Partiel de géométrie différentielle : corrigé 4 mars 2024

Answer of exercise 1

1. We define

$$\pi_1 : (x_1, \dots, x_{2n}) \in \mathbb{R}^{2n} \to (x_1, \dots, x_n) \in \mathbb{R}^n,$$

$$\pi_2 : (x_1, \dots, x_{2n}) \in \mathbb{R}^{2n} \to (x_{n+1}, \dots, x_{2n}) \in \mathbb{R}^n.$$

These maps are C^1 (they are linear). Therefore, $f \circ \pi_1$ and $g \circ \pi_2$ are C^1 , as compositions of C^1 maps, and $\phi = f \circ \pi_1 + g \circ \pi_2$ is also C^1 , as the sum of C^1 maps.

We have, for any $h = (h_1, \ldots, h_{2n}) \in \mathbb{R}^{2n}$,

$$d\phi(0)(h) = d(f \circ \pi_1)(0)(h) + d(g \circ \pi_2)(0)(h)$$

= $df(\pi_1(0)) \circ d\pi_1(0)(h) + dg(\pi_2(0)) \circ d\pi_2(0)(h)$
= $df(0) \circ \pi_1(h) + dg(0) \circ \pi_2(h)$
= $df(0)(h_1, \dots, h_n) + dg(0)(h_{n+1}, \dots, h_{2n}).$

2. First, we show that $d\phi(0) : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is bijective. As it is a linear map between two spaces with the same dimension, it suffices to show that $d\phi(0)$ is injective.

Let $h = (h_1, \ldots, h_{2n})$ be any element in Ker $(d\phi(0))$. Then

$$df(0)(h_1,\ldots,h_n) + dg(0)(h_{n+1},\ldots,h_{2n}) = 0.$$

As a consequence, $df(0)(h_1, \ldots, h_n) = dg(0)(-h_{n+1}, \ldots, -h_{2n})$ belongs to $\operatorname{Im}(df(0)) \cap \operatorname{Im}(dg(0)) = \{0\}$. This implies that

$$df(0)(h_1,\ldots,h_n) = 0 = dg(0)(h_{n+1},\ldots,h_{2n}).$$

As df(0), dg(0) are injective (since f, g, are immersions at 0), this means that $(h_1, \ldots, h_n) = 0$ and $(h_{n+1}, \ldots, h_{2n}) = 0$. Therefore, h = 0. This shows that $\text{Ker}(d\phi(0)) = \{0\}$, which is to say that $d\phi(0)$ is injective, hence bijective.

We apply the local inversion theorem : there exists two neighborhoods of 0, V_1 and V_2 , such that ϕ is a C^1 -diffeomorphism between V_1 and V_2 .

Answer of exercise 2

We define

$$\begin{aligned} \phi : & \mathbb{R} & \to & \mathbb{R}^2 \\ & t & \to & (e^{t^2}, te^{t^2}). \end{aligned}$$

This map is C^{∞} (as composition of C^{∞} maps). For any $t \in \mathbb{R}$, its derivative at t is

$$\phi'(t) = (2te^{t^2}, (1+2t^2)e^{t^2})$$

This is always different from zero, since the second coordinate never cancels. This means that ϕ is an immersion on \mathbb{R} .

Let us define

$$\psi: \ \mathbb{R}^*_+ \times \mathbb{R} \ \to \ \mathbb{R}$$
$$(x, y) \ \to \ \frac{y}{x}.$$

It is a continuous map (C^{∞} , actually). We observe that, for any $t \in \mathbb{R}$, $\phi(t)$ belongs to $\mathbb{R}^*_+ \times \mathbb{R}$ and

$$\psi \circ \phi(t) = \frac{te^{t^2}}{e^{t^2}} = t.$$

From this equality, we deduce that ϕ is injective on \mathbb{R} . As it is surjective onto its image, it is a bijection between \mathbb{R} and $\phi(\mathbb{R})$. From the equality again, its reciprocal is ψ (more precisely, the restriction of ψ to $\phi(\mathbb{R})$), which is a continuous map. Therefore, ϕ is a homeomorphism between \mathbb{R} and $\phi(\mathbb{R})$.

We have shown that ϕ is an immersion, of class C^{∞} , which is a homeomorphism between \mathbb{R} and its image. From a property seen in class (which is essentially the "immersion" definition of submanifolds), its image is a submanifold of \mathbb{R}^2 , of class C^{∞} and dimension 1.

Answer of exercise 3

1.

$$\begin{split} M \cap (\mathbb{R}^2 \times \{0\}) &= \{(x, y, 0) \in \mathbb{R}^3, F(x, y) = 0\} \\ &= \{(x, y, 0) \in \mathbb{R}^3, 16 - x^2 - y^2 = 0\} \\ &\cup \{(x, y, 0) \in \mathbb{R}^3, (x + 2)^2 + y^2 - 1 = 0\} \\ &\cup \{(x, y, 0) \in \mathbb{R}^3, (x - 2)^2 + y^2 - 1 = 0\} \\ &= \{(x, y, 0) \in \mathbb{R}^3, x^2 + y^2 = 4^2\} \\ &\cup \{(x, y, 0) \in \mathbb{R}^3, (x + 2)^2 + y^2 = 1^2\} \\ &\cup \{(x, y, 0) \in \mathbb{R}^3, (x - 2)^2 + y^2 = 1^2\} \\ &= (C((0, 0), 4) \times \{0\}) \cup (C((-2, 0), 1) \times \{0\}) \cup (C((2, 0), 1) \times \{0\}) \end{split}$$

where, for any $(x_0, y_0) \in \mathbb{R}^2$ and any R > 0, $C((x_0, y_0), R)$ is the circle of \mathbb{R}^2 with center (x_0, y_0) and radius R.

2. For any $(x, y) \in \mathbb{R}^2$,

$$Jf(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) & \frac{\partial f}{\partial y}(x,y) \end{pmatrix},$$

with

$$\frac{\partial f}{\partial x}(x,y) = -2x((x+2)^2 + y^2 - 1)((x-2)^2 + y^2 - 1)$$

$$+ 2(x+2)(16 - x^2 - y^2)((x-2)^2 + y^2 - 1) + 2(x-2)(16 - x^2 - y^2)((x+2)^2 + y^2 - 1) \frac{\partial f}{\partial y}(x,y) = -2y((x+2)^2 + y^2 - 1)((x-2)^2 + y^2 - 1) + 2y(16 - x^2 - y^2)((x-2)^2 + y^2 - 1) + 2y(16 - x^2 - y^2)((x+2)^2 + y^2 - 1).$$

3. We define

$$\begin{array}{rcccc} f: & \mathbb{R}^3 & \to & \mathbb{R} \\ & (x,y,z) & \to & F(x,y)-z^2. \end{array}$$

This map is polynomial, therefore C^{∞} and $M = \{(x, y, z), f(x, y, z) = 0\}$. We show that f is a submersion on M; this will imply that M is a submanifold of \mathbb{R}^3 with dimension 2 and class C^{∞} .

Let $(x, y, z) \in M$ be fixed. We show that f is a submersion at (x, y, z), that is df(x, y, z) is surjective. Since df(x, y, z) is linear, with images in \mathbb{R} , it suffices to show that it is non-zero.

If $z \neq 0$, then $\frac{\partial f}{\partial z}(x, y, z) = -2z \neq 0$, so that $df(x, y, z) \neq 0$.

Now, let us consider the case where z = 0. In this case, we must have F(x, y) = 0 and, from Question 1., (x, y) belongs to either C((0, 0), 4) or C((-2, 0), 1) or C((2, 0), 1). In the first case $((x, y) \in C((0, 0), 4))$,

$$\frac{\partial f}{\partial x}(x,y) = -2x((x+2)^2 + y^2 - 1)((x-2)^2 + y^2 - 1)$$

$$\frac{\partial f}{\partial y}(x,y) = -2y((x+2)^2 + y^2 - 1)((x-2)^2 + y^2 - 1).$$

As the three circles are disjoint, $((x+2)^2 + y^2 - 1)((x-2)^2 + y^2 - 1) \neq 0$. Therefore, $\frac{\partial f}{\partial x}(x,y) = 0$ if and only if x = 0 and $\frac{\partial f}{\partial y}(x,y) = 0$ if and only if y = 0. Since (0,0) does not belong to the circle C((0,0), 4), at least one of the two partial derivatives is non-zero, hence $df(x, y, z) \neq 0$. In the second case $((x, y) \in C((-2, 0), 1))$,

$$\frac{\partial f}{\partial x}(x,y) = 2(x+2)(16 - x^2 - y^2)((x-2)^2 + y^2 - 1)$$

$$\frac{\partial f}{\partial y}(x,y) = 2y(16 - x^2 - y^2)((x-2)^2 + y^2 - 1).$$

As before, since the circles are disjoint, $(16 - x^2 - y^2)((x - 2)^2 + y^2 - 1) \neq 0$, so $\frac{\partial f}{\partial x}(x, y) = 0$ if and only if x + 2 = 0, that is x = -2, and $\frac{\partial f}{\partial y}(x, y) = 0$ if and only if y = 0. As (-2, 0) does not belong to the circle C((-2, 0), 1), at least one of the partial derivatives is non-zero, which implies that $df(x, y, z) \neq 0$.

The third case is identical.

4. We define f as in the previous question.

$$T_{(2,1,0)}M = \{(h_x, h_y, h_z), df(2, 1, 0)(h_x, h_y, h_z) = 0\}.$$

In addition,

$$Jf(2,1,0) = \begin{pmatrix} \frac{\partial F}{\partial x}(2,1,0) & \frac{\partial F}{\partial y}(2,1,0) & -2 \times 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 352 & 0 \end{pmatrix}.$$

As a consequence,

$$T_{(2,1,0)}M = \{(h_x, 0, h_z) \text{ for all } h_x, h_z \in \mathbb{R}\}$$

5.

Answer of exercise 4

For Figure (a), the correct expression is $(1 - \pi, 2\pi)\mathbb{R}$.

For Figure (b), the correct expression is $\{(0, 2t, t), t \in \mathbb{R}\}$. The other two subspaces have dimension 2, hence cannot be tangent spaces of a 1-dimensional manifold.

Answer of exercise 5

- 1. It is the product of a submanifold of \mathbb{R}^2 with dimension 1, and a submanifold of \mathbb{R} with dimension 0, both of class C^{∞} .
- 2. a) For any $((x,y),\epsilon) \in \mathbb{S}^1 \times \{-1,1\},\$

$$\begin{pmatrix} x & y \\ -\epsilon y & \epsilon x \end{pmatrix} \begin{pmatrix} x & y \\ -\epsilon y & \epsilon x \end{pmatrix}^T = \begin{pmatrix} x^2 + y^2 & 0 \\ 0 & \epsilon^2 (x^2 + y^2) \end{pmatrix} = I_2.$$

The last inequality is true because $(x, y) \in \mathbb{S}^1$, hence $x^2 + y^2 = 1$, and $\epsilon = \pm 1$, hence $\epsilon^2 = 1$. Therefore, $\phi_1((x, y), \epsilon)$ belongs to $O_2(\mathbb{R})$.

b) We see ϕ_1 as a map between $\mathbb{S}^1 \times \{-1, 1\}$ and \mathbb{R}^4 :

$$\tilde{\phi}_1: \ \mathbb{S}^1 \times \{-1, 1\} \ \to \ \mathbb{R}^4 ((x, y), \epsilon) \ \to \ (x, y, -\epsilon y, \epsilon x)$$

This map is C^{∞} . Indeed, each of its coordinates is polynomial in x, y, ϵ , and the maps $((x, y), \epsilon) \to x$, $((x, y), \epsilon) \to y$, $((x, y), \epsilon) \to \epsilon$ are C^{∞} on $\mathbb{S}^1 \times \{-1, 1\}$ (they are the projections onto the coordinates). Consequently, $\tilde{\phi}_1$ is a composition of C^{∞} maps, so it is C^{∞} . This implies, from the definition of C^{∞} maps between submanifolds, that ϕ_1 is C^{∞} .

3. a) Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belong to $O_2(\mathbb{R})$. From the definition of $O_2(\mathbb{R})$,

$$a^{2} + b^{2} = 1$$
$$ac + bd = 0$$
$$c^{2} + d^{2} = 1.$$

As a consequence, (a, b) belongs to \mathbb{S}^1 . In addition,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

 \mathbf{SO}

$$\left(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)^2 = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = 1,$$

Therefore, ad - bc = 1 or -1.

b) We see ϕ_2 as a map from $O_2(\mathbb{R})$ to \mathbb{R}^3 . Each of its three components is polynomial in a, b, c, d. As the projections onto the coordinates are C^{∞} on $O_2(\mathbb{R})$, ϕ_2 is a composition of C^{∞} maps, therefore C^{∞} itself. c) For any $((x, y), \epsilon) \in \mathbb{S}^1 \times \{-1, 1\},\$

$$\phi_2 \circ \phi_1((x, y), \epsilon) = \phi_2\left(\begin{pmatrix} x & y \\ -\epsilon y & \epsilon x \end{pmatrix}\right)$$
$$= \left((x, y), x(\epsilon x) - y(-\epsilon y)\right)$$
$$= \left((x, y), \epsilon(x^2 + y^2)\right)$$
$$= \left((x, y), \epsilon\right).$$

d) For any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2(\mathbb{R})$,

$$\phi_1 \circ \phi_2\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \phi_1((a, b), ad - bc)$$

$$= \begin{pmatrix} a & b \\ -(ad - bc)b & (ad - bc)a \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ b^2c - a(bd) & a^2d - b(ac) \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ b^2c - a(-ac) & a^2d - b(-bd) \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ (a^2 + b^2)c & (a^2 + b^2)d \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

We have used the fact that ac + bd = 0.

4. We show that ϕ_1 is a C^{∞} -diffeomorphism between $\mathbb{S}^1 \times \{-1, 1\}$ and $O_2(\mathbb{R})$. From Question 3.c), it is injective (otherwise, its composition with ϕ_2 would not be injective). From Question 3.d), it is surjective (otherwise, its composition with ϕ_2 would not be surjective). Therefore, it is a bijection between $\mathbb{S}^1 \times \{-1, 1\}$ and $O_2(\mathbb{R})$. From Question 2.b), it is C^{∞} .

From Question 3.c) (or Question 3.d)), $\phi_1^{-1} = \phi_2$. From Question 3.b), ϕ_1^{-1} is C^{∞} .