Let $m, n \in \mathbb{N}^{*}$ be fixed integers.

Definition 0.1 : Moore-Penrose pseudo-inverse

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. We say that a matrix $B \in \mathbb{R}^{n \times m}$ is a MoorePenrose pseudo-inverse of A if it satisfies all following conditions:

- $A B A=A$;
- $B A B=B$;
- $A B$ is symmetric ;
- $B A$ is symmetric.

Proposition 0.2

Any matrix A has a unique Moore-Penrose pseudo-inverse. We usually denote it A^{\dagger}.

Proof. Let $A \in \mathbb{R}^{m \times n}$ be fixed. We denote $a: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the linear map whose representer matrix (in the canonical basis) is A.

Let us denote $\tilde{a}: \operatorname{Ker}(a)^{\perp} \rightarrow$ Range (a) the restriction of a to $\operatorname{Ker}(a)^{\perp}$. It is injective (as $\operatorname{Ker}(a)^{\perp}$ contains no non-zero element of $\operatorname{Ker}(a)$). As, from the rank theorem,

$$
\operatorname{dim}(\operatorname{Range}(a))=n-\operatorname{dim}(\operatorname{Ker}(a))=\operatorname{dim}\left(\operatorname{Ker}(a)^{\perp}\right)
$$

it is actually bijective. We denote $\tilde{a}^{-1}: \operatorname{Range}(a) \rightarrow \operatorname{Ker}(a)^{\perp}$ its inverse.
We define $b: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ as the only linear map such that

$$
\begin{aligned}
b(x) & =\tilde{a}^{-1}(x), \forall x \in \operatorname{Range}(a) ; \\
& =0, \forall x \in \operatorname{Range}(a)^{\perp} .
\end{aligned}
$$

The linear map $a \circ b$ is the orthogonal projector onto Range (a) : from its definition, it is the identity on Range (a) and zero on Range $(a)^{\perp}$. This implies that $a \circ b$ is symmetric, and that $(a \circ b) \circ a=a$.

Similarly, $b \circ a$ is the orthogonal projector onto $\operatorname{Ker}(a)^{\perp}=$ Range (b). This implies that $b \circ a$ is symmetric and $(b \circ a) \circ b=b$.

Consequently, if we define B as the matrix representing b in the canonical basis, B satisfies all properties required by the definition of the MoorePenrose pseudo-inverse. Consequently, we have shown existence.

Let us now show uniqueness. Let C be another matrix satisfying the same properties. Let c be the associated linear map. Let us show that $c=b$.

Since $(c \circ a) \circ c=c$, we must have Range $(c) \subset$ Range $(c \circ a) \subset \operatorname{Range}(c)$, hence Range $(c)=\operatorname{Range}(c \circ a)$. Similarly, $\operatorname{Ker}(c)=\operatorname{Ker}(a \circ c)$.

As $a \circ c$ is self-adjoint, $\operatorname{Ker}(a \circ c)=\operatorname{Range}(a \circ c)^{\perp} \supset \operatorname{Range}(a)^{\perp}$, from which we deduce

$$
\text { Range }(a)^{\perp} \subset \operatorname{Ker}(c) .
$$

In particular, for any $x \in \operatorname{Range}(a)^{\perp}, c(x)=0=b(x)$.
As $c \circ a$ is self-adjoint, Range $(c \circ a)=\operatorname{Ker}(c \circ a)^{\perp} \subset \operatorname{Ker}(a)^{\perp}$. From this, we deduce that

$$
\text { Range }(c) \subset \operatorname{Ker}(a)^{\perp} .
$$

In particular, for any $x=a(y) \in \operatorname{Range}(a), c(x)$ is an element of $\operatorname{Ker}(a)^{\perp}$ such that $\tilde{a}(c(x))=a(c(a(y)))=a(y)=x$. Therefore, $c(x)=\tilde{a}^{-1}(x)=b(x)$.

We have shown that $b=c$ on $\operatorname{Range}(a)$ and Range $(a)^{\perp}$. The equality follows on all \mathbb{R}^{m} by linearity.

Proposition 0.3

For any matrix A,

- if A is invertible, then $A^{\dagger}=A^{-1}$;
- if $A^{T} A$ is invertible, then $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$;
- if $A A^{T}$ is invertible, then $A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}$.

Proof. It suffices to check, in each case, that the four properties of the definition hold.

Proposition 0.4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $b \in \mathbb{R}^{m}$ be a vector. Then $A^{\dagger} b$ is a minimizer of the map

$$
f: x \in \mathbb{R}^{n} \rightarrow \frac{1}{2}\|A x-b\|_{2}^{2}
$$

(Even more, it is the minimizer with the smallest norm.)

Proof. Let us consider an arbitrary $x \in \mathbb{R}^{n}$. We write $x=z+A^{\dagger} b$. Then, from the properties of A^{\dagger},

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left\|A z+A A^{\dagger} b-b\right\|_{2}^{2} \\
& =\frac{1}{2}\|A z\|_{2}^{2}+\left\langle A z, A A^{\dagger} b\right\rangle-\langle A z, b\rangle+f\left(A^{\dagger} b\right) \\
& =\frac{1}{2}\|A z\|_{2}^{2}+\left\langle A A^{\dagger} A z, b\right\rangle-\langle A z, b\rangle+f\left(A^{\dagger} b\right) \\
& =\frac{1}{2}\|A z\|_{2}^{2}+\langle A z, b\rangle-\langle A z, b\rangle+f\left(A^{\dagger} b\right) \\
& =\frac{1}{2}\|A z\|_{2}^{2}+f\left(A^{\dagger} b\right) \\
& \geq f\left(A^{\dagger} b\right)
\end{aligned}
$$

Therefore, $f\left(A^{\dagger} b\right)=\min f$.
From the previous inequalities, we also see that $f(x)=f\left(A^{\dagger} b\right)=\min f$ if and only if $A z=0$. In this case,

$$
\begin{aligned}
\|x\|_{2}^{2} & =\|z\|_{2}^{2}+2\left\langle z, A^{\dagger} b\right\rangle+\left\|A^{\dagger} b\right\|_{2}^{2} \\
& =\|z\|_{2}^{2}+2\left\langle z, A^{\dagger} A A^{\dagger} b\right\rangle+\left\|A^{\dagger} b\right\|_{2}^{2} \\
& =\|z\|_{2}^{2}+2\left\langle A^{\dagger} A z, A^{\dagger} b\right\rangle+\left\|A^{\dagger} b\right\|_{2}^{2} \\
& =\|z\|_{2}^{2}+2\left\langle A^{\dagger} 0, A^{\dagger} b\right\rangle+\left\|A^{\dagger} b\right\|_{2}^{2} \\
& =\|z\|_{2}^{2}+\left\|A^{\dagger} b\right\|_{2}^{2} \\
& \geq\left\|A^{\dagger} b\right\|_{2}^{2},
\end{aligned}
$$

with equality if and only if $z=0$. Consequently, $A^{\dagger} b$ has minimal norm among all minimizers of f.

