
Let m, n ∈ N∗ be fixed integers.

Definition 0.1 : Moore-Penrose pseudo-inverse

Let A ∈ Rm×n be a matrix. We say that a matrix B ∈ Rn×m is a Moore-
Penrose pseudo-inverse of A if it satisfies all following conditions:

• ABA = A ;

• BAB = B ;

• AB is symmetric ;

• BA is symmetric.

Proposition 0.2

Any matrix A has a unique Moore-Penrose pseudo-inverse. We usually
denote it A†.

Proof. Let A ∈ Rm×n be fixed. We denote a : Rn → Rm the linear map
whose representer matrix (in the canonical basis) is A.

Let us denote ã : Ker(a)⊥ → Range(a) the restriction of a to Ker(a)⊥. It
is injective (as Ker(a)⊥ contains no non-zero element of Ker(a)). As, from
the rank theorem,

dim(Range(a)) = n − dim(Ker(a)) = dim(Ker(a)⊥),

it is actually bijective. We denote ã−1 : Range(a) → Ker(a)⊥ its inverse.
We define b : Rm → Rn as the only linear map such that

b(x) = ã−1(x), ∀x ∈ Range(a);
= 0, ∀x ∈ Range(a)⊥.

The linear map a ◦ b is the orthogonal projector onto Range(a): from
its definition, it is the identity on Range(a) and zero on Range(a)⊥. This
implies that a ◦ b is symmetric, and that (a ◦ b) ◦ a = a.

Similarly, b◦a is the orthogonal projector onto Ker(a)⊥ = Range(b). This
implies that b ◦ a is symmetric and (b ◦ a) ◦ b = b.
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Consequently, if we define B as the matrix representing b in the canon-
ical basis, B satisfies all properties required by the definition of the Moore-
Penrose pseudo-inverse. Consequently, we have shown existence.

Let us now show uniqueness. Let C be another matrix satisfying the same
properties. Let c be the associated linear map. Let us show that c = b.

Since (c ◦ a) ◦ c = c, we must have Range(c) ⊂ Range(c ◦ a) ⊂ Range(c),
hence Range(c) = Range(c ◦ a). Similarly, Ker(c) = Ker(a ◦ c).

As a ◦ c is self-adjoint, Ker(a ◦ c) = Range(a ◦ c)⊥ ⊃ Range(a)⊥, from
which we deduce

Range(a)⊥ ⊂ Ker(c).
In particular, for any x ∈ Range(a)⊥, c(x) = 0 = b(x).

As c ◦ a is self-adjoint, Range(c ◦ a) = Ker(c ◦ a)⊥ ⊂ Ker(a)⊥. From this,
we deduce that

Range(c) ⊂ Ker(a)⊥.

In particular, for any x = a(y) ∈ Range(a), c(x) is an element of Ker(a)⊥

such that ã(c(x)) = a(c(a(y))) = a(y) = x. Therefore, c(x) = ã−1(x) = b(x).
We have shown that b = c on Range(a) and Range(a)⊥. The equality

follows on all Rm by linearity.

Proposition 0.3

For any matrix A,

• if A is invertible, then A† = A−1 ;

• if AT A is invertible, then A† = (AT A)−1AT ;

• if AAT is invertible, then A† = AT (AAT )−1.

Proof. It suffices to check, in each case, that the four properties of the defi-
nition hold.

Proposition 0.4

Let A ∈ Rm×n be a matrix. Let b ∈ Rm be a vector. Then A†b is a
minimizer of the map

f : x ∈ Rn → 1
2

||Ax − b||22.

(Even more, it is the minimizer with the smallest norm.)
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Proof. Let us consider an arbitrary x ∈ Rn. We write x = z + A†b. Then,
from the properties of A†,

f(x) = 1
2

||Az + AA†b − b||22

= 1
2

||Az||22 +
〈
Az, AA†b

〉
− ⟨Az, b⟩ + f(A†b)

= 1
2

||Az||22 +
〈
AA†Az, b

〉
− ⟨Az, b⟩ + f(A†b)

= 1
2

||Az||22 + ⟨Az, b⟩ − ⟨Az, b⟩ + f(A†b)

= 1
2

||Az||22 + f(A†b)

≥ f(A†b).

Therefore, f(A†b) = min f .
From the previous inequalities, we also see that f(x) = f(A†b) = min f

if and only if Az = 0. In this case,

||x||22 = ||z||22 + 2
〈
z, A†b

〉
+ ||A†b||22

= ||z||22 + 2
〈
z, A†AA†b

〉
+ ||A†b||22

= ||z||22 + 2
〈
A†Az, A†b

〉
+ ||A†b||22

= ||z||22 + 2
〈
A†0, A†b

〉
+ ||A†b||22

= ||z||22 + ||A†b||22
≥ ||A†b||22,

with equality if and only if z = 0. Consequently, A†b has minimal norm
among all minimizers of f .
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