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Exercise 1
Imagine a computer criminal, which wants to read an email containing sensitive
information. The email is encrypted. If the criminal manages to intercept the email,
then she faces an inverse problem : she must identify the original text (which is the
unknown) from its image through the encryption procedure (which is the observa-
tion).

Exercise 2
[Caution : this is a non-linear inverse problem. Therefore, it cannot be analyzed
with the result on linear inverse problems from our first lecture.]

Reconstruction is unique : for any (x1, x2) ∈ R2 and associated measurements
(y1, y2), it holds (x1, x2) = (y1, (1 + y2

1)y2). Therefore, the measurements (y1, y2)
uniquely determine (x1, x2).
Reconstruction is not stable. Indeed, there exist pairs (x1, x2) and (x′

1, x
′
2), with

associated measurements (y1, y2), (y′1, y′2) such that

||(y1, y2) − (y′1, y′2)||2 ≪ ||(y1, y2)||2

but
||(x1, x2) − (x′

1, x
′
2)||2 ̸≪ ||(x1, x2)||2.

To show it, we can consider the pair (x1, x2) = (t, t), for t large, and define (x′
1, x

′
2) =

(t, 0). Then
||(x1, x2) − (x′

1, x
′
2)||2

||(x1, x2)||2
= t√

2t
= 1√

2
̸≪ 1

while

||(y1, y2) − (y′1, y′2)||2
||(y1, y2)||2

=
t

1+t2

t
√

1 + 1
(1+t2)2

= 1
(1 + t2)

√
1 + 1

(1+t2)2

∼ 1
t2

≪ 1.

Exercise 3

1. It is a non-convex problem, because Ek is not-convex. Indeed, Ek contains ReE
for all E ⊂ {1, . . . , d}, therefore Conv(Ek) ⊃ Vect

(
{eE}E⊂{1,...,d}

)
= Rd. But

Ek ̸= Rd (it is a finite union of k-dimensional vector subspaces of Rd, and k < d),
so Ek is different from its convex hull.
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2. First, let x be any point of this set, which we denote M. We assume that x ̸= eE
for all E and show that x is not extremal. For all i, xi ∈ [−1; 1]. Since x ̸= eE
for all E, there exists an index i such that xi ̸= −1 and xi ̸= 1 (i.e. xi ∈]−1; 1[).
We define y, z ∈ Rd such that

yj = zj = xj,∀j ̸= i,

yi = 1,
zi = −1.

Then x = (1 − t)y + tz for t = 1−xi

2 ∈ [0; 1]. The vectors y, z belong to M and
are different from x. Therefore, x is not extremal.
Now, let us fix E ⊂ {1, . . . , d}. The vector eE is in M. Let us show that it is
extremal. Let y, z ∈ M and t ∈ [0; 1] be such that eE = (1− t)y + tz. We must
show that either y or z is equal to eE.
If t = 0, then y = eE. If t = 1, then z = eE. Let us assume 0 < t < 1 and show
that y = z = eE. For all i ≤ d, if i ∈ E, then (eE)i = 1. Since yi ≤ 1 and zi ≤ 1,
it holds

1 = (eE)i = (1 − t)yi + tzi ≤ (1 − t) + t = 1.

The inequality must be an equality, meaning that yi = zi = 1 = (eE)i. The
same reasoning applies if i /∈ E. It shows that y, z and eE are equal.

3. The problem we want to solve is (assuming that a solution exists)

minimize ||x||reg
over x ∈ Rd such that Ax = y,

where, for any x, ||x||reg = min{s ∈ {1, . . . , d}, x ∈ Es}.
Following the intuition discussed in the lecture, since the vectors eE are the
extremal points of the ℓ∞ ball, it makes sense to approximate ||.||reg with the
infinity ball, yielding the convex problem

minimize ||x||∞
over x ∈ Rd (Relax-Reg)

such that Ax = y.

4. Mimicking the definition of k-restricted isometry constant for sparse recovery,
we could define the k-restricted isometry constant of A as the smallest positive
number δk > 0 (if it exists) such that, for all x ∈ Ek,

(1 − δk)||x||2 ≤ ||Ax||2 ≤ (1 + δk)||x||2.

5. a) Problem (Relax-Reg) can be rewritten as a min-max problem :

min
x∈Rd

max
z∈Rm

||x||∞ + ⟨y − Ax, z⟩

= min
x∈Rd

max
z∈Rm

⟨y, z⟩ + ||x||∞ −
〈
x,AT z

〉
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We compute the dual by exchanging the minimum and maximum :

max
z∈Rm

min
x∈Rd

⟨y, z⟩ + ||x||∞ −
〈
x,AT z

〉
= max

z∈Rm
⟨y, z⟩ + min

x∈Rd

(
||x||∞ −

〈
x,AT z

〉)
= max

z∈Rm

||AT z||1≤1

⟨y, z⟩ .

Indeed, minx∈Rd ||x||∞ −
〈
x,AT z

〉
= −∞ if ||AT z||1 > 1 : denoting h ∈ Rd

the vector such that hi = 1 if (AT z)i ≥ 0 and hi = −1 if (AT z)i < 0, we have,
for all t ≥ 0,

||th||∞ −
〈
th, AT z

〉
= t− t||AT z||1
= −t(||AT z||1 − 1),

which goes to −∞ when t goes to ∞.
On the other hand, if ||AT z||1 ≤ 1, then ||x||∞ −

〈
x,AT z

〉
≥ ||x||∞ −

||x||∞||AT z||1 ≥ 0 for all x ∈ Rd. Since x = 0 yields the value 0, the mi-
nimum is zero.
The dual problem is

maximize ⟨y, z⟩ ,
over z ∈ Rd

such that ||AT z||1 ≤ 1.

b) We must show that c is a feasible point for the dual problem, with the same
objective value as the primal at x0, that is

||x0||∞ = ⟨y, c⟩ .

The vector c is feasible for the dual problem because ||AT c||1 = 1. In addition,

⟨y, c⟩ = ⟨Ax0, c⟩
=

〈
x0, A

T c
〉

=
d∑

i=1

(x0)i(AT c)i

=
d∑

i=1

|(x0)i||(AT c)i|

=
d∑

i=1

||x0||∞|(AT c)i|

= ||x0||∞||AT c||1
= ||x0||∞.

The fourth equality is true because the components of x0 and AT c have the
same sign. The fifth one is true because, if |(x0)i| < ||x0||∞, then (AT c)i = 0,
hence in all situations, |(x0)i||(AT c)i| = ||x0||∞|(AT c)i|.
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Exercise 4

1. a) Let us define

g : Rd → R

x → 1
2m

∑m
k=1

(
u

(1)
k cos

(〈
v

(1)
k , x

〉)
+ u

(2)
k cos

(〈
v

(2)
k , x

〉)
− yk

)2
.

If the inverse problem which consists in recovering xsol from y1, . . . , ym has
a solution, then this problem is equivalent to finding a global minimizer of g
over Rd. Indeed, the minimum of g is 0 (since it is a nonnegative function,
which is equal to 0 at xsol). Therefore, a global minimizer is exactly a point
at which g cancels, that is, a point at which, for all k,

u
(1)
k cos

(〈
v

(1)
k , x

〉)
+ u

(2)
k cos

(〈
v

(2)
k , x

〉)
= yk.

b) We can choose an arbitrary point x0, then try to minimize g by gradient
descent with backtracking linesearch.

2. a) Hessf(xsol) =
(

1 − e−2||xsol||2
)
Id + 4e−2||xsol||2xsolx

T
sol.

b) For all x going to xsol,

⟨∇f(x), x− xsol⟩
=

〈
∇f(xsol) + Hessf(xsol)(x− xsol) + O(||x− xsol||2), x− xsol

〉
=

〈
Hessf(xsol)(x− xsol) + O(||x− xsol||2), x− xsol

〉
= ⟨Hessf(xsol)(x− xsol), x− xsol⟩ + O(||x− xsol||3)

=
〈(

1 − e−2||xsol||2
)

(x− xsol) + 4e−2||xsol||2xsol ⟨xsol, x− xsol⟩ , x− xsol

〉
+ O(||x− xsol||3)

=
(

1 − e−2||xsol||2
)
||x− xsol||2 + 4e−2||xsol||2 ⟨xsol, x− xsol⟩2

+ O(||x− xsol||3).

c) For all x close to xsol,

||x− µ∇f(x) − xsol||2 = ||x− xsol||2 − 2µ ⟨∇f(x), x− xsol⟩ + µ2||∇f(x)||2

= ||x− xsol||2 − 2µ
(

1 − e−2||xsol||2
)
||x− xsol||2

− 8µe−2||xsol||2 ⟨xsol, x− xsol⟩2 + µ2||∇f(x)||2

+ O(||x− xsol||3)

≤ ||x− xsol||2 − 2µ
(

1 − e−2||xsol||2
)
||x− xsol||2

+ µ2||∇f(x)||2 + O(||x− xsol||3)

=
(

1 − 2µ
(

1 − e−2||xsol||2
))

||x− xsol||2

+ µ2||∇f(x)||2 + O(||x− xsol||3).
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d) Let µ > 0 be such that

µ ≤ 1 − e−2||xsol||2

50
.

Then, from the previous question and the hint,

||x− µ∇f(x) − xsol||2 ≤
(

1 − 2µ
(

1 − e−2||xsol||2
))

||x− xsol||2

+ 25µ2||x− xsol||2 + O(||x− xsol||3)

≤
(

1 − 2µ
(

1 − e−2||xsol||2
))

||x− xsol||2

+ µ

2

(
1 − e−2||xsol||2

)
||x− xsol||2 + O(||x− xsol||3)

=
(

1 − 3
2
µ
(

1 − e−2||xsol||2
))

||x− xsol||2

+ O(||x− xsol||3).

For x close enough to xsol, the “O(||x− xsol||3)” term is smaller than

1
2
µ
(

1 − e−2||xsol||2
)
||x− xsol||2.

Therefore, when x is close enough to xsol,

||x− µ∇f(x) − xsol||2 ≤
(

1 − µ
(

1 − e−2||xsol||2
))

||x− xsol||2.

e) Let ρ > 0 and µ0 > 0 be such that the inequality of the previous question
holds true for all x ∈ B(xsol, ρ) and any µ ∈]0;µ0].
Let us consider the gradient descent iterates (xt)t∈N, for some x0 ∈ B(xsol, ρ),
with stepsize smaller than µ0. Then, for each t,

||xt+1 − xsol||2 ≤
(

1 − µ
(

1 − e−2||xsol||2
))

||xt − xsol||2.

(The proof is by iteration over t : it is true for t = 0 from the inequality
established in the previous question. Assuming it is true up to some t− 1, it
implies that ||xt − xsol|| ≤ ||xt−1 − xsol|| ≤ · · · ≤ ||x0 − xsol|| ≤ ρ. Therefore,
the inequality of Question 2.d) can be applied to xt, which shows the result
for t.)
As a consequence, for all t,

||xt − xsol||2 ≤
(

1 − µ
(

1 − e−2||xsol||2
))t

||x0 − xsol||2,

so that ||xt − xsol|| → 0 when t → +∞.
f) It is a local convergence result.

3. a) For any λ ∈ R,

∇f(λxsol)

=
(
−2e−2λ2||xsol||2 + e−

(λ+1)2
2 ||xsol||2 + e−

(λ−1)2
2 ||xsol||2

)
λxsol
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+
(
e−

(λ+1)2
2 ||xsol||2 − e−

(λ−1)2
2 ||xsol||2

)
xsol

=
(
−2λe−2λ2||xsol||2 + (λ + 1)e−

(λ+1)2
2 ||xsol||2 + (λ− 1)e−

(λ−1)2
2 ||xsol||2

)
xsol

=
(
−(a + b)e−

(a+b)2
2 + ae−

a2
2 + be−

b2
2

)
xsol

||xsol||
,

where a = (λ+1)||xsol|| and b = (λ−1)||xsol. From the hint, this is zero if and
only if a = 0 (which is equivalent to λ = −1) or b = 0 (which is equivalent
to λ = 1) or a = −b (which is equivalent to λ = 0).

b) First, let x be any critical point. From the expression of the gradient, two
cases are possible :

1. −2e−2||x||2 + e−
||x+xsol||

2

2 + e−
||x−xsol||

2

2 = 0 ;

2. −2e−2||x||2 + e−
||x+xsol||

2

2 + e−
||x−xsol||

2

2 ̸= 0, in which case

x = e−
||x+xsol||

2

2 − e−
||x−xsol||

2

2

−2e−2||x||2 + e−
||x+xsol||2

2 + e−
||x−xsol||2

2

xsol,

which notably implies that x is colinear to xsol.
We discuss the two cases separately. In the first case, in order for the gradient
to be zero, since xsol ̸= 0, we must have

0 = e−
||x+xsol||

2

2 − e−
||x−xsol||

2

2

= e−
||x+xsol||

2

2
(
1 − e2⟨x,xsol⟩

)
.

Therefore, 1 − e2⟨x,xsol⟩ = 0, which is equivalent to ⟨x, xsol⟩ = 0. Then,

0 = −2e−2||x||2 + e−
||x+xsol||

2

2 + e−
||x−xsol||

2

2

= 2
(
−e−2||x||2 + e−

||x||2+||xsol||
2

2

)
= 2e−

1
2 ||x||

2
(
−e−

3
2 ||x||

2 + e−
||xsol||

2

2

)
.

This implies that 3||x||2 = ||xsol||2, therefore ||x|| = ||xsol||√
3 .

Let us now discuss the second case. Since, in this case, x is colinear to xsol,
we must have x = −xsol or x = 0 or x = xsol, from the previous question.
To summarize, the only points which can be first-order critical are{

x ∈ Rd, ⟨x, xsol⟩ = 0, ||x|| = ||xsol||√
3

}
∪ {−xsol, 0, xsol}. (1)

We check that these points are actually first-order critical. For −xsol, 0, xsol,
it is a consequence of the previous question. Now, for some x ∈ Rd such that
⟨x, xsol⟩ = 0 and ||x|| = ||xsol||√

3 ,

∇f(x) =
(
−2e−

2
3 ||xsol||2 + 2e−

||x||2+||xsol||
2

2

)
x
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+
(
e−

||x||2+||xsol||
2

2 − e−
||x||2+||xsol||

2

2

)
xsol

=
(
−2e−

2
3 ||xsol||2 + 2e−

||x||2+||xsol||
2

2

)
x

=
(
−2e−

2
3 ||xsol||2 + 2e−

4
3 ||xsol||

2

2

)
x

= 0.

As a consequence, the first-order critical points are exactly the points given
in Equation (1).

c) We have seen at Question 2.a) that

Hessf(xsol) =
(

1 − e−2||xsol||2
)
Id + 4e−2||xsol||2xsolx

T
sol.

It is the sum of two semidefinite positive matrices. Hence, it is semidefinite po-
sitive, so xsol is a second-order critical point. As Hessf(xsol) = Hessf(−xsol),
−xsol is also a second-order critical point.
On the contrary,

Hessf(0) = −2
(

1 − e−
||xsol||

2

2

)
Id − 2e−

||xsol||
2

2 xsolx
T
sol.

It is the sum of two semidefinite negative (and non zero) matrices, hence 0 is
not a second-order critical point.
Now, let x be such that ⟨x, xsol⟩ = 0 and ||x|| = ||xsol||√

3 . Then

Hessf(x) = 6e−
2
3 ||xsol||2xxT − 2e−

2
3 ||xsol||2xsolx

T
sol.

In particular,

⟨Hessf(x)(xsol), xsol⟩ = −2e−
2
3 ||xsol||2||xsol||4 < 0.

Therefore, Hessf(x) ̸⪰ 0, so x is not a second-order critical point.
The only second-order critical points are −xsol and xsol.
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