Non-convex inverse problems: programming exercises

Irène Waldspurger
waldspurger@ceremade.dauphine.fr
January and February 2023

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear norm minimization.

1. We first consider the problem of matrix completion, for matrices of size $d \times d$ (for some $d \in \mathbb{N}^{*}$) and rank 1 :

$$
\text { recover } X_{0} \in \mathbb{R}^{d \times d}
$$

from $\left(X_{0}\right)_{i j}, \forall(i, j) \in \Omega, \quad$ (Matrix Completion)
knowing that $\operatorname{rank}\left(X_{0}\right)=1$.
We will perform tests for random matrices X_{0}, generated as

$$
X_{0}=\left(u_{i} v_{j}\right)_{1 \leq i, j \leq d}
$$

where $u_{1}, \ldots, u_{d}, v_{1}, \ldots, v_{d}$ are independent random variables, with uniform distribution in $[-1 ; 1]$.
a) Write a function which, given d and m, generates a random $X_{0} \in \mathbb{R}^{d \times d}$ as above, and a random subset Ω of $\{1, \ldots, d\}^{2}$ containing m elements chosen uniformly at random.
b) Write a function which, given $d,\left(\left(X_{0}\right)_{i j}\right)_{(i, j) \in \Omega}$ and Ω, returns the solution $X_{c v x}$ of the following convex problem :

$$
\begin{align*}
& \text { minimize }\|X\|_{*} \\
& \text { for } X \in \mathbb{R}^{d \times d} \tag{ConvexMC}\\
& \text { such that } X_{i j}=\left(X_{0}\right)_{i j}, \forall(i, j) \in \Omega
\end{align*}
$$

[See below for indications on how to solve such problems in Julia and Python.]
c) Test the previous function for a random $X_{0} \in \mathbb{R}^{10 \times 10}$ and Ω of size 50 . Check whether $X_{c v x}$ is equal to X_{0} or not. ${ }^{1}$
[Hint : run the test several times. If your implementation is correct, $X_{c v x}$ and X_{0} should be equal in roughly half of the trials.]
d) For $d=10$ and each $m=20,30, \ldots, 100$, try to solve 10 random instances of (Matrix Completion) using (Convex MC). For each m, compute the empirical probability that $X_{c v x}=X_{0}$. What is the smallest m for which the probability is above 50% ? Which percentage of entries of X_{0} does it correspond to?
e) Same question for $d=20$ and $m=80,100, \ldots, 200$, then for $d=40$ and $m=270,310, \ldots, 390$.
2. In this question, we consider phase retrieval problems :

$$
\begin{aligned}
& \text { reconstruct } x_{0} \in \mathbb{C}^{d} \\
& \quad \text { from }\left|\left\langle x_{0}, v_{j}\right\rangle\right|, \forall j=1, \ldots, m
\end{aligned}
$$

where $\left(v_{1}, \ldots, v_{m}\right)$ is a (known) family of measurement vectors.
We will perform tests for random problems, where $x_{0}, v_{1}, \ldots, v_{m} \in \mathbb{C}^{d}$ are generated according to independent standard normal complex distributions ${ }^{2}$.
a) Write a function which, given $\left(\left|\left\langle x_{0}, v_{j}\right\rangle\right|\right)_{j \leq m}$ and $\left(v_{j}\right)_{j \leq m}$, computes

[^0]the solution $X_{c v x}$ of the convex relaxation
\[

$$
\begin{align*}
& \text { minimize } \operatorname{Tr}(X) \\
& \text { for } X \in \mathbb{C}^{d \times d} \tag{PhaseLift}\\
& \text { such that } v_{j}^{*} X v_{j}=\left|\left\langle x_{0}, v_{j}\right\rangle\right|^{2}, \forall j=1, \ldots, m, \\
& \\
& \quad X \succeq 0
\end{align*}
$$
\]

b) As seen during the lecture, if the relaxation is tight, then

$$
X_{c v x}=x_{0} x_{0}^{*}
$$

Assuming this equality holds, write a function which, given $X_{c v x}$, computes x_{0}.
c) Show that, for any $z_{1}, z_{2} \in \mathbb{C}^{d}$, the distance up to global phase between z_{1} and z_{2} satisfies

$$
\operatorname{dist}\left(z_{1}, z_{2}\right) \stackrel{\text { def }}{=} \min _{\phi \in \mathbb{R}}\left\|e^{i \phi} z_{1}-z_{2}\right\|_{2}=\sqrt{\left\|z_{1}\right\|^{2}-2\left|\left\langle z_{1}, z_{2}\right\rangle\right|+\left\|z_{2}\right\|^{2}}
$$

Write a function to compute this distance.
d) Using the functions you just implemented, try to solve a random phase retrieval problem with $d=10$ and $m=50$. Is the solution $x_{c v x}$ you obtain equal ${ }^{3}$ to x_{0} ?
[Hint : if your implementation is correct, $x_{c v x}$ and x_{0} should almost always be equal.]
e) For $d=10$ and each $m=25,30, \ldots, 50$, try to solve 10 random instances of (Phase Retrieval) using (PhaseLift). For each m, compute the empirical probability that $x_{c v x}=x_{0}$. What is the smallest m for which the probability is above 50% ?
[Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift) solver ; otherwise, some instances will take a long time.]
f) Same question for $d=20$ and $m=50,60, \ldots, 100$.

[^1]
1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

$$
\begin{align*}
& \text { minimize }\|X\|_{*} \\
& \quad \text { over all } X \in \mathbb{R}^{d_{1} \times d_{2}} \tag{1}\\
& \text { such that } \operatorname{Tr}\left(X A_{i}^{T}\right)=y_{i}, \forall i \leq m,
\end{align*}
$$

where $A_{1}, \ldots, A_{m} \in \mathbb{R}^{d_{1} \times d_{2}}$ and $y_{1}, \ldots, y_{m} \in \mathbb{R}$ are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use Convex.jl and SCS.jl.

```
using Convex, SCS
```

Convex.jl provides an interface to describe optimization problems and call a solver ; SCS.jl is a particular solver.
A possible code for solving Problem (1) with these packages would be as follows:

```
X = Variable(d1,d2)
for k=1:m
        add_constraint!(X, tr (X * A [k]') == y[k])
end
problem = minimize(nuclearnorm(X))
solve!(problem,SCS.Optimizer)
X_sol = evaluate(X)
```

A complete example using this code is available at https://www.ceremade. dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl.
Line 1 declares the type of the unknown X. Here, it is a matrix with size $d_{1} \times d_{2}$ and real coefficients. For complex coefficients, one would use
$\mathrm{X}=$ ComplexVariable(d1,d2)
Lines 2 to 4 declare the constraints which must be satisfied by X. Many other types of constraints exist. For instance, if $d_{1}=d_{2}$, it is possible to require X to be semidefinite positive using

```
add_constraint!(X, X in :SDP)
```

Line 5 declares the objective function. Line 6 calls the SCS solver and Line 7 returns the optimal X found by the solver.
It is possible to pass options to the solver. To avoid information display, one would use

```
solve!(problem,SCS.Optimizer; silent_solver=true)
```

To set a time limit of 5 seconds, it would be

```
solve!(problem, Convex.MOI.OptimizerWithAttributes(
    SCS.Optimizer, "time_limit_secs" => 5.))
```


1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package provides an interface to define convex optimization problems and pass them to solvers.

```
import cvxpy as cp
```

A possible code for solving Problem (1) using CVXPY is as follows :

```
X = cp.Variable((d1,d2))
constraints = [cp.trace(X @ A[:,:,k].T) == y[k]
    for k in range(m)]
objective = cp.Minimize(cp.norm(X,"nuc"))
problem = cp.Problem(objective,constraints)
problem.solve(solver=cp.SCS)
return X.value
```

A complete example using this code is available at https://www.ceremade. dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py.
Line 1 declares the variable X, here a variable of size $d_{1} \times d_{2}$ with real coordinates. To declare a matrix of size $d_{1} \times d_{2}$ with complex coordinates, one would have used

$$
X=c p . V a r i a b l e((d 1, d 2), \text { complex=True })
$$

And to additionally constrain X to be Hermitian,

```
X = cp.Variable((d,d),hermitian=True)
```

Lines 2 and 3 declare the list of constraints. Other types of constraints than linear are possible. For instance, to constrain a symmetric or Hermitian matrix to be semidefinite positive, one can add

```
constraints.append(X >> 0)
```

Line 4 declares the objective function. Line 5 and 6 define the problem and call the solver ${ }^{4}$. Line 7 returns the optimal X found by the solver. To set a time limit for the solver, use

```
problem.solve(solver=cp.SCS,time_limit_secs=5.)
```

4. Here, the solver is SCS so as to match the code proposed for Julia users, but other solvers are of course possible.

2 Gradient descent on non-convex objectives

We consider the function

$$
\begin{aligned}
& f: \quad \mathbb{R}^{2} \rightarrow \quad \mathbb{R} \\
& (x, y) \rightarrow 4 x^{4}+4 x^{2} y^{2}+3 y^{4}-6 x^{3}-2 y^{3}+x^{2}-3 y^{2} .
\end{aligned}
$$

[Note: we consider this specific function because it has a nice landscape of critical points, but it is not especially interesting otherwise.]

1. Compute its gradient.
2. Write functions \mathbf{f}, grad_fx and grad_fy which compute the value of f and the two components of its gradient at a given point.
3. Choose several points p_{0} uniformly at random in the square $[-2 ; 2] \times$ [$-2 ; 2$]. For each one of them, run 400 steps of gradient descent with stepsize $\frac{1}{150}$, starting at p_{0}. Check that each run converges towards one of the following three points :

$$
M_{1}=(1,0), \quad M_{2}=(0,1), \quad M_{3}=\left(0,-\frac{1}{2}\right)
$$

4. Show that M_{1}, M_{2}, M_{3} are second-order critical points of f.
5. Show that $P_{1}=(0,0)$ and $P_{2}=(1 / 8,0)$ are first-order, but not secondorder critical points of f.
It is possible to show that f has only two other first-order critical points,

$$
P_{3} \approx(0.275,-0.465) \quad \text { and } \quad P_{4} \approx(0.899,0.396)
$$

which are also not second-order critical points.
6. What is the global minimum of f ?
7. a) For each $p \in[-2 ; 2]$, we define

$$
\text { limit }=k \text { for } k \in\{1,2,3\}
$$

if the 400 -th gradient descent iterate, with starting point p, is at distance at most 0.1 from M_{k}. We define

$$
\text { limit }=0 \text { otherwise. }
$$

Compute limit for all points on a grid with spacing 0.01 in $[-2 ; 2] \times$ $[-2 ; 2]$. Display it as an image.
b) On the same plot, display the negative gradient as a vector field, at each point of a grid with spacing 0.2. Normalize each gradient to improve the readibility of the figure.
[In Python, you can plot a vector field using quiver ($\mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y}$) from the matplotlib.pyplot library, where U, V are the origins of the arrows and X, Y their coordinates. This function is also available in the Julia PyPlot module.]
8. Repeat the last question on a grid with spacing 0.001 (0.025 for the gradient) in $[-0.1,0.3] \times[-0.2,0.2]$.
9. Comment the pictures : what do they look like in the neighborhood of critical points? Which signs indicate whether a critical point is first or second-order? Using the information visible on the pictures, can you draw the shape of the gradient descent trajectories, in the different regions of the plane?

[^0]: 1. You can consider that $X_{c v x}=X_{0}$ if $\left\|X_{c v x}-X_{0}\right\|_{F} \leq 0.01\left\|X_{0}\right\|_{F}$. This is an arbitrary but reasonable rule.
 2. A random variable z follows a standard normal complex distribution if $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are independent normal variables, both with mean 0 and variance $1 / 2$.
[^1]: 3. As before, we declare that $x_{c v x}$ and x_{0} are equal if $\operatorname{dist}\left(x_{c v x}, x_{0}\right) \leq 0.01\left\|x_{0}\right\|_{2}$
