Differential geometry - homework

1.

- (a) represents a submanifold of \mathbb{R}^{2}.
- (b) does not represent a submanifold of \mathbb{R}^{2} : the definition is not valid in the neighborhood of $(0,0)$.
- (c) does not represent a submanifold of \mathbb{R}^{2} : the definition is not valid in the neighborhood of $(-1,0)$ and $(0,1)$.
- (d) does not represent a submanifold of \mathbb{R}^{2} : the definition for dimension 1 is not valid in the neighborhood of $(0,0)$, while the definition for dimension 0 is not valid in the neighborhood of any other point.
- (e) represents a submanifold of \mathbb{R}^{3}.
- (f) does not represent a submanifold of \mathbb{R}^{3} : the definition is not valid in the neighborhood of the points which belong to the lower boundary, $\left\{(x, y, 0), x^{2}+y^{2}=1\right\}$.
- (g) represents a submanifold of \mathbb{R}^{3}.

2. (a) Let us define

$$
M=\left\{\left(x, n\left(x^{2}+1\right)\right), x \in \mathbb{R}, n \in \mathbb{Z}\right\}
$$

We show that it is a submanifold of \mathbb{R}^{2}, of class C^{∞} and dimension 1 , using the graph definition.

Let $\left(x_{0}, n_{0}\left(x_{0}^{2}+1\right)\right)$ be any point of M. We show that there exist U a neighborhood of $\left(x_{0}, n_{0}\left(x_{0}^{2}+1\right)\right), V$ an open set of \mathbb{R}, and $h: V \rightarrow \mathbb{R}$ a C^{∞} function such that

$$
\begin{equation*}
M \cap U=\{(x, h(x)), x \in V\} \tag{1}
\end{equation*}
$$

Many possibilities exist. Let us for instance define

$$
U=\left\{(x, y), n_{0}\left(x^{2}+1\right)-1<y<n_{0}\left(x^{2}+1\right)+1\right\} .
$$

It is an open set, which contains $\left(x_{0}, n_{0}\left(x_{0}^{2}+1\right)\right)$.
We set $V=\mathbb{R}$ and

$$
\begin{array}{cccc}
h: & \mathbb{R} & \rightarrow & \mathbb{R} \\
& x & \rightarrow & n_{0}\left(x^{2}+1\right) .
\end{array}
$$

As h is polynomial, it is C^{∞}. It thus suffices to show Equation (1) to conclude.
For any $x \in V,(x, h(x))=\left(x, n_{0}\left(x^{2}+1\right)\right) \in M$ and $(x, h(x)) \in U$, since $n_{0}\left(x^{2}+1\right)-1<n_{0}\left(x^{2}+1\right)<n_{0}\left(x^{2}+1\right)+1$. This already shows $\{(x, h(x)), x \in V\} \subset M \cap U$.

On the other hand, for any $\left(x_{1}, n_{1}\left(x_{1}^{2}+1\right)\right) \in M \cap U$, it holds $n_{0}\left(x_{1}^{2}+\right.$ 1) $-1<n_{1}\left(x_{1}^{2}+1\right)<n_{0}\left(x_{1}^{2}+1\right)+1$, hence

$$
n_{0}-1 \leq n_{0}-\frac{1}{x_{1}^{2}+1}<n_{1}<n_{0}+\frac{1}{x_{1}^{2}+1} \leq n_{0}+1
$$

As n_{0}, n_{1} are integers, we must have $n_{0}=n_{1}$. In particular, $\left(x_{1}, n_{1}\left(x_{1}^{2}+1\right)\right)=$ $\left(x_{1}, h\left(x_{1}\right)\right) \in\{(x, h(x)), x \in V\}$. This shows $M \cap U \subset\{(x, h(x)), x \in V\}$, which concludes the proof of Equation (1).
(b) We define

$$
M=\left\{(x, 0), x \in \mathbb{R}^{-}\right\} \cup\left\{\left(x, x^{2}\right), x \in \mathbb{R}^{+}\right\} \cup\left\{\left(x,-x^{2}\right), x \in \mathbb{R}^{-}\right\}
$$

We show that M is not a C^{1}-submanifold of \mathbb{R}^{2}. Intuitively, the reason is that it has a "trifurcation" at $(0,0)$. To make this formal, we proceed by contradiction, and assume that M is a submanifold.

It must have dimension 1 , since it does not have dimension 0 (submanifolds of dimension 0 are discrete sets of points) nor dimension 2 (submanifolds of \mathbb{R}^{2} with dimension 2 are open subsets of \mathbb{R}^{2}). Therefore, from the "submersion" definition applied at point $(0,0)$, there exist

- U a neighborhood of $(0,0)$ in \mathbb{R}^{2},
- $g: U \rightarrow \mathbb{R}$ a C^{1} function, submersive at $(0,0)$, such that $M \cap U=g^{-1}(\{0\})$.

We fix U, g as above. As $\operatorname{Im}(d g(0,0))$ is a subspace of \mathbb{R}, it is \mathbb{R} itself if and only if $d g(0,0) \neq 0$: the condition that g is a submersion at $(0,0)$ simply means that $d g(0,0) \neq 0$.

For any $x \leq 0$ close enough to $0,(x, 0)$ belongs to $M \cap U$, hence $g(x, 0)=0$. We differentiate this equality and deduce

$$
\begin{equation*}
\frac{\partial g}{\partial x}(0,0)=0 \tag{2}
\end{equation*}
$$

Also, for any $x>0$ close enough to $0, g\left(x,-x^{2}\right)=g\left(x, x^{2}\right)=0$. From Rolle's lemma applied to the function $y \rightarrow g(x, y)$, there exists $\left.y_{x} \in\right]-x^{2} ; x^{2}[$ such that

$$
\frac{\partial g}{\partial y}\left(x, y_{x}\right)=0
$$

When $x \rightarrow 0, y_{x} \rightarrow 0$. Therefore, since $\frac{\partial g}{\partial y}$ is continuous,

$$
\begin{equation*}
\frac{\partial g}{\partial y}(0,0)=0 \tag{3}
\end{equation*}
$$

Together, Equations (2) and (3) imply that $d g(0,0)=0$, which contradicts the fact that g is a submersion at $(0,0)$.
(c) We define

$$
M=\left\{\left(x, \frac{1-x^{2}}{2}\right), x \in[-1 ; 1]\right\} \cup\left\{\left(x, \frac{x^{2}-1}{2}\right), x \in[-1 ; 1]\right\} .
$$

We show that M is not a C^{1}-submanifold of \mathbb{R}^{2}. Intuitively, the reason is that it has "non-regular" points at $(-1,0)$ and $(1,0)$. To make it formal, let us proceed by contradiction, and assume that it is a C^{1}-submanifold.

This submanifold neither has dimension 0 (it would be a discrete set of points) nor 2 (it would be an open set of \mathbb{R}^{2}). Therefore, its dimension is 1 .

From the "submersion" definition of submanifolds applied at $(1,0)$, there exist

- U a neighborhood of $(1,0)$ in \mathbb{R}^{2},
- $g: U \rightarrow \mathbb{R}$ a C^{1} function, submersive at $(1,0)$,
such that $M \cap U=g^{-1}(\{0\})$. Let such U, g be fixed.
For any $x \in[-1 ; 1]$ close enough to 1 ,

$$
g\left(x, \frac{1-x^{2}}{2}\right)=0
$$

We differentiate this equality at $x=1$, on the left:

$$
\frac{\partial g}{\partial x}(1,0)-\frac{\partial g}{\partial y}(1,0)=0
$$

In the same way, for any $x \in[-1 ; 1]$ close enough to 1 ,

$$
g\left(x, \frac{x^{2}-1}{2}\right)=0 .
$$

We differentiate this equality at $x=1$, on the left:

$$
\frac{\partial g}{\partial x}(1,0)+\frac{\partial g}{\partial y}(1,0)=0
$$

Combining the two equalities, we reach

$$
\frac{\partial g}{\partial x}(1,0)=\frac{\partial g}{\partial y}(1,0)=0,
$$

which means that $d g(1,0)=0$ and contradicts the fact that g is submersive at $(1,0)$.
(d) We define

$$
M=\left\{(x, y) \in \mathbb{R}^{2}, \sqrt{x^{2}+y^{2}} \in \mathbb{N}\right\}
$$

We show that M is not a C^{1}-submanifold of \mathbb{R}^{2}. Intuitively, the reason is that it is a submanifold of dimension 1 in the neighborhood of any point different from $(0,0)$, but a submanifold of dimension 0 in the neighbordhood of $(0,0)$.

By contradiction, let us assume that M is a submanifold of \mathbb{R}^{2}. It cannot have dimension 0 (it would be a discrete set of points) or 2 (it would be an open subset of \mathbb{R}^{2}). Therefore, it has dimension 1 .

In particular, using the "diffeomorphism" definition of submanifolds, we know that there exist U, V two neighborhoods of 0 and $\phi: U \rightarrow V$ a C^{1} diffeomorphism such that

$$
\phi(M \cap U)=(\mathbb{R} \times\{0\}) \cap V
$$

If we replace U and V by smaller neighborhoods, we can assume that $M \cap U$ is a singleton:

$$
M \cap U=\{(0,0)\}
$$

Therefore, $(\mathbb{R} \times\{0\}) \cap V=\phi(\{(0,0)\})$ is also a singleton. This is impossible, since this set contains $(t, 0)$ for all t close enough to 0 .
(e) We set

$$
M=\left\{\left(x, y, \frac{1}{\sqrt{x^{2}+y^{2}}}\right),(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} .
$$

Let us show that it is a submanifold of \mathbb{R}^{3}, of class C^{∞} and dimension 2. We use the definition by graph.

We define $U=\mathbb{R}^{3}, V=\mathbb{R}^{2} \backslash\{(0,0)\}$, and

$$
\begin{aligned}
& h: V \quad \rightarrow \quad \mathbb{R} \\
& (x, y) \rightarrow \frac{1}{\sqrt{x^{2}+y^{2}}} .
\end{aligned}
$$

The map h is C^{∞} (as $\sqrt{ }$. is C^{∞} on \mathbb{R}_{+}^{*} and $x^{2}+y^{2}$ belongs to \mathbb{R}_{+}^{*} for all $(x, y) \in V)$.

In addition, $M \cap U=M=\{(x, y, h(x, y)),(x, y) \in V\}$.
(f) We define

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \text { s.t. } x^{2}+y^{2}=1, z \geq 0\right\} .
$$

This set is a cylinder, extending to infinity in one direction, but bounded in the other direction. It is not a C^{1}-submanifold of \mathbb{R}^{3}. The reason is that it contains its boundary, $\left\{(x, y, 0)\right.$ s.t. $\left.x^{2}+y^{2}=1\right\}$.

Let us prove rigorously that it is not a C^{1}-submanifold. By contradiction, let us assume that it is.

Proposition. The submanifold M has dimension 2 .
Proof. Indeed, let us consider $U=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$ s.t. $x>0$ and $\left.z>0\right\}$. It is an open set of \mathbb{R}^{3}. Therefore, $M \cap U$ is a submanifold of \mathbb{R}^{3}, with the same dimension as M (since, close to any point of $M \cap U$, the two sets coincide; therefore, if M satisfies the definition of a submanifold, for some dimension d, then $M \cap U$ also does).

We observe that $M \cap U=f(V)$, where $V=]-\frac{\pi}{2} ; \frac{\pi}{2}\left[\times \mathbb{R}_{+}^{*} \subset \mathbb{R}^{2}\right.$ and f is defined as

$$
\begin{array}{ccc}
f:]-\frac{\pi}{2} ; \frac{\pi}{2}\left[\times \mathbb{R}_{+}^{*}\right. & \rightarrow & \mathbb{R}^{3} \\
(\theta, r) & \rightarrow & (\cos (\theta), \sin (\theta), r) .
\end{array}
$$

The function f is an immersion on V : for each $(\theta, r) \in]-\frac{\pi}{2} ; \frac{\pi}{2}\left[\times \mathbb{R}_{+}^{*}\right.$,

$$
d f(\theta, r)=\left(\left(h_{1}, h_{2}\right) \in \mathbb{R}^{2} \rightarrow\left(-\sin (\theta) h_{1}, \cos (\theta) h_{1}, h_{2}\right) \in \mathbb{R}^{3}\right)
$$

which is an injective linear map (since $\cos (\theta)>0$). In addition, f is a homeomorphism from V to $f(V)$. Indeed, it is injective: for any $\theta_{1}, r_{1}, \theta_{2}, r_{2}$, if $f\left(\theta_{1}, r_{1}\right)=f\left(\theta_{2}, r_{2}\right)$, then $\sin \left(\theta_{1}\right)=\sin \left(\theta_{2}\right)$, hence $\theta_{1}=\theta_{2}$, as sin is injective on $]-\frac{\pi}{2} ; \frac{\pi}{2}\left[;\right.$ looking at the third coordinate, $r_{1}=r_{2}$. Therefore, f is a bijection from V to $f(V)$. It is continuous. Its inverse is

$$
\begin{array}{cccc}
f^{-1}: & \rightarrow & V \\
(x, y, z) & \rightarrow & (\arcsin (y), z)
\end{array}
$$

which is also continuous.
This means that, from the "immersion" definition of submanifolds, $M \cap U$ is a submanifold of \mathbb{R}^{3} with dimension 2 . This proves that M also has dimension 2.

To obtain a contradiction, we apply the "immersion" definition at point $(1,0,0)$. Since M is a submanifold of dimension 2 , there exist U an open neighborhood of $(0,0)$ in \mathbb{R}^{2}, V an open neighborhood of $(1,0,0)$ in \mathbb{R}^{3} and $f: U \rightarrow V$ a C^{1} map such that $f(U)=M \cap V, f$ is a homeomorphism between U and $f(U)$, and f is an immersion at $f^{-1}(1,0,0)$. Let such U, V, f be fixed.

We denote $a=f^{-1}(1,0,0) \in U$. Let us show that $d f(a)\left(\mathbb{R}^{2}\right) \subset\{0\} \times \mathbb{R} \times$ $\{0\}$. Let $h \in \mathbb{R}^{2}$ be any vector; we define

$$
\left(y_{1}, y_{2}, y_{3}\right)=d f(a)(h) .
$$

It is impossible that $y_{3} \neq 0$: otherwise, for $t \in \mathbb{R}$ small enough, $f(a+$ $t h)_{3}=f(a)_{3}+t d f(a)(h)_{3}+o(t)=t y_{3}+o(t)$ can have negative values, which contradicts the fact that $f(a+t h) \in M \subset \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{+}$for any t. Therefore, $y_{3}=0$.

In addition, for all $t \in \mathbb{R}$ close to 0 ,

$$
\begin{aligned}
1 & =f(a+t h)_{1}^{2}+f(a+t h)_{2}^{2} \\
& =f(a)_{1}^{2}+f(a)_{2}^{2}+2 t f(a)_{1} d f(a)(h)_{1}+2 t f(a)_{2} d f(a)(h)_{2}+o(t) \\
& =1+2 t y_{1}+o(t)
\end{aligned}
$$

so that $y_{1}=0$. This concludes the proof that $d f(a)\left(\mathbb{R}^{2}\right) \subset\{0\} \times \mathbb{R} \times\{0\}$.
As a consequence, $d f(a)\left(\mathbb{R}^{2}\right)$, which is a vector space of dimension 2 (because $d f(a)$ is injective) is included in a vector space of dimension 1 . This is a contradiction.
(g) We define

$$
M=\{(x, \cos (2 \pi x), \sin (2 \pi x)), x \in \mathbb{R}\}
$$

This set is the graph of $\left(x \in \mathbb{R} \rightarrow(\cos (2 \pi x), \sin (2 \pi x)) \in \mathbb{R}^{2}\right)$, which is a C^{∞} map. It is therefore a submanifold of \mathbb{R}^{3} with dimension 1 .

