Devoir : le théorème de Cauchy-Lipschitz

Corrigé

1.a) Let $\epsilon > 0$ be such that $[t_0; t_0 + \epsilon] \subset H_I$ and — for all $t \in [t_0; t_0 + \epsilon] \cap J_1$, $u_1(t) \in H_U$; — for all $t \in [t_0; t_0 + \epsilon] \cap J_2$, $u_2(t) \in H_U$. Such ϵ exists because H_U is a neighborhood of $u_1(t_0) = u_2(t_0) = u_0$ and u_1, u_2 are continuous. For all $t \in [t_0; t_0 + \epsilon] \cap J_1 \cap J_2$,

$$||u_1'(t) - u_2'(t)||_2 = ||f(t, u_1(t)) - f(t, u_2(t))||_2$$

$$\leq C||u_1(t) - u_2(t)||_2.$$

For the inequality, we used the fact that $t \in H_I$ and $u_1(t), u_2(t) \in H_U$.

b) Let $t \in [t_0; t_0 + \epsilon] \cap J_1 \cap J_2$ be arbitrary. Notice that, since $[t_0; t_0 + \epsilon]$, J_1 , and J_2 are intervals, $[t_0; t] \subset [t_0; t_0 + \epsilon] \cap J_1 \cap J_2$.

The fundamental theorem of calculus and the triangle inequality for integrals allow us to write

$$\begin{aligned} ||u_{1}(t) - u_{2}(t)||_{2} \\ &= \left| \left| u_{1}(t_{0}) - u_{2}(t_{0}) + \int_{t_{0}}^{t} (u_{1}'(s) - u_{2}'(s))ds \right| \right|_{2} \\ &= \left| \left| \int_{t_{0}}^{t} (u_{1}'(s) - u_{2}'(s))ds \right| \right|_{2} \quad (\text{since } u_{1}(t_{0}) = u_{2}(t_{0}) = u_{0}) \\ &\leq \int_{t_{0}}^{t} ||u_{1}'(s) - u_{2}'(s)||_{2}ds. \end{aligned}$$

For all $s \in [t_0; t]$, since $s \in [t_0; t_0 + \epsilon] \cap J_1 \cap J_2$, we can use the previous question to say that $||u'_1(s) - u'_2(s)||_2 \leq C||u_1(s) - u_2(s)||_2$. Consequently,

$$||u_1(t) - u_2(t)||_2 \le C \int_{t_0}^t ||u_1(s) - u_2(s)||_2 ds.$$

c) Let $\phi : t \in [t_0; t_0 + \epsilon] \cap J_1 \cap J_2 \to ||u_1(t) - u_2(t)||_2$. According to the previous question, we have, for all t,

$$\phi(t) \le C \int_{t_0}^t \phi(s) ds$$

which means that ϕ satisfies the hypothesis of Gronwall's lemma, where c is the zero function and a is the constant function with value C. Therefore, by the lemma, for all $t \in [t_0; t_0 + \epsilon] \cap J_1 \cap J_2$,

$$\phi(t) \le 0 + \int_{t_0}^t e^{\int_s^t C d\tau} C \times 0 ds = 0.$$

Thus, ϕ is zero, which implies that $u_1 - u_2$ is zero (i.e., $u_1 = u_2$) on $[t_0; t_0 + \epsilon] \cap J_1 \cap J_2$.

d) Similarly to Question a), we can show that there exists $\tilde{\epsilon} > 0$ such that, for all $t \in [t_0 - \tilde{\epsilon}; t_0] \cap J_1 \cap J_2$, $||u_1'(t) - u_2'(t)||_2 \leq C||u_1(t) - u_2(t)||_2$. With a reasoning similar to Question b), we deduce that, for all $t \in [t_0 - \tilde{\epsilon}; t_0] \cap J_1 \cap J_2$,

$$||u_1(t) - u_2(t)||_2 \le C \int_t^{t_0} ||u_1(s) - u_2(s)||_2 ds.$$

We can then apply Gronwall's lemma, which implies that $u_1 = u_2$ on $[t_0 - \tilde{\epsilon}; t_0] \cap J_1 \cap J_2$.

By setting $\epsilon' = \min(\epsilon, \tilde{\epsilon})$, we have the desired result.

- 2. Let $\eta > 0$ such that $[t_0 \eta; t_0 + \eta] \subset H_I$ and $\bar{B}(u_0, \eta) \subset H_U$. The map ||f||is continuous on $[t_0 - \eta; t_0 + \eta] \times \bar{B}(u_0, \eta)$, which is a compact set. Therefore, it is bounded. Let M be an upper bound and define $H'_I = [t_0 - \eta; t_0 + \eta]$ and $H'_U = \bar{B}(u_0, \eta)$.
- 3.a) Let $n \in \mathbb{N}^*$. We will prove by induction on k that, for all $k = 0, ..., n, u_n$ is well-defined, M-Lipschitz and piecewise C^1 with values in $\overline{B}(u_0, M\epsilon)$ on $[t_0 \frac{k}{n}\epsilon; t_0 + \frac{k}{n}\epsilon]$.

For k = 0, it is true : u_0 is a fixed element of U so the definition " $u_n(t_0) = u_0$ " is valid. Moreover, any function defined on a singleton set is M-Lipschitz and piecewise C^1 ; we also have $u_0 \in \overline{B}(u_0, M\epsilon)$.

Let us assume the property is true for some $k \in \{0, ..., n-1\}$ and prove it for k+1.

By the induction hypothesis, u_n is well-defined on $[t_0 - \frac{k}{n}\epsilon; t_0 + \frac{k}{n}\epsilon]$. Let's show that it is also well-defined on $]t_0 + \frac{k}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon]$. A similar reasoning would show that it is well-defined on $[t_0 - \frac{k+1}{n}\epsilon; t_0 - \frac{k}{n}\epsilon]$.

According to the induction hypothesis, $u_n\left(t_0 + \frac{k}{n}\epsilon\right) \in \overline{B}(u_0, M\epsilon) \subset H'_U \subset U$. Furthermore, $\left[t_0 + \frac{k}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right] \subset [t_0 - \epsilon; t_0 + \epsilon] \subset I$. So the function

$$s \in \left[t_0 + \frac{k}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right] \quad \to \quad f\left(s, u_n\left(t_0 + \frac{k}{n}\epsilon\right)\right) \in U$$

is well-defined. Moreover, it is continuous (since f is continuous). Consequently, the definition

$$u_n(t) = u_n\left(t_0 + \frac{k}{n}\epsilon\right) + \int_{t_0 + \frac{k}{n}\epsilon}^t f\left(s, u_n\left(t_0 + \frac{k}{n}\epsilon\right)\right) ds$$

is valid for all $t \in]t_0 + \frac{k}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon]$. Thus, we have shown that u_n is well-defined on $]t_0 + \frac{k}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon]$.

Now let's prove that u_n is M-Lipschitz, piecewise C^1 , and with values in $\overline{B}(u_0, M\epsilon)$ on $\left[t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right]$. It is piecewise C^1 because it is defined, piecewise, as the integral of a conti-

nuous function. Furthermore, it is continuous. Indeed,

- it is continuous (since it is *M*-Lipschitz) on $[t_0 \frac{k}{n}\epsilon; t_0 + \frac{k}{n}\epsilon]$; it is continuous at $t_0 + \frac{k}{n}\epsilon$: its right limit is $u_n(t_0 + \frac{k}{n}\epsilon)$ according to the properties of the integral, and its left limit is the same (due to the
- continuity of u_n on $\left[t_0 \frac{k}{n}\epsilon; t_0 + \frac{k}{n}\epsilon\right]$; it is continuous at $t_0 \frac{k}{n}\epsilon$ for the same reason; it is continuous on $\left[t_0 \frac{k+1}{n}\epsilon; t_0 \frac{k}{n}\epsilon\right]$ as the integral of a continuous function.

Moreover, at any point of $\left[t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right]$ where u_n is differentiable, its derivative is of the form

$$f\left(t, u_n\left(t_0 \pm \frac{k'}{n}\right)\right)$$

for some $t \in \left[t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right]$ and some $k' \leq k$. We have already seen that, for such values of t and k',

$$\left(t, u_n\left(t_0 \pm \frac{k'}{n}\right)\right) \in H'_I \times H'_U.$$

It follows that, for any point $t \in \left[t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon\right]$ where u_n is differentiable,

$$||u'_n(t)||_2 \le M.$$
 (1)

As u_n is continuous and piecewise C^1 , this inequality suffices to guarantee that it is *M*-Lipschitz on $[t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon]$.¹ Finally, for any $t \in [t_0 - \frac{k+1}{n}\epsilon; t_0 + \frac{k+1}{n}\epsilon]$,

$$||u_n(t) - u_0||_2 = ||u_n(t) - u_n(t_0)||_2 \le M||t - t_0|| \le M\epsilon,$$

meaning that $u_n(t) \in \overline{B}(u_0, M\epsilon)$.

b) According to the definition of u_n and the fundamental theorem of calculus, u_n is differentiable on

$$[t_0 - \epsilon; t_0 + \epsilon] \setminus \left\{ t_0 - \epsilon, t_0 - \frac{n-1}{n} \epsilon, \dots, t_0 + \epsilon \right\}.$$

and, for all t in this set,

$$u'_{n}(t) = f\left(t, u_{n}\left(t_{0} + \frac{m_{t}}{n}\epsilon\right)\right), \qquad (2)$$

where $m_t = E\left(\frac{n(t-t_0)}{\epsilon}\right)$ if $t > t_0$ and $m_t = E\left(\frac{n(t-t_0)}{\epsilon}\right) + 1$ otherwise. For any t, $\left|m_t - \frac{n(t-t_0)}{\epsilon}\right| \le 1$ so

$$\left| \left(t_0 + \frac{m_t}{n} \epsilon \right) - t \right| \le \frac{\epsilon}{n}.$$

Since u_n is *M*-Lipschitz,

$$\left|u_n\left(t_0+\frac{m_t}{n}\epsilon\right)-u_n(t)\right|\leq \frac{M\epsilon}{n}.$$

Furthermore, $u_n([t_0 - \epsilon; t_0 + \epsilon]) \subset \overline{B}(u_0, M\epsilon) \subset H'_U \subset H_U$. Using the assumption that f is C-Lipschitz with respect to its second variable on $H_I \times H_U$, we can assert that, for any t,

$$\left| f\left(t, u_n\left(t_0 + \frac{m_t}{n}\epsilon\right)\right) - f\left(t, u_n(t)\right) \right| \le \frac{CM\epsilon}{n}.$$

According to Equation (2), this is exactly the desired result.

^{1.} Since u_n is continuous and piecewise C^1 , it holds for any $a, b \in \left[t_0 - \frac{k+1}{n}; t_0 + \frac{k+1}{n}\right]$ that $u_n(b) - u_n(a) = \int_a^b u'_n(t)dt$. From the triangular inequality and Equation (1), this implies, for any a, b such that $a < b : |u_n(b) - u_n(a)| \le \int_a^b ||u'_n(t)|| dt \le M(b-a)$.

c) Let $n_1, n_2 \in \mathbb{N}^*$ and $t \in [t_0 - \epsilon; t_0 + \epsilon]$ be fixed. If the inequality from the previous question holds for $n = n_1$ and $n = n_2$ (which happens for all t but a finite number of values), then, by the triangle inequality,

$$\begin{aligned} ||u_{n_{1}}'(t) - u_{n_{2}}'(t)||_{2} &\leq ||u_{n_{1}}'(t) - f(t, u_{n_{1}}(t))||_{2} + ||f(t, u_{n_{1}}(t)) - f(t, u_{n_{2}}(t))||_{2} \\ &+ ||f(t, u_{n_{2}}(t)) - u_{n_{2}}'(t)||_{2} \\ &\leq \frac{CM\epsilon}{n_{1}} + ||f(t, u_{n_{1}}(t)) - f(t, u_{n_{2}}(t))||_{2} + \frac{CM\epsilon}{n_{2}}. \end{aligned}$$

Now, as previously seen, t belongs to H_I and $u_{n_1}(t), u_{n_2}(t)$ belong to H_U , so

$$||u'_{n_1}(t) - u'_{n_2}(t)||_2 \le \frac{CM\epsilon}{n_1} + C||u_{n_1}(t) - u_{n_2}(t)||_2 + \frac{CM\epsilon}{n_2}.$$

d) Let $n_1, n_2 \in \mathbb{N}^*$ be fixed. We will prove the requested inequality for all $t \in [t_0; t_0 + \epsilon]$; a similar reasoning can be used to prove it for $t \in [t_0 - \epsilon; t_0[$ (as in Question 1.d)). For any $t \in [t_0; t_0 + \epsilon]$,

$$\begin{aligned} ||u_{n_{1}}(t) - u_{n_{2}}(t)||_{2} \\ &= \left| \left| u_{n_{1}}(t_{0}) - u_{n_{2}}(t_{0}) + \int_{t_{0}}^{t} \left(u_{n_{1}}'(s) - u_{n_{2}}'(s) \right) ds \right| \right|_{2} \\ &= \left| \left| \int_{t_{0}}^{t} \left(u_{n_{1}}'(s) - u_{n_{2}}'(s) \right) ds \right| \right|_{2} \\ &\leq \int_{t_{0}}^{t} \left| \left| u_{n_{1}}'(s) - u_{n_{2}}'(s) \right| \right| ds \\ &\leq \int_{t_{0}}^{t} \left(CM\epsilon \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) + C ||u_{n_{1}}(s) - u_{n_{2}}(s)||_{2} \right) ds \\ &= CM\epsilon \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) (t - t_{0}) + \int_{t_{0}}^{t} C ||u_{n_{1}}(s) - u_{n_{2}}(s)||_{2} ds. \end{aligned}$$

We apply Gronwall's lemma with

$$u: t \in [t_0; t_0 + \epsilon] \to ||u_{n_1}(t) - u_{n_2}(t)||_2,$$

$$a: t \in [t_0; t_0 + \epsilon] \to C,$$

$$c: t \in [t_0; t_0 + \epsilon] \to CM\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right)(t - t_0).$$

It tells us that, for any $t \in [t_0; t_0 + \epsilon]$,

$$\begin{aligned} ||u_{n_1}(t) - u_{n_2}(t)||_2 &\leq CM\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) (t - t_0) \\ &+ \int_{t_0}^t C^2 M\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) e^{C(t-s)} (s - t_0) ds \\ &= CM\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) (t - t_0) \\ &+ M\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left[-Ce^{C(t-s)} (s - t_0) - e^{C(t-s)}\right]_{t_0}^t \\ &= CM\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) (t - t_0) \\ &+ M\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(e^{C(t-t_0)} - C(t - t_0) - 1\right) \\ &= M\epsilon \left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left(e^{C(t-t_0)} - 1\right). \end{aligned}$$

e) According to the previous question, for all $n, m \in \mathbb{N}^*$,

$$d_{sup}(u_n, u_m) = \sup_{t \in [t_0 - \epsilon; t_0 + \epsilon]} ||u_n(t) - u_m(t)||_2$$

$$\leq \sup_{t \in [t_0 - \epsilon; t_0 + \epsilon]} M\epsilon \left(\frac{1}{n} + \frac{1}{m}\right) \left(e^{C|t - t_0|} - 1\right)$$

$$= M\epsilon \left(\frac{1}{n} + \frac{1}{m}\right) \left(e^{C\epsilon} - 1\right).$$

In particular, for any n,

$$\sup_{m \ge n} d_{sup}(u_n, u_m) \le \frac{2M\epsilon}{n} \left(e^{C\epsilon} - 1 \right),$$

which goes to 0 as $n \to +\infty$.

f) The set $\bar{B}(u_0, M\epsilon)$ is compact, hence complete. The set $C_b^0([t_0 - \epsilon; t_0 + \epsilon], \bar{B}(u_0, M\epsilon))$ of continuous and bounded functions from $[t_0 - \epsilon; t_0 + \epsilon]$ to $\bar{B}(u_0, M\epsilon)$ is also complete. This set is equal to $C^0([t_0 - \epsilon; t_0 + \epsilon], \bar{B}(u_0, M\epsilon))$ (since $[t_0 - \epsilon; t_0 + \epsilon]$ is compact and a continuous function on a compact set is always bounded). Therefore, $C^0([t_0 - \epsilon; t_0 + \epsilon], \bar{B}(u_0, M\epsilon))$ is complete. As $(u_n)_{n\in\mathbb{N}^*}$ is Cauchy, it has a limit in this set (for the uniform distance).

g)

$$\begin{aligned} \left\| u_n(t) - u_n(t_0) - \int_{t_0}^t f(s, u_n(s)) ds \right\|_2 &= \left\| \int_{t_0}^t u_n'(s) ds - \int_{t_0}^t f(s, u_n(s)) ds \right\|_2 \\ &\leq \int_{[t_0;t]} \left\| u_n'(s) - f(s, u_n(s)) \right\|_2 ds \\ &\leq \int_{[t_0;t]} \frac{CM\epsilon}{n} ds \quad \text{(by question b))} \\ &= \frac{CM\epsilon}{n} |t - t_0| \\ &\leq \frac{CM\epsilon^2}{n}. \end{aligned}$$

h) For any $s \in [t_0 - \epsilon; t_0 + \epsilon]$,

$$|f(s, u_n(s)) - f(s, u_\infty(s))| \le C||u_n(s) - u_\infty(s)||_2$$
$$\le Cd_{sup}(u_n, u_\infty).$$

So, for any t,

$$\begin{split} \left\| \left\| \int_{t_0}^t f(s, u_n(s)) ds - \int_{t_0}^t f(s, u_\infty(s)) ds \right\|_2 \\ & \leq \int_{[t_0;t]} \left\| f(s, u_n(s)) - f(s, u_\infty(s)) \right\|_2 ds \\ & \leq C d_{sup}(u_n, u_\infty) |t - t_0| \\ & \to 0 \quad \text{as } n \to +\infty, \end{split}$$

which implies that $\int_{t_0}^t f(s, u_n(s)) ds \xrightarrow{n \to +\infty} \int_{t_0}^t f(s, u_\infty(s)) ds$. For any $t, u_n(t) \to u_\infty(t)$ and $u_n(t_0) \to u_\infty(t_0)$ as $n \to +\infty$, so

$$u_n(t) - u_n(t_0) - \int_{t_0}^t f(s, u_n(s)) ds$$
$$\xrightarrow{n \to +\infty} u_\infty(t) - u_\infty(t_0) - \int_{t_0}^t f(s, u_\infty(s)) ds.$$

Now, as seen in the previous question,

$$u_n(t) - u_n(t_0) - \int_{t_0}^t f(s, u_n(s)) ds \xrightarrow{n \to +\infty} 0.$$

So, for any t, by the uniqueness of the limit,

$$u_{\infty}(t) - u_{\infty}(t_0) - \int_{t_0}^t f(s, u_{\infty}(s)) ds = 0.$$

Therefore u_{∞} is a primitive of $(t \to f(t, u_{\infty}(t)))$, which is continuous. As a consequence, u_{∞} is differentiable and, for all $t \in [t_0 - \epsilon; t_0 + \epsilon]$,

$$u_{\infty}'(t) = f(t, u_{\infty}(t)).$$

Moreover, $u_{\infty}(t_0) = \lim_{n \to +\infty} u_n(t_0) = u_0$, so u_{∞} is a solution of the Cauchy problem.