
Non-convex inverse problems

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

Initial version: January to March 2023
This version: January to March 2024

waldspurger@ceremade.dauphine.fr


2



Contents

1 Introduction 5
1.1 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Theoretical aspects . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Our focus: algorithms . . . . . . . . . . . . . . . . . . 9

1.2 Convex vs non-convex . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Non-convex inverse problems: examples . . . . . . . . . . . . . 12

1.3.1 Sparse recovery - compressed sensing . . . . . . . . . . 12
1.3.2 Low rank matrix recovery . . . . . . . . . . . . . . . . 13
1.3.3 Machine learning . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 Other examples . . . . . . . . . . . . . . . . . . . . . . 18

2 Convexification 21
2.1 The basis: compressed sensing . . . . . . . . . . . . . . . . . . 22

2.1.1 Convexification: principle . . . . . . . . . . . . . . . . 22
2.1.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Tightness guarantees under restricted isometry . . . . . 26

2.2 Low-rank matrix recovery . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Convexification: principle . . . . . . . . . . . . . . . . 28
2.2.2 Tightness guarantees under restricted isometry . . . . . 31
2.2.3 Problems without restricted isometry . . . . . . . . . . 32

2.3 Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Convexification through the total variation norm . . . 39
2.3.2 No restricted isometry property . . . . . . . . . . . . . 42
2.3.3 Correctness via dual certificates . . . . . . . . . . . . . 42

3



4 CONTENTS

3 Non-convex methods 53
3.1 General non-convex optimization . . . . . . . . . . . . . . . . 56

3.1.1 Critical points versus minimizers . . . . . . . . . . . . 56
3.1.2 Finding first-order critical points . . . . . . . . . . . . 58
3.1.3 Finding second-order critical points . . . . . . . . . . . 62
3.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Examples of non-convex algorithms . . . . . . . . . . . . . . . 68
3.2.1 Optimization-based methods . . . . . . . . . . . . . . . 68
3.2.2 Problem-specific methods: orthogonal matching pursuit 70

3.3 Correctness guarantees . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Local convergence . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Global convergence . . . . . . . . . . . . . . . . . . . . 80

A Additional proofs 85
A.1 Proof of Proposition 2.16 . . . . . . . . . . . . . . . . . . . . . 85
A.2 Proof of Proposition 2.17 . . . . . . . . . . . . . . . . . . . . . 85
A.3 Proof of Proposition 2.18 . . . . . . . . . . . . . . . . . . . . . 87

Acknowledgements

Many thanks to Claire Boyer and Vincent Duval for having shared their
lecture notes with me.



Chapter 1

Introduction

What you should know / be able to do after this chapter

• Know the definition of “inverse problem”, and a few examples.

• Understand what we call (in the context of this course) theoretical as-
pects and algorithmic aspects of an inverse problem. Know that the
class will be about algorithmic aspects.

• Know the definition of “uniqueness” and “stability” in the context of
inverse problems.

• For a linear problem, determine whether it is stable or not by looking
at the singular values.

• With some guidance, be able to prove that a given inverse problem
satisfies the uniqueness and stability properties (or not).

• Know our evaluation criteria for algorithms.

• Identify the main differences between convex and non-convex inverse
problems.

• Be able to determine whether a given problem is convex or not.

• Identify the main common points and differences between sparse and
low-rank recovery.

• Understand the change of variable which turns phase retrieval into a
low-rank matrix recovery problem.
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1.1 Inverse problems

1.1.1 Definition

Given a system and an observation procedure1, computing the outcome of
the observation procedure is called a direct problem. For instance, if we are
given a description of a fluid at some instant (viscosity, density, velocity at
each point...), predicting how the fluid will be one minute later is a direct
problem, which amounts to solving a specific partial differential equation.
Here, the system is the fluid, and the observation procedure is “let it flow for
one minute, then look at it”.

An inverse problem is the converse: given the result of the observation
procedure, and the knowledge of this procedure, can we identify the system?
For instance, if we are given (two-dimensional) photographs of a building,
viewed from several angles, reconstructing a three-dimensional model of the
building is an inverse problem. Here, the system is the 3D shape of the
building, and the observation procedure is “take a set of photographs from
several angles”.

Mathematically, these problems are formalized as follows. Let E be a set
modelling the possible systems, and F a set modelling the possible observa-
tions. The observation procedure is described by a function M : E → F . An
inverse problem is, given some observation y ∈ F ,

find x ∈ E such that M(x) = y. (Inverse)

1.1.2 Theoretical aspects

Problems of the form (Inverse) can be approached from two main angles.

• One can try to describe the properties of the solutions, without ex-
plicitely computing them. I will call this the theoretical aspects.

• One can design algorithms to numerically solve the problem. I will call
this the algorithmic aspects. 2

1The words “system” and “observation procedure” must be understood in a general
sense. A system is any complex object of interest, and an observation procedure is any
process which, given the system, produces some outcome.

2This choice of names does not mean that there is no “theory” behind algorithms.
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This class is about algorithmic aspects. However, it is difficult to design a
sensible algorithm if one has no idea at all of the properties of the solution.
Therefore, in this section, we give a very brief overview of the theoretical
aspects.

When given a specific instance of Problem (Inverse), a first question that
arises is the existence of solutions: for an arbitrary y, does there always exist
a solution x to Problem (Inverse)? If we restrict ourselves to vectors y which
are the outcome of a real measurement process (that is, of the form y = M(x)
for some x), the answer is obviously yes. But if some errors have occured in
the process, the answer may not be obvious anymore. For the problems we
will consider in this class, existence will rarely be a problem, so we leave this
question aside.

Assuming a solution exists, the other main two questions are uniqueness
and stability.

• Uniqueness: Is the solution of Problem (Inverse) unique? This question
is crucial, since, if the solution is not unique, it is impossible to recover
the true system of interest with certainty.

• Stability: If y is not exactly known, but only available up to some
error, what will the solution(s) of Problem (Inverse) look like? Will
it be close to the “true” solution, the one we would have obtained if
there had been no error on y? This is also crucial: in real life, exact
measurements are never available.

Example 1.1 : finite-dimensional linear inverse problem

Let us assume that

• E,F are real finite-dimensional vector spaces: E = Rd and F =
Rm for some d,m ∈ N∗;

• M : E → F is linear, represented by some matrix A ∈ Rm×d.

Under these assumptions, Problem (Inverse) rewrites as

find x ∈ Rd such that Ax = y.

Actually, this class is about algorithmic aspects, but it will be mostly theoretical and
rigorous.
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For a given y, assuming a solution x∗ exists, it is unique if

{x ∈ Rd, Ax = y} = {x∗},

that is if and only if Ker(A) = {0} (A is an injective matrix).
We now assume that the solution is unique. Is it stable? In other
words, if we replace y by

yϵ = y + ϵ

for some “small” ϵ ∈ Rm, will the solution xϵ be close to x∗? The notions
of “smallness” and “closeness” do not have a precise formal meaning.
Depending on the problem, many formalizations are possible. The
simplest one is to say that a vector ϵ is small if

||ϵ||2 ≪ ||y||2,

and xϵ is close to x∗ if

||xϵ − x∗||2 ≪ ||x∗||2.

With these definitions, it is possible to show that the problem is stable
if the smallest and largest singular values of A satisfy

λmax(A)
λmin(A)

≈ 1.

The ratio λmax(A)
λmin(A) is called condition number of A.

For more details, see the exercises.

As said before, these questions will not be the subject of the class. In
Section 1.3 of this introduction, we will give uniqueness conditions, when
possible, for the considered problems. But afterwards, we will most of the
time assume that all the problems we consider satisfy uniqueness and stability
properties. However, in principle, when facing a new problem, these questions
must be the starting point, otherwise we are at risk of working towards the
conception of algorithms for solving problems which can actually not be
solved.
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1.1.3 Our focus: algorithms

In this class, we will be interested in algorithms which allow to solve inverse
problems.

In applications, a “good” algorithm is an algorithm which

• works: given a problem, it must output a correct solution; we can
tolerate the algorithm failing once in a while, but the failure rate must
be as small as possible;

• uses as few computational resources as possible: it must be fast (not
too many operations) and have a moderate memory footprint.

Here, we will be interested in algorithms for which, moreover,

• these good properties (especially the first one) can be rigorously proved.

This additional requirement tends to be in contradiction with the compu-
tational efficiency, in the sense that, oftentimes, the algorithms which work
best in practice are difficult to rigorously study. As a consequence, the al-
gorithms we will present in this class will most of the time not be the most
well-suited for real applications. They must be considered as toy models for
“really usable” algorithms, should ideally retain as many specificities of their
“really usable” counterparts as possible, but will inevitably miss some.

Similarly, the hypotheses under which we will establish correctness guar-
antees for the algorithms will oftentimes be much stronger than what holds
in real applications. It is an important but difficult research direction to
weaken these hypotheses.

1.2 Convex vs non-convex
All inverse problems can be reformulated as optimization problems, that is
problems of the following form:

minimize f(x)
over all x ∈ H

such that x ∈ C1, (Opt)
. . .

x ∈ CS.
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Here, f : H → R ∪ {+∞} can be any objective function, over a real or
complex vector space H, and C1, . . . , CS are subsets of H which model the
constraints imposed on the unknown x.

An optimization problem is called convex if f is a convex function and
C1, . . . , CS are convex sets.

Definition 1.2 : convexity

A function f : H → R ∪ {+∞} is convex if, for any x1, x2 ∈ H and
any s ∈ [0; 1],

f((1 − s)x1 + sx2) ≤ (1 − s)f(x1) + sf(x2). (1.1)

A set C ⊂ H is convex if, for any x1, x2 ∈ C and any s ∈ [0; 1], the
vector

(1 − s)x1 + sx2

is also an element of C.

In first approximation, we can say that convex problems admit efficient
algorithms. This is not an absolute rule, since some convex sets or functions
are quite difficult to manipulate. However, it is true that many algorithms
exist for convex problems, with a behavior which is quite well understood.
The situation is very different for the problems we will consider in this class,
which are non-convex. For non-convex problems, the existence of algorithms
both guaranteed to succeed and running in an reasonable amount of time is
an exception.

Intuitively, convexity allows to deduce global information from local one.
For instance, if one knows the values at a few points of a convex function
f and its gradient, Inequality (1.1) makes it possible to compute upper and
lower bounds on f , and hence obtain an approximation of its minimum. One
can then query the values at other points to refine the approximation. This
is illustrated on Figures 1.1a and 1.1b. But if the function is not convex,
the knowledge of its values at a few points provides no information about
the values at other points and, in particular, provides no information on its
minimum. This is illustrated on Figures 1.1c and 1.1d. This is what makes
non-convex optimization much more difficult than convex optimization.

This difficulty is a fundamental property of non-convex problems: if we
do not have good algorithms able to solve any non-convex problem, it is not
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Figure 1.1: (a) Representation of the values and derivatives of a function
f : R → R at a few points. (b) Upper and lower bounds on f one can deduce
from the knowledge of these values and derivatives if f is convex. (c) A non-
convex function compatible with these values and derivatives. (d) Another
non-convex function compatible with these values and derivatives.
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because we have not discovered these good algorithms yet. It is because good
algorithms do not exist.3 As a consequence, in this class, we will not try to
propose algorithms able to solve all problems of a given non-convex family:
this is hopeless. At best, our algorithms will be able to solve “a large part”
of problems of the family.

1.3 Non-convex inverse problems: examples
Let us now present a few examples of non-convex inverse problems which we
will encounter during this class.

1.3.1 Sparse recovery - compressed sensing

Our first example is called sparse recovery or compressed sensing. It consists
in recovering a vector x ∈ Rd from linear measurements

y
def= Ax ∈ Rm,

where A ∈ Rm×d is some known matrix. If m ≥ d and A is injective, this
problem reduces to inverting A. But here, m is much smaller than d, which
means that A is not injective and, without further information, y does not
uniquely determine x. We must therefore assume some additional “structure”
on x: we assume that x is sparse, that is, it has a small number of non-zero
coordinates. More specifically, we assume that, for some k ∈ N∗ much smaller
than d,

||x||0 ≤ k,

where ||x||0 = Card{i ≤ d, xi ̸= 0}. (This quantity is often called the ℓ0-
norm, although it is not a norm, since it is not homogeneous.)

To summarize, the problem can be written as

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)

3In particular, many families of non-convex problems have been proved to be NP-
difficult. This means that, unless P=NP, there exists no algorithm able to solve all prob-
lems in the family with a time complexity at most polynomial in their dimension.
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It is non-convex because the set {x, ||x||0 ≤ k} is non-convex.
Sometimes, the unknown x is not directly sparse, but only sparse when

represented in some adequate basis, or after some adequate linear trans-
formation. In this case, the condition “||x||0 ≤ k” must be replaced with
“||Φx||0 ≤ k”, where Φ encodes the basis or linear transformation.

This problem is notably natural in image processing, since many natural
images enjoy a sparsity structure. Photos, for instance, are well-known to be
approximately sparse when represented in a wavelet basis.

For compressed sensing, uniqueness of the reconstruction can be guaran-
teed through a condition on the kernel of A.

Proposition 1.3 : unique recovery for compressed sensing

We assume that Ker(A) does not contain a vector X such that ||X||0 ≤
2k.
Then, if Problem (CS) has a solution, this solution is unique.

Proof. Let us assume, by contradiction, that Problem (CS) has two distinct
solutions X1, X2 ∈ Rd. Then

A(X1 −X2) = AX1 − AX2 = y − y = 0,

so X1 −X2 belongs to Ker(A). And

||X1 −X2||0 ≤ ||X1||0 + ||X2||0 ≤ 2k,

which contradicts the assumption.

From this proposition, one can show that, if m ≥ 2k, then almost all
matrices A guarantee unique recovery of the underlying sparse vector. Under
a stronger condition on A, one can also establish stability recovery guarantees
(see for instance the introductory article [Candès and Wakin, 2008]).

1.3.2 Low rank matrix recovery

In low-rank matrix recovery, the goal is also to recover an object from linear
measurements. This time, the “object” is a matrix X ∈ Rd1×d2 (or X ∈
Cd1×d2). As in the case of compressed sensing, there are not enough linear
measurements to uniquely determine X without additinal information, but
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we do have some additional information on X: it is low-rank. This yields
the problem

recover X ∈ Rd1×d2

such that L(X) = y,

and rank(X) ≤ r.

(Low rank)

Here, L : Rd1×d2 → Rm is the linear measurement operator and r is a given
upper bound on the rank of the matrix. In some applications, it is relevant
to assume that d1 = d2 and X is semidefinite positive: X ⪰ 0.

This problem is sometimes called matrix sensing, especially when L is a
random operator. A uniqueness result similar to Proposition (1.3) holds.

Proposition 1.4 : uniqueness for low-rank matrix recovery

We assume that Ker(L) does not contain a matrix X such that

rank(X) ≤ 2r.

Then, if Problem (Low rank) has a solution, this solution is unique.

The proof of the proposition is identical to Proposition 1.3. From this
proposition, one can show (but it is not easy) that the solution of Problem
(Low rank), when it exists, is unique, for almost all operators L, provided
that (in the case where 2r ≤ min(d1, d2))

m ≥ 2r(d1 + d2 − 2r).

When r is small (of order 1, for instance), this means that we can hope to
recover the “true” matrix X with a number of linear measurements much
smaller than what we would need if we did not know X to be low-rank (in
this case, we would need m ≥ dim(Rd1×d2) = d1d2, which is much larger than
2r(d1 + d2 − 2r) if r ≪ min(d1, d2)).

Matrix completion Several special cases of Problem (Low rank) are of
particular interest, and form subfamilies of inverse problems with their own
applications and theoretical characteristics. The first one is matrix comple-
tion. In this case, the linear measurements available on X are the knowledge
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of a few coefficients:

recover X ∈ Rd1×d2

such that Xij = yij,∀(i, j) ∈ Ω
and rank(X) ≤ r.

(Matrix completion)

Here, Ω ⊂ {1, . . . , d1} × {1, . . . , d2} contains the indices of available coeffi-
cients.

The most popular application is the so-called “Netflix problem”. In this
application, X represents the opinion of users on films: the coefficient Xij is
an “affinity score” between User i and Film j (it represents how much User
i would like Film j). It is reasonable to assume that X is low-rank: this
models the similarities between the users, and between the films (e.g. if User
1 and 2 have the same opinion on Films 1, 2, 3, 4, it is plausible that they also
have essentially the same opinion on Film 5). The available coefficients Xij

correspond to pairs (i, j) for which User i has watched Film j and sent the
corresponding score to the film distribution platform. The other coefficients
are not available, but the platform would like to guess them, so as to be able
to propose relevant film suggestions to their users. Guessing the non-available
coefficients exactly amounts to solving Problem (Matrix completion).

Phase retrieval Another special case of Problem (Low rank) which we
will discuss in length in this course is phase retrieval.

At first sight, phase retrieval problems have nothing to do with matrices
and low-rankness. They are problems of the following general form

recover x ∈ Cd

such that |Lj(x)| = yj, ∀j ≤ m.
(Phase retrieval)

Here, L1, . . . , Lm : Cd → C are known linear operators, the notation “|.|”
stands for the usual complex modulus, and y1, . . . , ym are given.

The main motivations for studying phase retrieval come from the field
of imaging. Indeed, it is much easier to record the intensity (that is, the
modulus, in an adequate mathematical model) of an electromagnetic wave
than its phase. It is therefore frequent to have to recover an object from
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modulus-only measurements. Oftentimes, these measurements can specifi-
cally be described by a Fourier transform (because, under some assumptions,
the diffraction pattern of an object is the Fourier transform of its character-
istic function), but not always. Phase retrieval is also of interest for audio
processing.

Remark

For any x ∈ Cd and u ∈ C such that |u| = 1, it holds

|Lj(ux)| = |uLj(x)| = |u| |Lj(x)| = |Lj(x)|, ∀j ≤ m.

Therefore, the sole knowledge of (yj = |Lj(x)|)j≤m can never allow to
exactly recover x. There is always a global phase ambiguity : x cannot
be distinguished from ux.
This is in general not harmful in applications, and we will be satisfied
if we can recover x up to a global phase.

Given specific linear forms Lj, it is in general difficult to determine if the
(Phase retrieval) problem satisfies the uniqueness and stability properties.
However, it is known that uniqueness holds “in principle” as soon as m is
larger than (roughly) 4d.

Proposition 1.5 : [Conca, Edidin, Hering, and Vinzant, 2015]

Let us assume that m ≥ 4d − 4. Then, for almost all linear maps
L1, . . . , Lm : Cd → C, it holds that, for all x, x′ ∈ Cd,(

|Lj(x)| = |Lj(x′)|,∀j ≤ m
)

⇒
(
∃u ∈ C, |u| = 1, x = ux′).

With a slightly larger m, stability also “generically” holds.
Let us now explain why phase retrieval is a special case of low-rank matrix

recovery. Recovering x ∈ Cd up to a global phase is equivalent to recovering

X
def= xx∗ =

Ñ |x1|2 x1x2 ... x1xd

x2x1 |x2|2 ... x2xd

... ... ...
xdx1 ... |xd|2

é
.

Indeed, X can be computed from x (even up to a global phase: (ux)(ux)∗ =
uuxx∗ = xx∗ if |u| = 1) and x can be computed up to a global phase from
X by extracting the only eigenvector of X with non-zero eigenvalue.
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Remark

A matrix X ∈ Cd×d can be written as X = xx∗ for some x ∈ Cd if and
only if

X ⪰ 0 and rank(X) ≤ 1.

Proof. For any x ∈ Cd, the matrix xx∗ is Hermitian, and semidefinite posi-
tive:

∀z ∈ Cd, z∗(xx∗)z = |z∗x|2 ≥ 0.
It has rank at most 1 because Range(xx∗) = Vect{x}.

Conversely, if X ⪰ 0 and rank(X) ≤ 1, then X can be diagonalized in an
orthogonal basis (z1, . . . , zd) (as all Hermitian matrices):

X =
d∑

k=1

λkzkz
∗
k with λ1 ≥ · · · ≥ λd the eigenvalues.

All the eigenvalues are nonnegative, since X ⪰ 0. Since rank(X) ≤ 1, they
are all 0, except possibly the first one, so

X = λ1z1z
∗
1 = (

√
λ1z1)(

√
λ1z1)∗,

so it can be written as X = xx∗ with x =
√
λ1z1.

In addition, for any j, knowing |Lj(x)| is equivalent to knowing |Lj(x)|2.
Denoting vj the vector such that Lj = ⟨vj, .⟩, we have

|Lj(x)|2 = ⟨vj, x⟩ ⟨vj, x⟩
= (v∗jx)(x∗vj)
= v∗jXvj.

Consequently, Problem (Phase retrieval) is equivalent to

recover X ∈ Cd×d

such that v∗jXvj = y2
j ,∀j ≤ m,

X ⪰ 0,
rank(X) ≤ 1.

(Matrix PR)

This is, as announced, a low rank matrix recovery problem.
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1.3.3 Machine learning

In a machine learning task, the goal is to predict some output y given some
input x. For instance, the input can be a photograph, and the output the
name of the objects represented on the photograph, or the input can be
a low-quality audio signal and the output the corresponding high-quality
signal. We denote P the “perfect” prediction function, which to an input x
maps the correct

y = P (x).

The predictor P is unknown and must be learned from the available input-
output examples (x1, y1), . . . , (xn, yn). This leads to the problem

find P ∈ H
such that P (xk) = yk,∀k ≤ n,

(ML)

where H is a well-chosen class of functions (H can for instance be the set of
linear maps, or the set of neural networks with a given architecture).

The questions raised by Problem (ML) are quite different from the ones
raised by the other inverse problems we have seen. Indeed, it often hap-
pens that the perfect predictor P is not in the chosen set H, in which case
the problem may not have an exact solution, only an approximate one. In
addition, if H is a bit sophisticated, there are typically several (and even
many) elements P ∈ H such that P (xk) = yk for all k (in other words, the
uniqueness property does not hold). All these elements P yield the same
predictions for the available inputs x1, . . . , xn, but may differ significantly on
unseen examples. It is therefore important to choose, among these P , the
one which has the best chances to perform well on unseen examples.4

1.3.4 Other examples

Dictionary learning In this problem, one is given a set of “interesting”
signals y1, . . . , ym ∈ Rd (e.g. patches of natural photographs or of medical
images), and the goal is to learn a good “representation” for them, under
the form of a dictionary. A dictionary is a set of elements a1, . . . , aM ∈ Rd,

4This is called the generalization problem.
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usually called atoms, such that any signal yk can be written as a linear
combination of a small number of atoms:

yk =
M∑
l=1

λ
(k)
l al such that ||λ(k)||0 is small.

We write the dictionary in matricial form by concatenating the atoms
into a single matrix:

A =
(
a1 a2 . . . aM

)
Finding the dictionary A consists in solving the following problem

find A ∈ Rd×M , λ(1), . . . , λ(m) ∈ RM

such that Aλ(k) = yk,∀k ≤ m,

||λ(k)||0 ≤ S,

(Dictionary learning)

where S is an a priori bound on the number of atoms involved in the decom-
position of each signal yk.

Super-resolution Super-resolution is a general term, which covers all prob-
lems where one tries to recover a “sharp” signal from a “blurred” version. In
this paragraph, we present the simplest possible model for such a problem.

The signal we aim at identifying is a collection of point masses in [0; 1[.
The positions of the masses are τ1, . . . , τS and their weights are a1, . . . , aS.
This signal can be represented by a measure

µ =
S∑

s=1

asδτs ∈ M([0; 1[),

where M([0; 1[) is the set of signed (or even complex-valued, if a1, . . . , aS are
complex) finite Borel measures on [0; 1[ and, for any s, δτs is the dirac at
position τs.5

The information we have to identify our point masses, the “blurred” ver-
sion of the signal, is modelled as the set of low-frequency coefficients of the

5that is to say, δτs is the measure such that, for any measurable E ⊂ [0; 1[, µ(E) = 1
if τs ∈ E and µ(E) = 0 otherwise.
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Fourier transform of µ: for all k = −N, . . . , N , we have access to

µ̂[k] =
∫ 1

0
e−2πiktdµ(t)

(
=

S∑
s=1

ase
−2πikτs

)
.

If we call y−N , . . . , yN the known Fourier coefficients, the problem can be
written as

find µ ∈ M([0; 1[)
such that µ̂[k] = yk,∀k = −N, . . . , N,

and µ is a sum of S diracs.
(Super-resolution)

This problem can be seen as a continuous version of compressed sensing
(Problem (CS)). The unknown, instead of a finite-dimensional vector, is a
measure on [0; 1[, but it must still be recovered from linear measurements,
and satisfies a sparsity constaint (it is the sum of at most S diracs).



Chapter 2

Convexification

What you should know / be able to do after this chapter

• Understand the general principle of convexification, and what “tight-
ness” means.

• Be able to suggest convex relaxations of non-convex problems, based
notably on the « convex hull » reasoning which provides intuition in
the cases of compressed sensing and low-rank recovery.

• Using a 2-dimensional picture, explain why (Basis Pursuit) can be ex-
pected to be a tight relaxation of compressed sensing.

• Know the definition of « restricted isometry ».

• Know the proof technique for establishing tightness guarantees which
relies on restricted isometry (in particular, know the statements of The-
orems 2.4 and 2.9).

• Know that restricted isometry holds true for the simplest cases of ran-
dom linear operators.

• Explain the limitations of this technique: restricted isometry does not
hold for some more “structured” operators.

• Prove that it does not hold in the example of super-resolution for
Fourier measurements.

21
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Original
non-convex

problem
→ Convex

approximation →

Find the
solution of the

convex
problem

→

Deduce the
solution of the

non-convex
problem

Figure 2.1: Principle of convexified algorithms, when relaxation is tight.

• Sketch the proof technique for establishing tightness guarantees using
dual certificates.

• Understand (i.e. be able to do it again alone, with minimal help) the
derivation of the dual problem of TV minimization.

As discussed in the introduction, non-convexity is a major hurdle for nu-
merically solving inverse problems. Simple local search algorithms are at risk
of getting stuck in poor local optima. A possible strategy to overcome this
difficulty is to approximate the non-convex problem with a convex one. This
convex approximation is called a convex relaxation. Since numerically solving
a convex problem is in general doable, we can in general solve the approxima-
tion. At first sight, there is no reason why solving this approximation would
provide useful information towards solving the non-convex problem. But sur-
prisingly, it turns out that, in many situations, the convex approximation has
the same solution as the original non-convex problem! One then says that
relaxation is tight. When this happens, it yields a convenient method for
solving the non-convex problem. This general scheme is depicted on Figure
2.1.

2.1 The basis: compressed sensing

2.1.1 Convexification: principle

The model example for this chapter, which serves as a basis for other prob-
lems, is compressed sensing.

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)
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When the problem has a unique solution, it is the vector of minimal ℓ0-norm
among the vectors x such that Ax = y. This allows to reformulate the
problem as

minimize ||x||0
for x ∈ Rd

such that Ax = y.

(||.||0 min)

The set {x ∈ Rd, Ax = y} is convex. The non-convex part of the problem
is the objective function ||.||0. To make the problem convex, we replace the
ℓ0-norm with the ℓ1-norm:

||x||1 =
d∑

i=1

|xi|,

which leads to the following convex problem:

minimize ||x||1
for x ∈ Rd

such that Ax = y.

(Basis Pursuit)

2.1.2 Intuition

An intuitive reason for using the ℓ1-norm as a convex approximation of the
ℓ0-norm is that the unit ℓ1-ball is the smallest convex set which contains the
“maximally sparse” vectors of norm 1.

Proposition 2.1 : ℓ1-ball as a convex hull

Let S be the set of vectors with exactly one non-zero coordinate, equal
to −1 or 1.
The unit ℓ1-ball {x ∈ Rd, ||x||1 ≤ 1} is the convex hull of S.

Proof. This proposition is a consequence of Proposition 2.2. Indeed, the unit
ℓ1-ball is a closed compact subset of Rd. It is therefore the convex hull of its
extremal points, that it is the convex hull of S.
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The next proposition states a stronger, but similar, result, which is crucial
in explaining the success of (Basis Pursuit) (i.e. why it is oftentimes a tight
convex relaxation).

Proposition 2.2 : extremal points of the ℓ1-ball

The extremal pointsa of the unit ℓ1-ball {x ∈ Rd, ||x||1 ≤ 1} are the
vectors with exactly one non-zero coordinate, equal to −1 or 1.

aAn extremal point of a convex set C is a point y which cannot be written as

y = (1 − θ)z1 + θz2

for z1, z2 ∈ C different from y and θ ∈ [0; 1].

Proof. Let S be the set of vectors with exactly one non-zero coordinate, equal
to −1 or 1. Let Bℓ1 be the unit ℓ1-ball.

First, we show that the elements of S are extremal points of Bℓ1 . Let
y ∈ S be fixed. Let i be its unique non-zero coordinate. Let us assume for
simplicity that yi = 1 (the same reasoning holds if yi = −1). Let z1, z2 ∈
Bℓ1 , θ ∈ [0; 1] be such that

y = (1 − θ)z1 + θz2.

We must show that z1 = y or z2 = y. If θ = 0, then z1 = y, and if θ = 1,
then z2 = y, so we can assume θ ̸= 0, 1.

We have
1 = yi = (1 − θ)(z1)i + θ(z2)i.

Observe that (z1)i ≤ |(z1)i| ≤ ||z1||1 ≤ 1 and, similarly, (z2)i ≤ 1. These
two inequalities must be equalities, otherwise 1 = (1 − θ)(z1)i + θ(z2)i <
(1 − θ) + θ = 1.

Now that we know that (z1)i = 1, we can say that∑
j ̸=i

|(z1)j| = ||z1||1 − |(z1)i| = ||z1||1 − 1 ≤ 0,

hence (z1)j = 0 for all j ̸= i. This shows z1 = y, and concludes the proof
that y is an extremal point of Bℓ1 .

Conversely, we show that every extremal point of Bℓ1 is in S. Let y ∈ Bℓ1

be extremal.
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First, we note that ||y||1 = 1. Indeed, if ||y||1 < 1, we can write, for any
vector ϵ ∈ Rd \ {0},

y = 1
2

(y + ϵ) + 1
2

(y − ϵ).

When ϵ is close enough to zero, it holds ||y+ϵ||1, ||y−ϵ||1 ≤ ||y||1 + ||ϵ||1 ≤ 1,
so y + ϵ, y − ϵ belong to Bℓ1 and are different from y, which contradicts the
extremality of y.

Now, we show that y has only one non-zero coordinate. Let i be such
that yi ̸= 0. By contradiction, we assume that not all other coordinates are
zero. Let ỹ be the vector which is equal to y, except that the i-th coordinate
yi has been replaced with 0; it is not the null vector. Let e ∈ Rd be the
vector such that

ei = sign(yi), ej = 0, ∀j ̸= i.

Then
y = |yi|e + ||ỹ||1

ỹ

||ỹ||1
= |yi|e + (1 − |yi|)

ỹ

||ỹ||1
,

which contradicts the extremality. (The last equality is true because ||ỹ||1 =∑
j ̸=i |yj| = ||y||1 − |yi| = 1 − |yi|.)

Let us give an intuitive explanation, based on the previous proposition, of
why we can expect (Basis Pursuit) to be a tight relaxation of Problem (CS),
at least in some situations.

If the vector x∗ we are trying to recover through Problem (CS) is sparse,
then it is a linear combination of a small number of “maximally sparse” non-
zero vectors. From Proposition 2.2, it is therefore a linear combination of a
small number of extremal points of the ℓ1-ball. This can be geometrically
interpreted as the fact that x∗ belongs to a "corner" of the ℓ1-ball

Bℓ1,x∗
def= {x ∈ Rd, ||x||1 ≤ ||x∗||1}.

The convex approximation (Basis Pursuit) has a unique minimizer equal
to x∗ if and only if

∄x ∈ Rd such that Ax = y = Ax∗ and ||x||1 ≤ ||x∗||1
⇐⇒ Bℓ1,x∗ ∩ {x ∈ Rd, Ax = Ax∗} = {x∗}
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x∗ = (0, 1)

1

−1 1

−1

{x,Ax = Ax∗}

Bℓ1,x∗

(a)

x∗ =
(1

2 ,
1
2

)
1

−1 1

−1

{x,Ax = Ax∗}

Bℓ1,x∗

(b)

Figure 2.2: Representation of Bℓ1,x∗ and {x ∈ R2, Ax = Ax∗} for A = ( 1 −3 )
in two situations: (a) when x∗ = (0, 1) is sparse ; (b) when x∗ =

(1
2 ,

1
2

)
is not

sparse. Observe that Bℓ1,x∗ ∩ {x,Ax = Ax∗} is a singleton in the first case,
but not in the second one.

⇐⇒ Bℓ1,x∗ ∩ ({x∗} + Ker(A)) = {x∗}.

And the intersection of Bℓ1,x∗ and an affine space containing x∗ has much
more chances to be the singleton {x∗} if x∗ is in a "corner" of Bℓ1,x∗ (very
crudely, if x∗ is in a "corner", then, in the neighborhood of x∗, Bℓ1,x∗ occupies
only a small fraction of the space; it is therefore easier not to intersect it when
considering an affine space going through x∗). This is depicted on Figure 2.2.

2.1.3 Tightness guarantees under restricted isometry

The convex problem (Basis Pursuit) can be traced back to at least the 70’s.
Since then, many researchers have proposed conditions on x∗ and A under
which the relaxation is tight (that is, the solutions of (Basis Pursuit) and
(CS) are the same). A major progress (due notably to Candès, Donoho,
Romberg and Tao) on this subject was, around twenty years ago, the in-
troduction of the so-called Restricted Isometry Property, which is a simple
assumption on A under which it is possible to guarantee tightness without
imposing stringent conditions on x∗.
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Definition 2.3 : restricted isometry

Let A ∈ Rm×d be a matrix. For any k ∈ {1, . . . , d}, we define the k-
restricted isometry constant δk of A as the smallest real number such
that

(1 − δk)||z||2 ≤ ||Az||2 ≤ (1 + δk)||z||2
for all vectors z ∈ Rd with at most k non-zero coordinates.

Tightness of the convex relaxation (Basis Pursuit) under a restricted
isometry condition is guaranteed by the following theorem.

Theorem 2.4

Let A ∈ Rm×d be a matrix. For some k ∈ {1, . . . , d}, we assume that
its 4k-restricted isometry constant satisfies

δ4k <
1
4
. (2.4)

For any x∗ ∈ Rd with at most k non-zero coordinates, Problem
(Basis Pursuit) with y = Ax∗ has a unique solution, which is x∗.

Under the same condition, it is moreover possible to prove a stability
result for the convex relaxation: if y is “close” to Ax∗, then the solution of a
slight modification of (Basis Pursuit) is “close” to x∗. The proof of Theorem
2.4 is the subject of an exercise, which follows [Candès, Romberg, and Tao,
2006].

Let us keep in mind that the restricted isometry property is a sufficient
but not necessary condition for the correctness of the basis pursuit approach:
there are matrices A for which condition (2.4) does not hold and, neverthe-
less, Problems (CS) and (Basis Pursuit) have the same solution. However,
it turns out that many natural matrices A satisfy the condition, hence The-
orem 2.4 explains the success of the basis pursuit approximation in several
interesting situations. The following theorem provides the simplest example
of matrices with the restricted isometry property: matrices chosen at random
according to a normal distribution (with high probability).
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Theorem 2.5 : [Candès and Tao, 2005]

Let c > 0 be some explicit constant, whose value we will not give here.
We assume that A ∈ Rm×d is generated at random according to a
normal distributiona. If

ck log(d/k) ≤ m,

Condition (2.4) holds with high probability.b

athat is, each coefficient of A is chosen independently at random according to a
normal law N (0, 1/m).

bWith high probability means that it holds with probability at least 1 − e−αm

for some constant α > 0.

This theorem, combined with Theorem 2.4, shows that convexification
allows to recovery k-sparse vectors from O(k log(d/k)) linear measurements.
This is surprisingly few. Indeed, Problem (CS) is only interesting when
the number of measurements is at least O(k) (otherwise, the solution is not
unique). At this threshold, solving this problem is a priori impossible with a
polynomial time algorithm, but we see that it suffices to increase the number
of measurements by a logarithmic factor so that polynomial time recovery
becomes possible, through convexification.

2.2 Low-rank matrix recovery
After compressed sensing, convexification techniques have been developed
for other non-convex problems. In particular, an important part of the the-
ory developed for compressed sensing can be transposed to low-rank matrix
recovery.

2.2.1 Convexification: principle

We recall the general form of a low-rank matrix recovery problem.

recover X ∈ Rd1×d2

such that L(X) = y,

and rank(X) ≤ r,

(Low rank)
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which, when the solution is unique, is equivalent to

minimize rank(X)
for X ∈ Rd1×d2

such that L(X) = y.

(Rank min)

In the same way as, in the case of compressed sensing, we have approximated
the ℓ0-norm with the ℓ1-norm, we can replace the non-convex rank functional
with a convex approximation. For the rank, the most reasonable convex
approximation is the nuclear norm.

Definition 2.6 : nuclear norm

For any X ∈ Rd1×d2 , the nuclear norm of X is

||X||∗ =
min(d1,d2)∑

k=1

λk(X),

where λ1(X), . . . , λmin(d1,d2)(X) are the singular values of X.a
If d1 = d2 and X ⪰ 0, this definition can be simplified:

||X||∗ = Tr(X).
aReaders who are not familiar with the singular value decomposition are en-

couraged to do the first exercise of the exercise sheet.

Proof of the last assertion in the definition. If d1 = d2 and X ⪰ 0, the ma-
trix X can be diagonalized in an orthonormal basis and has nonnegative
eigenvalues µ1, . . . , µd1 : there exists U ∈ Od1(R) such that

X = U

Ç µ1

...
µd1

å
UT .

This equality is the singular value decomposition of X: µ1, . . . , µd1 are the
singular values of X, so

||X||∗ =
d1∑
k=1

|µk|
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=
d1∑
k=1

µk

= Tr
Ç µ1

...
µd1

å
= Tr

ÇÇ µ1

...
µd1

å
UTU

å
as UTU = Id1

= Tr
Ç
U

Ç µ1

...
µd1

å
UT

å
= Tr(X).

The motivation for using the nuclear norm is the following proposition,
which is a matricial analogue of Proposition 2.2.

Proposition 2.7

The extremal points of the nuclear norm unit ball

{X ∈ Rd1×d2 , ||X||∗ ≤ 1}

are the exactly the matrices with unit Frobenius norma and rank 1.

aThe Frobenius norm is ||X||F =

Ö ∑
1≤k2≤d2
1≤k1≤d1

X2
k1,k2

è1/2

.

Proof. Exercise.

Replacing the rank with the nuclear norm in the non-convex problem
(Rank min), we arrive at the following convex approximation:

minimize ||X||∗
for X ∈ Rd1×d2

such that L(X) = y.

(Nuclear min)
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2.2.2 Tightness guarantees under restricted isometry

As in the case of compressed sensing, the nuclear norm relaxation is often
tight (that is, the solution of (Nuclear min) is the same as the one of Problem
(Low rank)), meaning that solving the convex problem actually solves the
non-convex one. A lot of work has been devoted to finding classes of operators
L for which this phenomenon provably happens. A simple particular property
under which tightness necessarily holds is a matricial analogue of restricted
isometry.

Definition 2.8 : restricted isometry for matrices

Let L : Rd1×d2 → Rm be a linear operator.
For any r ∈ {1, . . . ,min(d1, d2)}, the r-restricted isometry constant δr
of L is the smallest real number such that

(1 − δr)||X||F ≤ ||L(X)||2 ≤ (1 + δr)||X||F

for all matrices X ∈ Rd1×d2 with rank at most r.

Theorem 2.9 : [Recht, Fazel, and Parrilo, 2010]

Let L : Rd1×d2 → Rm be a linear operator. We assume that, for some
r ∈ {1, . . . ,min(d1, d2)}, its 5r-restricted isometry constant satisfies

δ5r <
1
10

. (2.8)

For any X∗ ∈ Rd1×d2 with rank at most r, Problem (Nuclear min) with
y = L(X∗) has a unique solution, which is X∗.

The proof of this result is an adaptation to matrices of the proof of The-
orem 2.4 proposed in [Candès, Romberg, and Tao, 2006]. It is the subject of
an exercise.

As in the case of compressed sensing, it can be shown that, if we choose
an operator L at random (according to the simplest possible distribution), it
satisfies the restricted isometry property (2.8) with high probability.
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Theorem 2.10 : [Candès and Plan, 2011]

Let us assume that L is of the form

L : X ∈ Rd1×d2 →
(
Tr(AkX

T )
)
k=1,...,m ,

where A1, . . . , Am are chosen independently according to standard nor-
mal distributions (that is, each coordinate of each Ak is chosen inde-
pendently according to the law N (0, 1/m)).
There exists a constant c > 0 such that, if

m ≥ cr(d1 + d2),

then Condition (2.8) holds with high probabilitya.
athat is, with probability at least 1 − e−αm for some α > 0.

It can be checked that the set of rank r matrices has "dimension"1

r(d1 + d2 − r).

As a consequence, there is no hope to recover a rank r-matrix from less that
r(d1 + d2 − r) linear measurements. The combination of Theorems 2.9 and
2.10 therefore guarantees that, when L follows a normal law, solving the
convex (Nuclear min) problem allows to recover a low-rank matrix from a
number of measurements which is only a constant factor away from optimal.

2.2.3 Problems without restricted isometry

In the previous subsections, we have seen that restricted isometry proper-
ties could be used to show the tightness of convex relaxations, and hence to
certify that the original non-convex problem is solved by a polynomial-time
algorithm. These implications are depicted on Figure 2.3. Let us stress that
these implications are not equivalences. In particular, there are many con-
vex relaxations which are tight, but whose linear operator does not satisfy
a Restricted Isometry Property like Property (2.8). In particular, the linear

1We use quotes because this set is neither a vector space nor a smooth submanifold
of Rd1×d2 , hence formally talking about the "dimension" of this set requires a careful
definition of the notion.
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An adequate Restricted
Isometry Property holds.

The convex relaxation is
tight.

The original non-convex
problem can be solved
with a polynomial-time

algorithm.

Figure 2.3: Summary of the logical relations established in Subsections 2.1.3
and 2.2.2.

operators arising in the problems of phase retrieval and matrix completion
(Problems (Matrix PR) and (Matrix completion)) do not. These problems
can still be solved through convexification techniques, but proving the cor-
rectness of the approach must be done with other tools than restricted isom-
etry.

Phase retrieval

Let us first discuss phase retrieval. We recall below the general form of a
phase retrieval problem (Problem (Phase retrieval)) and its reformulation as
a low-rank matrix recovery problem (Problem (Matrix PR)).

(Phase retrieval - original)

find x ∈ Cd

s.t. |Lj(x)| = yj,∀j ≤ m.

(Phase retrieval - matricial)

find X ∈ Cd×d

s.t. v∗jXvj = y2
j ,∀j ≤ m,

X ⪰ 0,
rank(X) ≤ 1.

We apply to the matricial formulation the same strategy we have seen for
general low-rank matrix recovery problems: we replace the rank functional
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with the nuclear norm. Since the matrix X we are looking for must be
semidefinite positive, its nuclear norm is equal to its trace (see Definition
2.6), which results in the following convex relaxation:

minimize Tr(X)
for all X ∈ Cd×d,

such that v∗jXvj = y2
j , ∀j ≤ m,

X ⪰ 0.

(PhaseLift)

This relaxation has been introduced in [Chai, Moscoso, and Papanicolaou,
2011] and [Candès, Eldar, Strohmer, and Voroninski, 2011]. The name
(PhaseLift) comes from the second article.

For “interesting” values of m and families of measurement vectors v1, . . . , vm ∈
Cd, the linear operator

L : X ∈ Cd×d → (v∗jXvj)1≤j≤m ∈ Rm

does generally not satisfy a restricted isometry property.2 Nevertheless, it
does not prevent the convex relaxation (PhaseLift) from being oftentimes
tight. This tightness can be numerically observed for many families of mea-
surements vectors, and has been rigorously proven for a few ones. The sim-
plest case is when v1, . . . , vm are chosen at random according to normal laws;
in this case, tightness is guaranteed by the following theorem.

Theorem 2.11 : [Candès and Li, 2014]

Let us assume that v1, . . . , vm are chosen independently at random
in Cd, following normal distributions. Let x0 ∈ Cd be a vector. We

2Here is a crude and oversimplified idea of why it does not, in the case where v1, . . . , vm
are chosen independently at random according to standard normal distributions and m =
O(d). The operator L depends quadratically on each vj (by comparison, in Theorem 2.10,
it depends linearly on each Ak). Therefore, it behaves somewhat similarly to a sequence
of squared Gaussian variables (rather than a sequence of plain Gaussian variables as in
Theorem 2.10). Squared Gaussian variables have much more frequent high values than
plain Gaussian ones, hence their concentration properties are less good: they deviate
more from their average expected behavior, hence there are a few directions along which
L dilates distances much more than along the other ones, which prevents it from being an
approximate isometry.
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consider the convex problem (PhaseLift) with yj = | ⟨x0, vj⟩ | for all j.
There exists a constant c > 0 such that, if

m ≥ cd,

then the relaxation provided by (PhaseLift) is tight with high prob-
abilitya: it has a unique solution, the same as Problem (Matrix PR),
that is X = x0x

∗
0.

athat is, with probability at least 1 − e−γm for some constant γ > 0,

We do not provide the proof of this result. The one proposed in [Candès
and Li, 2014] relies on the notion of dual certificate, which we will introduce
later. Another one, from [Chen, Chi, and Goldsmith, 2015], uses a restricted
isometry property, but for different norms than in Definition 2.8.

Remark

The semidefinite positiveness constraint, by itself, tends to encourage
solutions of optimization problems to have small rank. Therefore, in
Problem (PhaseLift), the trace minimization is not always necessary.
The bare feasibility problem

find X ∈ Cd×d,

such that v∗jXvj = y2
j ,∀j ≤ m,

X ⪰ 0.

is already a good convex relaxation for the original non-convex problem
(in the sense that it satisfies similar guarantees as the ones stated for
(PhaseLift) in Theorem 2.11).
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Matrix completion

We recall the problem of matrix completion:

recover X ∈ Rd1×d2

such that Xij = yij,∀(i, j) ∈ Ω
and rank(X) ≤ r.

(Matrix completion)

We obtain a convex relaxation by following the same principle as before: we
replace the minimization of the rank with the minimization of the nuclear
norm.

minimize ||X||∗
for all X ∈ Rd1×d2

such that Xij = yij,∀(i, j) ∈ Ω.

(Convex MC)

The linear operator

L : X ∈ Rd1×d2 → (Xij)(i,j)∈Ω ∈ RCard(Ω)

does not satisfy a restricted isometry property similar to Condition (2.8).
Indeed, for any (k, l) /∈ Ω, the matrix ek,l whose coefficients are all zero,
except the (k, l)-th one which is 1, satisfies

L(ek,l) = 0.

As rank(ek,l) = 1, the r-restricted isometry constant of L can never be below
1, for any r ∈ {1, . . . ,min(d1, d2)}.

Besides showing the absence of restricted isometry, this remark points
at a fundamental limitation in matrix completion: matrices which are “too
concentrated” on a few coefficients cannot be recovered from a subset of
coefficients; the matrix ek,l cannot be recovered from the observation of its
coefficients with indices in Ω. Only matrices whose coefficients are sufficiently
“spread out” can be recovered: they must not have very large coefficients, and
the largest coefficients must also not be aligned on a row or a column. This
can be formalized through the so-called incoherence condition.
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Definition 2.12 : incoherence condition

Let X ∈ Rd1×d2 be a rank r matrix. It can be written as

X = U

Ñ
λ1

λ2
...

λr

é
V,

where U ∈ Rd1×r has orthonormal columns, and V ∈ Rr×d2 has or-
thonormal rows.a
We say that X satisfies the incoherence condition with parameter
µ0 > 0 if

|Uk,l| ≤
…

µ0

d1
, ∀k ≤ d1,∀l ≤ r, (2.12a)

and |Vk,l| ≤
…

µ0

d2
, ∀k ≤ r,∀l ≤ d2. (2.12b)

aThis can be deduced from the singular value decomposition.

Remark

For any l ≤ r, the l-th column of U has unit norm, hence at least one
of its d1 coordinates satisfies

|Uk,l| ≥
 

1
d1

,

and equality holds only if all coordinates are equal to
»

1
d1

in absolute
value. Hence, Condition (2.12a) holds with µ0 = 1 if and only if the
coordinates of U are “maximally spread out”, that is they are all equal
(in absolute value). Similarly, Condition (2.12b) holds with µ0 = 1 if
and only if all coordinates of V are equal in absolue value.
This intuitively justifies the scalings

»
1
d1

and
»

1
d2

in Equations (2.12a)
and (2.12b).
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Theorem 2.13 : [Chen, 2015]

We assume that Ω is chosen by selecting each pair (k, l) ∈ {1, . . . , d1}×
{1, . . . , d2} independently at random, with some probability p > 0.
Let X∗ ∈ Rd1×d2 be a matrix satisfying the incoherence condition with
some parameter µ0 > 0.
There exists a constant c > 0 such that, if

p ≥ c
µ0r(d1 + d2) log2(d1 + d2)

d1d2
,

then, with high probability,a the convex relaxation (Convex MC) (with
yij = X∗ij for all (i, j) ∈ Ω) is tight: it has a unique solution, which is
X∗, the same as (Matrix completion).

athat is, with probability at least 1 − (d1 + d2)−α for some α > 0,

Remark

The condition p ≥ cµ0r(d1+d2) log2(d1+d2)
d1d2

means that the cardinal of Ω is
of order

pd1d2 ≥ cµ0r(d1 + d2) log2(d1 + d2).

Therefore, when µ0 is of order 1, the unknown matrix can be recovered
through convex programming using a number of measurements which
is only a logarithmic factor larger than the optimum (see the discussion
after Theorem 2.10).

2.3 Super-resolution

We recall the super-resolution problem presented in the introduction, where
one must recover a sum of a few diracs in [0; 1[ from its low-frequency Fourier
coefficients.

find µ ∈ M([0; 1[)
such that µ̂[k] = yk,∀k = −N, . . . , N,

and µ is a sum of S diracs.
(Super-resolution)
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Here, M([0; 1[) is the set of complex-valued finite Borel measures on [0; 1[.

2.3.1 Convexification through the total variation norm

A reasonable convex approximation for Problem (Super-resolution) can be
proposed using the analogy between super-resolution and compressed sens-
ing.

In compressed sensing, the unknowns are sparse vectors of Rd, that is,
they can be written as

x =
k∑

s=1

xiseis ,

where k is an integer much smaller than d, i1, . . . , ik are the indices of the
non-zero coordinates of x and, for each j, ej ∈ Rd is the j-th vector of the
canonical basis.3 We have seen that a good convex approximation of the non-
convex compressed sensing problem, (Basis Pursuit), is obtained by replacing
the non-convex ℓ0-norm with

||x||1 =
k∑

s=1

|xis|.

In super-resolution, the unknowns are sparse measures over [0; 1[. They
can be written as

µ =
S∑

s=1

asδτs ,

where S is an integer, τ1, . . . , τs ∈ [0; 1[ are the positions of the diracs and
a1, . . . , as ∈ R are coefficients. Here, the diracs δτs play the roles of the
canonical vectors eis . Therefore, is seems reasonable to approximate the non-
convex requirement that µ is a sum of S diracs using the following analogue
of the ℓ1-norm:

||µ||analogue-ℓ1 =
S∑

s=1

|as|.

This analogue of the ℓ1-norm happens to coincide with a standard norm
of finite measures, called total variation. The exact definition of this norm
follows. Since we will not explicitely use it in most of the rest of the section,

3i.e. the vector whose coordinates are all 0, except the j-th one, which is 1
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readers who are not familiar with measure theory are encouraged to skip it.
Readers who, on the contrary, are familiar with measure theory and want
to know more about total variation are encouraged to read [Rudin, 1987,
Chapter 6], notably Theorem 6.19.

Definition 2.14 : total variation

For any complex-valued finite measure µ ∈ M([0; 1[), its total variation
norm is

||µ||TV = sup
(E1,...,EN )∈Π

N∑
s=1

|µ(Es)|,

where Π is the set of all finite partitions of [0; 1[:

Π = {(E1, . . . , EN) for N ∈ N∗, E1, . . . , EN measurable,
such that E1 ∪ · · · ∪ EN = [0; 1[,

Ei ∩ Ej = ∅,∀i ̸= j}.

Proposition 2.15 : equivalent definition of total variation

A definition equivalent to the previous one is

||µ||TV = sup

{
Re
Ç∫ 1

0
f(t)dµ(t)

å
, |f(t)| ≤ 1,∀t ∈ [0; 1],

f : [0; 1] → C is continuous

}
.

In addition, if the supremum is attained by a function f , it must hold

Supp(µ) ⊂ {t ∈ [0; 1[, |f(t)| = 1} . (2.14)

The total variation norm shares a property similar with Propositions 2.2
and 2.7: its extremal points are the diracs.

Replacing the “sum of S diracs” constraint with the minimization of the
total variation norm, we arrive at the following problem, proposed in [de Cas-
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tro and Gamboa, 2012]:

minimize ||µ||TV

for µ ∈ M([0; 1[),
such that µ̂[k] = yk,∀k = −N, . . . , N.

(Min TV)

Remark

Although Problem (Min TV) is convex, it cannot be solved with stan-
dard solvers as easily as the other convex problems we have encountered
so far. Indeed, the unknown µ belongs to an infinite-dimensional vec-
tor space M([0; 1[), hence does not admit a convenient representation
allowing manipulation on a computer. By contrast, in the problems
we have seen until now, the unknowns were vectors or matrices, with
a finite number of coefficients.
The main three approaches to numerically solve Problem (Min TV)
are the following ones.

• Showing that it is equivalent to a (finite-dimensional) semidef-
inite problem (see the exercises for details): this approach has
the drawback to strongly rely on the properties of the Fourier
coefficients. Therefore, it cannot be generalized to more complex
super-resolution problems than (Super-resolution).

• Discretizing the set of measures: one approximates a measure on
[0; 1[ by a measure onß 0

N
,

1
N
, . . . ,

N − 1
N

™
for some large integer N . The approximation can be represented
by a finite number of coefficients.

• Applying a general convex or non-convex solver directly to the
infinite-dimensional problem. If the intermediate solver iterates
turn out to be finite sums of diracs, they can actually be repre-
sented by a finite number of parameters (although this number
may grow with the iteration count).
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2.3.2 No restricted isometry property

As in the case of compressed sensing and low-rank matrix recovery, the so-
lution of the convex (Min TV) problem is often the same as the solution of
the original non-convex (Super-resolution) problem. A natural first idea to
rigorously establish this fact is to ask whether some analogue of restricted
isometry property (Definition 2.3) holds. One could define, in the context
of super-resolution, the S-restricted isometry constant as the smallest real
number δ ≥ 0 such that

(1 − δ)||µ||simili ℓ2 ≤ ||(µ̂[−N ], . . . , µ̂[N ])||2 ≤ (1 + δ)||µ||simili ℓ2 (2.16)

for all measures µ which are a sum of S diracs, where ||.||simili ℓ2 is a norm
which should mimic, on the set of measures, the ℓ2-norm of vectors.

Unfortunately, this definition does not lead to a useful quantity: a number
δ satisfying Equation (2.16) is necessarily at least 1 (for S ≥ 2). Indeed, let
(xn)n∈N be a sequence of strictly positive numbers going to 0. For any n, we
set

µn = δ0 − δxn .

For any k,

µ̂n[k] =
∫ 1

0
e−2πiktdµn(t)

= e0 − e−2πikxn

→ e0 − e0 = 0 when n → +∞.

Therefore, if we apply Equation (2.16) to µ = µn and let n go to infinity, we
see that either δ ≥ 1 or

||µn||simili ℓ2
n→+∞−→ 0,

which is in contradiction with the fact that the norm ||.||simili ℓ2 should be
somewhat similar to the ℓ2-norm.

2.3.3 Correctness via dual certificates

Since no restricted isometry property holds, proving equality between the
solutions of (Super-resolution) and (Min TV) must rely on other arguments.
The most common one is to use duality theory.
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A few words on general duality theory

Let us consider a general convex optimization problem, as in Section 1.2:

minimize f(x)
over all x ∈ H

such that x ∈ C1,

. . .

x ∈ CS,

(Primal)

where H is a real or complex vector space, f : H → R ∪ {+∞} is a convex
function and C1, . . . , CS ⊂ H are convex sets.4

When discussing duality, the problem of interest is called the primal prob-
lem. Duality theory is a general method to associate to Problem (Primal)
another convex problem

maximize g(y)
over all y ∈ E

such that y ∈ D1,

. . .

y ∈ DT ,

(Dual)

where E is a vector space, D1, . . . , DT are convex sets and g : E → R∪{−∞}
is a concave function.5

The method which constructs Problem (Dual) from Problem (Primal)
ensures that

max (Dual) ≤ min (Primal), (2.19)

where min (Primal) and max (Dual) respectively denote the optimal values
of Problems (Primal) and (Dual). This is called the weak duality property.

4Actually, duality theory applies when the sets Ck have a specific form (they are sublevel
sets of convex functions), but most commonly encountered constraint sets can be written
under this form.

5A function g is concave if −g is convex. Maximizing a concave function g is equivalent
to minimizing the convex function −g; therefore, maximizing a concave function is a convex
problem.
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Actually, under relatively weak assumptions on C1, . . . , CS, the inequality is
actually an equality, called strong duality :

min (Primal) = max (Dual).

When interested in solving Problem (Primal), it is quite useful to con-
sider Problem (Dual) because it provides a way to certify that a candidate
minimizer x∗ of Problem (Primal) is really a minimizer. Without looking at
Problem (Dual), proving that x∗ is a minimizer is not easy: it a priori re-
quires to consider all elements x ∈ C1 ∩ · · ·∩CS and show that none of them
yields a smaller value of f . But if we can exhibit a candidate maximizer y∗
for Problem (Dual) and verify that

f(x∗) = g(y∗),

then, from the definition of min (Primal) and max (Dual),

min (Primal) ≤ f(x∗) = g(y∗) ≤ max (Dual)

so, from Equation (2.19), the inequalities are equalities:

min (Primal) = f(x∗) = g(y∗) = max (Dual).

The first of these equalities guarantees that x∗ is a minimizer of Problem
(Primal).

In these notes, we do not explain the general method to construct a
dual problem from a primal one, but we present the construction and its
consequences in the specific case of Problem (Min TV).

Dual of total variation minimization

To construct the dual of Problem (Min TV), we must first rewrite the prob-
lem as a “min-max problem”.

To begin with, Problem (Min TV) can be very slightly reformulated as

min
µ∈M([0;1[)

||µ||TV

under the constraint y − µ̂[−N : N ] = 0.
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The first step of the rewriting is to incorporate the constraint y − µ̂[−N :
N ] = 0 into the objective: the problem above has the same optimal value
and minimizers as

min
µ∈M([0;1[)

||µ||TV + 1y−µ̂[−N :N ]=0︸ ︷︷ ︸
def= f1(µ)

,

where, for any vector v ∈ Cn, 1v=0 is defined as

1v=0 = 0 if v = 0,
= +∞ otherwise.

From the proposition which follows (see Section A.1 in appendix for the
proof),

f1(µ) = max
z∈C2N+1

||µ||TV + Re ⟨z, y − µ̂[−N : N ]⟩ .

Proposition 2.16

For any v ∈ Cn,
1v=0 = max

z∈Cn
Re ⟨z, v⟩ .

For any z ∈ C2N+1,

Re ⟨z, y − µ̂[−N : N ]⟩ = Re ⟨z, y⟩ − Re ⟨z, µ̂[−N : N ]⟩

= Re ⟨z, y⟩ − Re

(
N∑

k=−N

zkµ̂[k]

)

= Re ⟨z, y⟩ − Re

(
N∑

k=−N

zk

∫ 1

0
e−2πiktdµ(t)

)

= Re ⟨z, y⟩ − Re
∫ 1

0

(
N∑

k=−N

zke
−2πikt

)
dµ(t),

hence

f1(µ) = max
z∈C2N+1

||µ||TV − Re
∫ 1

0

(
N∑

k=−N

zke
−2πikt

)
dµ(t) + Re ⟨z, y⟩︸ ︷︷ ︸

def= F (µ, z)

.
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Consequently, Problem (Min TV) has the same optimal value and mini-
mizers as

min
µ∈M([0;1[)

max
z∈C2N+1

F (µ, z). (Primal min-max)

This is the reformulation we needed for the primal (Min TV) problem. Now,
we define the dual problem by simply switching the minimum and maximum:

max
z∈C2N+1

min
µ∈M([0;1[)

F (µ, z)︸ ︷︷ ︸
def= f2(z)

.

(Dual max-min)

The minimization over µ in the definition of f2 has an explicit solution, given
in Proposition 2.17 (see Section A.2 in appendix for a proof):

f2(z) = min
µ∈M([0;1[)

||µ||TV − Re
∫ 1

0

(
N∑

k=−N

zke
−2πikt

)
dµ(t) + Re ⟨z, y⟩

= Re ⟨z, y⟩ − 1|∑N
k=−N zke2πikt|≤1,∀t,

where 1|∑N
k=−N zke2πikt|≤1,∀t = 0 if

∣∣∣∑N
k=−N zke

2πikt
∣∣∣ ≤ 1,∀t ∈ R and +∞

otherwise.

Proposition 2.17

For any continuous function f : [0; 1] → C,

min
µ∈M([0;1[)

Ä
||µ||TV − Re

∫ 1
0 f(t)dµ(t)

ä
= 0 if |f(t)| ≤ 1,∀t ∈ [0; 1],

= −∞ otherwise.

In addition, if a minimizer µ exists, it satisfies

Supp(µ) ⊂ {t ∈ [0; 1[, |f(t)| = 1}.
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Problem (Dual max-min) can therefore be rewritten as

maximize Re ⟨z, y⟩
for z ∈ C2N+1

such that

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣ ≤ 1,∀t ∈ R.
(Dual TV)

By construction,

min (Min TV) = min
µ∈M([0;1[)

f1(µ)

= min
µ∈M([0;1[)

max
z∈C2N+1

F (µ, z)

≥ min
µ∈M([0;1[)

max
z∈C2N+1

min
ν∈M([0;1[)

F (ν, z)

= max
z∈C2N+1

min
ν∈M([0;1[)

F (ν, z)

= max
z∈C2N+1

f2(z)

= max (Dual TV), (Weak duality - TV)

that is, the optimal value of (Dual TV) is necessarily smaller than the optimal
value of (Min TV). Actually, the two values are equal, but we will not use
it here.

It also turns out that the minimizers of (Min TV) and maximizers of
(Dual TV) can also be partly characterized one from each other. This is the
content of the following proposition, which we will need in the next paragraph
and whose proof is in Section A.3. We will need this result to show that µ∗ is
(under appropriate assumptions) the unique solution of Problem (Min TV).

Proposition 2.18

Let µ∗ be a minimizer of Problem (Min TV) and z∗ a maximizer of
Problem (Dual TV). If ||µ∗||TV = Re ⟨z∗, y⟩, it holds:

Supp(µ∗) ⊂

{
t ∈ [0; 1[,

∣∣∣∣∣
N∑

k=−N

z∗ke
2πikt

∣∣∣∣∣ = 1

}
.
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Correctness guarantees

Let us summarize what we have said so far in this section. We want to
recover a measure µ0, which is a sum of S diracs (µ0 =

∑S
s=1 asδτs), from its

Fourier coefficients. This is the non-convex problem (Super-resolution). In
Subsection 2.3.1, we have introduced the convex relaxation (Min TV). Our
objective is now to prove that, at least under some suitable assumptions on
µ0, the relaxation is tight: Problem (Min TV) (with y = µ̂0[−N : N ]) has a
single solution, which is µ0.

To prove that µ0 is the solution of Problem (Min TV), we use the dual
problem (Dual TV). More specifically, we construct a so-called dual certifi-
cate: a feasible point z for Problem (Dual TV) satisfying

||µ0||TV = Re ⟨z, y⟩ . (2.23)

The existence of a dual certificate proves that µ0 is a minimizer of Problem
(Min TV): indeed,

min (Min TV) ≤ ||µ0||TV = Re ⟨z, y⟩ ≤ max (Dual TV)

and, from Equation (Weak duality - TV), max (Dual TV) ≤ min (Min TV),
so the two inequalities above are actually equalities. In particular,

min (Min TV) = ||µ0||TV ,

so µ0 is a minimizer of (Min TV).
To prove that µ0 is the only minimizer of (Min TV), let us assume that,

in addition, the dual certificate satisfies∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣ < 1 for all t ∈ [0; 1[\Supp(µ0). (2.24)

Then, any minimizer µ∗ must then satisfy, from Proposition 2.18,

Supp(µ∗) ⊂

{
t ∈ [0; 1[,

∣∣∣∣∣
N∑

k=−N

zke
2πikt

∣∣∣∣∣ = 1

}
⊂ Supp(µ0) = {τ1, . . . , τS}.

Consequently, µ∗ is of the form µ∗ =
∑S

s=1 a∗sδτs , for some coefficients
a∗1, . . . , a∗S ∈ C. It can be checked that the map

L : CS → C2N+1

(x1, . . . , xS) →
Å⁄�∑S

s=1 xsδτs [k]
ã

−N≤k≤N
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is injective if S ≤ 2N + 16. As L(a1, . . . , aS) = µ̂0[−N : N ] = y = µ̂∗[−N :
N ] = L(a∗1, . . . , a∗S), it means that a∗s = as for any s.

Under which conditions does there exist a dual certificate? The following
theorem states that, when µ0 is nonnegative, it always exists. In particular,
in this case, µ0 is the only solution of the convex relaxation (Min TV); the
relaxation is tight.

Theorem 2.19 : tightness for nonnegative measures
[de Castro and Gamboa, 2012]

Let µ0 =
∑S

s=1 asδτs be a nonnegative measure (that is, as ∈ R+ for
all s ≤ S).
If S ≤ N , there exists a dual certificate z as in Equation (2.23), satis-
fying the additional condition (2.24).

Proof. In this proof, for any vector z ∈ C2N+1, we denote Pz the associated
trigonometric polynomial

Pz(e2πit) =
N∑

k=−N

zke
2πikt.

We recall ||µ0||TV =
∑S

s=1 |as| and, from the same computation as the
one following Proposition 2.16, for any z,

Re ⟨z, y⟩ = Re ⟨z, µ̂0[−N : N ]⟩

= Re
∫ 1

0

(
N∑

k=−N

zke
−2πikt

)
dµ0(t)

= Re

(
S∑

s=1

as

(
N∑

k=−N

zke
−2πikτs

))

=
S∑

s=1

asRe
Ä
Pz(e2πiτs)

ä
.

6Its matrix, in a canonical basis, is a so-called Vandermonde matrix, whose determinant
has a simple explicit expression, and cannot be zero if the τs are distinct.
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Equation (2.23) can be rewritten as

S∑
s=1

|as| =
S∑

s=1

asRe
Ä
Pz(e2πiτs)

ä
.

Since the as are nonnegative, this equality notably holds if

Pz(e2πiτs) = 1, ∀s = 1, . . . , S. (2.25)

To find a dual certificate satisfying Equation (2.24), we must therefore
only find z ∈ C2N+1 satisfying Equation (2.25) such that∣∣Pz(e2πit)

∣∣ < 1, ∀t ∈ [0; 1[\{τ1, . . . , τS}. (2.26)

(Note that a vector satisfying these two conditions is automatically a feasible
point of Problem (Dual TV).)

Let ϵ > 0 be a small constant (to be chosen later). We define a trigono-
metric polynomial

Qϵ(e2πit) = 1 − ϵ
S∏

s=1

∣∣e2πit − e2πiτs
∣∣2

= 1 − ϵ
S∏

s=1

(
e2πit − e2πiτs

) (
e−2πit − e−2πiτs

)
.

If ϵ is small enough, we have for all t ∈ [0; 1[

Qϵ(e2πit) = 1 − ϵ
S∏

s=1

∣∣e2πit − e2πiτs
∣∣2 ∈ [0; 1].

We fix such an ϵ and define z ∈ C2N+1 such that

Qϵ = Pz.

If S ≤ N , such a vector z exists. It satisfies the desired conditions: Equation
(2.25) is true because, for any s ≤ S,

Ps(e2πiτs) = Qϵ(e2πiτs) = 1 − ϵ

S∏
s′=1

∣∣e2πiτs − e2πiτs′
∣∣2 = 1.
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Equation (2.26) is also true because, from the choice of ϵ, Pz(e2πit) is in [0; 1]
for all t ∈ [0; 1[. It is exactly equal to 1 if and only if

∏S
s=1 |e2πit − e2πiτs|2 = 0,

that is if and only if
t ∈ {τ1, . . . , τS}.

Said otherwise, |Pz(e2πit)| < 1 for all t ∈ [0; 1[\{τ1, . . . , τS}.

And when µ0 is not nonnegative? In this case, a dual certificate also exists,
provided that the diracs in µ0 are sufficiently well separated. Separation is
defined as the minimal distance between any two τs, where the distance is
considered7 modulo 1: we define

∆(µ0) = min
s̸=s′

dist(τs, τs′),

where dist(τs, τs′) = min
n∈Z

|τs − τs′ − n|.

Theorem 2.20 : tightness for well-separated diracs
[Candès and Fernandez-Granda, 2014]

Let N ∈ N∗ be fixed and large enougha. If µ0 is a measure with
separation

∆(µ0) ≥
2
N
,

then a dual certificate satisfying the additional condition (2.24) exists.
As a consequence, the convex relaxation (Min TV) is tight.

alarger than 128

The proof of this theorem follows a similar methodology as the proof of
Theorem 2.19, but the construction of the dual certificate is significantly
more difficult. We do not present it here.

7It is considered modulo 1 because the Fourier transform is 1-periodic: for any τ , the
dirac δτ has the same Fourier coefficients as δτ+1, δτ+2, ...
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Chapter 3

Non-convex methods

What you should know / be able to do after this chapter

• Know the definition of a non-convex algorithm.

• List the main pros and cons of convex versus non-convex algorithms
for inverse problems.

• Know the definition of first and second-order critical points.

• When given a specific (simple) function, compute its first and second-
order critical points.

• Know that gradient descent converges to a first-order critical point
under weak asumptions, and to a second-order critical point for almost
all initializations.

• Given a specific non-convex inverse problems, reformulate it as an op-
timization problem amenable to standard algorithms (as in Subsection
3.2.1).

• Know that a low-rank matrix can be written as the product of two
thinner matrices.

• Know the general form of a local convergence statement, and why it is
important that an initialization procedure is available.

• Sketch the proof of local convergence for Wirtinger Flow.

53
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• Propose initialization procedures in simple random settings.

• Remember the main limit of initialization procedures: they depend on
the random distribution.

• Know the general form of a global convergence statement.

• When all second-order critical points of the objective function happen
to be globally optimal, prove global convergence of gradient descent or
trust-regions.

In the previous chapter, we have presented algorithms relying on convex-
ification techniques and seen that these algorithms

• work well, in the sense that, at least for specific classes of random
inverse problems, they succeed with high probability;

• can be rigorously analyzed (at least in some settings) through rela-
tively standard techniques (we have seen restricted isometry and dual
certificates).

These are two of the three properties in our “wishlist” of Subsection 1.1.3.
Unfortunately, there is a third property in this wishlist: good algorithms
must be reasonably fast. And this property is often not satisfied by convex
algorithms.

This is especially true for low-rank matrix recovery problems. A low-rank
matrix with dimension d1×d2 and rank r can be parameterized by r(d1 +d2)
parameters: we can write it as

X = LR,

for some matrices L ∈ Rd1×r and R ∈ Rr×d2 .1 We could naively expect
that there exist algorithms which only explore the set of matrices with rank

1If we write the singular value decomposition X = U

á µ1

. . .
µd2

0 ... 0
...

...
0 ... 0

ë
V , the matrices

L = U

à√
µ1

. . . √
µr

0 ... 0
...

...
0 ... 0

í
and R =

(√
µ1 0 ... 0

. . .
...

...√
µr 0 ... 0

)
V satisfy the equality X = LR.
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r, using this representation with r(d1 + d2) parameters, for a cost of order
(ideally) O(r(d1 +d2)) elementary operations at each iteration. But Problem
(Nuclear min) is an optimization problem on the whole set of d1×d2 matrices.
It does not take advantage of the fact that the underlying matrix we want
to recover can be parameterized by r(d1 + d2) parameters. Each iteration of
the solver typically requires at least d1d2 operations (because one needs d1d2
operations to simply read each entry of a d1 ×d2 matrix), and possibly much
more.2 As r is much smaller than min(d1, d2),

d1d2 ≫ r(d1 + d2).

For this reason, convexification techniques are oftentimes considered too
costly, and other algorithms are preferred, where iterates are low-rank.

These other algorithms are called non-convex because, on the contrary to
convexified algorithms, they do not attempt to introduce hidden or approxi-
mate convexity. They directly perform operations on non-convex functions,
or on objects belonging to non-convex sets.

The theoretical foundation of non-convex algorithms is generally not as
clear as for convex ones. They can contain various heuristic steps, tailored to
the problem at hand. Regarding their results, they are a priori not guaranteed
to return a meaningful vector at all (because they optimize over a non-convex
set, they can get stuck in local optima). However, they have been used for
a long time and numerical results have shown that they work well in many
situations. This has motivated researchers, in the last decade, to develop
analysis techniques suited to non-convex algorithms.

To summarize, here are roughly the pros and cons of convex and non-
convex algorithms:

• both families of algorithms tend to work well for many non-convex
families of problems (pro);

• convex methods tend to be computationally costly (con) while non-
convex algorithms are oftentimes more affordable (pro);

• well-known tools allow to rigorously analyse convex methods (pro);
similar tools for non-convex algorithms are newer, but they start to
develop (half pro/half con).

2Some operations on d1 × d2 matrices require significantly more than O(d1d2) opera-
tions, like singular value decomposition.



56 CHAPTER 3. NON-CONVEX METHODS

3.1 General non-convex optimization
We start with an overview of general non-convex optimization algorithms, to
understand what we can expect of the output of a non-convex algorithm: it
is generally not guaranteed to find the global optimum of the problem, but
it will in principle find at least a critical point.

The next subsection defines two versions of this notion: first-order and
second-order critical points. The subsequent two subsections describe the
convergence guarantees of standard optimization algorithms towards, respec-
tively, first and second-order critical points.

3.1.1 Critical points versus minimizers

To simplify the discussion, let us restrict ourselves to finite-dimensional and
unconstrained optimization. “Unconstrained” means that, in Problem (Opt),
the number of constraint sets Cs is zero:

minimize f(x) over all x ∈ Rd.

We assume that a minimizer exists.
We recall from Section 1.2 that it is in general hopeless to try to find a

global minimizer of f if f is not convex: even assuming that f is smooth,
this would require to query information on f at all points of a fine grid of
Rd (at least a bounded subset thereof) which is already slow for very small
values of d, and quickly becomes unrealistic when d grows.

Thus, what can we expect from a good non-convex optimization algo-
rithm? It won’t be able to find global minimizers with certainty. Can it at
least be guaranteed to find a local minimizer, if one exists? It turns out that
this is also out of reach: there are functions, even polynomial ones, for which
determining whether a point is a local minimum is already NP-difficult. To
describe what reasonable non-convex algorithms should output, the good
notion is critical points.

Critical points are points at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

Definition 3.1 : critical point

We say that an element x of Rd is

• a first-order critical point of f if ∇f(x) = 0,



3.1. GENERAL NON-CONVEX OPTIMIZATION 57

• a second-order critical point of f if ∇f(x) = 0 and Hess f(x) ⪰ 0.

Of course, the first notion is well-defined only for differentiable func-
tions f , and the second one only for twice-differentiable ones.

Remark

Local minimizers of f are necessarily second-order critical points, but
the converse may not be true. For instance, the map x ∈ R → x3 ∈ R
has a second-order critical point at 0, but no local minimizer.

Example 3.2

Let us consider the map

f : R2 → R
(x, y) → x4

4 − x3

3 − x2 + y2.

For any (x, y) ∈ R2,

∇f(x, y) =
Å

(x + 1)x(x− 2)
2y

ã
, Hessf(x, y) =

Å
3x2 − 2x− 2 0

0 2

ã
.

From these expressions, one can check that f has three first-order crit-
ical points, which are (−1, 0), (0, 0) and (2, 0).
Among them, only (−1, 0) and (2, 0) are second-order critical points.
Since

Hessf(−1, 0) =
Å

3 0
0 2

ã
≻ 0 and Hessf(2, 0) =

Å
6 0
0 2

ã
≻ 0,

both are local minimizers of f . The point (2, 0) is a global minimizer
while (−1, 0) is only a local one.

At this point, the reader may wonder: why bother proving that a given
non-convex algorithm always outputs a critical point of the objective func-
tion? What we really want are minimizers of f , not critical points! For us,
the main reason is that knowing that an algorithm returns a critical point
for sure is a first step towards analyzing its behavior. Indeed, it allows us
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to restrict our analysis of possible outputs to the set of critical points. In
particular, if the objective function has only a few critical points, it already
provides a lot of information on the output.

3.1.2 Finding first-order critical points

Assuming f is differentiable, the most basic optimization algorithm is gradi-
ent descent. It defines a sequence of iterates (xt)t∈N by

xt+1 = xt − αt∇f(xt), ∀t ∈ N.

Here, the parameters αt > 0 are called the stepsizes.
In this subsection, we are going to see the following results:

• under very weak hypotheses, xt is an approximate first-order critical
point for t large enough (Corollary 3.4);

• under slightly stricter (but still weak) hypotheses, xt actually converges
to a first-order critical point when t → +∞ (Theorem 3.6).

We first need a proposition about the decay of f along the gradient de-
scent trajectory.

Proposition 3.3

We assume that the gradient of f is L-Lipschitza for some L > 0: for
any x, y ∈ Rd,

||∇f(x) −∇f(y)||2 ≤ L||x− y||2.

We consider gradient descent with stepsize αt = 1
L
.b

Then, for each t ∈ N,

f(xt+1) ≤ f(xt) −
1

2L
||∇f(xt)||22.

aThis assumption is often called L-smoothness.
bOther choices are possible. In practice, L is usually unknown and the stepsizes

are chosen using linesearch.
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Proof. For all x, h ∈ Rd,

f(x + h) = f(x) +
∫ 1

0
⟨∇f(x + th), h⟩ dt

= f(x) +
∫ 1

0
⟨∇f(x) + (∇f(x + th) −∇f(x)), h⟩ dt

= f(x) + ⟨∇f(x), h⟩ +
∫ 1

0
⟨∇f(x + th) −∇f(x), h⟩ dt

≤ f(x) + ⟨∇f(x), h⟩ +
∫ 1

0
||∇f(x + th) −∇f(x)||2 ||h||2dt

(by triangular inequality)

≤ f(x) + ⟨∇f(x), h⟩ + L

∫ 1

0
||h||22tdt

(as ∇f is L-Lipschitz)

= f(x) + ⟨∇f(x), h⟩ + L

2
||h||22.

We apply this inequality to x = xt and h = − 1
L
∇f(xt):

∀t ∈ N, f(xt+1) ≤ f(xt) −
1

2L
||∇f(xt)||22.

This property implies that the gradient descent iterates are “asymptoti-
cally first-order critical”, in the sense that ∇f goes to zero along the sequence.

Corollary 3.4

Under the same assumptions as Proposition 3.3, and recalling that we
assume the existence of at least one minimizer of f ,

||∇f(xt)||2
t→+∞−→ 0.

Proof. For any T ∈ N, from Proposition 3.3,

1
2L

T∑
t=0

||∇f(xt)||22 ≤
T∑
t=0

[f(xt) − f(xt+1)]
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= f(x0) − f(xT+1)
≤ f(x0) − min f.

Consequently, the sum
∑

t∈N ||∇f(xt)||22 is convergent, so its terms go to
zero.

Refining the argument, we can moreover give an a priori estimate for the
convergence rate of ||∇f(xt)||2 towards zero.

Corollary 3.5

We keep the same assumptions as in Corollary 3.4
For any T , if we set x̃T = argmin {||∇f(x)||2, x ∈ {x0, . . . , xT}}, this
point satisfies

||∇f(x̃T )||2 ≤

 
2L(f(x0) − min f)

T + 1
.

Proof. We have seen in the proof of Corollary 3.4 that, for any T ,

T∑
t=0

||∇f(xt)||22 ≤ 2L(f(x0) − min f).

Since ||∇f(x̃T )||2 ≤ ||∇f(xt)||2 for any t ≤ T ,

(T + 1)||∇f(x̃T )||22 ≤ 2L(f(x0) − min f),

which implies

||∇f(x̃T )||2 ≤

 
2L(f(x0) − min f)

T + 1
.

Another way of stating the above result is that, for fixed Lipschitz con-
stant L and gap (f(x0) − min(f)), gradient descent needs at most O

( 1
ϵ2

)
iterations to find a ϵ-approximate first-order critical point. Let us mention
that this convergence rate is optimal: for any algorithm and any ϵ, there is at
least one function with the given Lipschitz constant and gap such that the al-
gorithm needs to query at least O

( 1
ϵ2

)
values of the function or its derivatives
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to find an ϵ-approximate first-order critical point [Carmon, Duchi, Hinder,
and Sidford, 2020].

We have seen that gradient descent iterates are asymptotically first-order
critical. At this stage, a natural question is: do the iterates actually converge
a first-order critical point? For most functions f , the answer is yes. However,
there exist a few functions with Lipschitz gradient for which this is not true,3
so we need additional assumptions to guarantee it.

Theorem 3.6 : convergence of gradient descent iterates

We still assume that the gradient of f is L-Lipschitz, for some L > 0.
We also assume that f is coercivea. In addition, we make either of the
following two assumptions:

• the set of first-order critical points of f is discrete;b

• f is analytic.c

We still consider gradient descent with stepsize 1
L
.

The sequence of iterates (xt)t∈N converges towards a first-order critical
point of f .

aA function f is coercive if f(x) → +∞ when ||x||2 → +∞.
bA set E is discrete if, for all x ∈ E, there exists ϵ > 0 such that E ∩B(x, ϵ) =

{x}.
cA function is analytic if it is C∞ and agrees with its Taylor series in a neigh-

borhood of every point.

Proof. We only prove the result for the first assumption. For the second one,
the reader is referred to [Absil, Mahony, and Andrews, 2005, Thm 3.2].

From Proposition 3.3, the iterates satisfy

f(xt) ≤ f(x0), ∀t ∈ N.

We define A =
{
x ∈ Rd, f(x) ≤ f(x0)

}
. It is a closed and bounded set, which

contains all points xt. Consequently, (xt)t∈N is bounded, hence has at least
one accumulation point.

From Corollary 3.4, and because ∇f is continuous, all accumulation
points are first-order critical.

3The iterates may go to infinity if the function is not coercive, or cycle around a large
set of critical points.
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Let xc,1, . . . , xc,S be the first-order critical points in A. There is only a
finite number of them because the set of first-order critical points is discrete,
hence has finite intersection with every bounded set.

Let us fix

ϵ <
1
3

min
s ̸=s′

||xc,s − xc,s′||2,

µ
def= min

x∈A\(⋃s≤S B(xc,s,ϵ))
||∇f(x)||2.

We observe that µ > 0; otherwise, f would have a first-order critical point
in A, different from all xc,s, contradicting the definition of xc,1, . . . , cc,S.

From Corollary 3.4, for t large enough, ||∇f(xt)||2 < µ, hence

xt ∈
⋃
s≤S

B(xc,s, ϵ).

Also for t large enough, ||xt+1 − xt||2 = 1
L
||∇f(xt)||2 < ϵ. Because all balls

B(xc,s, ϵ) are at distance at least ϵ one from each other (from the definition
of ϵ), it is impossible that

xt ∈ B(xc,s, ϵ) and xt+1 ∈ B(xc,s′ , ϵ) for s′ ̸= s.

Therefore, for t large enough, all iterates belong to the same ball B(xc,s, ϵ).
Let s be the index of this ball. All accumulation points of (xt)t∈N are first-
order critical and the only first-order critical point in B(xc,s, ϵ) is xc,s, so
(xt)t∈N is a bounded sequence with a single accumulation point, which is xc,s.
Therefore,

xt
t→+∞−→ xc,s.

Remark

If the gradient of f is not Lipschitz, but simply continuous, the theorem
is still true, except for the fact that the stepsize of gradient descent
cannot be chosen as 1

L
(the Lipschitz constant L is not defined): it

must be chosen by linesearch.

3.1.3 Finding second-order critical points

In this subsection, we assume that f is C2 over Rd.
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Second-order algorithms

Since the definition of second-order critical points involves the Hessian of f , it
seems reasonable that using Hessf during the optimization procedure might
help to find a second-order critical point. Such algorithms, which use second-
order derivatives, are called second-order algorithms. In this paragraph, we
present a simplified version of one of them, called Trust-Region.

The starting point of this algorithm is that for any x ∈ Rd,

f(x + h) = f(x) + ⟨h,∇f(x)⟩ + 1
2
⟨h,Hessf(x)h⟩ + o(||h||2). (3.1)

In view of this equation, one might be tempted to define the iterates (xt)t∈N
using a recurrence relation xt+1 = xt + ht, where

ht ∈ argminh∈Rd

Å
f(xt) + ⟨h,∇f(xt)⟩ + 1

2
⟨h,Hessf(xt)h⟩

ã
.

Unfortunately, this definition makes no sense: when Hessf is not semidefinite
positive, the above function is not lower bounded, hence has no minimizer.
Even if a minimizer exists, it is only a sensible choice for xt+1 if it belongs to
the neighborhood of xt on which Approximation (3.1) is valid. Therefore, it
is best to refine the previous definition as

xt+1 = xt + ht, (3.2a)

ht = argmin
||h||≤Rt

Å
f(xt) + ⟨h,∇f(xt)⟩ + 1

2
⟨h,Hess f(xt)h⟩

ã
. (3.2b)

In this definition, Rt is a positive number, the trust radius, which is an
estimation of the size of the region over which Equation (3.1) provides a
good approximation of f .

Theorem 3.7 : convergence of the trust-region method

Let ϵ > 0 be fixed.
We assume that f has at least one minimizer x∗ and that Hess f is
L2-Lipschitz for some L2 > 0:

∀x, y, h ∈ Rn, ||(Hess f(x) − Hess f(y))h||2 ≤ L2||x− y||2 ||h||2.

Let (xt)t∈N be defined as in Equations (3.2a) and (3.2b), with Rt =
√
ϵ

2L2
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for any t.
For any x0 ∈ Rn, the algorithm finds an ϵ-approximate second-order
critical point in at most O

Ä
L2

2(f(x0)−f(x∗))
ϵ3/2

ä
iterations. More precisely,

there exists
t ≤ c

L2
2(f(x0) − f(x∗))

ϵ3/2

(for some explicit constant c > 0) such that

||∇f(xt)||2 ≤ ϵ

L2
and Hessf(xt) +

√
ϵId ⪰ 0.

Sketch of proof, based on [Ye, 2015]. We admit the following statement: for
each t, there exists σt ≥ 0 such that

(Hessf(xt) + σtId)ht = −∇f(xt) and Hessf(xt) + σtId ⪰ 0.

In addition, if σt > 0, then ||ht||2 = Rt.
We first show that there exists t ≤ 12L2

2(f(x0)−f(x∗))
ϵ3/2 + 1 such that

σt ≤
√
ϵ

2
.

By contradiction, let us assume that it is not true. Because the Hessian is
L2-Lipschitz, for all t ≤ 12L2

2(f(x0)−f(x∗))
ϵ3/2 + 1,

f(xt+1) = f(xt + ht)

≤ f(xt) + ⟨ht,∇f(xt)⟩ + 1
2
⟨ht,Hess f(xt)ht⟩ + L2

6
||ht||32

= f(xt) − ⟨ht,Hessf(xt)ht + σtht⟩ + 1
2
⟨ht,Hess f(xt)ht⟩ + L2

6
||ht||32

= f(xt) −
1
2
⟨ht, (Hessf(xt) + σtId)ht⟩ −

σt

2
R2

t + L2

6
R3

t

(||ht||2 = Rt since σt > 0)

≤ f(xt) −
σt

2
R2

t + L2

6
R3

t

(as Hessf(xt) + σtId ⪰ 0),

< f(xt) −
√
ϵ

4
R2

t + L2

6
R3

t
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= f(xt) −
ϵ3/2

12L2
2
.

Therefore, for any t ≤ 12L2
2(f(x0)−f(x∗))

ϵ3/2 + 1,

f(x0) − f(x∗) ≥ f(x0) − f(xt+1)

>
ϵ3/2

12L2
2
t,

which cannot be true for t =
†

12L2
2(f(x0)−f(x∗))

ϵ3/2

£
. This contradiction concludes

the first part of the proof.
Let t ≤ 12L2

2(f(x0)−f(x∗))
ϵ3/2 + 1 be such that σt ≤

√
ϵ

2 . We show that xt+1 is
an approximate second-order critical point. First, it holds

Hessf(xt+1) = Hessf(xt + ht)
⪰ Hessf(xt) − L2||ht||Id
= Hessf(xt) + σtId − σtId − L2||ht||Id
⪰ −σtId − L2||ht||Id
⪰ −

√
ϵId.

Second, ||∇f(xt+1) −∇f(xt) − Hessf(xt)ht||2 ≤ L2
2 ||ht||22, hence

||∇f(xt+1)||2 ≤ ||∇f(xt) + Hessf(xt)ht||2 + L2

2
||ht||22

= || − σtht||2 + L2

2
||ht||22

≤
√
ϵ

2
Rt + L2

2
R2

t

= 3ϵ
8L2

.

Gradient descent, again

We have seen in Subsection 3.1.2 that, under mild assumptions on f , gradient
descent, starting at any point x0 ∈ Rd, allows to find an approximate first-
order critical point. The same is not true for second-order critical points.
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For instance, if x0 is a first-order critical point of f , but not a second-order
critical point, then

x0 = x1 = x2 = . . . ,

because ∇f(x0) = 0, hence gradient descent stays stuck at x0 and never gets
close to a second-order critical point.

Nevertheless, this phenomenon is very rare: for “general” initializations,
it does not happen, and gradient descent converges to a second-order critical
point.

Theorem 3.8 : [Lee, Simchowitz, Jordan, and Recht, 2016],
[Panageas and Piliouras, 2017]

Let f be a C2 function which satisfies the same assumptions as in
Theorem 3.6: the gradient of f is L-Lipschitz, for some L > 0; f is
coercive and at least one of the following two assumptions holds:

• the set of first-order critical points of f is discrete;

• f is analytic.

We consider gradient descent with constant stepsize α ∈]0; 1
L

[.
For almost any x0,a (xt)t∈N converges to a second-order critical point.

athat is, for all x0 outside a zero-Lebesgue measure set

Remark

The theorem is still true even if ∇f is not Lipschitz, if we replace
“with constant stepsize α ∈]0; 1

L
[” with “for a small enough stepsize α,

possibly depending on x0”.

Intuition of proof. Theorem 3.6 shows that the gradient descent iterates (xt)t∈N
converge to a first-order critical point whatever x0.

We must show that, if xcrit is a first-order but not a second-order critical
point of f , then (xt)t∈N does not converge to xcrit, for almost any x0. We
consider such a critical point; up to translation, we can assume that it is 0.

We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, with radius r0:

∀x ∈ B(0, r0), f(x) = 1
2
⟨x,Mx⟩ + ⟨x, b⟩ ,
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for some n× n symmetric matrix M .
For any x ∈ B(0, r0), ∇f(x) = Mx + b. Since 0 is a first-order critical

point, we necessarily have b = 0. In addition, Hess f(x) = M for any x ∈
B(0, r0). The assumption that 0 is not a second-order critical point is then
equivalent to the fact that M ̸⪰ 0.

The matrix M can be diagonalized in an orthonormal basis:

M = UT

Ç
λ1 ... 0
... ... ...
0 ... λd

å
U,

with λ1 ≥ · · · ≥ λd the eigenvalues of M and U an orthonomal matrix. Up
to a change of coordinates, we can assume U = Id. Since M ̸⪰ 0, at least
the smallest eigenvalue of M is negative: λd < 0.

If the sequence (xt)t∈N of gradient descent iterates converges to xcrit = 0,
then xt belongs to B(0, r0) for any t large enough, in which case

xt+1 = xt − α∇f(xt)
= xt − αMxt

=
Ç (1−αλ1)xt,1

...
(1−αλd)xt,d

å
.

We fix t0 such that this relation holds for any t ≥ t0. Then, for any s ∈ N,

xt0+s =

( (1−αλ1)sxt0,1

...
(1−αλd)sxt0,d

)
.

If the sequence converges to 0, all the coordinates of xt0+s must go to 0 when
s goes to +∞ (for any fixed t), which means that

∀k ∈ {1, . . . , d}, (1 − αλk)sxt0,k
s→+∞→ 0. (3.3)

We have said that λd < 0, hence 1 < 1 − αλd and (1 − αλd)s ̸→ 0 when
s → +∞. In order for Property (3.3) to hold, we must therefore have

xt0,d = 0.

To summarize, we have shown that, if (xt)t∈N converges to 0, then, for
some t0,

xt0 ∈ E def= {z ∈ B(0, r0) such that zd = 0}.



68 CHAPTER 3. NON-CONVEX METHODS

As a consequence,
x0 ∈ (Id − α∇f)−t0 (E).

(For any map g : Rn → Rn, we define g−t0(E) as the set of points x such
that gt0(x) = g ◦ t0 times. . . ◦ g(x) ∈ E .) Therefore, the set of initial points x0 for
which gradient descent iterates may converge to 0 is included in⋃

t∈N

(Id − α∇f)−t(E).

The set E has zero Lebesgue measure and one can check that Id − α∇f is a
diffeomorphism, hence (Id − α∇f)−t(E) has zero Lebesgue measure for any
t ∈ N, and the set of “problematic” initial points also has zero Lebesgue
measure.

3.1.4 Summary

The main messages to remember from this section are:

• it is in general not possible to find a global minimizer of a non-convex
function (at least in a reasonable amount of time);

• however, standard optimization algorithms (like gradient descent or
trust-region) are in general able to find at least a second-order critical
point.

3.2 Examples of non-convex algorithms

In this section, we describe a few non-convex algorithms, to give a quick
overview of the principles underlying these methods. We divide them in two
categories: “optimization-based methods”, which rely on general optimization
algorithms, and algorithms “tailored to a problem”, which exploit the specific
form of the problem at hand.

3.2.1 Optimization-based methods

Here, the principle is to formulate the given problem as a standard optimiza-
tion problem, on a space with dimension as small as possible, and apply a
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standard optimization algorithm. We present it in the context of low-rank
matrix recovery problems.

As said at the beginning of this chapter, a matrix X ∈ Rd1×d2 with rank
at most r can always be written as

X = LR, for some L ∈ Rd1×r, R ∈ Rr×d2 ,

or even, if d1 = d2 and X is semidefinite positive,

X = UUT , for some U ∈ Rd1×r.

Conversely, any matrix of this form has rank at most r.4 This is called a
low-rank factorization of X.

This allows to rewrite Problem (Low rank) as an optimization problem
on Rd1×r × Rr×d2 .

recover X ∈ Rd1×d2

such that L(X) = y,

and rank(X) ≤ r.

(Low rank)

⇕

find L ∈ Rd1×r, R ∈ Rr×d2

such that L(LR) = y.

For any function f : Rm × Rm → R+ such that f(a, b) = 0 if and only if
a = b, this latter problem is equivalent to

minimize f(L(LR), y)
over all L ∈ Rd1×r, R ∈ Rr×d2 .

(Factorized)

The simplest and most standard choice for f is

f(L(LR), y) = 1
2
||L(LR) − y||22 .

4because Range(X) ⊂ Range(L), which has dimension at most r if L has r columns.
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Others are possible, depending on the structure of L and eventual additional
assumptions on X, for instance

f(L(LR), y) = ||L(LR) − y||1

or f(L(LR), y) = 1
2

∣∣∣∣∣∣»L(LR) −√
y
∣∣∣∣∣∣2

2
.

(In the second example, the square root must be understood as the component-
wise square root. It is of course well-defined only if L(LR) and y are assumed
to have nonnegative coordinates.)

The same principle applies when X ⪰ 0, leading to

minimize f(L(UUT ), y)
over all U ∈ Rd×r.

(Sym-factorized)

Standard optimization algorithms can be applied to Problems (Factorized)
or (Sym-factorized). The simplest choice (and very often the preferred one
for theoretical analysis) is of course gradient descent, but many others can be
considered; for (Factorized), alternating minimization is notably also quite
common.

While we have focused on low-rank matrix recovery in this subsection,
the principle we have described is very general and standard. This is notably
the favored approach in deep learning: the predictor one wants to learn is
described by a set of parameters, combined together according to a specific
network architecture. The learning problem is then formulated as the mini-
mization of a data fidelity term on the set of all possible parameters, which is
solved using (refined versions of) gradient descent. The successes obtained in
training neural networks this way, despite their non-convexity, have been an
important motivation for the research community to better investigate the
mechanisms governing the behavior of non-convex optimization algorithms,
even in other problems than deep learning.

3.2.2 Problem-specific methods: orthogonal matching
pursuit

The optimization-based approach has the advantage of being very general.
However, in some settings, the specific properties of the problem suggest
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other strategies, possibly leading to more natural, simpler to implement or
faster algorithms. In this subsection, we describe one example, which is an
algorithm for compressed sensing called Orthogonal matching pursuit (OMP)
(another example - alternating projections for phase retrieval - is described
in an exercise). Historically important, Orthogonal matching pursuit is now
outperformed by more recent and more sophisticated compressed sensing
methods in terms of recovery capacity and speed. However, it has the ad-
vantage of being very simple, and can be proved to succeed under similar
conditions as (Basis Pursuit) [Tropp and Gilbert, 2007].

We recall that compressed sensing is the following problem:

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)

The difficult part is to recover the support of x, that is, the indices of the
non-zero coordinates. Once the support has been recovered, (CS) becomes
a simple linear inverse problem. Orthogonal matching pursuit builds on
a specific selection procedure for the support. New support elements are
iteratively selected. After each selection, the corresponding linear inverse
problem, on the current estimated support, is solved. The solution is used
to select the following element.

To describe the selection procedure, let us denote i1, . . . , ik the elements
of the support (this is what we want to find), and a1, . . . , ad the columns of
A. The equality Ax = y can be written as

y = xi1ai1 + ... + xikaik .

Finding i1, . . . , ik amounts to finding a small number of columns of A such
that y is a linear combination of these columns. Let us imagine that we have
already found the first indices i1, . . . , it, and computed the best approxima-
tion of y in Vect {ai1 , . . . , ait}:

zt = argmin {||y − z||2, z ∈ Vect {ai1 , . . . , ait}} .

The principle of the procedure is to choose it+1 such that, for an appropriate
ξt+1 ∈ R, zt + ξt+1ait+1 approximates y as well as possible. This is equivalent
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to choosing it+1 such that the projection of y − zt onto Rait+1 has maximal
norm, that is,

it+1 ∈ argmax
i∈{1,...,d}\{i1,...,it}

∣∣∣∣≠y − zt,
ai

||ai||2

∑∣∣∣∣ .
The resulting algorithm is summarized in the following pseudo-code.

Input: A ∈ Rm×d, y ∈ Rm, k ∈ N
Set x0 = 0 (initial signal estimate).
Set z0 = 0 (initial approximation of y).
for t = 1, . . . , k do

Choose it ∈ argmax
i∈{1,...,d}\{i1,...,it−1}

∣∣∣¨y − zt,
ai

||ai||2

∂∣∣∣.
Compute xt = argmin

x,Supp(x)⊂{i1,...,it}
||y − Ax||2.

Set zt = Axt.
end
return xk

Algorithm 1: Orthogonal matching pursuit

3.3 Correctness guarantees
Several proof techniques have been introduced, in the last decade, to establish
correctness guarantees for non-convex algorithms. Some directly exploit the
specificities of a problem or an algorithm (like [Tropp and Gilbert, 2007] for
Orthogonal Matching Pursuit). In these notes, we only give an overview
of the most versatile ones, which have been successfully applied to several
inverse problems and algorithms.

They have been developed withing the scope of “optimization-based al-
gorithms” (Subsection 3.2.1); their principle is simply to study the critical
points of the objective function and, possibly, analyze in more detail the be-
havior of the function in the neighborhood of critical points. They result in
two types of correctness guarantees.

• Local convergence results show that the algorithm finds the solution,
provided that its starting point is in an (explicit) neighborhood of this
solution. Usually, these results are complemented with a simple proce-
dure to find a point in the given neighborhood.
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• Global convergence results show that the iterates generated by the
algorithm converge to the solution, starting from almost any point.

3.3.1 Local convergence

Intuition

Let us imagine that we consider a problem (P ), with unknown solution xsol,
and an algorithm Alg, which takes a starting point x0 as input and produces
a sequence of iterates (xt)t∈N. A local convergence result for Alg is typically
of the following form:

“For any x0 ∈ B(xsol, R), the sequence (xt)t∈N converges to xsol.”,

where R > 0 is a convergence radius. The result can also include a statement
about the convergence speed towards xsol.

Intuitively, why is it reasonable to expect that a non-convex algorithm
enjoys local convergence guarantees? Let us assume that Alg is “optimization-
based” (Subsection 3.2.1): xsol is the global minimizer of some non-convex
objective function F , and Alg attempts to find it by running a standard op-
timization method on F . If F is C2, and if HessF (xsol) is definite positive
(which is the most frequent situation when xsol is an isolated global mini-
mizer), then F is convex in the neighborhood of xsol. When initialized in
this neighborhood, Alg should behave as if ran on a globally convex func-
tion, hence converge to xsol. This provides an argument for the existence
of a region around xsol where Alg converges to xsol. See Figure 3.1 for an
illustration.

Although convexity is a quite standard argument to prove local conver-
gence statements, as we just outlined, the basin of attraction of xsol

5 is often
larger than the convexity region. In this case, other technical arguments
than convexity may be advantageous, since they allow to establish a local
convergence statement for a larger value of R.

A local convergence result is more or less interesting, depending on the
value of R. If R is too small, then choosing an initial point in B(xsol, R)
is not a significantly easier problem than finding xsol itself, so the result
is not of much practical relevance. Therefore, local convergence results are
often accompanied by the description of an initialization procedure allowing

5that is, the set of x0 starting from which the sequence of iterates converges to xsol
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xsol

convergence to xsol

convexity

Figure 3.1: a function F : R → R, the region around xsol where it is convex,
and the interval of starting points from which gradient descent converges to
xsol.

to find a point x0 ∈ B(xsol, R). Together, the initialization procedure and
Alg make a realistically implementable algorithm, which is guaranteed to
converge towards xsol.

Example: phase retrieval by Wirtinger Flow

A simple example of a local convergence result comes from [Candès, Li, and
Soltanolkotabi, 2015], and is about the so-called Wirtinger Flow algorithm
for phase retrieval.

Wirtinger Flow is an “optimization-based” algorithm. Let us describe it.
We recall the general form of a phase retrieval problem (denoting vj ∈ Cd

the vectors associated to the linear forms: Lj = ⟨vj, .⟩):

recover x ∈ Cd

such that | ⟨vj, x⟩ | = yj,∀j ≤ m.
(Phase retrieval)

A vector x ∈ Cd solves the problem if and only if, for all j,(
| ⟨vj, x⟩ |2 = y2

j

)
⇐⇒

Ä(
| ⟨vj, x⟩ |2 − y2

j

)2 = 0
ä
.

Therefore, solving Problem (Phase retrieval) amounts to finding a global
minimizer of

f : Cd → R
x → 1

2m
∑m

j=1
(
| ⟨vj, x⟩ |2 − y2

j

)2
.
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The Wirtinger Flow algorithm attempts to find a minimizer by gradient
descent, starting at an arbitrary point x0:

xt+1 = xt − µ∇f(xt)

= xt − 2µ

(
1
m

m∑
j=1

(
| ⟨vj, xt⟩ |2 − y2

j

)
⟨vj, xt⟩ vj

)
, ∀t ∈ N.

Theorem 3.9 : local convergence for Wirtinger Flow
[Candès, Li, and Soltanolkotabi, 2015]

Let us assume that v1, . . . , vm are chosen independently at random in
Cd, following standard normal distributions. Let xsol ∈ Cd be any
vector.
There exists a constant c > 0 such that, if

m ≥ cd log(d),

then, with high probability,a for any

x0 ∈ B

Å
xsol,

1
8
||xsol||2

ã
,

the sequence (xt)t∈N converges to xsol (up to a global phase) at a linear
rate if the stepsize µ is small enough.

athat is, with probability at least 1 − c
d2 ,

Vague proof idea. Directly analyzing the function

f : x ∈ Cd → 1
2m

m∑
j=1

(
| ⟨vj, x⟩ |2 − y2

j

)2

= 1
2m

m∑
j=1

(
| ⟨vj, x⟩ |2 − | ⟨vj, xsol⟩ |2

)2

is difficult. To make it easier, we observe that, for fixed x, f(x) is the average
of m random components, with the same distribution:

1
2
(
| ⟨vj, x⟩ |2 − | ⟨vj, xsol⟩ |2

)2
, j = 1, . . . ,m.
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(To be clear: here, x and xsol are fixed vectors. The randomness lies in the
measurement vectors vj, which follow standard Gaussian laws, independently
one from each other.)

By the law of large numbers, we may expect that f(x) is close to the
expectation of the components:

f(x) ≈ Ev1,...,vmf(x)

= Ev1

ï1
2
(
| ⟨v1, x⟩ |2 − | ⟨v1, xsol⟩ |2

)2
ò

= (||x||2 − ||xsol||2)2 + ||x||2||xsol||2 − | ⟨x, xsol⟩ |2.
The expectation is a much simpler function, and gradient descent on Ef can
be analyzed with elementary linear algebra (see the exercises for the analysis
of local convergence of gradient descent on a different but similar objective
function). This provides the backbone of a proof strategy:

1. prove that gradient descent on Ef converges linearly to xsol for all
x0 ∈ B

(
xsol,

1
8 ||xsol||2

)
;

2. prove that f (and its derivatives) are sufficiently close to Ef so that
the proof for Ef also applies to f .

The second part is called a concentration property. There exist well-established
statistical tools to prove such properties (concentration inequalities).6

A refinement of Theorem 3.9, described in [Ma, Wang, Chi, and Chen,
2018], is to consider for the local convergence region a set which is not a ball
but has a more complicated shape. The advantage of choosing the region in a
more subtle way is that this allows to ensure that f and its derivatives possess
some nice properties over the region, which they do not possess over a ball,
and which allow to establish faster convergence rates to xsol for Wirtinger
Flow.7 The drawback is that proving that the gradient descent iterates do
not leave the region becomes much more difficult.8

6This is where the assumption that v1, . . . , vm are independent and Gaussian is cru-
cial. Gaussian variables have better concentration properties than non-Gaussian ones,
and establishing concentration for non-independent variables is far more difficult than for
independent ones.

7Specifically, Hessf is bounded over the region, with bounds independent from d,m.
8When the region is a ball, as in Theorem 3.9, the negative gradient points towards the

interior of the ball. This directly implies that gradient descent iterates stay inside the ball
if the stepsize is small enough. This is not true anymore if the local convergence region
has a more complicated shape.
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Wirtinger Flow continued: initialization procedure Theorem 3.9
shows that, with high probability, Wirtinger Flow converges towards the
solution xsol, provided that it is initialized at some point

x0 ∈ B

Å
xsol,

1
8
||xsol||2

ã
. (3.9)

Therefore, in order to turn Wirtinger Flow into a full phase retrieval al-
gorithm, which provably succeeds (with high probability) without external
help, it is necessary to design an initialization procedure returning a point
as in Equation (3.9).

In this paragraph, we present such a procedure, adapted to the same ran-
dom setting as before, where v1, . . . , vm ∈ Cd are independent realizations of
random normal distributions NC(0, Id). It has been introduced in [Netrapalli,
Jain, and Sanghavi, 2013].

The procedure takes advantage of the law of large numbers. Informally,
let us consider a function F : Cd×R+ → Cd. Given that (v1, y1), . . . , (vm, ym)
have independent and identical distributions, we expect that

1
m

m∑
k=1

F (vk, yk) ≈ EF (v, | ⟨xsol, v⟩ |),

where v ∈ Cd is a random variable with the same distribution as v1, . . . , vm.
Consequently, if we manage to find a function F such that

EF (v, | ⟨xsol, v⟩ |) = xsol, (3.10)

then we can estimate xsol.
This intuitive idea must be refined in order to lead to a true initialization

procedure. Indeed, there exists no function F satisfying Equation (3.10) for
any xsol ∈ Cd. This is because of the global phase ambiguity: assuming
Equation (3.10) is true for any xsol, we must have, for any xsol ∈ Cd, ϕ ∈ R,

xsol = EF (v, | ⟨xsol, v⟩ |) = EF (v, |
〈
eiϕxsol, v

〉
|) = eiϕxsol,

which is impossible.
Instead of F satisfying Equation (3.10), we will exhibit a function F :

Cd × R+ → Cd×d such that (up to an additive term),

EF (v, | ⟨xsol, v⟩ |) = xsolx
∗
sol.
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Recall that, as we have seen in Subsection 1.3.2 when we introduced phase
retrieval problems, recovering xsol up to a global phase is equivalent to re-
covering xsolx

∗
sol.

Proposition 3.10

The function
F : Cd × R+ → Cd×d

(v, y) → y2vv∗

satisfies, for any xsol ∈ Cd

EF (v, | ⟨xsol, v⟩ |) = xsolx
∗
sol + ||xsol||22Id.

Proof. Let xsol ∈ Cd be fixed. Because the normal distribution is invari-
ant to orthogonal transformations of Cd, we can restrict ourselves to the
case where xsol ∈ R+e1. In addition, given that both EF (v, | ⟨xsol, v⟩ |) and
xsolx

∗
sol + ||xsol||22Id are 2-homogeneous in the norm of xsol, we can assume

that ||xsol||2 = 1, that is to say xsol = e1.
It holds

EF (v, | ⟨xsol, v⟩ |)
= E| ⟨e1, v⟩ |2vv∗

= E

|v[1]|2

Ö
|v[1]|2 v[1]v[2] ... v[1]v[d]
v[2]v[1]

... ... ...
v[d]v[1] ... |v[d]|2

è
= E


Ö

|v[1]|4 |v[1]|2v[1]v[2] ... |v[1]|2v[1]v[d]
|v[1]|2v[2]v[1]

... ... ...
|v[1]|2v[d]v[1] ... |v[1]|2|v[d]|2

è
=

Ü
E(|v[1]|4) E(|v[1]|2v[1])E(v[2]) ... E(|v[1]|2v[1])E(v[d])

E(|v[1]|2v[1])E(v[2])
... ... ...

E(|v[1]|2v[1])E(v[d]) ... E(|v[1]|2)E(|v[d]|2)

ê
=

Ö
E(|v[1]|4) 0 ... 0

0
... ... ...
0 ... E(|v[1]|2)E(|v[d]|2)

è
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=
Ç 2

1
...

1

å
= e1e

∗
1 + Id

= xsolx
∗
sol + ||xsol||2Id.

As a consequence, it is possible to estimate the matrix xsolx
∗
sol + ||xsol||2Id

from v1, . . . , vm and y. As the main eigenvector of this matrix is xsol (and
all vectors colinear to it) and the main eigenvalue is 2||xsol||2, this makes it
possible to approximately recover xsol, up to a global phase. The detailed ini-
tialization procedure is given in Algorithm 2. Because it relies on extracting
eigenvectors and eigenvalues, it is called spectral initialization. Correctness
guarantees are provided in the following theorem.

Theorem 3.11 : [Candès, Li, and Soltanolkotabi, 2015]

Let us assume that v1, . . . , vm are chosen independently at random in
Cd, following standard normal distributions. Let xsol ∈ Cd be any
vector.
There exists a constant c > 0 such that, if

m ≥ cd log(d),

then, with high probability,a the vector x0 returned by Algorithm 2
satisfies

x0 ∈ B

Å
xsol,

1
8
||xsol||2

ã
,

up to multiplication by a global phase.
athat is, with probability at least 1 − c

d2 ,
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Input: v1, . . . , vm ∈ Cd, y ∈ (R+)m
Compute

M̂
def= 1

m

m∑
k=1

F (vk, yk) = 1
m

m∑
k=1

y2
kvkv

∗
k.

Compute λ, the main eigenvalue of M̂ , and w ∈ Cd, an
associated unit eigenvector.

Set x =
»

λ
2w.

return x
Algorithm 2: Spectral initialization for phase retrieval

We have only presented here the simplest form of spectral initialization. If
we replace F by an adequate more sophisticated function, the same strategy
can result in a better approximation of xsol. It is even possible to determine
the functions F which, in a certain sense, provide optimal approximations
[Luo, Alghamdi, and Lu, 2019].

A fundamental limitation of this technique is that it strongly relies on
the fact that v1, . . . , vm are independent, with identical distributions. It does
not provide meaningful estimates when A is not random. The only attempt I
know to extend the scope of this initialization procedure is the article [Ghods,
Lan, Goldstein, and Studer, 2018], which considers the setting where the
unknown xsol is random (following a normal distribution), but A can be any
matrix (which, although still far from practical scenarios, may arguably be a
better model for “real” phase retrieval problems than the setting where xsol

can be anything but A is random).

3.3.2 Global convergence

A global convergence statement, for an iterative algorithm returning a se-
quence (xt)t∈N, is typically of the following form:

“For any (or most) x0 ∈ Rd, the sequence (xt)t∈N converges to xsol.”.

It differs from local convergence because convergence is guaranteed for all (or
most) initializations, even far away from the true solution; x0 does not have
to be already close to a solution. Global convergence statements are usually
more relevant than local ones from the point of view of applications: they
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establish correctness guarantees for algorithms without a particular initial-
ization procedure (which are the most common ones in practice since, as we
have seen in the previous subsection, situations where it is possible to find
good initial points are rare).

Let us discuss the most frequent case, where the algorithm consists in min-
imizing a well-chosen non-convex objective function f , whose global minimiz-
ers are the solutions of the problem, using a standard optimization method
(gradient descent, for instance). Let us assume that the standard optimiza-
tion method is guaranteed to return a second-order critical point. Therefore,
showing that it returns a global minimizer of f amounts to showing that the
basins of attraction of the non-globally optimal second-order critical points
occupy a small volume in the space of all possible initial points (so that
“most” possible initial points are outside these basins).

Estimating the volume of the basins is generally difficult, except in a
particular case: when there are no non-globally optimal second-order critical
points. In this case, the attraction basin of these bad second-order critical
points is of course zero! For instance, this happens for the Wirtinger Flow
objective function considered in the previous subsection; consequenctly, the
local guarantees of Theorem 3.9 can be improved to global guarantees.

Theorem 3.12 : global convergence for Wirtinger Flow
[Sun, Qu, and Wright, 2018]

Let us assume that v1, . . . , vm are chosen independently at random in
Cd, following standard normal distributions. Let xsol ∈ Cd be any
vector.
There exists a constant c > 0 such that, if

m ≥ cd log3(d),

then, with high probability,a the only second-order critical points of
the Wirtinger Flow objective

f : Cd → R
x → 1

2m
∑m

j=1
(
| ⟨vj, x⟩ |2 − y2

j

)2

are its global minimizers.
As a consequence, provided that the stepsize is small enough, the
Wirtinger Flow iterates converge to a solution of the phase retrieval
problem for almost any initial point x0.
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athat is, with probability at least 1 − c
m ,

Remark

Compared to Theorem 3.9, the main improvement in Theorem 3.12 is
of course that the guarantees are global and not local. This comes with
two drawbacks:

• the number of measurements has to be higher: m ≥ cd log3(d)
versus m ≥ cd log(d);

• most importantly, Theorem 3.12 provides no guarantee on the
convergence rate.

Vague proof idea. The proof idea of Theorem 3.12 is somewhat similar in
spirit to Theorem 3.9, although the detail of the computations is different.
The intuition is, again, that, for any x ∈ Cd,

f(x) ≈ Ev1,...,vmf(x)
= (||x||2 − ||xsol||2)2 + ||x||2||xsol||2 − | ⟨x, xsol⟩ |2,

∇f(x) ≈ Ev1,...,vm∇f(x)
= 2

(
(2||x||2 − ||xsol||2)x− ⟨xsol, x⟩xsol

)
,

and for all h ∈ Cd,〈
h,∇2f(x)[h]

〉
≈ Ev1,...,vm

〈
h,∇2f(x)[h]

〉
≈ 2

Ä
(2||x||2 − ||xsol||2)||h||2 + 4 (Re ⟨x, h⟩)2 − | ⟨xsol, h⟩ |2

ä
.

From these expressions, the first-order critical points of Ev1,...,vmf areß
x ∈ Cd, ||x|| = ||xsol||

2
and ⟨xsol, x⟩ = 0

™
∪ {0} ∪

{
eiϕxsol, ϕ ∈ R

}
and the second-order critcal points are{

eiϕxsol, ϕ ∈ R
}
,

which is exactly the set of global minimizers.
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If we can make the approximate equalities rigorous, then we can hope to
show that the second-order critical points of f are close to the second-order
critical points of Ev1,...,vmf , hence in the neighborhood of global minimizers.
And in the neighborhood of global minimizers, the local convergence theorem
3.9 can be reused to show that the only second-order critical points are the
global minimizers themselves.

Making the approximate equalities rigorous can be done with standard
concentration inequalities, but it is quite tricky and technical. Indeed, f,∇f
and Hessf are not uniformly close to their expectations on the whole space
Cd. A weaker notion of closeness, tailored to the problem, must be introduced
and established only on well-chosen subsets of Cd.

The non-existence of non-globally optimal second-order critical points
has been established for several problems and algorithms other than phase
retrieval with Wirtinger Flow.

However, there are also non-convex algorithms which numerically appear
to converge whatever the initial point, but for which non-globally optimal
second-order critical points exist. For these algorithms, rigorously establish-
ing global convergence is generally difficult. Indeed, denoting T the iteration
operator (for instance, T : x → x−α∇f(x) for gradient descent), it requires
to study limt→+∞ T t(x0) as a function of x0. But since T is generally a rel-
atively complicated operator, it is usually already difficult to get a precise
understanding of T 2; the limit of T t is out of reach.

For these algorithms, a strategy which has been used notably in [Zhong
and Boumal, 2018]9 is to find a small explicit10 open set Ebad and show that
all second-order critical points are in this set. Then, one must show that, for
most initial points, the sequence of iterates generated by the algorithm never
enters Ebad. This guarantees that the algorithm does not converge to a non-
globally optimal second-order critical point. However, this strategy requires
sophisticated statistical arguments (the so-called leave-one-out technique),
and, at the current stage of knowledge, can only be applied to relatively
simple objective functions.

9In this article, the strategy is used to prove a local convergence guarantee, but, since
then, it has been used for global guarantees.

10By “explicit”, we mean that the set has a reasonably simple definition in terms of the
parameters and data of the problem.
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Appendix A

Additional proofs

A.1 Proof of Proposition 2.16

Proof. If v = 0, then 1v=0 = 0 = maxz∈Cn 0 = maxz∈Cn Re ⟨z, v⟩.
If v ̸= 0, then, for any t ∈ R,

max
z∈Cn

Re ⟨z, v⟩ ≥ Re
≠
t

v

||v||22
, v

∑
= t.

Therefore, maxz∈Cn Re ⟨z, v⟩ = +∞ = 1v=0.

A.2 Proof of Proposition 2.17

Proof. Let f : [0; 1] → C be a continuous function.
Let us first assume that there exists t0 ∈ [0; 1] for which |f(t0)| > 1. As

f is continuous, we can assume that t0 < 1. Let ϕ be the argument of f(t0),
so that e−iϕf(t0) = |f(t0)|. For an arbitrary r ∈ R+, let us set

µ = re−iϕδt0 .

We have

||µ||TV − Re
∫ 1

0
f(t)dµ(t) = r − re−iϕf(t0)

= r(1 − |f(t0)|).
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Therefore, for any r ∈ R+,

min
µ∈M([0;1[)

Ç
||µ||TV − Re

∫ 1

0
f(t)dµ(t)

å
≤ r(1 − |f(t0)|).

By letting r go to infinity, we get

min
µ∈M([0;1[)

Ç
||µ||TV − Re

∫ 1

0
f(t)dµ(t)

å
= −∞.

Let us now assume that |f(t)| ≤ 1 for all t ∈ [0; 1]. Then, from the equiv-
alent definition of total variation in Proposition 2.15, for all µ ∈ M([0; 1[),
Re
∫ 1

0 f(t)dµ(t) ≤ ||µ||TV , meaning that

||µ||TV − Re
∫ 1

0
f(t)dµ(t) ≥ 0.

For µ = 0, we have

||µ||TV − Re
∫ 1

0
f(t)dµ(t) = 0.

Therefore,

min
µ∈M([0;1[)

Ç
||µ||TV − Re

∫ 1

0
f(t)dµ(t)

å
= 0.

Finally, let us prove the property about the support of minimizers. Let
µ be a minimizer. Since ||µ||TV − Re

∫ 1
0 f(t)dµ(t) ̸= −∞, it means that

we are in the case where |f | ≤ 1, and ||µ||TV − Re
∫ 1

0 f(t)dµ(t) = 0. As a
consequence, using Proposition 2.15 for the first equality,

sup
®

Re
∫ 1

0
f(t)dµ(t), |f(t)| ≤ 1,∀t, f continuous

´
= ||µ||TV

= Re
∫ 1

0
f(t)dµ(t).

This means that f attains the supremum of Proposition 2.15, hence Equation
(2.14) holds:

Supp(µ) ⊂ {t ∈ [0; 1[, |f(t)| = 1}.
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A.3 Proof of Proposition 2.18
Proof. The proof consists in studying the optimality conditions of the primal
and dual problems. Using the same notation as in the reasoning which led
to the definition of Problem (Dual TV),

min (Min TV) = f1(µ∗)
= max

z∈C2N+1
F (µ∗, z)

≥ F (µ∗, z∗)
≥ min

µ∈M([0;1[)
F (µ, z∗)

= f2(z∗)
= max (Dual TV),

The equality between the optimal primal and dual values implies that the
inequalities are equalities. In particular, F (µ∗, z∗) = minµ∈M([0;1[) F (µ, z∗),
which is to say that µ∗ is a minimizer of

µ ∈ M([0; 1[) → ||µ||TV − Re
∫ 1

0

(
N∑

k=−N

zke
−2πikt

)
dµ(t).

The conclusion therefore follows from Proposition 2.17.
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