denote a : Ker(a)t — Range(a) the restriction of a to Ker(a)*. It
is injective (as Ker(a)® contains no non-zero element of Ker(a)). As, from
the rank theorem,

dim(Range(a)) = n — dim(Ker(a)) = dim(Ker(a)™"),
it is actually bijective. We denote a~! : Range(a) — Ker(a)* its inverse.
We define b : R™ — R"™ as the only linear map such that

b(x) = a *(z),Vz € Range(a);
= 0,Vz € Range(a)*.

The linear map a o b is the orthogonal projector onto Range(a): from
its definition, it is the identity on Range(a) and zero on Range(a)*. This
implies that a o b is symmetric, and that (a o b) o a = a.

Similarly, boa is the orthogonal projector onto Ker(a)* = Range(b). This
implies that b o a is symmetric and (boa)ob="b.



Consequently, if we define B as the matrix representing b in the canon-
ical basis, B satisfies all properties required by the definition of the Moore-
Penrose pseudo-inverse. Consequently, we have shown existence.

Let us now show uniqueness. Let C' be another matrix satisfying the same
properties. Let ¢ be the associated linear map. Let us show that ¢ = b.

Since (coa) o ¢ = ¢, we must have Range(c) C Range(c o a) C Range(c),
hence Range(c) = Range(c o a). Similarly, Ker(c) = Ker(a o ¢).

As a o ¢ is self-adjoint, Ker(a o ¢) = Range(a o ¢)* D Range(a)*, from
which we deduce

Range(a)* C Ker(c).
In particular, for any z € Range(a)*, c(z) = 0 = b(z).

As coa is self-adjoint, Range(coa) = Ker(coa)t C Ker(a)*. From this,
we deduce that

Range(c) C Ker(a)*.

In particular, for any x = a(y) € Range(a), ¢(z) is an element of Ker(a)
such that a(c(r)) = a(c(a(y))) = a(y) = x. Therefore, c(x) = a~*(x) = b(x).

We have shown that b = ¢ on Range(a) and Range(a)®. The equality
follows on all R™ by linearity. O]
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Proposition 0.3

For any matrix A,
e if A is invertible, then At = A~ :
o if AT A is invertible, then AT = (AT A)~*AT ;
e if AAT is invertible, then AT = AT(AAT)~L.

Proof. 1t suffices to check, in each case, that the four properties of the defi-
nition hold. O

Proposition 0.4

Let A € R™*" be a matrix. Let b € R™ be a vector. Then A'h is a
minimizer of the map

1
fizeR" = §||A:E—b||§

(Even more, it is the minimizer with the smallest norm.)




Proof. Let us consider an arbitrary z € R®. We write x = 2z + A'b. Then,
from the properties of Af,

1
f) = 5llAz + AATy — b3
1
= Sl1A2[; + (A2, AAT) — (Az,0) + f(ATD)

_ %||Az]|§ +(AAT Az b) — (A2, b) + f(A'D)
_ %HAZH% + (Az,b) — (A2, b) + f(A'D)

1
= ZllAzI + £(AT)
> f(ATb).
Therefore, f(ATh) = min f.

From the previous inequalities, we also see that f(z) = f(A'h) = min f
if and only if Az = 0. In this case,

1213 = I2115 + 2 (2, ATo) + (| ATo||3
= ||2|[3 + 2 (z, A*AATb> + ||AD||2
= ||2||3 +2 (AT Az, A'b) + || AT0||3
= ||2[[3 + 2 (A0, ATb) + || A"0[3
= [|=]5 + 11 A0][3
> [|ATb|[3,
with equality if and only if z = 0. Consequently, Afb has minimal norm

among all minimizers of f.
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