Devoir : le théorème de Cauchy-Lipschitz

Corrigé

1.a) Let $\epsilon>0$ be such that $\left[t_{0} ; t_{0}+\epsilon\right] \subset H_{I}$ and

- for all $t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1}, u_{1}(t) \in H_{U}$;
- for all $t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{2}, u_{2}(t) \in H_{U}$.

Such ϵ exists because H_{U} is a neighborhood of $u_{1}\left(t_{0}\right)=u_{2}\left(t_{0}\right)=u_{0}$ and u_{1}, u_{2} are continuous.
For all $t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2}$,

$$
\begin{aligned}
\left\|u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\|_{2} & =\left\|f\left(t, u_{1}(t)\right)-f\left(t, u_{2}(t)\right)\right\|_{2} \\
& \leq C\left\|u_{1}(t)-u_{2}(t)\right\|_{2} .
\end{aligned}
$$

For the inequality, we used the fact that $t \in H_{I}$ and $u_{1}(t), u_{2}(t) \in H_{U}$.
b) Let $t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2}$ be arbitrary. Notice that, since $\left[t_{0} ; t_{0}+\epsilon\right], J_{1}$, and J_{2} are intervals, $\left[t_{0} ; t\right] \subset\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2}$.
The fundamental theorem of calculus and the triangle inequality for integrals allow us to write

$$
\begin{aligned}
\| u_{1}(t) & -u_{2}(t) \|_{2} \\
& =\left\|u_{1}\left(t_{0}\right)-u_{2}\left(t_{0}\right)+\int_{t_{0}}^{t}\left(u_{1}^{\prime}(s)-u_{2}^{\prime}(s)\right) d s\right\|_{2} \\
& =\left\|\int_{t_{0}}^{t}\left(u_{1}^{\prime}(s)-u_{2}^{\prime}(s)\right) d s\right\|_{2} \quad\left(\text { since } u_{1}\left(t_{0}\right)=u_{2}\left(t_{0}\right)=u_{0}\right) \\
& \leq \int_{t_{0}}^{t}\left\|u_{1}^{\prime}(s)-u_{2}^{\prime}(s)\right\|_{2} d s .
\end{aligned}
$$

For all $s \in\left[t_{0} ; t\right]$, since $s \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2}$, we can use the previous question to say that $\left\|u_{1}^{\prime}(s)-u_{2}^{\prime}(s)\right\|_{2} \leq C\left\|u_{1}(s)-u_{2}(s)\right\|_{2}$. Consequently,

$$
\left\|u_{1}(t)-u_{2}(t)\right\|_{2} \leq C \int_{t_{0}}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{2} d s
$$

c) Let $\phi: t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2} \rightarrow\left\|u_{1}(t)-u_{2}(t)\right\|_{2}$. According to the previous question, we have, for all t,

$$
\phi(t) \leq C \int_{t_{0}}^{t} \phi(s) d s
$$

which means that ϕ satisfies the hypothesis of Gronwall's lemma, where c is the zero function and a is the constant function with value C. Therefore, by the lemma, for all $t \in\left[t_{0} ; t_{0}+\epsilon\right] \cap J_{1} \cap J_{2}$,

$$
\phi(t) \leq 0+\int_{t_{0}}^{t} e^{\int_{s}^{t} C d \tau} C \times 0 d s=0
$$

Thus, ϕ is zero, which implies that $u_{1}-u_{2}$ is zero (i.e., $u_{1}=u_{2}$) on $\left[t_{0} ; t_{0}+\right.$ $\epsilon] \cap J_{1} \cap J_{2}$.
d) Similarly to Question a), we can show that there exists $\tilde{\epsilon}>0$ such that, for all $t \in\left[t_{0}-\tilde{\epsilon} ; t_{0}\right] \cap J_{1} \cap J_{2},\left\|u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right\|_{2} \leq C\left\|u_{1}(t)-u_{2}(t)\right\|_{2}$. With a reasoning similar to Question b), we deduce that, for all $t \in\left[t_{0}-\tilde{\epsilon}\right.$; $\left.t_{0}\right] \cap$ $J_{1} \cap J_{2}$,

$$
\left\|u_{1}(t)-u_{2}(t)\right\|_{2} \leq C \int_{t}^{t_{0}}\left\|u_{1}(s)-u_{2}(s)\right\|_{2} d s
$$

We can then apply Gronwall's lemma, which implies that $u_{1}=u_{2}$ on $\left[t_{0}-\right.$ $\left.\tilde{\epsilon} ; t_{0}\right] \cap J_{1} \cap J_{2}$.
By setting $\epsilon^{\prime}=\min (\epsilon, \tilde{\epsilon})$, we have the desired result.
2. Let $\eta>0$ such that $\left[t_{0}-\eta ; t_{0}+\eta\right] \subset H_{I}$ and $\bar{B}\left(u_{0}, \eta\right) \subset H_{U}$. The map $\|f\|$ is continuous on $\left[t_{0}-\eta ; t_{0}+\eta\right] \times \bar{B}\left(u_{0}, \eta\right)$, which is a compact set. Therefore, it is bounded. Let M be an upper bound and define $H_{I}^{\prime}=\left[t_{0}-\eta ; t_{0}+\eta\right]$ and $H_{U}^{\prime}=\bar{B}\left(u_{0}, \eta\right)$.
3.a) Let $n \in \mathbb{N}^{*}$. We will prove by induction on k that, for all $k=0, \ldots, n, u_{n}$ is well-defined, M-Lipschitz and piecewise C^{1} with values in $\bar{B}\left(u_{0}, M \epsilon\right)$ on $\left[t_{0}-\frac{k}{n} \epsilon ; t_{0}+\frac{k}{n} \epsilon\right]$.
For $k=0$, it is true : u_{0} is a fixed element of U so the definition " $u_{n}\left(t_{0}\right)=u_{0}$ " is valid. Moreover, any function defined on a singleton set is M-Lipschitz and piecewise C^{1}; we also have $u_{0} \in \bar{B}\left(u_{0}, M \epsilon\right)$.
Let us assume the property is true for some $k \in\{0, \ldots, n-1\}$ and prove it for $k+1$.
By the induction hypothesis, u_{n} is well-defined on $\left[t_{0}-\frac{k}{n} \epsilon ; t_{0}+\frac{k}{n} \epsilon\right]$. Let's show that it is also well-defined on $\left.] t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$. A similar reasoning would show that it is well-defined on $\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}-\frac{k}{n} \epsilon[\right.$.

According to the induction hypothesis, $u_{n}\left(t_{0}+\frac{k}{n} \epsilon\right) \in \bar{B}\left(u_{0}, M \epsilon\right) \subset H_{U}^{\prime} \subset$ U. Furthermore, $\left[t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right] \subset\left[t_{0}-\epsilon ; t_{0}+\epsilon\right] \subset I$. So the function

$$
s \in\left[t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right] \quad \rightarrow \quad f\left(s, u_{n}\left(t_{0}+\frac{k}{n} \epsilon\right)\right) \in U
$$

is well-defined. Moreover, it is continuous (since f is continuous). Consequently, the definition

$$
u_{n}(t)=u_{n}\left(t_{0}+\frac{k}{n} \epsilon\right)+\int_{t_{0}+\frac{k}{n} \epsilon}^{t} f\left(s, u_{n}\left(t_{0}+\frac{k}{n} \epsilon\right)\right) d s
$$

is valid for all $\left.t \in] t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$. Thus, we have shown that u_{n} is well-defined on $\left.] t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$.
Now let's prove that u_{n} is M-Lipschitz, piecewise C^{1}, and with values in $\bar{B}\left(u_{0}, M \epsilon\right)$ on $\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$.
It is piecewise C^{1} because it is defined, piecewise, as the integral of a continuous function. Furthermore, it is continuous. Indeed,

- it is continuous (since it is M-Lipschitz) on $\left[t_{0}-\frac{k}{n} \epsilon ; t_{0}+\frac{k}{n} \epsilon\right]$;
- it is continuous at $t_{0}+\frac{k}{n} \epsilon$: its right limit is $u_{n}\left(t_{0}+\frac{k}{n} \epsilon\right)^{n}$ according to the properties of the integral, and its left limit is the same (due to the continuity of u_{n} on $\left[t_{0}-\frac{k}{n} \epsilon ; t_{0}+\frac{k}{n} \epsilon\right]$);
- it is continuous at $t_{0}-\frac{k}{n} \epsilon$ for the same reason;
- it is continuous on $\left[t_{0}{ }^{n} \frac{k+1}{n} \epsilon ; t_{0}-\frac{k}{n} \epsilon[\right.$ and $\left.] t_{0}+\frac{k}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$ as the integral of a continuous function.
Moreover, at any point of $\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$ where u_{n} is differentiable, its derivative is of the form

$$
f\left(t, u_{n}\left(t_{0} \pm \frac{k^{\prime}}{n}\right)\right)
$$

for some $t \in\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$ and some $k^{\prime} \leq k$. We have already seen that, for such values of t and k^{\prime},

$$
\left(t, u_{n}\left(t_{0} \pm \frac{k^{\prime}}{n}\right)\right) \in H_{I}^{\prime} \times H_{U}^{\prime}
$$

It follows that, for any point $t \in\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$ where u_{n} is differentiable,

$$
\begin{equation*}
\left\|u_{n}^{\prime}(t)\right\|_{2} \leq M \tag{1}
\end{equation*}
$$

As u_{n} is continuous and piecewise C^{1}, this inequality suffices to guarantee that it is M-Lipschitz on $\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right] .{ }^{1}$
Finally, for any $t \in\left[t_{0}-\frac{k+1}{n} \epsilon ; t_{0}+\frac{k+1}{n} \epsilon\right]$,

$$
\left\|u_{n}(t)-u_{0}\right\|_{2}=\left\|u_{n}(t)-u_{n}\left(t_{0}\right)\right\|_{2} \leq M\left\|t-t_{0}\right\| \leq M \epsilon,
$$

meaning that $u_{n}(t) \in \bar{B}\left(u_{0}, M \epsilon\right)$.
b) According to the definition of u_{n} and the fundamental theorem of calculus, u_{n} is differentiable on

$$
\left[t_{0}-\epsilon ; t_{0}+\epsilon\right] \backslash\left\{t_{0}-\epsilon, t_{0}-\frac{n-1}{n} \epsilon, \ldots, t_{0}+\epsilon\right\} .
$$

and, for all t in this set,

$$
\begin{equation*}
u_{n}^{\prime}(t)=f\left(t, u_{n}\left(t_{0}+\frac{m_{t}}{n} \epsilon\right)\right) \tag{2}
\end{equation*}
$$

where $m_{t}=E\left(\frac{n\left(t-t_{0}\right)}{\epsilon}\right)$ if $t>t_{0}$ and $m_{t}=E\left(\frac{n\left(t-t_{0}\right)}{\epsilon}\right)+1$ otherwise. For any $t,\left|m_{t}-\frac{n\left(t-t_{0}\right)}{\epsilon}\right| \leq 1$ so

$$
\left|\left(t_{0}+\frac{m_{t}}{n} \epsilon\right)-t\right| \leq \frac{\epsilon}{n}
$$

Since u_{n} is M-Lipschitz,

$$
\left|u_{n}\left(t_{0}+\frac{m_{t}}{n} \epsilon\right)-u_{n}(t)\right| \leq \frac{M \epsilon}{n}
$$

Furthermore, $u_{n}\left(\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]\right) \subset \bar{B}\left(u_{0}, M \epsilon\right) \subset H_{U}^{\prime} \subset H_{U}$. Using the assumption that f is C-Lipschitz with respect to its second variable on $H_{I} \times H_{U}$, we can assert that, for any t,

$$
\left|f\left(t, u_{n}\left(t_{0}+\frac{m_{t}}{n} \epsilon\right)\right)-f\left(t, u_{n}(t)\right)\right| \leq \frac{C M \epsilon}{n}
$$

According to Equation (2), this is exactly the desired result.

1. Since u_{n} is continuous and piecewise C^{1}, it holds for any $a, b \in\left[t_{0}-\frac{k+1}{n} ; t_{0}+\frac{k+1}{n}\right]$ that $u_{n}(b)-u_{n}(a)=\int_{a}^{b} u_{n}^{\prime}(t) d t$. From the triangular inequality and Equation (1), this implies, for any a, b such that $a<b:\left|u_{n}(b)-u_{n}(a)\right| \leq \int_{a}^{b}\left\|u_{n}^{\prime}(t)\right\| d t \leq M(b-a)$.
c) Let $n_{1}, n_{2} \in \mathbb{N}^{*}$ and $t \in\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]$ be fixed. If the inequality from the previous question holds for $n=n_{1}$ and $n=n_{2}$ (which happens for all t but a finite number of values), then, by the triangle inequality,

$$
\begin{aligned}
\left\|u_{n_{1}}^{\prime}(t)-u_{n_{2}}^{\prime}(t)\right\|_{2} \leq & \left\|u_{n_{1}}^{\prime}(t)-f\left(t, u_{n_{1}}(t)\right)\right\|_{2}+\left\|f\left(t, u_{n_{1}}(t)\right)-f\left(t, u_{n_{2}}(t)\right)\right\|_{2} \\
& +\left\|f\left(t, u_{n_{2}}(t)\right)-u_{n_{2}}^{\prime}(t)\right\|_{2} \\
\leq & \frac{C M \epsilon}{n_{1}}+\left\|f\left(t, u_{n_{1}}(t)\right)-f\left(t, u_{n_{2}}(t)\right)\right\|_{2}+\frac{C M \epsilon}{n_{2}}
\end{aligned}
$$

Now, as previously seen, t belongs to H_{I} and $u_{n_{1}}(t), u_{n_{2}}(t)$ belong to H_{U}, so

$$
\left\|u_{n_{1}}^{\prime}(t)-u_{n_{2}}^{\prime}(t)\right\|_{2} \leq \frac{C M \epsilon}{n_{1}}+C\left\|u_{n_{1}}(t)-u_{n_{2}}(t)\right\|_{2}+\frac{C M \epsilon}{n_{2}}
$$

d) Let $n_{1}, n_{2} \in \mathbb{N}^{*}$ be fixed. We will prove the requested inequality for all $t \in\left[t_{0} ; t_{0}+\epsilon\right]$; a similar reasoning can be used to prove it for $t \in\left[t_{0}-\epsilon ; t_{0}[\right.$ (as in Question 1.d)).
For any $t \in\left[t_{0} ; t_{0}+\epsilon\right]$,

$$
\begin{aligned}
\| u_{n_{1}}(t) & -u_{n_{2}}(t) \|_{2} \\
& =\left\|u_{n_{1}}\left(t_{0}\right)-u_{n_{2}}\left(t_{0}\right)+\int_{t_{0}}^{t}\left(u_{n_{1}}^{\prime}(s)-u_{n_{2}}^{\prime}(s)\right) d s\right\|_{2} \\
& =\left\|\int_{t_{0}}^{t}\left(u_{n_{1}}^{\prime}(s)-u_{n_{2}}^{\prime}(s)\right) d s\right\|_{2} \\
& \leq \int_{t_{0}}^{t}\left\|u_{n_{1}}^{\prime}(s)-u_{n_{2}}^{\prime}(s)\right\| d s \\
& \leq \int_{t_{0}}^{t}\left(C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+C\left\|u_{n_{1}}(s)-u_{n_{2}}(s)\right\|_{2}\right) d s \\
& =C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(t-t_{0}\right)+\int_{t_{0}}^{t} C\left\|u_{n_{1}}(s)-u_{n_{2}}(s)\right\|_{2} d s
\end{aligned}
$$

We apply Gronwall's lemma with

$$
\begin{gathered}
u: t \in\left[t_{0} ; t_{0}+\epsilon\right] \rightarrow\left\|u_{n_{1}}(t)-u_{n_{2}}(t)\right\|_{2}, \\
a: t \in\left[t_{0} ; t_{0}+\epsilon\right] \rightarrow C, \\
c: t \in\left[t_{0} ; t_{0}+\epsilon\right] \rightarrow C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(t-t_{0}\right) .
\end{gathered}
$$

It tells us that, for any $t \in\left[t_{0} ; t_{0}+\epsilon\right]$,

$$
\begin{aligned}
&\left\|u_{n_{1}}(t)-u_{n_{2}}(t)\right\|_{2} \leq C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(t-t_{0}\right) \\
& \quad+\int_{t_{0}}^{t} C^{2} M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) e^{C(t-s)}\left(s-t_{0}\right) d s \\
&= C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(t-t_{0}\right) \\
& \quad+M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left[-C e^{C(t-s)}\left(s-t_{0}\right)-e^{C(t-s)}\right]_{t_{0}}^{t} \\
&= C M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(t-t_{0}\right) \\
& \quad+M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(e^{C\left(t-t_{0}\right)}-C\left(t-t_{0}\right)-1\right) \\
&= M \epsilon\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(e^{C\left(t-t_{0}\right)}-1\right)
\end{aligned}
$$

e) According to the previous question, for all $n, m \in \mathbb{N}^{*}$,

$$
\begin{aligned}
d_{\text {sup }}\left(u_{n}, u_{m}\right) & =\sup _{t \in\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]}\left\|u_{n}(t)-u_{m}(t)\right\|_{2} \\
& \leq \sup _{t \in\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]} M \epsilon\left(\frac{1}{n}+\frac{1}{m}\right)\left(e^{C\left|t-t_{0}\right|}-1\right) \\
& =M \epsilon\left(\frac{1}{n}+\frac{1}{m}\right)\left(e^{C \epsilon}-1\right) .
\end{aligned}
$$

In particular, for any n,

$$
\sup _{m \geq n} d_{\text {sup }}\left(u_{n}, u_{m}\right) \leq \frac{2 M \epsilon}{n}\left(e^{C \epsilon}-1\right)
$$

which goes to 0 as $n \rightarrow+\infty$.
f) The set $\bar{B}\left(u_{0}, M \epsilon\right)$ is compact, hence complete. The set $C_{b}^{0}\left(\left[t_{0}-\epsilon ; t_{0}+\right.\right.$ $\left.\epsilon], B\left(u_{0}, M \epsilon\right)\right)$ of continuous and bounded functions from $\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]$ to $\bar{B}\left(u_{0}, M \epsilon\right)$ is also complete. This set is equal to $C^{0}\left(\left[t_{0}-\epsilon ; t_{0}+\epsilon\right], \bar{B}\left(u_{0}, M \epsilon\right)\right)$ (since $\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]$ is compact and a continuous function on a compact set is always bounded). Therefore, $C^{0}\left(\left[t_{0}-\epsilon ; t_{0}+\epsilon\right], \bar{B}\left(u_{0}, M \epsilon\right)\right)$ is complete. As $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ is Cauchy, it has a limit in this set (for the uniform distance).
g)

$$
\begin{aligned}
\left\|u_{n}(t)-u_{n}\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s\right\|_{2} & =\left\|\int_{t_{0}}^{t} u_{n}^{\prime}(s) d s-\int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s\right\|_{2} \\
& \leq \int_{\left[t_{0} ; t\right]}\left\|u_{n}^{\prime}(s)-f\left(s, u_{n}(s)\right)\right\|_{2} d s \\
& \left.\leq \int_{\left[t_{0} ; t\right]} \frac{C M \epsilon}{n} d s \quad \text { (by question b) }\right) \\
& =\frac{C M \epsilon}{n}\left|t-t_{0}\right| \\
& \leq \frac{C M \epsilon^{2}}{n}
\end{aligned}
$$

h) For any $s \in\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]$,

$$
\begin{aligned}
\left|f\left(s, u_{n}(s)\right)-f\left(s, u_{\infty}(s)\right)\right| & \leq C\left\|u_{n}(s)-u_{\infty}(s)\right\|_{2} \\
& \leq C d_{\text {sup }}\left(u_{n}, u_{\infty}\right)
\end{aligned}
$$

So, for any t,

$$
\begin{aligned}
\| \int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s & -\int_{t_{0}}^{t} f\left(s, u_{\infty}(s)\right) d s \|_{2} \\
& \leq \int_{\left[t_{0} ; t\right]}\left\|f\left(s, u_{n}(s)\right)-f\left(s, u_{\infty}(s)\right)\right\|_{2} d s \\
& \leq C d_{s u p}\left(u_{n}, u_{\infty}\right)\left|t-t_{0}\right| \\
& \rightarrow 0 \quad \text { as } n \rightarrow+\infty
\end{aligned}
$$

which implies that $\int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s \xrightarrow{n \rightarrow+\infty} \int_{t_{0}}^{t} f\left(s, u_{\infty}(s)\right) d s$.
For any $t, u_{n}(t) \rightarrow u_{\infty}(t)$ and $u_{n}\left(t_{0}\right) \rightarrow u_{\infty}\left(t_{0}\right)$ as $n \rightarrow+\infty$, so

$$
\begin{aligned}
u_{n}(t)-u_{n}\left(t_{0}\right) & -\int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s \\
& \xrightarrow{n \rightarrow+\infty} u_{\infty}(t)-u_{\infty}\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, u_{\infty}(s)\right) d s
\end{aligned}
$$

Now, as seen in the previous question,

$$
u_{n}(t)-u_{n}\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, u_{n}(s)\right) d s \xrightarrow{n \rightarrow+\infty} 0 .
$$

So, for any t, by the uniqueness of the limit,

$$
u_{\infty}(t)-u_{\infty}\left(t_{0}\right)-\int_{t_{0}}^{t} f\left(s, u_{\infty}(s)\right) d s=0
$$

Therefore u_{∞} is a primitive of $\left(t \rightarrow f\left(t, u_{\infty}(t)\right)\right)$, which is continuous. As a consequence, u_{∞} is differentiable and, for all $t \in\left[t_{0}-\epsilon ; t_{0}+\epsilon\right]$,

$$
u_{\infty}^{\prime}(t)=f\left(t, u_{\infty}(t)\right)
$$

Moreover, $u_{\infty}\left(t_{0}\right)=\lim _{n \rightarrow+\infty} u_{n}\left(t_{0}\right)=u_{0}$, so u_{∞} is a solution of the Cauchy problem.

