Differential geometry, mid-term

March 4 2024, 2 hours
You can use any written or printed material.
For each exercise, the number of points is an indication; it may change. Observe that the subject is long, but the total number of points is above 20 .

Exercise 1

Let $n \in \mathbb{N}^{*}$ be a fixed integer. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n}$ be C^{1} maps such that
$-f(0)=g(0)=0$;

- f, g are immersions at 0 .

We define

$$
\begin{array}{cccc}
\phi: & \mathbb{R}^{2 n} & \rightarrow & \mathbb{R}^{2 n} \\
\left(x_{1}, \ldots, x_{2 n}\right) & \rightarrow & \rightarrow\left(x_{1}, \ldots, x_{n}\right)+g\left(x_{n+1}, \ldots, x_{2 n}\right) .
\end{array}
$$

1. Justify that ϕ is C^{1} and compute $d \phi(0)$ as a function of $d f(0)$ and $d g(0)$.
2. We assume that $\operatorname{Im}(d f(0)) \cap \operatorname{Im}(d g(0))=\{0\}$. Show that there exists two neighborhoods of 0 in $\mathbb{R}^{2 n}, V_{1}$ and V_{2}, such that ϕ is a C^{1}-difféomorphism between V_{1} and V_{2}.
[3.5 points]

Exercise 2

Show that $\left\{\left(e^{t^{2}}, t e^{t^{2}}\right), t \in \mathbb{R}\right\}$ is a submanifold of \mathbb{R}^{2}, of class C^{∞} and dimension 1 . [3 points]

Exercise 3: double torus

We consider the function

$$
\begin{array}{ccc}
F: \quad \mathbb{R}^{2} & \rightarrow & \mathbb{R} \\
(x, y) & \rightarrow\left(16-x^{2}-y^{2}\right) \times\left((x+2)^{2}+y^{2}-1\right) \times\left((x-2)^{2}+y^{2}-1\right)
\end{array}
$$

and define the set

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}, F(x, y)=z^{2}\right\} .
$$

1. Compute $M \cap\left(\mathbb{R}^{2} \times\{0\}\right)$ (that is, write this set as the union of a small number of simple geometric shapes).
2. Compute the Jacobian matrix of F at any $(x, y) \in \mathbb{R}^{2}$.
3. Show that M is a submanifold of \mathbb{R}^{3}, of class C^{∞}; give its dimension.
4. Give an explicit formula for the tangent space to M at $(2,1,0)$.
5. Draw M (approximately).
[7 points]

Exercise 4

Each figure represents a submanifold in solid blue, and specifies a point. Among the proposed expressions, which one is plausible for the tangent space at this point?
(Only one answer is correct. No justification is expected.)

Figure (a), point $(1,0)$:

1. $(1,0) \mathbb{R}$;
2. $(\pi+1,3 \pi) \mathbb{R}$;
3. $(1-\pi, 2 \pi) \mathbb{R}$.

(a)

Figure (b), point $\left(-\frac{3}{2}, 0, \frac{3}{2}\right)$:

1. $\left\{(x, y, z) \in \mathbb{R}^{3}, 2 x-2 y+z=0\right\}$;
2. $\{(0,2 t, t), t \in \mathbb{R}\}$;
3. $\left\{\left(t_{1}, t_{2}, t_{2}\right), t_{1}, t_{2} \in \mathbb{R}\right\}$.

(b)
[2.5 points]
Exercise 5: $O_{2}(\mathbb{R}) \approx \mathbb{S}^{1} \times\{-1,1\}$
4. Justify that $\mathbb{S}^{1} \times\{-1,1\}$ is a submanifold of \mathbb{R}^{3} of class C^{∞}. What is its dimension?
5. We define

$$
\begin{aligned}
& \phi_{1}: \mathbb{S}^{1} \times\{-1,1\} \rightarrow \\
& O_{2}(\mathbb{R}) \\
&((x, y), \epsilon) \rightarrow\left(\begin{array}{cc}
x & y \\
-\epsilon y & \epsilon x
\end{array}\right) .
\end{aligned}
$$

a) Show that the definition is correct (i.e. $\phi_{1}((x, y), \epsilon)$ indeed belongs to $O_{2}(\mathbb{R})$ for all $\left.((x, y), \epsilon) \in \mathbb{S}^{1} \times\{-1,1\}\right)$.
b) Show that ϕ_{1} is C^{∞}.
3. We define

$$
\begin{aligned}
\phi_{2}: & O_{2}(\mathbb{R}) \\
& \rightarrow \mathbb{S}^{1} \times\{-1,1\} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \rightarrow((a, b), a d-b c) .
\end{aligned}
$$

a) Show that the definition is correct.
b) Show that ϕ_{2} is C^{∞}.
c) Show that $\phi_{2} \circ \phi_{1}: \mathbb{S}^{1} \times\{-1,1\} \rightarrow \mathbb{S}^{1} \times\{-1,1\}$ is the identity map.
d) Show that $\phi_{1} \circ \phi_{2}: O_{2}(\mathbb{R}) \rightarrow O_{2}(\mathbb{R})$ is the identity map.
4. Show that $O_{2}(\mathbb{R})$ is C^{∞}-diffeomorphic to $\mathbb{S}^{1} \times\{-1,1\}$.
[7 points]

