
Non-convex inverse problems
March 1, 2024, 2 hours
You can use any written or printed material.
For each exercise, the number of points is an indication ; it may change. The bonus
questions are not directly related to inverse problems. Therefore, they will not earn
you many points (and some of them are quite difficult), so you are encouraged to
admit the results and skip the questions, unless you have answered all the rest.

Exercise 1
Give an example of a realistic inverse problem which is not in the lecture notes.
(Be precise : I must understand what is the unknown, and what is the information.)
[2 points]

Exercise 2
We consider the problem

recover (x1, x2) ∈ R2

from y1
def= x1

and y2
def= x2

1 + x2
1
.

Is reconstruction unique ? Stable ?
[3 points]

Exercise 3
Let d, k,m ∈ N∗ be fixed, with k ≪ d.
For any E ⊂ {1, . . . , d}, we define eE ∈ Rd the vector such that

(eE)i = 1,∀i ∈ E,

(eE)i = −1,∀i ∈ {1, . . . , d} \ E.

We say that a vector x ∈ Rd is k-regular if there exist E1, . . . , Ek ⊂ {1, . . . , d} and
s1, . . . , sk ∈ R such that

x = s1eE1 + · · · + skeEk
.

Let Ek ⊂ Rd be the set of k-regular vectors.
For given A ∈ Rm×d, y ∈ Rm, we consider the problem

recover x ∈ Rd

knowing that x ∈ Ek, (Regular)
and Ax = y.

1. Is this problem convex or non-convex ?
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2. [Bonus] Show that the extremal points of

{x ∈ Rd, ||x||∞ ≤ 1}

are the vectors eE, for all E ⊂ {1, . . . , d}.
[We define the infinity norm as usual : for any x ∈ Rd, ||x||∞ = maxi≤d |xi|.]

3. Propose a convex relaxation for Problem (Regular).
4. In the context of Problem (Regular), propose a reasonable notion of k-restricted

isometry constant for the matrix A.
5. a) Compute the dual problem to your convex relaxation.

b) Let x0 be the (unknown) solution of Problem (Regular), that is, a k-regular
vector such that Ax0 = y. Let us assume that there exists c ∈ Rm such that

||AT c||1 = 1
and (AT c)i ≥ 0,∀i ≤ d such that (x0)i = ||x0||∞,

(AT c)i ≤ 0,∀i ≤ d such that (x0)i = −||x0||∞,

(AT c)i = 0,∀i ≤ d such that |(x0)i| < ||x0||∞.

Using the dual certificate strategy, show that your convex relaxation is tight.
[Remark : actually, this relaxation is most often not tight.]
[9 points]

Exercise 4
Let d,m ∈ N∗ be fixed.
We want to identify some vector xsol ∈ Rd \ {0}. For this, we assume that we have
access to m measurements y1, . . . , ym ∈ R such that, for all k ≤ m,

yk = u
(1)
k cos

(〈
v

(1)
k , xsol

〉)
+ u

(2)
k cos

(〈
v

(2)
k , xsol

〉)
,

where u
(1)
k , u

(2)
k ∈ R, v(1)

k , v
(2)
k ∈ Rd are known.

Since the cosine is an even function, these measurements do not allow to distinguish
xsol from −xsol, so we are only interested in reconstructing xsol up to sign.
1. a) Propose a smooth unconstrained optimization problem which is equivalent

to identifying ±xsol from y1, . . . , ym.
b) Based on this optimization problem, propose an algorithm for reconstructing

xsol.
We would like to rigorously analyze the correctness of the algorithm you just pro-
posed, but it is too difficult. As a first step towards an analysis, we replace the
objective function from Question 1.a) with

F : Rd → R
x → e−2||x||2

2 − e−
||x+xsol||

2

2 − e−
||x−xsol||

2

2 + e−2||xsol||
2

2 .

[Motivation : F is the expectation of a reasonable objective you could have proposed
in 1.a), when the u

(i)
k , v

(i)
k , k = 1, . . . ,m, i = 1, 2 follow normal distributions.]
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We try to recover ±xsol by running gradient descent on F , starting at a point x0. 1

This yields a sequence of iterates (xt)t∈N.
You can use without proof the following formulas : for all x ∈ Rd,

∇f(x) =
(
−2e−2||x||2 + e−

||x+xsol||
2

2 + e−
||x−xsol||

2

2

)
x

+
(
e−

||x+xsol||
2

2 − e−
||x−xsol||

2

2

)
xsol;

Hessf(x) =
(
−2e−2||x||2 + e−

||x+xsol||
2

2 + e−
||x−xsol||

2

2

)
Id

+ 8e−2||x||2xxT

− e−
||x+xsol||

2

2 (x + xsol)(x + xsol)T

− e−
||x−xsol||

2

2 (x− xsol)(x− xsol)T .

2. a) Compute Hessf(xsol).
b) Deduce from the previous question that, for all x close to xsol,

⟨∇f(x), x− xsol⟩ =
(

1 − e−2||xsol||2
)
||x− xsol||2 + 4e−2||xsol||2 ⟨xsol, x− xsol⟩2

+ O(||x− xsol||3).

c) [Bonus] Let µ > 0 be a real number. Show that, for all x close to xsol,

||x− µ∇f(x) − xsol||2 ≤
(

1 − 2µ
(

1 − e−2||xsol||2
))

||x− xsol||2 + µ2||∇f(x)||2

+ O(||x− xsol||3)

d) [Bonus] Show that, for all µ > 0 small enough and all x close enough to xsol,

||x− µ∇f(x) − xsol||2 ≤
(

1 − µ
(

1 − e−2||xsol||2
))

||x− xsol||2.

[Hint : you can use without proof the inequality ||∇f(x)|| ≤ 5||x−xsol||, valid
for all x ∈ Rd.]

e) Show that there exists ρ > 0 such that, for any x0 ∈ B(xsol, ρ), (xt)t∈N
converges to xsol if the stepsize of gradient descent is small enough.

f) Using the terminology of the lectures, how does one call the result you have
proved in the previous question ?

3. a) [Bonus] Show that, for all λ ∈ R,

(∇f(λxsol) = 0) ⇐⇒ (λ ∈ {−1, 0, 1}) .

[Hint : you can use without proof the following property : for all a, b ∈ R,(
ae−

a2
2 + be−

b2
2 = (a + b)e−

(a+b)2
2

)
⇐⇒ (a = 0 or b = 0 or a = −b) . ]

b) Compute the first-order critical points of F .
c) Compute the second-order critical points of F .

[9.5 points]
1. This is an idealized algorithm only : F cannot be computed when xsol is unknown.

3


