Non-convex inverse problems

March 1, 2024

Correction

Exercise 1

Imagine a computer criminal, which wants to read an email containing sensitive information. The email is encrypted. If the criminal manages to intercept the email, then she faces an inverse problem : she must identify the original text (which is the unknown) from its image through the encryption procedure (which is the observation).

Exercise 2

[Caution : this is a non-linear inverse problem. Therefore, it cannot be analyzed with the result on linear inverse problems from our first lecture.]
Reconstruction is unique : for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and associated measurements $\left(y_{1}, y_{2}\right)$, it holds $\left(x_{1}, x_{2}\right)=\left(y_{1},\left(1+y_{1}^{2}\right) y_{2}\right)$. Therefore, the measurements $\left(y_{1}, y_{2}\right)$ uniquely determine (x_{1}, x_{2}).
Reconstruction is not stable. Indeed, there exist pairs $\left(x_{1}, x_{2}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, with associated measurements $\left(y_{1}, y_{2}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ such that

$$
\left\|\left(y_{1}, y_{2}\right)-\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right\|_{2} \ll\left\|\left(y_{1}, y_{2}\right)\right\|_{2}
$$

but

$$
\left\|\left(x_{1}, x_{2}\right)-\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right\|_{2} \nless\left\|\left(x_{1}, x_{2}\right)\right\|_{2} .
$$

To show it, we can consider the pair $\left(x_{1}, x_{2}\right)=(t, t)$, for t large, and define $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=$ $(t, 0)$. Then

$$
\frac{\left\|\left(x_{1}, x_{2}\right)-\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right\|_{2}}{\left\|\left(x_{1}, x_{2}\right)\right\|_{2}}=\frac{t}{\sqrt{2} t}=\frac{1}{\sqrt{2}} \nless 1
$$

while

$$
\begin{aligned}
\frac{\left\|\left(y_{1}, y_{2}\right)-\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right\|_{2}}{\left\|\left(y_{1}, y_{2}\right)\right\|_{2}} & =\frac{\frac{t}{1+t^{2}}}{t \sqrt{1+\frac{1}{\left(1+t^{2}\right)^{2}}}} \\
& =\frac{1}{\left(1+t^{2}\right) \sqrt{1+\frac{1}{\left(1+t^{2}\right)^{2}}}} \\
& \sim \frac{1}{t^{2}} \\
& \ll 1 .
\end{aligned}
$$

Exercise 3

1. It is a non-convex problem, because \mathcal{E}_{k} is not-convex. Indeed, \mathcal{E}_{k} contains $\mathbb{R} e_{E}$ for all $E \subset\{1, \ldots, d\}$, therefore $\operatorname{Conv}\left(\mathcal{E}_{k}\right) \supset \operatorname{Vect}\left(\left\{e_{E}\right\}_{E \subset\{1, \ldots, d\}}\right)=\mathbb{R}^{d}$. But $\mathcal{E}_{k} \neq \mathbb{R}^{d}$ (it is a finite union of k-dimensional vector subspaces of \mathbb{R}^{d}, and $k<d$), so \mathcal{E}_{k} is different from its convex hull.
2. First, let x be any point of this set, which we denote \mathcal{M}. We assume that $x \neq e_{E}$ for all E and show that x is not extremal. For all $i, x_{i} \in[-1 ; 1]$. Since $x \neq e_{E}$ for all E, there exists an index i such that $x_{i} \neq-1$ and $x_{i} \neq 1$ (i.e. $\left.x_{i} \in\right]-1 ; 1[$). We define $y, z \in \mathbb{R}^{d}$ such that

$$
\begin{aligned}
y_{j} & =z_{j}=x_{j}, \forall j \neq i, \\
y_{i} & =1, \\
z_{i} & =-1 .
\end{aligned}
$$

Then $x=(1-t) y+t z$ for $t=\frac{1-x_{i}}{2} \in[0 ; 1]$. The vectors y, z belong to \mathcal{M} and are different from x. Therefore, x is not extremal.
Now, let us fix $E \subset\{1, \ldots, d\}$. The vector e_{E} is in \mathcal{M}. Let us show that it is extremal. Let $y, z \in \mathcal{M}$ and $t \in[0 ; 1]$ be such that $e_{E}=(1-t) y+t z$. We must show that either y or z is equal to e_{E}.
If $t=0$, then $y=e_{E}$. If $t=1$, then $z=e_{E}$. Let us assume $0<t<1$ and show that $y=z=e_{E}$. For all $i \leq d$, if $i \in E$, then $\left(e_{E}\right)_{i}=1$. Since $y_{i} \leq 1$ and $z_{i} \leq 1$, it holds

$$
1=\left(e_{E}\right)_{i}=(1-t) y_{i}+t z_{i} \leq(1-t)+t=1 .
$$

The inequality must be an equality, meaning that $y_{i}=z_{i}=1=\left(e_{E}\right)_{i}$. The same reasoning applies if $i \notin E$. It shows that y, z and e_{E} are equal.
3. The problem we want to solve is (assuming that a solution exists)

$$
\begin{array}{r}
\text { minimize }\|x\|_{\text {reg }} \\
\text { over } x \in \mathbb{R}^{d} \text { such that } A x=y
\end{array}
$$

where, for any $x,\|x\|_{\text {reg }}=\min \left\{s \in\{1, \ldots, d\}, x \in \mathcal{E}_{s}\right\}$.
Following the intuition discussed in the lecture, since the vectors e_{E} are the extremal points of the ℓ^{∞} ball, it makes sense to approximate $\|.\|_{\text {reg }}$ with the infinity ball, yielding the convex problem

$$
\begin{align*}
& \operatorname{minimize}\|x\|_{\infty} \\
& \text { over } x \in \mathbb{R}^{d} \tag{Relax-Reg}
\end{align*}
$$

$$
\text { such that } A x=y \text {. }
$$

4. Mimicking the definition of k-restricted isometry constant for sparse recovery, we could define the k-restricted isometry constant of A as the smallest positive number $\delta_{k}>0$ (if it exists) such that, for all $x \in \mathcal{E}_{k}$,

$$
\left(1-\delta_{k}\right)\|x\|_{2} \leq\|A x\|_{2} \leq\left(1+\delta_{k}\right)\|x\|_{2} .
$$

5. a) Problem (Relax-Reg) can be rewritten as a min-max problem :

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{d}} \max _{z \in \mathbb{R}^{m}} & \|x\|_{\infty}+\langle y-A x, z\rangle \\
& =\min _{x \in \mathbb{R}^{d}} \max _{z \in \mathbb{R}^{m}}\langle y, z\rangle+\|x\|_{\infty}-\left\langle x, A^{T} z\right\rangle
\end{aligned}
$$

We compute the dual by exchanging the minimum and maximum :

$$
\begin{aligned}
& \max _{z \in \mathbb{R}^{m}} \min _{x \in \mathbb{R}^{d}}\langle y, z\rangle+\|x\|_{\infty}-\left\langle x, A^{T} z\right\rangle \\
&=\max _{z \in \mathbb{R}^{m}}\langle y, z\rangle+\min _{x \in \mathbb{R}^{d}}\left(\|x\|_{\infty}-\left\langle x, A^{T} z\right\rangle\right) \\
&=\max _{z \in \mathbb{R}^{m}}\langle y, z\rangle . \\
&\left\|A^{T} z\right\|_{1} \leq 1
\end{aligned}
$$

Indeed, $\min _{x \in \mathbb{R}^{d}}\|x\|_{\infty}-\left\langle x, A^{T} z\right\rangle=-\infty$ if $\left\|A^{T} z\right\|_{1}>1:$ denoting $h \in \mathbb{R}^{d}$ the vector such that $h_{i}=1$ if $\left(A^{T} z\right)_{i} \geq 0$ and $h_{i}=-1$ if $\left(A^{T} z\right)_{i}<0$, we have, for all $t \geq 0$,

$$
\begin{aligned}
\|t h\|_{\infty}-\left\langle t h, A^{T} z\right\rangle & =t-t| | A^{T} z \|_{1} \\
& =-t\left(\left\|A^{T} z\right\|_{1}-1\right),
\end{aligned}
$$

which goes to $-\infty$ when t goes to ∞.
On the other hand, if $\left\|A^{T} z\right\|_{1} \leq 1$, then $\|x\|_{\infty}-\left\langle x, A^{T} z\right\rangle \geq\|x\|_{\infty}-$ $\|x\|_{\infty}\left\|A^{T} z\right\|_{1} \geq 0$ for all $x \in \mathbb{R}^{d}$. Since $x=0$ yields the value 0 , the minimum is zero.
The dual problem is

$$
\begin{aligned}
& \text { maximize }\langle y, z\rangle, \\
& \text { over } z \in \mathbb{R}^{d} \\
& \text { such that }\left\|A^{T} z\right\|_{1} \leq 1 .
\end{aligned}
$$

b) We must show that c is a feasible point for the dual problem, with the same objective value as the primal at x_{0}, that is

$$
\left\|x_{0}\right\|_{\infty}=\langle y, c\rangle .
$$

The vector c is feasible for the dual problem because $\left\|A^{T} c\right\|_{1}=1$. In addition,

$$
\begin{aligned}
\langle y, c\rangle & =\left\langle A x_{0}, c\right\rangle \\
& =\left\langle x_{0}, A^{T} c\right\rangle \\
& =\sum_{i=1}^{d}\left(x_{0}\right)_{i}\left(A^{T} c\right)_{i} \\
& =\sum_{i=1}^{d}\left|\left(x_{0}\right)_{i} \|\left(A^{T} c\right)_{i}\right| \\
& =\sum_{i=1}^{d}\left\|x_{0}\right\|_{\infty}\left|\left(A^{T} c\right)_{i}\right| \\
& =\left\|x_{0}\right\|_{\infty}\left\|A^{T} c\right\|_{1} \\
& =\left\|x_{0}\right\|_{\infty} .
\end{aligned}
$$

The fourth equality is true because the components of x_{0} and $A^{T} c$ have the same sign. The fifth one is true because, if $\left|\left(x_{0}\right)_{i}\right|<\left\|x_{0}\right\|_{\infty}$, then $\left(A^{T} c\right)_{i}=0$, hence in all situations, $\left|\left(x_{0}\right)_{i}\right|\left|\left(A^{T} c\right)_{i}\right|=\left|\left|x_{0} \|_{\infty}\right|\left(A^{T} c\right)_{i}\right|$.

Exercise 4

1. a) Let us define

$$
\begin{aligned}
g: \mathbb{R}^{d} & \rightarrow \\
x & \rightarrow \frac{1}{2 m} \sum_{k=1}^{m}\left(u_{k}^{(1)} \cos \left(\left\langle v_{k}^{(1)}, x\right\rangle\right)+u_{k}^{(2)} \cos \left(\left\langle v_{k}^{(2)}, x\right\rangle\right)-y_{k}\right)^{2} .
\end{aligned}
$$

If the inverse problem which consists in recovering $x_{s o l}$ from y_{1}, \ldots, y_{m} has a solution, then this problem is equivalent to finding a global minimizer of g over \mathbb{R}^{d}. Indeed, the minimum of g is 0 (since it is a nonnegative function, which is equal to 0 at $x_{\text {sol }}$). Therefore, a global minimizer is exactly a point at which g cancels, that is, a point at which, for all k,

$$
u_{k}^{(1)} \cos \left(\left\langle v_{k}^{(1)}, x\right\rangle\right)+u_{k}^{(2)} \cos \left(\left\langle v_{k}^{(2)}, x\right\rangle\right)=y_{k}
$$

b) We can choose an arbitrary point x_{0}, then try to minimize g by gradient descent with backtracking linesearch.
2. a) $\operatorname{Hess} f\left(x_{\text {sol }}\right)=\left(1-e^{-2| | x_{\text {sol }} \|^{2}}\right) I_{d}+4 e^{-2\left\|x_{\text {sol }}\right\|^{2}} x_{\text {sol }} x_{\text {sol }}^{T}$.
b) For all x going to $x_{s o l}$,

$$
\begin{aligned}
& \left\langle\nabla f(x), x-x_{\text {sol }}\right\rangle \\
& =\left\langle\nabla f\left(x_{\text {sol }}\right)+\operatorname{Hess} f\left(x_{\text {sol }}\right)\left(x-x_{\text {sol }}\right)+O\left(\left\|x-x_{\text {sol }}\right\|^{2}\right), x-x_{\text {sol }}\right\rangle \\
& =\left\langle\operatorname{Hess} f\left(x_{\text {sol }}\right)\left(x-x_{\text {sol }}\right)+O\left(\left\|x-x_{\text {sol }}\right\|^{2}\right), x-x_{\text {sol }}\right\rangle \\
& =\left\langle\operatorname{Hess} f\left(x_{\text {sol }}\right)\left(x-x_{\text {sol }}\right), x-x_{\text {sol }}\right\rangle+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) \\
& =\left\langle\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\left(x-x_{\text {sol }}\right)+4 e^{-2\left\|x_{\text {sol }}\right\|^{2}} x_{\text {sol }}\left\langle x_{\text {sol }}, x-x_{\text {sol }}\right\rangle, x-x_{\text {sol }}\right\rangle \\
& \quad+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) \\
& =\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\left\|x-x_{\text {sol }}\right\|^{2}+4 e^{-2\left\|x_{\text {sol }}\right\|^{2}}\left\langle x_{\text {sol }}, x-x_{\text {sol }}\right\rangle^{2} \\
& \quad+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) .
\end{aligned}
$$

c) For all x close to $x_{\text {sol }}$,

$$
\begin{aligned}
&\left\|x-\mu \nabla f(x)-x_{\text {sol }}\right\|^{2}=\left\|x-x_{\text {sol }}\right\|^{2}-2 \mu\left\langle\nabla f(x), x-x_{\text {sol }}\right\rangle+\mu^{2}\|\nabla f(x)\|^{2} \\
&=\left\|x-x_{\text {sol }}\right\|^{2}-2 \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
&-8 \mu e^{-2 \| x_{\text {sol }}}\left\|^{2}\left\langle x_{\text {sol }}, x-x_{\text {sol }}\right\rangle^{2}+\mu^{2}\right\| \nabla f(x) \|^{2} \\
&+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) \\
& \leq\left\|x-x_{\text {sol }}\right\|^{2}-2 \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
&+\mu^{2}\|\nabla f(x)\|^{2}+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) \\
&=\left(1-2 \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
&+\mu^{2}\|\nabla f(x)\|^{2}+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) .
\end{aligned}
$$

d) Let $\mu>0$ be such that

$$
\mu \leq \frac{1-e^{-2\left\|x_{s o l}\right\|^{2}}}{50}
$$

Then, from the previous question and the hint,

$$
\begin{aligned}
&\left\|x-\mu \nabla f(x)-x_{\text {sol }}\right\|^{2} \leq\left(1-2 \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
&+25 \mu^{2}\left\|x-x_{\text {sol }}\right\|^{2}+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) \\
& \leq\left(1-2 \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
&+\frac{\mu}{2}\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\left\|x-x_{\text {sol }}\right\|^{2}+O\left(\left\|x-x_{\text {sol }}\right\| \|^{3}\right) \\
&=\left(1-\frac{3}{2} \mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\right)\left\|x-x_{\text {sol }}\right\|^{2} \\
& \quad+O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right) .
\end{aligned}
$$

For x close enough to $x_{\text {sol }}$, the " $O\left(\left\|x-x_{\text {sol }}\right\|^{3}\right)$ " term is smaller than

$$
\frac{1}{2} \mu\left(1-e^{-2\left\|x_{s o l}\right\|^{2}}\right)\left\|x-x_{s o l}\right\|^{2} .
$$

Therefore, when x is close enough to $x_{\text {sol }}$,

$$
\left\|x-\mu \nabla f(x)-x_{s o l}\right\|^{2} \leq\left(1-\mu\left(1-e^{-2\left\|x_{s o l}\right\|^{2}}\right)\right)\left\|x-x_{\text {sol }}\right\|^{2} .
$$

e) Let $\rho>0$ and $\mu_{0}>0$ be such that the inequality of the previous question holds true for all $x \in B\left(x_{\text {sol }}, \rho\right)$ and any $\left.\left.\mu \in\right] 0 ; \mu_{0}\right]$.
Let us consider the gradient descent iterates $\left(x_{t}\right)_{t \in \mathbb{N}}$, for some $x_{0} \in B\left(x_{s o l}, \rho\right)$, with stepsize smaller than μ_{0}. Then, for each t,

$$
\left\|x_{t+1}-x_{s o l}\right\|^{2} \leq\left(1-\mu\left(1-e^{-2\left\|x_{\text {sol }}\right\|^{2}}\right)\right)\left\|x_{t}-x_{\text {sol }}\right\|^{2}
$$

(The proof is by iteration over t : it is true for $t=0$ from the inequality established in the previous question. Assuming it is true up to some $t-1$, it implies that $\left\|x_{t}-x_{\text {sol }}\right\| \leq\left\|x_{t-1}-x_{\text {sol }}\right\| \leq \cdots \leq\left\|x_{0}-x_{\text {sol }}\right\| \leq \rho$. Therefore, the inequality of Question 2.d) can be applied to x_{t}, which shows the result for t.)
As a consequence, for all t,

$$
\left\|x_{t}-x_{\text {sol }}\right\|^{2} \leq\left(1-\mu\left(1-e^{-2\left\|x_{s o l}\right\|^{2}}\right)\right)^{t}\left\|x_{0}-x_{\text {sol }}\right\|^{2}
$$

so that $\left\|x_{t}-x_{\text {sol }}\right\| \rightarrow 0$ when $t \rightarrow+\infty$.
f) It is a local convergence result.
3. a) For any $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \nabla f\left(\lambda x_{s o l}\right) \\
& =\left(-2 e^{-2 \lambda^{2}\left\|x_{s o l}\right\|^{2}}+e^{-\frac{(\lambda+1)^{2}}{2}\left\|x_{s o l}\right\|^{2}}+e^{-\frac{(\lambda-1)^{2}}{2}\left\|x_{s o l}\right\|^{2}}\right) \lambda x_{\text {sol }}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(e^{-\frac{(\lambda+1)^{2}}{2}\left\|x_{\text {sol }}\right\|^{2}}-e^{-\frac{(\lambda-1)^{2}}{2}\left\|x_{\text {sol }}\right\|^{2}}\right) x_{\text {sol }} \\
= & \left(-2 \lambda e^{-2 \lambda^{2}\left\|x_{\text {sol }}\right\|^{2}}+(\lambda+1) e^{-\frac{(\lambda+1)^{2}}{2}\left\|x_{\text {sol }}\right\|^{2}}+(\lambda-1) e^{-\frac{(\lambda-1)^{2}}{2}\left\|x_{\text {sol }}\right\|^{2}}\right) x_{\text {sol }} \\
= & \left(-(a+b) e^{-\frac{(a+b)^{2}}{2}}+a e^{-\frac{a^{2}}{2}}+b e^{-\frac{b^{2}}{2}}\right) \frac{x_{\text {sol }}}{\left\|x_{\text {sol }}\right\|},
\end{aligned}
$$

where $a=(\lambda+1)\left\|x_{\text {sol }}\right\|$ and $b=(\lambda-1) \| x_{\text {sol }}$. From the hint, this is zero if and only if $a=0$ (which is equivalent to $\lambda=-1$) or $b=0$ (which is equivalent to $\lambda=1$) or $a=-b$ (which is equivalent to $\lambda=0$).
b) First, let x be any critical point. From the expression of the gradient, two cases are possible :

1. $-2 e^{-2\|x\|^{2}}+e^{-\frac{\| x+x_{\text {sol }}}{2} \|^{2}}+e^{-\frac{\left\|x-x_{\text {sol }}\right\|^{2}}{2}}=0$;
2. $-2 e^{-2\|x\|^{2}}+e^{-\frac{\| x+x_{\text {sol }}}{2} \|^{2}}+e^{-\frac{\| x-x_{\text {sol }}}{2} \|^{2}} \neq 0$, in which case

$$
x=\frac{e^{-\frac{\left\|x+x_{\text {sol }}\right\|^{2}}{2}}-e^{-\frac{\left\|x-x_{\text {sol }}\right\|^{2}}{2}}}{-2 e^{-2\|x\|^{2}}+e^{-\frac{\left\|x x x_{\text {sol }}\right\| \|^{2}}{2}}+e^{-\frac{\left\|x-x_{\text {sol }}\right\|^{2}}{2}}} x_{\text {sol }},
$$

which notably implies that x is colinear to $x_{\text {sol }}$.
We discuss the two cases separately. In the first case, in order for the gradient to be zero, since $x_{\text {sol }} \neq 0$, we must have

$$
\begin{aligned}
0 & =e^{-\frac{\left\|x+x_{s o l}\right\|^{2}}{2}}-e^{-\frac{\left\|x-x_{s o l}\right\|^{2}}{2}} \\
& =e^{-\frac{\left\|x+x_{s o l}\right\|^{2}}{2}}\left(1-e^{2\left\langle x, x_{s o l}\right\rangle}\right) .
\end{aligned}
$$

Therefore, $1-e^{2\left\langle x, x_{s o l}\right\rangle}=0$, which is equivalent to $\left\langle x, x_{s o l}\right\rangle=0$. Then,

$$
\begin{aligned}
0 & =-2 e^{-2\|x\|^{2}}+e^{-\frac{\left\|x+x_{\text {sol }}\right\|^{2}}{2}}+e^{-\frac{\left\|x-x_{\text {sol }}\right\|^{2}}{2}} \\
& =2\left(-e^{-2\|x\|^{2}}+e^{-\frac{\|x\|^{2}+\left\|x_{\text {sol }}\right\|^{2}}{2}}\right) \\
& =2 e^{-\frac{1}{2}\|x\|^{2}}\left(-e^{-\frac{3}{2}\|x\|^{2}}+e^{-\frac{\left\|x_{\text {sol }}\right\|^{2}}{2}}\right) .
\end{aligned}
$$

This implies that $3\|x\|^{2}=\left\|x_{\text {sol }}\right\|^{2}$, therefore $\|x\|=\frac{\left\|x_{\text {sol }}\right\|}{\sqrt{3}}$.
Let us now discuss the second case. Since, in this case, x is colinear to $x_{\text {sol }}$, we must have $x=-x_{\text {sol }}$ or $x=0$ or $x=x_{\text {sol }}$, from the previous question.
To summarize, the only points which can be first-order critical are

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{d},\left\langle x, x_{s o l}\right\rangle=0,\|x\|=\frac{\left\|x_{\text {sol }}\right\|}{\sqrt{3}}\right\} \cup\left\{-x_{\text {sol }}, 0, x_{\text {sol }}\right\} . \tag{1}
\end{equation*}
$$

We check that these points are actually first-order critical. For $-x_{\text {sol }}, 0, x_{\text {sol }}$, it is a consequence of the previous question. Now, for some $x \in \mathbb{R}^{d}$ such that $\left\langle x, x_{\text {sol }}\right\rangle=0$ and $\|x\|=\frac{\left\|x_{\text {sol }}\right\|}{\sqrt{3}}$,

$$
\nabla f(x)=\left(-2 e^{-\frac{2}{3}\left\|x_{s o l}\right\|^{2}}+2 e^{-\frac{\|x\|\left\|^{2}+\right\| x_{\text {sol }} \|^{2}}{2}}\right) x
$$

$$
\begin{aligned}
& +\left(e^{-\frac{\|x\|\left\|^{2}+\right\| x_{\text {sol }} \|^{2}}{2}}-e^{-\frac{\|x\|\left\|^{2}+\right\| x_{\text {sol }} \|^{2}}{2}}\right) x_{\text {sol }} \\
= & \left(-2 e^{-\frac{2}{3}\left\|x_{\text {sol }}\right\|^{2}}+2 e^{-\frac{\|x\|^{2}+\left\|x_{\text {sol }}\right\|^{2}}{2}}\right) x \\
= & \left(-2 e^{-\frac{2}{3}\left\|x_{\text {sol }}\right\|^{2}}+2 e^{-\frac{\frac{4}{3}\left\|x_{\text {sol }}\right\|^{2}}{2}}\right) x \\
= & 0 .
\end{aligned}
$$

As a consequence, the first-order critical points are exactly the points given in Equation (1).
c) We have seen at Question 2.a) that

$$
\operatorname{Hess} f\left(x_{s o l}\right)=\left(1-e^{-2\left\|x_{s o l}\right\|^{2}}\right) I_{d}+4 e^{-2\left\|x_{s o l}\right\|^{2}} x_{\text {sol }} x_{\text {sol }}^{T} .
$$

It is the sum of two semidefinite positive matrices. Hence, it is semidefinite positive, so $x_{\text {sol }}$ is a second-order critical point. As $\operatorname{Hess} f\left(x_{\text {sol }}\right)=\operatorname{Hess} f\left(-x_{\text {sol }}\right)$, $-x_{\text {sol }}$ is also a second-order critical point.
On the contrary,

$$
\operatorname{Hess} f(0)=-2\left(1-e^{-\frac{\left\|x_{s o l}\right\|^{2}}{2}}\right) I_{d}-2 e^{-\frac{\left\|x_{\text {sol }}\right\|^{2}}{2}} x_{\text {sol }} x_{\text {sol }}^{T} .
$$

It is the sum of two semidefinite negative (and non zero) matrices, hence 0 is not a second-order critical point.
Now, let x be such that $\left\langle x, x_{\text {sol }}\right\rangle=0$ and $\|x\|=\frac{\left\|x_{\text {sol }}\right\|}{\sqrt{3}}$. Then

$$
\text { Hess } f(x)=6 e^{-\frac{2}{3}\left\|x_{\text {sol }}\right\|^{2}} x x^{T}-2 e^{-\frac{2}{3}\left\|x_{\text {sol }}\right\|^{2}} x_{\text {sol }} x_{\text {sol }}^{T} .
$$

In particular,

$$
\left\langle\operatorname{Hess} f(x)\left(x_{\text {sol }}\right), x_{\text {sol }}\right\rangle=-2 e^{-\frac{2}{3}\left\|x_{\text {sol }}\right\|^{2}}\left\|x_{\text {sol }}\right\|^{4}<0 .
$$

Therefore, Hess $f(x) \nsucceq 0$, so x is not a second-order critical point. The only second-order critical points are $-x_{\text {sol }}$ and $x_{\text {sol }}$.

