Non-convex inverse problems
March 1, 2024

Correction

Exercise 1

Imagine a computer criminal, which wants to read an email containing sensitive
information. The email is encrypted. If the criminal manages to intercept the email,
then she faces an inverse problem : she must identify the original text (which is the
unknown) from its image through the encryption procedure (which is the observa-
tion).

Exercise 2

[Caution : this is a non-linear inverse problem. Therefore, it cannot be analyzed
with the result on linear inverse problems from our first lecture.]

Reconstruction is unique : for any (z;,75) € R? and associated measurements
(y1,92), it holds (w1, 22) = (y1, (1 + y?)y2). Therefore, the measurements (y, )
uniquely determine (1, x2).

Reconstruction is not stable. Indeed, there exist pairs (z1,x2) and (z},2}), with
associated measurements (y1,y2), (v, y5) such that

(w1, y2) — (W1, va)ll2 < (Y1, m2)] |2

but

(21, 22) — (2, 25)[]2 & (21, 22)||2-
To show it, we can consider the pair (z1,x2) = (t,t), for t large, and define (2, x}) =
(¢,0). Then
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Exercise 3

1. It is a non-convex problem, because & is not-convex. Indeed, &, contains Reg
for all E C {1,...,d}, therefore Conv(&;) D Vect ({eE}EC{LWd}) = R?. But
Er # RY (it is a finite union of k-dimensional vector subspaces of R?, and k < d),
so &, is different from its convex hull.



2. First, let = be any point of this set, which we denote M. We assume that z # eg
for all E and show that x is not extremal. For all i, z; € [—1;1]. Since z # ep
for all E, there exists an index i such that x; # —1 and x; # 1 (i.e. z; €] —1;1]).
We define y, z € R? such that

Yi = 2z = ZL’j,Vj 7é Z.u
yi:17
Zi = —1.

Then z = (1 —t)y + tz for t = 1=% € [0;1]. The vectors y, z belong to M and
are different from x. Therefore, x is not extremal.
Now, let us fix £ C {1,...,d}. The vector eg is in M. Let us show that it is
extremal. Let y, z € M and ¢ € [0; 1] be such that ep = (1 —t)y + tz. We must
show that either y or z is equal to eg.
Ift=0,then y =eg. If t =1, then z = eg. Let us assume 0 < t < 1 and show
that y = 2z = eg. For alli < d, if i € E, then (eg); = 1. Since y; < 1 and z; < 1,
it holds

1= (eE)Z = (l—t)yi—l—tzi S (1—t)+t: 1.
The inequality must be an equality, meaning that y; = 2;, = 1 = (eg);. The
same reasoning applies if ¢ ¢ F. It shows that y, z and ep are equal.

3. The problem we want to solve is (assuming that a solution exists)

minimize ||z||e,

over z € R?% such that Az = v,

where, for any z, ||z||,e, = min{s € {1,....d}, z € &}.

Following the intuition discussed in the lecture, since the vectors eg are the
extremal points of the ¢* ball, it makes sense to approximate ||.||,¢, with the
infinity ball, yielding the convex problem

minimize ||z]s
over v € R? (Relax-Reg)
such that Ax = y.

4. Mimicking the definition of k-restricted isometry constant for sparse recovery,
we could define the k-restricted isometry constant of A as the smallest positive
number 05 > 0 (if it exists) such that, for all x € &,

(1= de)lxll2 < [[Azlly < (1 + 0)ll||2-

5. a) Problem (Relax-Reg) can be rewritten as a min-max problem :
i 0 — A )
min max||z|le + (y — Az, 2)

i . T
= min max (y, 2) + ||zl (x, A" z)



We compute the dual by exchanging the minimum and maximum :

. T
max min (y, z) + ||« — (z,4"2)

_ ; T
= ax <y7 Z> + iIGI%R% (HxHoo - <.T,A Z>)

z€R™

= Imnax Z).
z€R™ <y’ >
[[AT2][1<1

Indeed, min,ega ||z]|oo — (2, AT2) = —oc0 if ||AT2||; > 1 : denoting h € R?
the vector such that h; = 1if (AT2); > 0 and h; = —1if (AT2); < 0, we have,
for all t > 0,

|[th||oe — (th, ATZ) =t — t||A"2]|;
= —t(||A"[|; - 1),

which goes to —oo when ¢ goes to oo.

On the other hand, if [|[ATz||; < 1, then [|z||w — (2,AT2) > ||2]|o —
[|2]|s]|AT 2|y > 0 for all z € RY. Since z = 0 yields the value 0, the mi-
nimum 1is zero.

The dual problem is

maximize (y, z),
over z € R?

such that ||ATz||; < 1.

b) We must show that ¢ is a feasible point for the dual problem, with the same
objective value as the primal at z(, that is

[|zolloe = (y, ) -

The vector c is feasible for the dual problem because ||A%¢||; = 1. In addition,

(y,c) = (Azo, )
= <:1c0, ATC>

= Z(l’o)z‘(ATC)i
= Z [ ()il (AT e

d
= llzollocl(ATe)i]
=1

= [|zolloc || A" el
= [[zo]|oo-

The fourth equality is true because the components of zy and A”c have the
same sign. The fifth one is true because, if |(x¢)| < ||70||oo, then (ATc); = 0,
hence in all situations, |(zo):|[(AT¢)i| = ||7o|oo| (AT )4
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Exercise 4

1. a) Let us define

g: R — R
2
=D Py (u,(:) Ccos <<v,(€1),x>) + u,(f) oS (<v,(€2),:z:>> - yk> .
If the inverse problem which consists in recovering x4, from ¥, ..., v,, has

a solution, then this problem is equivalent to finding a global minimizer of g
over R?. Indeed, the minimum of ¢ is 0 (since it is a nonnegative function,
which is equal to 0 at z,,). Therefore, a global minimizer is exactly a point
at which ¢ cancels, that is, a point at which, for all &,

ul(;) COS <<vl(€1), x>> + u,(f) COS <<v,(€2),x>> = Yg.

b) We can choose an arbitrary point xg, then try to minimize g by gradient
descent with backtracking linesearch.

2. a) Hess (o) = (1 _ e—2||xsoz||2> Iy + de~2leallPy 0T
b) For all x going to x,

(Vf(x),r — xs01)

= (V[ (@sor) + Hess f(201) (2 — 2s01) + Ol — o0l [*), 2 — 2501
= (Hessf (2s01)(x — Zs01) + O(||7 — o0t |*), @ — Zs0)

= (Hess f (201 (2 — Tg01), & — Tsor) + O(]|2 — 240|*)

- <(]- - e_ZHISOlHQ) (I - xsol) + 46_QHmSOZHstol <$sol7 Xr — msol> y U — xsol>
+O(||x — xsolHS)
_ (1 _ e_auxsonﬁ) 12— oot |2 + de~2Wsatl® (g a — ))?

+O(||x — xsol||3)'
c) For all z close to xg,

| — uV f(z) — xsol||2 = ||z — xsol||2 —2u(Vf(x),x — T501) + M2||Vf(x)||2
— |z = w2 — 20 (1 _ e—2||zsoz\|2> & = 2o

— Sue sl (g — 2V 4 12|V ()]
+ O(||z — Isol”g)

< ||z — zsa||* — 2p (1 — 6_2”%“"2) |2 — 20t
+ 12V f(@)|]> + O(||lz — zsall?)

- (1 — o (1 _ e—zuxSmP)) 2 = Zautl P

+ 12|V @) + O]z — zou] ).



d) Let © > 0 be such that
1 — 6_2“xsol||2

50
Then, from the previous question and the hint,

p<

o= BV (@) = ol P < (1= 20 (1= e 25) ) 2 —
+ 25027 |2 — 2ol + Ol = 2oal )

< (1 o (1 _ efzuccsol\\?» 2 = oot
2 (1= el o = a4 O — )

3
<1 - n (1 B e_znmsol?)) e — 2o

+O0(llz = sall*).

For z close enough to .., the “O(||z — z4,||?)” term is smaller than

1
Sh <1 _ 6—2Hacsoz||2> |z — 20|

Therefore, when z is close enough to x,,,
HI - /LVf(x) - xsolH2 S (1 — M <1 - 672“36501”2)) Hl’ - xsol||2-

e) Let p > 0 and pg > 0 be such that the inequality of the previous question
holds true for all z € B(x4,, p) and any g €]0; o).
Let us consider the gradient descent iterates (z;);en, for some zg € B(x s, p),
with stepsize smaller than . Then, for each ¢,

ey =zl < (1= p (1= 72501 ) flar =

(The proof is by iteration over ¢ : it is true for ¢ = 0 from the inequality
established in the previous question. Assuming it is true up to some ¢t — 1, it
implies that ||x; — zsal| < ||zio1 — Tsarl] < -+ < ||xo — Ts01]| < p. Therefore,
the inequality of Question 2.d) can be applied to z;, which shows the result
for ¢.)

As a consequence, for all t,

t
o = ol 2 < (1= (1= e 22) ) g — ],

so that ||z — zsu|| = 0 when ¢ — 4o0.
f) It is a local convergence result.

3. a) For any A\ € R,

Vf()\xsol)

2 2 (+1)? 2 (=12 2
— (_26_2/\ HxsolH + e 2 ||xsolH + e 2 HxsolH ) )\xsol




(+1)? 2 (-n? 2
+ (e_gxsoln _ e_THmsolH )xsol

(12

_ (_2>\6—2)\2||$soz|2 F O+ Ve 5 llweal® () — 1)6—“;”2|xsoz|2> Too)

= (—(a + b)e_mgb>2 + e + be_b;) Lol :
|| st |
where a = (A+1)]||zs0]| and b = (A—1)]||xso. From the hint, this is zero if and
only if @ = 0 (which is equivalent to A = —1) or b = 0 (which is equivalent
to A =1) or a = —b (which is equivalent to A = 0).
b) First, let x be any critical point. From the expression of the gradient, two
cases are possible :

7Hx+$sol|‘2 7”16_73501”2

1. —ge-2lell? o o legpal® | lemal®

2 2
llztzsorll llz—z g0l

2. —2e 2P L o="3 4o 3°" £ 0, in which case

lztagll? lz—zggll?
(& 2 — € 2
T = T
—2|z|2 —_ o+ o112 _ llz—=zgorl12 soby
—2e +e 2 2

which notably implies that x is colinear to x4;.
We discuss the two cases separately. In the first case, in order for the gradient
to be zero, since x4, # 0, we must have

letzggll? ez ggl?
O=e 2 —e 2

-tz gop 12

= o (1 2o

Therefore, 1 — eX®s0t) = (0, which is equivalent to (x, 2,,;) = 0. Then,

2 2
_ lztasoll _lz=zs0ll
2

0=—2¢ 2 4 ¢ > +e

2 112+l 4011
2
— 9¢3llal? <_e§||w|2 n 6'2”) .

[|Zsotl

This implies that 3||z||* = ||zsu||?, therefore ||z|| =

V3
Let us now discuss the second case. Since, in this case, x is colinear to x4,
we must have r = —x,, or x = 0 or x = x,,, from the previous question.

To summarize, the only points which can be first-order critical are

v e R (m an) = 0, [Jal| = L2l e 0 md (1)
V3

We check that these points are actually first-order critical. For —x ., 0, 2.,
it is a consequence of the previous question. Now, for some z € R? such that

(2, T501) = 0 and ||z]| = ij%m?

V1) = (a5 )
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el Pz g2 el Pz g2
e 2 — € 2 T sol

2 2 Hel 12+l gor 12
—§H~”Esoz|\ + 26_% T

+
= (—26
= <—26‘§'M'2 + 26—W) .

=0.

As a consequence, the first-order critical points are exactly the points given

in Equation (1).
c) We have seen at Question 2.a) that

_ 2 _ 2
Hessf (2401) = (1 _ o2zl ) Iy + de 2ol 0T

It is the sum of two semidefinite positive matrices. Hence, it is semidefinite po-
sitive, so x4y is a second-order critical point. As Hessf () = Hessf(—2s0),
—Z40 18 also a second-order critical point.

On the contrary,

E I
Hessf(0) = —2 (1 —e % ) I, — 2 % Tl ).

It is the sum of two semidefinite negative (and non zero) matrices, hence 0 is
not a second-order critical point.

Now, let « be such that (z,z5,) = 0 and ||z|| = ngm Then

_2 2 _2 2
HeSSf(x) — 66 3Hxsol|| IIT _ 26 3Hmsol|| xSleT

sol*

In particular,
<Hessf(x)(a;sol), xsol) = —2€_§H$S°l||2||$sol||4 < 0.

Therefore, Hessf(z) # 0, so z is not a second-order critical point.
The only second-order critical points are —zs, and .



