
Devoir : le théorème de Cauchy-Lipschitz

Corrigé

1.a) Let ϵ > 0 be such that [t0; t0 + ϵ] ⊂ HI and
— for all t ∈ [t0; t0 + ϵ] ∩ J1, u1(t) ∈ HU ;
— for all t ∈ [t0; t0 + ϵ] ∩ J2, u2(t) ∈ HU .
Such ϵ exists because HU is a neighborhood of u1(t0) = u2(t0) = u0 and
u1, u2 are continuous.
For all t ∈ [t0; t0 + ϵ] ∩ J1 ∩ J2,

||u′
1(t) − u′

2(t)||2 = ||f(t, u1(t)) − f(t, u2(t))||2
≤ C||u1(t) − u2(t)||2.

For the inequality, we used the fact that t ∈ HI and u1(t), u2(t) ∈ HU .
b) Let t ∈ [t0; t0 + ϵ] ∩ J1 ∩ J2 be arbitrary. Notice that, since [t0; t0 + ϵ], J1,

and J2 are intervals, [t0; t] ⊂ [t0; t0 + ϵ] ∩ J1 ∩ J2.
The fundamental theorem of calculus and the triangle inequality for inte-
grals allow us to write

||u1(t) − u2(t)||2

=
∣∣∣∣∣∣∣∣u1(t0) − u2(t0) +

∫ t

t0

(u′
1(s) − u′

2(s))ds
∣∣∣∣∣∣∣∣

2

=
∣∣∣∣∣∣∣∣∫ t

t0

(u′
1(s) − u′

2(s))ds
∣∣∣∣∣∣∣∣

2
(since u1(t0) = u2(t0) = u0)

≤
∫ t

t0

||u′
1(s) − u′

2(s)||2ds.

For all s ∈ [t0; t], since s ∈ [t0; t0 + ϵ] ∩ J1 ∩ J2, we can use the previous
question to say that ||u′

1(s) − u′
2(s)||2 ≤ C||u1(s) − u2(s)||2. Consequently,

||u1(t) − u2(t)||2 ≤ C

∫ t

t0

||u1(s) − u2(s)||2ds.
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c) Let ϕ : t ∈ [t0; t0 +ϵ]∩J1∩J2 → ||u1(t)−u2(t)||2. According to the previous
question, we have, for all t,

ϕ(t) ≤ C

∫ t

t0

ϕ(s)ds,

which means that ϕ satisfies the hypothesis of Gronwall’s lemma, where c
is the zero function and a is the constant function with value C. Therefore,
by the lemma, for all t ∈ [t0; t0 + ϵ] ∩ J1 ∩ J2,

ϕ(t) ≤ 0 +
∫ t

t0

e
∫ t
s CdτC × 0ds = 0.

Thus, ϕ is zero, which implies that u1 −u2 is zero (i.e., u1 = u2) on [t0; t0 +
ϵ] ∩ J1 ∩ J2.

d) Similarly to Question a), we can show that there exists ϵ̃ > 0 such that, for
all t ∈ [t0 − ϵ̃; t0] ∩ J1 ∩ J2, ||u′

1(t) − u′
2(t)||2 ≤ C||u1(t) − u2(t)||2. With a

reasoning similar to Question b), we deduce that, for all t ∈ [t0 − ϵ̃; t0] ∩
J1 ∩ J2,

||u1(t) − u2(t)||2 ≤ C

∫ t0

t

||u1(s) − u2(s)||2ds.

We can then apply Gronwall’s lemma, which implies that u1 = u2 on [t0 −
ϵ̃; t0] ∩ J1 ∩ J2.
By setting ϵ′ = min(ϵ, ϵ̃), we have the desired result.

2. Let η > 0 such that [t0 − η; t0 + η] ⊂ HI and B̄(u0, η) ⊂ HU . The map ||f ||
is continuous on [t0 − η; t0 + η]× B̄(u0, η), which is a compact set. Therefore,
it is bounded. Let M be an upper bound and define H ′

I = [t0 − η; t0 + η] and
H ′

U = B̄(u0, η).
3.a) Let n ∈ N∗. We will prove by induction on k that, for all k = 0, . . . , n, un

is well-defined, M -Lipschitz and piecewise C1 with values in B̄(u0,Mϵ) on[
t0 − k

n
ϵ; t0 + k

n
ϵ
]
.

For k = 0, it is true : u0 is a fixed element of U so the definition “un(t0) = u0”
is valid. Moreover, any function defined on a singleton set is M -Lipschitz
and piecewise C1 ; we also have u0 ∈ B̄(u0,Mϵ).
Let us assume the property is true for some k ∈ {0, . . . , n− 1} and prove it
for k + 1.
By the induction hypothesis, un is well-defined on

[
t0 − k

n
ϵ; t0 + k

n
ϵ
]
. Let’s

show that it is also well-defined on
]
t0 + k

n
ϵ; t0 + k+1

n
ϵ
]
. A similar reasoning

would show that it is well-defined on
[
t0 − k+1

n
ϵ; t0 − k

n
ϵ
[
.
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According to the induction hypothesis, un

(
t0 + k

n
ϵ
)
∈ B̄(u0,Mϵ) ⊂ H ′

U ⊂
U . Furthermore,

[
t0 + k

n
ϵ; t0 + k+1

n
ϵ
]
⊂ [t0 − ϵ; t0 + ϵ] ⊂ I. So the function

s ∈
[
t0 + k

n
ϵ; t0 + k + 1

n
ϵ

]
→ f

(
s, un

(
t0 + k

n
ϵ

))
∈ U

is well-defined. Moreover, it is continuous (since f is continuous). Conse-
quently, the definition

un(t) = un

(
t0 + k

n
ϵ

)
+
∫ t

t0+ k
n
ϵ

f

(
s, un

(
t0 + k

n
ϵ

))
ds

is valid for all t ∈
]
t0 + k

n
ϵ; t0 + k+1

n
ϵ
]
. Thus, we have shown that un is

well-defined on
]
t0 + k

n
ϵ; t0 + k+1

n
ϵ
]
.

Now let’s prove that un is M -Lipschitz, piecewise C1, and with values in
B̄(u0,Mϵ) on

[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]
.

It is piecewise C1 because it is defined, piecewise, as the integral of a conti-
nuous function. Furthermore, it is continuous. Indeed,
— it is continuous (since it is M -Lipschitz) on

[
t0 − k

n
ϵ; t0 + k

n
ϵ
]
;

— it is continuous at t0 + k
n
ϵ : its right limit is un

(
t0 + k

n
ϵ
)

according to
the properties of the integral, and its left limit is the same (due to the
continuity of un on

[
t0 − k

n
ϵ; t0 + k

n
ϵ
]
) ;

— it is continuous at t0 − k
n
ϵ for the same reason ;

— it is continuous on
[
t0 − k+1

n
ϵ; t0 − k

n
ϵ
[

and
]
t0 + k

n
ϵ; t0 + k+1

n
ϵ
]

as the
integral of a continuous function.

Moreover, at any point of
[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]

where un is differentiable,
its derivative is of the form

f

(
t, un

(
t0 ±

k′

n

))
for some t ∈

[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]

and some k′ ≤ k. We have already seen
that, for such values of t and k′,(

t, un

(
t0 ±

k′

n

))
∈ H ′

I ×H ′
U .

It follows that, for any point t ∈
[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]

where un is differen-
tiable,

||u′
n(t)||2 ≤ M. (1)

3



As un is continuous and piecewise C1, this inequality suffices to guarantee
that it is M -Lipschitz on

[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]
. 1

Finally, for any t ∈
[
t0 − k+1

n
ϵ; t0 + k+1

n
ϵ
]
,

||un(t) − u0||2 = ||un(t) − un(t0)||2 ≤ M ||t− t0|| ≤ Mϵ,

meaning that un(t) ∈ B̄(u0,Mϵ).
b) According to the definition of un and the fundamental theorem of calculus,

un is differentiable on

[t0 − ϵ; t0 + ϵ] \
{
t0 − ϵ, t0 −

n− 1
n

ϵ, . . . , t0 + ϵ

}
.

and, for all t in this set,

u′
n(t) = f

(
t, un

(
t0 + mt

n
ϵ
))

, (2)

where mt = E
(

n(t−t0)
ϵ

)
if t > t0 and mt = E

(
n(t−t0)

ϵ

)
+ 1 otherwise. For

any t,
∣∣∣mt − n(t−t0)

ϵ

∣∣∣ ≤ 1 so∣∣∣(t0 + mt

n
ϵ
)
− t

∣∣∣ ≤ ϵ

n
.

Since un is M -Lipschitz,∣∣∣un

(
t0 + mt

n
ϵ
)
− un(t)

∣∣∣ ≤ Mϵ

n
.

Furthermore, un ([t0 − ϵ; t0 + ϵ]) ⊂ B̄(u0,Mϵ) ⊂ H ′
U ⊂ HU . Using the

assumption that f is C-Lipschitz with respect to its second variable on
HI ×HU , we can assert that, for any t,∣∣∣f (

t, un

(
t0 + mt

n
ϵ
))

− f (t, un(t))
∣∣∣ ≤ CMϵ

n
.

According to Equation (2), this is exactly the desired result.

1. Since un is continuous and piecewise C1, it holds for any a, b ∈
[
t0 − k+1

n ; t0 + k+1
n

]
that un(b) − un(a) =

∫ b

a
u′
n(t)dt. From the triangular inequality and Equation (1), this

implies, for any a, b such that a < b : |un(b) − un(a)| ≤
∫ b

a
||u′

n(t)||dt ≤ M(b− a).
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c) Let n1, n2 ∈ N∗ and t ∈ [t0 − ϵ; t0 + ϵ] be fixed. If the inequality from the
previous question holds for n = n1 and n = n2 (which happens for all t but
a finite number of values), then, by the triangle inequality,

||u′
n1(t) − u′

n2(t)||2 ≤ ||u′
n1(t) − f(t, un1(t))||2 + ||f(t, un1(t)) − f(t, un2(t))||2

+ ||f(t, un2(t)) − u′
n2(t)||2

≤ CMϵ

n1
+ ||f(t, un1(t)) − f(t, un2(t))||2 + CMϵ

n2
.

Now, as previously seen, t belongs to HI and un1(t), un2(t) belong to HU ,
so

||u′
n1(t) − u′

n2(t)||2 ≤ CMϵ

n1
+ C||un1(t) − un2(t)||2 + CMϵ

n2
.

d) Let n1, n2 ∈ N∗ be fixed. We will prove the requested inequality for all
t ∈ [t0; t0 + ϵ] ; a similar reasoning can be used to prove it for t ∈ [t0 − ϵ; t0[
(as in Question 1.d)).
For any t ∈ [t0; t0 + ϵ],

||un1(t) − un2(t)||2

=
∣∣∣∣∣∣∣∣un1(t0) − un2(t0) +

∫ t

t0

(
u′
n1(s) − u′

n2(s)
)
ds

∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∫ t

t0

(
u′
n1(s) − u′

n2(s)
)
ds

∣∣∣∣∣∣∣∣
2

≤
∫ t

t0

∣∣∣∣u′
n1(s) − u′

n2(s)
∣∣∣∣ ds

≤
∫ t

t0

(
CMϵ

(
1
n1

+ 1
n2

)
+ C||un1(s) − un2(s)||2

)
ds

= CMϵ

(
1
n1

+ 1
n2

)
(t− t0) +

∫ t

t0

C||un1(s) − un2(s)||2ds.

We apply Gronwall’s lemma with

u : t ∈ [t0; t0 + ϵ] → ||un1(t) − un2(t)||2,
a : t ∈ [t0; t0 + ϵ] → C,

c : t ∈ [t0; t0 + ϵ] → CMϵ

(
1
n1

+ 1
n2

)
(t− t0).
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It tells us that, for any t ∈ [t0; t0 + ϵ],

||un1(t) − un2(t)||2 ≤ CMϵ

(
1
n1

+ 1
n2

)
(t− t0)

+
∫ t

t0

C2Mϵ

(
1
n1

+ 1
n2

)
eC(t−s)(s− t0)ds

= CMϵ

(
1
n1

+ 1
n2

)
(t− t0)

+ Mϵ

(
1
n1

+ 1
n2

)[
−CeC(t−s)(s− t0) − eC(t−s)]t

t0

= CMϵ

(
1
n1

+ 1
n2

)
(t− t0)

+ Mϵ

(
1
n1

+ 1
n2

)(
eC(t−t0) − C(t− t0) − 1

)
= Mϵ

(
1
n1

+ 1
n2

)(
eC(t−t0) − 1

)
.

e) According to the previous question, for all n,m ∈ N∗,

dsup(un, um) = sup
t∈[t0−ϵ;t0+ϵ]

||un(t) − um(t)||2

≤ sup
t∈[t0−ϵ;t0+ϵ]

Mϵ

(
1
n

+ 1
m

)(
eC|t−t0| − 1

)
= Mϵ

(
1
n

+ 1
m

)(
eCϵ − 1

)
.

In particular, for any n,

sup
m≥n

dsup(un, um) ≤ 2Mϵ

n

(
eCϵ − 1

)
,

which goes to 0 as n → +∞.
f) The set B̄(u0,Mϵ) is compact, hence complete. The set C0

b ([t0 − ϵ; t0 +
ϵ], B̄(u0,Mϵ)) of continuous and bounded functions from [t0 − ϵ; t0 + ϵ] to
B̄(u0,Mϵ) is also complete. This set is equal to C0([t0−ϵ; t0 +ϵ], B̄(u0,Mϵ))
(since [t0 − ϵ; t0 + ϵ] is compact and a continuous function on a compact set
is always bounded). Therefore, C0([t0 − ϵ; t0 + ϵ], B̄(u0,Mϵ)) is complete.
As (un)n∈N∗ is Cauchy, it has a limit in this set (for the uniform distance).
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g) ∣∣∣∣∣∣∣∣un(t) − un(t0) −
∫ t

t0

f(s, un(s))ds
∣∣∣∣∣∣∣∣

2
=

∣∣∣∣∣∣∣∣∫ t

t0

u′
n(s)ds−

∫ t

t0

f(s, un(s))ds
∣∣∣∣∣∣∣∣

2

≤
∫

[t0;t]
||u′

n(s) − f(s, un(s))||2ds

≤
∫

[t0;t]

CMϵ

n
ds (by question b))

= CMϵ

n
|t− t0|

≤ CMϵ2

n
.

h) For any s ∈ [t0 − ϵ; t0 + ϵ],

|f(s, un(s)) − f(s, u∞(s))| ≤ C||un(s) − u∞(s)||2
≤ Cdsup(un, u∞).

So, for any t,∣∣∣∣∣∣∣∣∫ t

t0

f(s, un(s))ds −
∫ t

t0

f(s, u∞(s))ds
∣∣∣∣∣∣∣∣

2

≤
∫

[t0;t]
||f(s, un(s)) − f(s, u∞(s))||2ds

≤ Cdsup(un, u∞)|t− t0|
→ 0 as n → +∞,

which implies that
∫ t

t0
f(s, un(s))ds n→+∞−→

∫ t

t0
f(s, u∞(s))ds.

For any t, un(t) → u∞(t) and un(t0) → u∞(t0) as n → +∞, so

un(t) − un(t0) −
∫ t

t0

f(s, un(s))ds

n→+∞−→ u∞(t) − u∞(t0) −
∫ t

t0

f(s, u∞(s))ds.

Now, as seen in the previous question,

un(t) − un(t0) −
∫ t

t0

f(s, un(s))ds n→+∞−→ 0.
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So, for any t, by the uniqueness of the limit,

u∞(t) − u∞(t0) −
∫ t

t0

f(s, u∞(s))ds = 0.

Therefore u∞ is a primitive of (t → f(t, u∞(t))), which is continuous. As a
consequence, u∞ is differentiable and, for all t ∈ [t0 − ϵ; t0 + ϵ],

u′
∞(t) = f(t, u∞(t)).

Moreover, u∞(t0) = limn→+∞ un(t0) = u0, so u∞ is a solution of the Cauchy
problem.
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