
Differential geometry - homework

1.

• (a) represents a submanifold of R2.

• (b) does not represent a submanifold of R2 : the definition is not valid
in the neighborhood of (0, 0).

• (c) does not represent a submanifold of R2 : the definition is not valid
in the neighborhood of (−1, 0) and (0, 1).

• (d) does not represent a submanifold of R2: the definition for dimension
1 is not valid in the neighborhood of (0, 0), while the definition for
dimension 0 is not valid in the neighborhood of any other point.

• (e) represents a submanifold of R3.

• (f) does not represent a submanifold of R3 : the definition is not valid
in the neighborhood of the points which belong to the lower boundary,
{(x, y, 0), x2 + y2 = 1}.

• (g) represents a submanifold of R3.

2. (a) Let us define

M = {(x, n(x2 + 1)), x ∈ R, n ∈ Z}.
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We show that it is a submanifold of R2, of class C∞ and dimension 1, using
the graph definition.

Let (x0, n0(x2
0 + 1)) be any point of M . We show that there exist U a

neighborhood of (x0, n0(x2
0 + 1)), V an open set of R, and h : V → R a C∞

function such that
M ∩ U = {(x, h(x)), x ∈ V }. (1)

Many possibilities exist. Let us for instance define

U = {(x, y), n0(x2 + 1) − 1 < y < n0(x2 + 1) + 1}.

It is an open set, which contains (x0, n0(x2
0 + 1)).

We set V = R and

h : R → R
x → n0(x2 + 1).

As h is polynomial, it is C∞. It thus suffices to show Equation (1) to conclude.
For any x ∈ V , (x, h(x)) = (x, n0(x2 + 1)) ∈ M and (x, h(x)) ∈ U ,

since n0(x2 + 1) − 1 < n0(x2 + 1) < n0(x2 + 1) + 1. This already shows
{(x, h(x)), x ∈ V } ⊂ M ∩ U .

On the other hand, for any (x1, n1(x2
1 + 1)) ∈ M ∩ U , it holds n0(x2

1 +
1) − 1 < n1(x2

1 + 1) < n0(x2
1 + 1) + 1, hence

n0 − 1 ≤ n0 −
1

x2
1 + 1

< n1 < n0 + 1
x2

1 + 1
≤ n0 + 1.
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As n0, n1 are integers, we must have n0 = n1. In particular, (x1, n1(x2
1 +1)) =

(x1, h(x1)) ∈ {(x, h(x)), x ∈ V }. This shows M ∩ U ⊂ {(x, h(x)), x ∈ V },
which concludes the proof of Equation (1).

(b) We define

M = {(x, 0), x ∈ R−} ∪ {(x, x2), x ∈ R+} ∪ {(x,−x2), x ∈ R−}.
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We show that M is not a C1-submanifold of R2. Intuitively, the reason is
that it has a “trifurcation” at (0, 0). To make this formal, we proceed by
contradiction, and assume that M is a submanifold.

It must have dimension 1, since it does not have dimension 0 (submani-
folds of dimension 0 are discrete sets of points) nor dimension 2 (submanifolds
of R2 with dimension 2 are open subsets of R2). Therefore, from the “sub-
mersion” definition applied at point (0, 0), there exist

• U a neighborhood of (0, 0) in R2,

• g : U → R a C1 function, submersive at (0, 0),
such that M ∩ U = g−1({0}).

We fix U, g as above. As Im(dg(0, 0)) is a subspace of R, it is R itself if
and only if dg(0, 0) ̸= 0: the condition that g is a submersion at (0, 0) simply
means that dg(0, 0) ̸= 0.

For any x ≤ 0 close enough to 0, (x, 0) belongs to M∩U , hence g(x, 0) = 0.
We differentiate this equality and deduce

∂g

∂x
(0, 0) = 0. (2)
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Also, for any x > 0 close enough to 0, g(x,−x2) = g(x, x2) = 0. From
Rolle’s lemma applied to the function y → g(x, y), there exists yx ∈]−x2;x2[
such that

∂g

∂y
(x, yx) = 0.

When x → 0, yx → 0. Therefore, since ∂g
∂y

is continuous,

∂g

∂y
(0, 0) = 0. (3)

Together, Equations (2) and (3) imply that dg(0, 0) = 0, which contra-
dicts the fact that g is a submersion at (0, 0).

(c) We define

M =
{(

x,
1 − x2

2

)
, x ∈ [−1; 1]

}
∪
{(

x,
x2 − 1

2

)
, x ∈ [−1; 1]

}
.
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We show that M is not a C1-submanifold of R2. Intuitively, the reason
is that it has “non-regular” points at (−1, 0) and (1, 0). To make it formal,
let us proceed by contradiction, and assume that it is a C1-submanifold.

This submanifold neither has dimension 0 (it would be a discrete set of
points) nor 2 (it would be an open set of R2). Therefore, its dimension is 1.

From the “submersion” definition of submanifolds applied at (1, 0), there
exist
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• U a neighborhood of (1, 0) in R2,

• g : U → R a C1 function, submersive at (1, 0),

such that M ∩ U = g−1({0}). Let such U, g be fixed.
For any x ∈ [−1; 1] close enough to 1,

g

(
x,

1 − x2

2

)
= 0.

We differentiate this equality at x = 1, on the left:

∂g

∂x
(1, 0) − ∂g

∂y
(1, 0) = 0.

In the same way, for any x ∈ [−1; 1] close enough to 1,

g

(
x,

x2 − 1
2

)
= 0.

We differentiate this equality at x = 1, on the left:

∂g

∂x
(1, 0) + ∂g

∂y
(1, 0) = 0.

Combining the two equalities, we reach

∂g

∂x
(1, 0) = ∂g

∂y
(1, 0) = 0,

which means that dg(1, 0) = 0 and contradicts the fact that g is submersive
at (1, 0).

(d) We define

M =
{

(x, y) ∈ R2,
√

x2 + y2 ∈ N
}
.
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We show that M is not a C1-submanifold of R2. Intuitively, the reason
is that it is a submanifold of dimension 1 in the neighborhood of any point
different from (0, 0), but a submanifold of dimension 0 in the neighbordhood
of (0, 0).

By contradiction, let us assume that M is a submanifold of R2. It cannot
have dimension 0 (it would be a discrete set of points) or 2 (it would be an
open subset of R2). Therefore, it has dimension 1.

In particular, using the “diffeomorphism” definition of submanifolds, we
know that there exist U, V two neighborhoods of 0 and ϕ : U → V a C1-
diffeomorphism such that

ϕ(M ∩ U) = (R× {0}) ∩ V.

If we replace U and V by smaller neighborhoods, we can assume that M ∩U
is a singleton:

M ∩ U = {(0, 0)}.

Therefore, (R×{0})∩V = ϕ({(0, 0)}) is also a singleton. This is impossible,
since this set contains (t, 0) for all t close enough to 0.

(e) We set

M =

{(
x, y,

1√
x2 + y2

)
, (x, y) ∈ R2 \ {(0, 0)}

}
.

Let us show that it is a submanifold of R3, of class C∞ and dimension 2. We
use the definition by graph.
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We define U = R3, V = R2 \ {(0, 0)}, and

h : V → R
(x, y) → 1√

x2+y2
.

The map h is C∞ (as √
. is C∞ on R∗

+ and x2 + y2 belongs to R∗
+ for all

(x, y) ∈ V ).
In addition, M ∩ U = M = {(x, y, h(x, y)), (x, y) ∈ V }.

(f) We define

M = {(x, y, z) ∈ R3 s.t. x2 + y2 = 1, z ≥ 0}.

−4 −2
2 4

−4
−2

2
42

4

This set is a cylinder, extending to infinity in one direction, but bounded in
the other direction. It is not a C1-submanifold of R3. The reason is that it
contains its boundary, {(x, y, 0) s.t. x2 + y2 = 1}.
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Let us prove rigorously that it is not a C1-submanifold. By contradiction,
let us assume that it is.

Proposition. The submanifold M has dimension 2.

Proof. Indeed, let us consider U = {(x, y, z) ∈ R3 s.t. x > 0 and z > 0}. It
is an open set of R3. Therefore, M ∩U is a submanifold of R3, with the same
dimension as M (since, close to any point of M ∩ U , the two sets coincide;
therefore, if M satisfies the definition of a submanifold, for some dimension
d, then M ∩ U also does).

We observe that M ∩U = f(V ), where V =
]
−π

2 ; π
2

[
×R∗

+ ⊂ R2 and f is
defined as

f :
]
−π

2 ; π
2

[
× R∗

+ → R3

(θ, r) → (cos(θ), sin(θ), r).

The function f is an immersion on V : for each (θ, r) ∈
]
−π

2 ; π
2

[
× R∗

+,

df(θ, r) =
(
(h1, h2) ∈ R2 → (− sin(θ)h1, cos(θ)h1, h2) ∈ R3) ,

which is an injective linear map (since cos(θ) > 0). In addition, f is a
homeomorphism from V to f(V ). Indeed, it is injective: for any θ1, r1, θ2, r2,
if f(θ1, r1) = f(θ2, r2), then sin(θ1) = sin(θ2), hence θ1 = θ2, as sin is injective
on
]
−π

2 ; π
2

[
; looking at the third coordinate, r1 = r2. Therefore, f is a

bijection from V to f(V ). It is continuous. Its inverse is

f−1 : f(V ) → V
(x, y, z) → (arcsin(y), z),

which is also continuous.
This means that, from the “immersion” definition of submanifolds, M ∩U

is a submanifold of R3 with dimension 2. This proves that M also has
dimension 2.

To obtain a contradiction, we apply the “immersion” definition at point
(1, 0, 0). Since M is a submanifold of dimension 2, there exist U an open
neighborhood of (0, 0) in R2, V an open neighborhood of (1, 0, 0) in R3 and
f : U → V a C1 map such that f(U) = M ∩ V , f is a homeomorphism
between U and f(U), and f is an immersion at f−1(1, 0, 0). Let such U, V, f
be fixed.
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We denote a = f−1(1, 0, 0) ∈ U . Let us show that df(a)(R2) ⊂ {0}×R×
{0}. Let h ∈ R2 be any vector; we define

(y1, y2, y3) = df(a)(h).

It is impossible that y3 ̸= 0: otherwise, for t ∈ R small enough, f(a +
th)3 = f(a)3 + tdf(a)(h)3 + o(t) = ty3 + o(t) can have negative values, which
contradicts the fact that f(a + th) ∈ M ⊂ R×R×R+ for any t. Therefore,
y3 = 0.

In addition, for all t ∈ R close to 0,

1 = f(a + th)2
1 + f(a + th)2

2

= f(a)2
1 + f(a)2

2 + 2tf(a)1df(a)(h)1 + 2tf(a)2df(a)(h)2 + o(t)
= 1 + 2ty1 + o(t),

so that y1 = 0. This concludes the proof that df(a)(R2) ⊂ {0} × R× {0}.
As a consequence, df(a)(R2), which is a vector space of dimension 2 (be-

cause df(a) is injective) is included in a vector space of dimension 1. This is
a contradiction.

(g) We define

M = {(x, cos(2πx), sin(2πx)), x ∈ R}.

This set is the graph of (x ∈ R → (cos(2πx), sin(2πx)) ∈ R2), which is a C∞

map. It is therefore a submanifold of R3 with dimension 1.
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