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Answer of exercise 1

1. We define

π1 :(x1, . . . , x2n) ∈ R2n → (x1, . . . , xn) ∈ Rn,

π2 :(x1, . . . , x2n) ∈ R2n → (xn+1, . . . , x2n) ∈ Rn.

These maps are C1 (they are linear). Therefore, f ◦ π1 and g ◦ π2 are C1,
as compositions of C1 maps, and ϕ = f ◦π1 + g ◦π2 is also C1, as the sum
of C1 maps.
We have, for any h = (h1, . . . , h2n) ∈ R2n,

dϕ(0)(h) = d(f ◦ π1)(0)(h) + d(g ◦ π2)(0)(h)
= df(π1(0)) ◦ dπ1(0)(h) + dg(π2(0)) ◦ dπ2(0)(h)
= df(0) ◦ π1(h) + dg(0) ◦ π2(h)
= df(0)(h1, . . . , hn) + dg(0)(hn+1, . . . , h2n).

2. First, we show that dϕ(0) : R2n → R2n is bijective. As it is a linear map
between two spaces with the same dimension, it suffices to show that dϕ(0)
is injective.
Let h = (h1, . . . , h2n) be any element in Ker(dϕ(0)). Then

df(0)(h1, . . . , hn) + dg(0)(hn+1, . . . , h2n) = 0.

As a consequence, df(0)(h1, . . . , hn) = dg(0)(−hn+1, . . . ,−h2n) belongs to
Im(df(0)) ∩ Im(dg(0)) = {0}. This implies that

df(0)(h1, . . . , hn) = 0 = dg(0)(hn+1, . . . , h2n).

As df(0), dg(0) are injective (since f, g, are immersions at 0), this means
that (h1, . . . , hn) = 0 and (hn+1, . . . , h2n) = 0. Therefore, h = 0. This
shows that Ker(dϕ(0)) = {0}, which is to say that dϕ(0) is injective,
hence bijective.
We apply the local inversion theorem : there exists two neighborhoods of
0, V1 and V2, such that ϕ is a C1-diffeomorphism between V1 and V2.

Answer of exercise 2
We define

ϕ : R → R2

t → (et2 , tet2).
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This map is C∞ (as composition of C∞ maps). For any t ∈ R, its derivative
at t is

ϕ′(t) = (2tet2 , (1 + 2t2)et2).

This is always different from zero, since the second coordinate never cancels.
This means that ϕ is an immersion on R.
Let us define

ψ : R∗
+ × R → R
(x, y) → y

x
.

It is a continuous map (C∞, actually). We observe that, for any t ∈ R, ϕ(t)
belongs to R∗

+ × R and

ψ ◦ ϕ(t) = tet
2

et2
= t.

From this equality, we deduce that ϕ is injective on R. As it is surjective
onto its image, it is a bijection between R and ϕ(R). From the equality again,
its reciprocal is ψ (more precisely, the restriction of ψ to ϕ(R)), which is a
continuous map. Therefore, ϕ is a homeomorphism between R and ϕ(R).
We have shown that ϕ is an immersion, of class C∞, which is a homeomorphism
between R and its image. From a property seen in class (which is essentially
the “immersion” definition of submanifolds), its image is a submanifold of R2,
of class C∞ and dimension 1.

Answer of exercise 3

1.

M ∩ (R2 × {0}) = {(x, y, 0) ∈ R3, F (x, y) = 0}
= {(x, y, 0) ∈ R3, 16 − x2 − y2 = 0}

∪ {(x, y, 0) ∈ R3, (x+ 2)2 + y2 − 1 = 0}
∪ {(x, y, 0) ∈ R3, (x− 2)2 + y2 − 1 = 0}

= {(x, y, 0) ∈ R3, x2 + y2 = 42}
∪ {(x, y, 0) ∈ R3, (x+ 2)2 + y2 = 12}
∪ {(x, y, 0) ∈ R3, (x− 2)2 + y2 = 12}

= (C((0, 0), 4) × {0}) ∪ (C((−2, 0), 1) × {0}) ∪ (C((2, 0), 1) × {0}) ,

where, for any (x0, y0) ∈ R2 and any R > 0, C((x0, y0), R) is the circle of
R2 with center (x0, y0) and radius R.

2. For any (x, y) ∈ R2,

Jf(x, y) =
(

∂f
∂x

(x, y) ∂f
∂y

(x, y)
)
,

with

∂f

∂x
(x, y) = −2x((x+ 2)2 + y2 − 1)((x− 2)2 + y2 − 1)
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+ 2(x+ 2)(16 − x2 − y2)((x− 2)2 + y2 − 1)
+ 2(x− 2)(16 − x2 − y2)((x+ 2)2 + y2 − 1)

∂f

∂y
(x, y) = −2y((x+ 2)2 + y2 − 1)((x− 2)2 + y2 − 1)

+ 2y(16 − x2 − y2)((x− 2)2 + y2 − 1)
+ 2y(16 − x2 − y2)((x+ 2)2 + y2 − 1).

3. We define
f : R3 → R

(x, y, z) → F (x, y) − z2.

This map is polynomial, therefore C∞ and M = {(x, y, z), f(x, y, z) =
0}. We show that f is a submersion on M ; this will imply that M is a
submanifold of R3 with dimension 2 and class C∞.
Let (x, y, z) ∈ M be fixed. We show that f is a submersion at (x, y, z),
that is df(x, y, z) is surjective. Since df(x, y, z) is linear, with images in R,
it suffices to show that it is non-zero.
If z ̸= 0, then ∂f

∂z
(x, y, z) = −2z ̸= 0, so that df(x, y, z) ̸= 0.

Now, let us consider the case where z = 0. In this case, we must have
F (x, y) = 0 and, from Question 1., (x, y) belongs to either C((0, 0), 4) or
C((−2, 0), 1) or C((2, 0), 1). In the first case ((x, y) ∈ C((0, 0), 4)),

∂f

∂x
(x, y) = −2x((x+ 2)2 + y2 − 1)((x− 2)2 + y2 − 1)

∂f

∂y
(x, y) = −2y((x+ 2)2 + y2 − 1)((x− 2)2 + y2 − 1).

As the three circles are disjoint, ((x+ 2)2 + y2 − 1)((x− 2)2 + y2 − 1) ̸= 0.
Therefore, ∂f

∂x
(x, y) = 0 if and only if x = 0 and ∂f

∂y
(x, y) = 0 if and only if

y = 0. Since (0, 0) does not belong to the circle C((0, 0), 4), at least one
of the two partial derivatives is non-zero, hence df(x, y, z) ̸= 0.
In the second case ((x, y) ∈ C((−2, 0), 1)),

∂f

∂x
(x, y) = 2(x+ 2)(16 − x2 − y2)((x− 2)2 + y2 − 1)

∂f

∂y
(x, y) = 2y(16 − x2 − y2)((x− 2)2 + y2 − 1).

As before, since the circles are disjoint, (16 − x2 − y2)((x − 2)2 + y2 −
1) ̸= 0, so ∂f

∂x
(x, y) = 0 if and only if x + 2 = 0, that is x = −2, and

∂f
∂y

(x, y) = 0 if and only if y = 0. As (−2, 0) does not belong to the circle
C((−2, 0), 1), at least one of the partial derivatives is non-zero, which
implies that df(x, y, z) ̸= 0.
The third case is identical.
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4. We define f as in the previous question.

T(2,1,0)M = {(hx, hy, hz), df(2, 1, 0)(hx, hy, hz) = 0}.

In addition,

Jf(2, 1, 0) =
(
∂F
∂x

(2, 1, 0) ∂F
∂y

(2, 1, 0) −2 × 0
)

=
(
0 352 0

)
.

As a consequence,

T(2,1,0)M = {(hx, 0, hz) for all hx, hz ∈ R}.

5. .

x

y

z

Answer of exercise 4
For Figure (a), the correct expression is (1 − π, 2π)R.

x

y

(1, 0)R

(π + 1, 3π)R

(1 − π, 2π)R
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For Figure (b), the correct expression is {(0, 2t, t), t ∈ R}. The other two
subspaces have dimension 2, hence cannot be tangent spaces of a 1-dimensional
manifold.

Answer of exercise 5

1. It is the product of a submanifold of R2 with dimension 1, and a subma-
nifold of R with dimension 0, both of class C∞.

2. a) For any ((x, y), ϵ) ∈ S1 × {−1, 1},(
x y

−ϵy ϵx

)(
x y

−ϵy ϵx

)T

=
(
x2 + y2 0

0 ϵ2(x2 + y2)

)
= I2.

The last inequality is true because (x, y) ∈ S1, hence x2 + y2 = 1, and
ϵ = ±1, hence ϵ2 = 1. Therefore, ϕ1((x, y), ϵ) belongs to O2(R).

b) We see ϕ1 as a map between S1 × {−1, 1} and R4 :

ϕ̃1 : S1 × {−1, 1} → R4

((x, y), ϵ) → (x, y,−ϵy, ϵx).

This map is C∞. Indeed, each of its coordinates is polynomial in x, y, ϵ,
and the maps ((x, y), ϵ) → x, ((x, y), ϵ) → y, ((x, y), ϵ) → ϵ are C∞

on S1 ×{−1, 1} (they are the projections onto the coordinates). Conse-
quently, ϕ̃1 is a composition of C∞ maps, so it is C∞. This implies, from
the definition of C∞ maps between submanifolds, that ϕ1 is C∞.

3. a) Let ( a b
c d ) belong to O2(R). From the definition of O2(R),

a2 + b2 = 1
ac+ bd = 0
c2 + d2 = 1.

As a consequence, (a, b) belongs to S1. In addition,(
a b
c d

)(
a b
c d

)T

=
(

1 0
0 1

)
,

so (
det

(
a b
c d

))2

= det
(
a b
c d

)
det

(
a b
c d

)T

= 1,

Therefore, ad− bc = 1 or −1.
b) We see ϕ2 as a map from O2(R) to R3. Each of its three components is

polynomial in a, b, c, d. As the projections onto the coordinates are C∞

on O2(R), ϕ2 is a composition of C∞ maps, therefore C∞ itself.
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c) For any ((x, y), ϵ) ∈ S1 × {−1, 1},

ϕ2 ◦ ϕ1((x, y), ϵ) = ϕ2 (( x y
−ϵy ϵx ))

= ((x, y), x(ϵx) − y(−ϵy))
= ((x, y), ϵ(x2 + y2))
= ((x, y), ϵ).

d) For any ( a b
c d ) ∈ O2(R),

ϕ1 ◦ ϕ2 (( a b
c d )) = ϕ1((a, b), ad− bc)

=
(

a b
−(ad−bc)b (ad−bc)a

)
=

(
a b

b2c−a(bd) a2d−b(ac)
)

=
(

a b
b2c−a(−ac) a2d−b(−bd)

)
=

(
a b

(a2+b2)c (a2+b2)d
)

= ( a b
c d ) .

We have used the fact that ac+ bd = 0.
4. We show that ϕ1 is a C∞-diffeomorphism between S1×{−1, 1} and O2(R).

From Question 3.c), it is injective (otherwise, its composition with ϕ2
would not be injective). From Question 3.d), it is surjective (otherwise,
its composition with ϕ2 would not be surjective). Therefore, it is a bijection
between S1 × {−1, 1} and O2(R).
From Question 2.b), it is C∞.
From Question 3.c) (or Question 3.d)), ϕ−1

1 = ϕ2. From Question 3.b),
ϕ−1

1 is C∞.
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