Differential geometry, mid-term

March 4 2024, 2 hours

You can use any written or printed material.

For each exercise, the number of points is an indication; it may change. Observe that the subject is long, but the total number of points is above 20.

Exercise 1

Let $n \in \mathbb{N}^*$ be a fixed integer. Let $f, g : \mathbb{R}^n \to \mathbb{R}^{2n}$ be C^1 maps such that

-f(0) = g(0) = 0;

-f,g are immersions at 0.

We define

$$\phi: \quad \mathbb{R}^{2n} \quad \to \quad \mathbb{R}^{2n} (x_1, \dots, x_{2n}) \quad \to \quad f(x_1, \dots, x_n) + g(x_{n+1}, \dots, x_{2n}).$$

- 1. Justify that ϕ is C^1 and compute $d\phi(0)$ as a function of df(0) and dg(0).
- 2. We assume that $\operatorname{Im}(df(0)) \cap \operatorname{Im}(dg(0)) = \{0\}$. Show that there exists two neighborhoods of 0 in \mathbb{R}^{2n} , V_1 and V_2 , such that ϕ is a C^1 -difféomorphism between V_1 and V_2 .

[3.5 points]

Exercise 2

Show that $\{(e^{t^2}, te^{t^2}), t \in \mathbb{R}\}$ is a submanifold of \mathbb{R}^2 , of class C^{∞} and dimension 1. [3 points]

Exercise 3: double torus

We consider the function

$$F: \quad \mathbb{R}^2 \quad \to \qquad \mathbb{R} \\ (x,y) \quad \to \quad (16 - x^2 - y^2) \times ((x+2)^2 + y^2 - 1) \times ((x-2)^2 + y^2 - 1)$$

and define the set

$$M = \{(x, y, z) \in \mathbb{R}^3, F(x, y) = z^2\}.$$

- 1. Compute $M \cap (\mathbb{R}^2 \times \{0\})$ (that is, write this set as the union of a small number of simple geometric shapes).
- 2. Compute the Jacobian matrix of F at any $(x, y) \in \mathbb{R}^2$.
- 3. Show that M is a submanifold of \mathbb{R}^3 , of class C^{∞} ; give its dimension.
- 4. Give an explicit formula for the tangent space to M at (2, 1, 0).
- 5. Draw M (approximately).

[7 points]

Exercise 4

Each figure represents a submanifold in solid blue, and specifies a point. Among the proposed expressions, which one is plausible for the tangent space at this point? (Only one answer is correct. No justification is expected.)

[2.5 points]

Exercise 5: $O_2(\mathbb{R}) \approx \mathbb{S}^1 \times \{-1, 1\}$

- 1. Justify that $\mathbb{S}^1 \times \{-1, 1\}$ is a submanifold of \mathbb{R}^3 of class C^{∞} . What is its dimension?
- 2. We define

$$\begin{array}{rccc}
\phi_1 : & \mathbb{S}^1 \times \{-1, 1\} & \to & O_2(\mathbb{R}) \\
& & ((x, y), \epsilon) & \to & \begin{pmatrix} x & y \\ -\epsilon y & \epsilon x \end{pmatrix}
\end{array}$$

- a) Show that the definition is correct (i.e. $\phi_1((x, y), \epsilon)$ indeed belongs to $O_2(\mathbb{R})$ for all $((x, y), \epsilon) \in \mathbb{S}^1 \times \{-1, 1\}$).
- b) Show that ϕ_1 is C^{∞} .
- 3. We define

$$\phi_2: \quad \begin{array}{ccc} O_2(\mathbb{R}) & \to & \mathbb{S}^1 \times \{-1, 1\} \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \to & ((a, b), ad - bc). \end{array}$$

- a) Show that the definition is correct.
- b) Show that ϕ_2 is C^{∞} .
- c) Show that $\phi_2 \circ \phi_1 : \mathbb{S}^1 \times \{-1, 1\} \to \mathbb{S}^1 \times \{-1, 1\}$ is the identity map.
- d) Show that $\phi_1 \circ \phi_2 : O_2(\mathbb{R}) \to O_2(\mathbb{R})$ is the identity map.
- 4. Show that $O_2(\mathbb{R})$ is C^{∞} -diffeomorphic to $\mathbb{S}^1 \times \{-1, 1\}$. [7 points]