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Chapter 1

Gradient descent

In the whole lecture, we imagine that we want to find a minimizer of a
function f: R"” — R :

find z, such that f(z,) = mIiRn f(z). (1.1)
TzeR™

We assume that at least one minimizer exists (which is for example guaran-
teed if f is continuous and coercivel) and denote one of them z..

Throughout the lecture, we will assume that f is differentiable. Minimiz-
ing non-differentiable functions is called non-smooth optimization. 1t is of
course also of interest, but requires a specific theory, which we will not have
time to cover here.

In the previous lectures, you have introduced gradient descent, and ana-
lyzed its convergence rate when the objective function is quadratic. The goal
of this lecture is first to extend this analysis to general convex or strongly
convex functions, and to discuss the choice of the stepsize. In the second part,
we will present variants of gradient descent which achieve faster convergence
rates through the introduction of a so-called momentum term.

L f is said to be coercive if f(x) — +o0o when ||z|| — +o0
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1.1 Classical theory of gradient descent

1.1.1 Reminders

Definition 1.1.1

For any z, the gradient of f at x is

Vi) Y (g_gi(a;), e %(@) c R™.

(It exists, because we have assumed that f is differentiable.)
If f is twice differentiable, we also define its Hessian at any point x as

0 f e
Bless fllr) = (8:61-3%') 1<i,j<n -

As explained in a previous lecture, the gradient at a point x € R"™ provides
a linear approximation of f in a neighborhood of f: informally,

Vy close to x, fy) =~ fx)+ (Vf(z),y —x). (1.2)

Consequently, —V f(x) is the direction along which f decays the most around
x. This motivates the definition of gradient descent: starting at any zy € R”,
we define (x;)ien by

T4l = T — O[tVf(fEt), Vit € N.

Here oy is a positive number, called the stepsize. In this lecture, we will
restrict ourselves to constant stepsizes, except in Subsection 1.1.5, where we
discuss better ways to choose the stepsize.

Input: A starting point xg, a number of iterations 7', a
sequence of stepsizes (ay)o<t<r-1
fort=20,...,T—1do
| Define x411 = 2y — 'V f ().
end
Output: zr
Algorithm 1: Gradient descent
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Since our goal is to find a minimizer of f, we hope that

t——+o0
Ty — Ty

or, at least,
fla) "5 f)

The goal of today’s lecture in to understand under which assumptions on f we
can guarantee that this happens, and, when it does, what is the convergence
rate.

Before stating the main results, let us review what you have seen in
the previous lectures about the convergence of gradient descent when f is
quadratic.

Let n > 0 be an integer, C' a symmetric n X n matrix, and b € R" a
vector. Let f be defined as

1
Ve eR", f(x)= 5 (x,Cx) + (z,b) .
We assume that f is convex, which is equivalent to

C = 0.

In this case, you have seen that, when Ap;,(C) > 0, gradient descent
converges to a minimizer and the convergence rate is geometric (that is,
fast). When Ay (C') = 0, this may not be true. You could nevertheless have
shown that (f(z:))wen converges to (f(z.)), with convergence rate at least
O(1/t). This is what the following theorem says.

Theorem 1.1.2

Let us consider the sequence of iterates (x;)en generated by gradient
descent with constant stepsize a < m

o If \pnin(C) > 0, it holds for any ¢ that

Flae) = fl@a) < p'(f (o) — f(z4))

for some p €]0; 1].

(Even more, the sequence of iterates (z;);en converges geometri-
cally to x..)
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(@)

e Even if A\yin(C) = 0, it holds for any ¢ that

|0 — .||

fxe) = f,) < Art

1.1.2 Convergence guarantees for general functions

The goal of this lecture is to extend to general convex functions the results
stated in the quadratic case. More precisely, we will show the following
guarantees.

e When f is convex and V f is Lipschitz, (f(z:))ien goes to f(z.) at speed
O (%) (Theorem 1.1.11). This result generalizes the situation where f
is quadratic and A, (C) may be zero.

e When f is strongly convex and Vf is Lipschitz, (f(z:))ien goes to
f(z,) at a geometric rate (Theorem 1.1.14). This result generalizes the
situation where f is quadratic and Ay, (C) > 0.

Smooth functions

Let us first see what we can say of the behavior of gradient descent without
assuming that f is convex. Consequently, we let f be a general differentiable
function, and make only one hypothesis: f has some amount of regularity.
More precisely, we assume that V f is Lipschitz.

Definition 1.1.3: smoothness

For any L > 0, we say that f is L-smooth if V f is L-Lipschitz, that is

Vr,y € R*,|[Vf(z) = V)l < Lz —yl].

Remark

For any L > 0, when f is twice differentiable, it is L-smooth if and
only if, for any x € R,

[|[Hess f()]]] < L.




1.1. CLASSICAL THEORY OF GRADIENT DESCENT 7

[The notation |||.||| stands for the operator norm: for any symmetric
matic O, [[|C] = supy,-1 1Coll2 = max (Auin (O] s (O]

Proof. Let us assume f to be twice differentiable.
If fis L-smooth, then, for any x € R", it holds for any h € R" that

[ (Hess f (@), ) | = [l (¥ F(z+ k) = (), )

0 €
e—0 €

< L||A|*,

which implies that |||Hess f(z)||| < L.
Conversely, if |||[Hess f(x)||| < L for any x € R™, it holds for any z,y € R"
that

[ Hess sttty =)o - e

IV (@) - Vi)l :\
g/o [Hess f(z + ty — )| lly — o]t

1
< Loyl [ 10t
0

= Lllz = yl|.
]

Example 1.1.4

For any L, our quadratic function f : & — % (z, Cz)+(z, b) is L-smooth
if and only if
el < L,

that is —L < Apin(C) < Anax(C) < L.

When f is smooth, the main two statements about gradient descent (with
suitable constant stepsize) are given by Corollary 1.1.7.

e (f(z¢))ien is nonincreasing (in particular, it converges);
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o (Vf(x))ten goes to 0.

Let us state and prove these results.

Let L > 0 be fixed. If f is L-smooth, then, for any z,y € R,

F(w) < £(@) +{VF(@),y —2) + 2ly — ="

Proof. For any .y € R”,

F) = 1)+ [ (St tly=a)0 - a) i
= S+ (V=) + [ (VS ity =) - V-
< I+ @y =)+ [ 195+ iy~ ) = Iy - ol
< 1)+ (S =+ [ Dl ol

= @)+ (V@) — ) + 2yl

O

Corollary 1.1.6

Let f be L-smooth, for some L > 0.
We consider gradient descent with constant stepsize: a; = % for all ¢.
Then, for any ¢,

Flmen) < F(@) = 5=V IR

Corollary 1.1.7

With the same hypotheses as in the previous corollary, and additionally
assuming that f is lower bounded,

1. (f(x¢))ien converges to a finite value;
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Ne)

2. ||V f(z)]] "7 0.

Proof. The first property holds because, from Corollary 1.1.6, (f(x¢))ien is
a non-increasing sequence, which is lower bounded because f is. The second
one is because, from the same corollary,

vteN, [[VF(@)|l* < 2L (f(z:) — f(211))-

Therefore, for any T € N,

2 IV f (@)l < 2L (f(zo) — f(zr)) < 2L(f(x0) — inf f).

Therefore, the sum Y7, [|V f(2)|]* converges, and (||V f(x,)|[)ien must go
to zero. O

The guarantee that ||V f(z;)|| — 0 when t — 400 is quite weak (although
useful in some settings, as we will see in the lecture on non-convex optimiza-
tion). In particular, it does not imply that (f(x;))ien converges to f(z.). To
guarantee convergence to f(z,), we need stronger assumptios on f. This is
where convexity comes into play.

1.1.3 Smooth convex functions

Definition 1.1.8

We say that f is convex if

Ve,y e Rt € [0;1], f(1—t)z+ty) <(1—1t)f(x)+1tf(y). (1.3)

| r

Proposition 1.1.9

When f is differentiable, it is convex if and only if

Ve,y e R",  f(y) > f(x) +(Vf(z),y —x). (1.4)

Convezity is a strong structural property. From Equations (1.3) and
(1.4), if we have access to the value of f and V f at a few points, then we
have upper and lower bounds for the value of f at many other points. This
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allows to precisely estimate the minimum and minimizer of f from only a
few values. This is why optimization is possible for convex functions, while
it is quite difficult for non-convex ones.

Remark

When f is twice differentiable, it is convex if and only if, for any x € R,

Hess f(z) = 0.

Example 1.1.10

The quadratic function f : x — % (x,Cz) + (x,b) is convex if and only
it C > 0.

As announced, if we assume that f, in addition to being smooth, is con-
vex, we can prove that (f(x;))ien converges to f(z.). Moreover, we have
guarantees on the convergence rate, as described by the following theorem.

Theorem 1.1.11

Let f be convex and L-smooth, for some L > 0.
We consider gradient descent with constant stepsize: oy = % for all t.
Then, for any t € N,

< 2L||zo —x*||2.

flaw) - fla) < =

J

Proof. First step: We show that the sequence of iterates gets closer to the
minimizer x, at each step: For any ¢t € N,?

|z — ] < Joe — 24|,

Let t be fixed. We find upper and lower bounds for f(z,.) using the
convexity and L-smoothness of f. First, by convexity,

f(xe) = f(ze) + (V[ (@), 2 — 2) = f(20) + L(Tp — Teg, T — 7)) -

2We do not need it for our proof, but a stronger inequality actually holds: V¢ € N, ||x, —
e | P < e — el P = [z — 22
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Then, using L-smoothness through Corollary 1.1.6, and also the fact that z.
is a minimizer of f,

f(z2) < f(we41)
< fw) = 5 IV FEIP

= f(z) — §H$t+1 — .

Combining the two bounds yields

L
f(l"t) + L <l17t = Li+1, T — xt) < f(lf*) < f(fl?t) - §H$t+1 - -TtHQ
= 2{my — Ty, Ty — ) F |1 — 2|2 <0
= o = zal® <z — ]
Second step: We can now find an inequality relating f(z;11) — f(z.) and

f(zy) — f(x,) which, applied iteratively, will prove the result. First, from
corollary 1.1.6,

1

@) = flw.) < ) = f(2a) = S IV @l (1.5)

In addition, because f is convex, as we have already seen in the first part,
flae) = f(@2) <V f(xe), 20 — 2)
Using now Cauchy-Schwarz as well as the first step of the proof:
f(@e) = fza) SNV e — 2| <[V (2ol [0 — ]
In other words, ||V f(z)|| > £49=1) \We plug this into Equation (1.5):

[lwo—a«]
f(@eg1) — fwa) < flae) — f,) — %U(‘S‘Z/Z : iiﬁz)) .

1 S 1 y 1
(@) — f(z) = f(x) — f(x) 1 f@)—f(@.)

2L ||zo—«||?
1 1 flw) - f(-73*))
= ) — f(w) (1 T 3L w0 — a2
1 1

F@) = f(@n) | 2L{lw0 — ol

Taking the inverse (and defining, by convention, = = +00), we get
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For the second inequality, we have used the fact that ﬁ > 1+ x for any
x € [0;1].
Consequently, by iteration, it holds for any ¢t € N that
1 1 t
> + 5
fla) = f() = flzo) = f@)  2L|Jwo — .|
Corollary 1.1.6, together with the fact that V f(z.) = 0, ensures that

Flao) = f(z2) < koo — P,

so for any t € N,
1 - 2 N t
flae) = fa) = Lllwo — | 2L[|wo — . []?
t+4
- 2L||wg — x| [?

that is
2L||zo — .||?
< —_

flan) = Fla) < 0
[]

A more general version of the theorem holds for stepsizes different from
%. Namely, if oy = 7 for all ¢, where 0 < 7 < %, then it holds for all
t € N that

1 2L)|zo — |2
L2—70) t+4

Flaw) = (o) < =

2

+ and, indeed,

Note that this result does not cover the case where 7 =

. . 2
gradient descent may not converge if 7 = =.

If we treat ||xg — z.|| as a constant, the previous theorem guarantees that
f(z) — f(zs) = O(1/t). Therefore, if we want to find an e-approximate min-
imizer (that is, an x; such that f(z;) — f(x.) <€), we can do so with O(1/¢)
iterations of gradient descent. This is nice for problems where we do not need
a high-precision solution, but when € is very small, this is too much. Unfortu-
nately, Theorem 1.1.11 is essentially optimal: There are smooth and convex
functions f for which the inequality is an equality (up to minor changes in
the constants).
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1.1.4 Smooth strongly convex functions

We will now see a subclass of smooth convex functions for which gradient
descent converges much faster than the slow O(1/t) rate described in the last
section: the class of smooth strongly convex functions. It generalizes the case
of quadratic functions when the smallest eigenvalue is strictly positive (see
Example 1.1.13).

Definition 1.1.12

Let > 0 be fixed. If f is differentiable, we say that it is u-strongly
convex if, for any =,y € R,

) 2 f@) + (Vi@).y - ) + Slly — al3

. 7

We observe that, if f is strongly convex, then it is convex. But strong
convexity is a more powerful property than convexity: If we know the value
and gradient at a point x of a strongly convex function, we know a quadratic
lower bound for f (which, in particular, grows to +oo away from z) instead
of a simple linear lower bound as for simply convex functions.

For any p > 0, a differentiable function f is u-strongly convex if and
only if the function f, : @ — f(x) — &|z||* is convex.

Proof. The function f, is convex if and only if, for any z,y € R",
Fuly) = ful) +(V ful2), y — );
= fy) = 5B = @) = SllelB+ (V@) - pay — o)
= )2 @)+ (V@) y -2+ (B -2y — 2~ llel)

= )2 f@) + (V@) — iy —2) + Slly -2l
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Remark

As a consequence from the previous remark, as well as the one following
Definition 1.1.8, a twice differentiable function f is p-strongly convex
if and only if, for any x € R",

Hess f(x) — puld = 0,

or, in other words, all eigenvalues of Hess f(x) are larger than pu.

Example 1.1.13

| r

We consider again the quadratic function f : x € R" — %(x, Cz) +
(x,b). Its Hessian at any point is C. We denote \; > Ay > -+ > A,
the ordered eigenvalues of C'. From the previous remark, if A, > 0, f
is A,-strongly convex. If A, <0, f is not p-strongly convex, whatever
the value of p > 0.

Theorem 1.1.14

Let 0 < p < L be fixed. Let f be L-smooth and p-strongly convex.
We consider gradient descent with constant stepsize: a; = % for all t.
Then, for any t € N,

Iu/ t
—£) o — @l (1.6)

/"L2t
(1=%)" oo —mul3.

Proof. 1t is enough to prove Equation (1.6). Indeed, if this equation holds,
it implies (from Lemma 1.1.5 and because V f(z,) = 0),

||zt — 2|2 <

fl@e) = fl2,) <

L L 2t
) < @)+ Flae =l = fo) = f) <5 (1=2) lla. = ol

To prove Equation (1.6), it suffices to prove that, for any ¢ € N,

loeer =l < (1= 5) lfoe = 2.

Let us fix t € N and establish this inequality.
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Given that 2,41 = 2, — $V f(z;), we must simply upper bound

1
H-Tt-i-l - 93*“2 = i3 va(ift) — L(zy — 33*)”2

with a multiple of ||z; — z.]|2.

We must therefore establish an inequality involving only z;, z, and V f(z;).
For this, we first look at which inequlities we can write on these quantities. In
particular, we consider the inequality defining u-strong convexity (Definition
1.1.12), at © = x; or x = z,: for all y € R™,

F) 2 ) + (T f )y = o) + Slly = i (1.7a)
1) > fla) + Sy — |5 (1.7b)

And considering also the inequality of Lemma 1.1.5, we have, for all y € R",

F) < F@)+ (Vi) y - o) +olly -l (L8a)
F) < Fw) + glly — =l (1.80)

In particular, for all y € R™, combining (1.7a) and (1.8b), it holds that

Fle) + g lly =l = Fw) — (V7w y — ) — Blly — il > 0.

The minimum of this expression is reached at y = W“ztfw, and its
value is
IV £ ()] ]3 Lz, —z) Lu 2
%) — — — 5 - Tk Z O

Similarly, combining (1.7b) and (1.8a), we get for all y € R™

L
P + {9 f sy = 2 + Sy = a3 = f) = Elly =2l B > 0.

Lai—px«—V f(x¢

The minimum of this expression is reached at y = - ), and its

value is

fan) = 1)~ g OO (9 ), MG ) a2 0,
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If we combine the two minima, we get

(L + @) (V (@), 2 — ) > [[Vf ()5 + Lpgllwe — 2[5
L+pu < L—pu
2 - 2

— HVf(xt)—

(z¢ — 24) l|2: — 24|]2-

2

Together with the triangular inequality, this proves the result:

1
TV f2e) = Lz, — @)z

1 L+ ]| L+

SEHVf(l‘t)— M(xt—x*) ) ZH 2M(xt—x*)—L(xt—x*) 2
L — L —

< = Hlw = wlls + =l — )

= (1= ) Il = |2

]

Hence, when f is smooth and strongly convex, (f(x;) — f(x.))ten decays
geometrically, with rate at least (1 — %)2 An e-approximate minimizer can
be found in O((loge)/log(l — /L)) gradient descent iterations, much less
than the O(e) obtained without the strong convexity assumption.

We call ﬁ > 1 the condition number of f. The closer to 1 it is, the faster
the convergence.

. Remark

The rate (1 — %)2 in the previous theorem is tight, in the sense that
it is not possible to establish the same theorem for a strictly smaller
convergence rate. Indeed, when applied to a p-strongly convex and
L-smooth quadratic function, the gradient descent iterates go to zero
at this exact rate.

Remark : other constant stepsizes

A more general theorem holds for stepsizes different from % More

precisely, if oy = 7 for all ¢, where 0 < 7 < %, then it holds for any
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t € N that
|z — @ll2 < max (|1 = 7pl, |1 — 7L])" ||zo — 2.l|2

In this expression, the right-hand side is minimal when 7 = MLL This
value is the optimal stepsize for gradient descent on strongly convex
functions.

\ J

1.1.5 Choice of stepsizes

Properly choosing the stepsizes (a;)en is crucial: if they are too large, then
x4 is outside the domain where the approximation (1.2) holds, and the
algorithm may diverge. On the contrary, if they are too small, x; needs
many time steps to move away from xy, and convergence can be slow.

What a good stepsize choice is depends on the properties of f. Let us
however mention some common strategies:

1. Fized schedule: the stepsizes are chosen in advance; «; generally de-
pends on t through a simple equation, like

Vt, oy =mn, for some n > 0, (Constant stepsize)

1

=1 (Monotonically decreasing stepsize)

or Vt, o

2. Ezact line search: for any t, choose a; such that

flzy — 'V f(xy)) = I;leiél flzy —aVf(xy)).

3. Backtracking line search: unless f has very particular properties, it is
a priori difficult to minimize f on a line. The exact line search strategy
is therefore difficult to implement. Instead, one can simply choose oy
such that f(x; — Vf(z;)) is “sufficiently smaller than f(x;)” The
approximation (1.2) implies, for a; small enough,

flae =V f(x0) = f@) — el [V ()]

If we consider that “being sufficiently smaller than f(z;)” means that
the previous approximation holds, up to the introduction of a multi-
plicative constant (which is known as Armijo’s condition), the following
algorithm describes a way to find a suitable ay.
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Input: Parameters ¢, 7 €]0; 1], maximal stepsize value
amax

Define a4 = apyqz.
while f(z; — ,V f(x;)) > f(x) — cou||[V f(z)]]* do

| Set oy = Tay.
end
Output: oy

Algorithm 2: Backtracking line search

1.1.6 Exercise

Let f: RY — R be a function. We assume that
1. f is convex;
2. f has a global minimizer x;

3. f is differentiable and, for any = € RY,

IVf()]]2 < 1.

We fix a starting point xg and run gradient descent from this point, with
a sequence of positive stepsizes (hy)gen:

Tpe1 = Tk — Wi,V f(xp).
a) Show that, for any k € N,
flar) = f2.) < (Vf(ag), 2 — 2.)
b) Show that, for any k € N,
lzhr1 — 23 < M — 2[5 — 20 (f(2i) = fl@2)) + R |1V f ()5

¢) Show that, for any n € N,

2 hi(f(zr) = f(2.)) < llzo — 2|3 — |lens — ilf*HerZh IV £ (0)]]2.
k=0
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d) For any n, let k,, € {0,...,n} be such that

Show that, for any n,

2(f (xr,) = f(xx)) (Z hk> < [lwo =2l [3 = llznin =zl 3+ D BRIV f () []5.
k=0 k=0

e) Show that, for any n,

n

2(f(wr,) = f()) (Z hk) < [lwo — @5 + Y hi.

k=0
2. In this question, we assume that, for any k, h, = ﬁ Show that, for
any n,

[0 — |3 + 2 + log(n)

vn+ 2

f@k,) = flo.) <

Hint: You can use the fact that, for any n,

1 n+1
1 vn+2
<2+log(n) and Z_Z .
o Ve 2

N
+

| =

£
Il

1

3. In this question, we assume that the sequence of stepsizes is constant:
there exists 7 > 0 such that, for any £k € N, hy = 1.
Give an example of a function f satisfying properties 1, 2, 3, and a starting

point xy such that
n—+0o

faw,) = fla) £ 0.

Hint: Define
fireR — |x|—§ if 2] > e
2
s
r if || <
o if Jaf <

for some e > 0 small enough.
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Solution

1. a) Let k be fixed. We apply the characterization of convexity for differen-
tiable functions: at x,, f is above its tangent at xy, that is

fao) = flaw) + (Vf(2r), 2 = ),

which is equivalent to the desired inequality.
b) For any k,

Hilj'k+1 - :C*Hg = ka — Ty — hkvf(xk>’|§

= |2k — @[5 — 2k (V (@), 2 — @) + BRIV F ()13
l.a)
< ok — 2llz = 2 (f (@) — f () + BlIV f ()2

¢) We deduce from the previous question that, for any k € N,

2hi(f (@) = f(@2)) < Mo = @all3 = lloner — 2l 2 + BRIV (@0)ll2-

Therefore, for any n € N,

n

2 hil(f () = f(2) < D (k= w3 = [lox — a.[[3) +Zh||Vfl’k)llz
k=0

k=0 k=0

= lzo — @[5 — IIIn+1—x*|I2+Zh IV £ (@)ll2-

d) Let n be fixed. For any k£ < n, we have, from the definition of k,,
f(zx,) < f(zx). As a consequence, for any k < n,

2hi(f (k) = f24)) < 2h(f (k) — f(21))-

2(f (z,) = f(24)) (Z hk) <2 hi(f(ex) = fla)

k=0

1.c)
< lwo — @ull5 = [|#ns — $*||2+Zh IV £ (@)ll2-
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e) From our third assumption on f, ||V f(xy)||2 < 1 for any & € N. Therefore,

for any n € N,
S ORIV @) <> b
k=0 k=0

Since, in addition, —||x, 41 — x.||3 < 0, we deduce from question 1.d) that

2(f (w,) — f(24)) (Z hk> <|lwo — x5+ D hi
k=0 k=0

2. For any n € N,

n n+1 1
i =30 L <ot ogo)
k=0 k=1
n n+1
1 n+2
S-S e Y
k=0 k=1

Plugging these inequalities into the one established at question 1.e) yields

(f(zr,) = f(@))Vn 42 < 2(f(xg,) — f(2s)) (Z hk) < lwo — 2|3+ ) hp
< ||lzo — 2.5 + 2 + log(n).

Therefore,
_ iz — .3 + 2+ log(n)

f(xk'n) - f(l'*) = \/m

3. We set € = 7 and define f as suggested:

€

f:rxeR — |a7|—§ if |z| > €
2
T if |z <,
2e

Let us show that f satisfies properties 1, 2, 3.
We start with property 2. For any « € R such that |z| > €,

flz) >e—=>0.
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For any x € R such that |z| <,

Therefore, f is nonnegative over R. Since f(0) = 0, it implies that z, = 0 is
a global minimizer of f.

Let us now show that f is differentiable and compute its derivative. The
function |.| is differentiable over R—{0} so f is differentiable over | —oco; —e]U
[€; +00], with derivative

() =-1 V€] —oo;—¢;
fl(x) =1 Vzx € [e+o0].

(The derivative is only a left derivative when x = —e and a right derivative
when x = €.)

The square function is differentiable over R so f is differentiable over
[—€; €], with derivative

f(z) = % Vo € [—€ €.

(The derivative is only a right derivative when z = —e and a left derivative
when z = ¢.)

Since the left and right derivatives coincide in # = —e and x = ¢, the
function f is differentiable at —e and e and therefore differentiable over R.

For any x such that |z| > €, we have |f'(x)| = 1 and, for any x such
that |z| < €, we have |f'(z)] = @ < 1. As a consequence, the norm of
the gradient (that is, in this case, the derivative), is always at most 1 and
Property 3 holds.

Now that we have computed the derivative, we can easily show that f
is convex: its derivative is continuous, nondecreasing (actually constant)
over | — oo; —¢l, increasing over [—e; €], nondecreasing again over [e; +00].
Therefore, the derivative is nondecreasing over R and f is convex.

We consider the starting point xg = 7 = €. With this definition,

x1 =20 — hof'(z0)
=e—nxl

= —€
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and
Iy = X1 — hOf/<I1)
=—e—nx(-1)
=e.
We can iteratively reapply this result and we obtain that x; = —e for all odd

k and zj; = € for all even k. In particular, z 4 x, = 0 when k — +o0.

1.2 Gradient descent with momentum

Gradient descent is by far the most well-known optimization algorithm. Be-
cause of its simplicity and flexibility, it is a method of choice for many prob-
lems. However, it is oftentimes unconveniently slow. In this lecture, we will
see that it is possible to speed up gradient descent by incorporating in it a
term called momentum. We will present two forms of momentum, leading to
the following two algorithms:

e heavy ball, which is the simplest form of gradient descent with momen-
tum, and already provides significant speed-ups,

e Nesterov’s method, which is slightly more complex, but performs much
better than gradient descent on a larger range of problems than heavy
ball.

1.2.1 Motivation of momentum

In this section, we motivate the introduction of momentum: we consider a
simple function f for which gradient descent converges slowly, explain why
convergence is slow, and why momentum can speed it up.

Let f be a simple quadratic function over R?:

V(l’l,l‘g) € R2, f([L‘l,ZEQ) = ()\11‘% + AQCL’%) s

N | —

for parameters 0 < A; < Ay. The unique minimizer of f is

z, = (0,0).
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The gradient of f is
V(wy, 1) € R27 V(w1 29) = (Mz1, Aaa).

If we run gradient descent with constant stepsize o > 0, the relation between
iterates x; = (w1, 212) and Teyq = (Tes11, Tep12) 1S

($t+1,17 913t+1,2) = Tt — avf(l’t)
= (@1, Tr2) — W(A1T1, Aar2)
= ((1 — Oé)\1)$t71, (]_ — Oé)\g)l’tg) o

Since we want the iterates to go as fast as possible to zero, we would like
to choose a such that

1 —al| <1 and |1 —al| <1

If A\; and Ay are of the same order, this is fine: it suffices to pick « of the

order of % ~ %2
But if A; is much smaller than Ay (that is, the problem is ill-conditioned),

there is no good choice of a. If we set a = /\il, then

and the second coordinate of the iterates, z; 9, diverges when ¢ — oco. If, on
the other hand, we set a =~ /\—12, then the second coordinate goes to 0, and
fast, but the first one converges very slowly:

In this situation, gradient descent is slow. Figure 1.1a displays the first fifteen
iterates in the case where A\; = 0.1 and Ay = 1, for a = 4/3 (that is, of the
order of /\—12) As expected, the second coordinate goes fast to zero, but the
first one decays only slowly.

A possible remedy to this slow convergence is to use the information
given by the past gradients when we define x;,, from x;: instead of moving
in the direction given by —V f(z;), we move in a direction m;,; which is a
(weighted) average between —V f(x;) and the previous gradients —V f(zg),
ey =V f(24-1). Concretely, this yields the following iteration formula:



1.2. GRADIENT DESCENT WITH MOMENTUM 25

k
T~
. ?"é‘éx o
—
o —x
<>

(a) Standard gradient descent (b) Gradient descent with momentum

Figure 1.1: First 15 iterates of gradient descent, for Ay = 0.1, A = 1

M1 = Yemy + (1 =)V f(xe),
Ti41 = Ty — QgMyyq.

Here, v, and «y; are respectively the momentum and stepsize parameters.
The quantity m;, which is the average of all gradients until step ¢, is called
momentum.

An equivalent iteration formula is

Ti41 = Ty — &tvf(ﬁt) + Bt(ﬁt - 5Ut—1)7 (1-10)
with & = ay(1 — ) and ,ét = %

Proof of the remark. From the second equation in the iteration formula:

Ty — Tt
VieN, myy=—"—,
ay

= WteN-{0}, m =1
Q1
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We plug these equalities into the first iteration formula:

Ty — T Ti—1 — X
vieN-{o}, DT (—) (1= )V (),

Qi 1
Qe

= \V/t - N — {O}, ZL‘t+1 = T — O[t(]_ — ’Yt)v‘f(l’t) + s
t—

(xy — 1)

Using momentum instead of plain gradient in the iteration formula allows
to use a larger stepsize. Indeed, for large stepsizes, o,V f(z;) diverges when
t grows, which causes the divergence of plain gradient descent. But it is
possible that a;m; stays bounded, in which case gradient descent with mo-
mentum does not diverge: aym; is an average of potentially large gradients
pointing to different directions, which may therefore compensate each other.
This can be seen in Figure 1.1b: compared to Figure 1.1a, the stepsize is
larger; consequently, the first coordinate converges faster towards zero, but
the second coordinate does not diverge.

1.2.2 Heavy ball

The simplest version of gradient descent with momentum is when the mo-
mentum and stepsize parameters are constant. It is due to Polyak, and often
called heavy ball®.

3The name comes from the fact that the momentum term can be seen as an inertia
term, which reminds of the movement of a heavy ball falling down a mountain towards a
valley.
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Input: Starting point xg, number of iterations T, stepsize «,
momentum parameter 7.

Set mo = V f(x);

fort=0,....,T—1do

define
My = ymy + (1 — )V f(2);
Tyl = Ty — QM.
end
return zp

Algorithm 3: Heavy ball

For proper choices of parameters, heavy ball exhibits a faster convergence
rate than plain gradient descent on many natural problems. We will prove
this fact for quadratic strongly convex functions.

Theorem 1.2.1: heavy ball - quadratic case

Let 0 < p < L be fixed. Let f be a quadratic function, which is
L-smooth and p-strongly convex. We set

1 (vE-vEY
Vi’ T \VI+ i)

There exists a constant C), ;, > 0 such that, for any ¢ € N,

2 \/Z_\/ﬁ ! _ 2
f(@) = f(z.) < Cprt <\/Z+\/E> [lwo — .|

o =

Before proving the theorem, let us compare the convergence rate with
gradient descent. From Theorem 1.1.14, gradient descent converges geomet-
rically, with decay rate

I
1—-—.
L

Theorem 1.2.1, on the other hand, guarantees for heavy ball a convergence
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with decay rate

VL - /i 2N w
<m> ~1—4\/; when p < L.

For ill-conditioned problems, \/% is much larger than %, resulting in a sig-
nificant speed-up. As an example, if £ = 0.01, dividing f(2;) — f(x.) by a

factor 10 necessitates around

In(1
& ~ 230
“n(-§)
iterations with gradient descent, and only
In(10
0(10) .

- ((52))

Proof of Theorem 1.2.1. Up to a change of coordinates, we can assume that
f is of the form

with heavy ball.

(Ale 4+ -+ /\nxi) ,

N

flzy, ... x,) =

where
L>XN>X2>--2N2>p>0

are the eigenvalues of the matrix representing f.
Denoting z; = (1, %t2, . .., Ttn), we have, for each ¢,

Vf($t) = ()\1%:,17 cey )\nxt,n)a
hence the evolution equation of heavy ball is, for each t € N,

VE <mn, muirr="vmer + (1 — )Tk
Toprh = Tep — WMy = (1 — a(l =) Ae) 2 — aymyg.

This can be written in matricial form: for each t € N,k € {1,...,n},
Mit1k My k . Y (T =)
M) =M ), with My =
<-Tt+1,k) g (ﬂftk) F (_CW 1- 04<1 - 'Y)Ak

My mo,k
= Tl =M ).
Ttk Zo,k
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For any k, the matrix Mj, can be triangularized in a (complex) orthonormal
basis: for some unitary matrix Gy, we can write it under the form

=@ O-I(cl) gk G—l
k 0 0,22) B
my i - q (Ul(gl))t Gtk a1 mo k
T — Yk (2)\¢ k T )
tk 0 (o) 0,k
2

with g = ((03) 7+ (00)) 20 + -+ (02) Vg

For all t € N,

As Gy is unitary, it does not change the norm:

m (1)
t.k gkt
|G

(The triple bar denotes the spectral norm.)

Zo,k

H'mw

For some constants C,C" > 0, the spectral norm can be upper bounded
by
(1) gki
2
o ))t

We must compute max (\ak |, |o

< C'max (|cr,(€1)|t, |0'](€2)|t7 |gkz,t|>

t
1 2
< C'tmax (\cf,(C ), ot )|) :

), where we recall that a,i ), (71532) are

(2)|
the eigenvalues of Mj. These eigenvalues are the roots of the characteristic
polynomial of M. A (slightly tedious) computation shows that the polyno-
mial has a negative discriminant. The eigenvalues are therefore complex and

conjugate one from each other:

0 =10 = 00 = det(My) = .
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; (1) @)\ _
In particular, max ( [} ’|, |0, | = /7, and we get
vk Mk < Clt,yt/Q mo,k
’ Ttk - 2o,k
= |zl < C't'2, /x%,k + mak < Oty + L2|zg g

= f(z) = f(2.) =D Mgy, < L1+ L7)CP" ||| *

k=1

If we set C,, ;, = L(1 + L?)C" and recall that

_(VI-ya)
T = \/E—I-\/ﬁ )

we get the announced result:

2 \/z_\/l_‘ ; . 2
fla) = (@) < Churt <—\/f+\/ﬁ) [lzo — .||

]

The theorem we just proved does not extend from strongly convex quadratic
functions to general strongly convex functions. Indeed, there are unfavorable
strongly convex functions, on which gradient descent with momentum is not
faster than its standard version (or even where it diverges whereas plain
gradient descent converges). Fortunately, many “interesting” functions are
either quadratic or, more frequently, approximately quadratic in the neigh-
borhood of a minimizer. For these functions, heavy ball is usually better
than plain gradient descent.

1.2.3 Nesterov’s method

In the previous section, we have said that heavy ball has a faster convergence
rate than gradient descent for quadratic problems, but not for all strongly
convex problems. In addition, it does not apply when the objective function
is not strongly convex. In this final section, we present an algorithm which
solves both these issues. As it has been found by Yurii Nesterov, it is often
called “Nesterov’s method”.
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The iteration formula for this algorithm is

T = 2 — oV f(2e + Be(wy — 1)) + Be(xy — 24-1), (1.11)

for a proper choice of parameters oy, ;. We see that it is very similar to the
general form of gradient descent with momentum, as described in Equation
(1.10), with the (important) difference that the gradient is not evaluated at
point x;, but at x; + By (x; — x4_1).

If f is assumed to be L-smooth and pu-strongly convex, a simple choice is
possible for coefficients ay, 5;:

Vt, oy = z

This yields the following algorithm.

Input: Starting point xg, number of iterations 7', smoothness
parameter L, strong convexity parameter p.

VL@,

VL+yp'

Set x_1 = xg, 0 = %,ﬁ:
fort=0,...,7T—1do
define
To1 = T — aV f (v + Bz — 2-1)) + B2 — T-1).

end

return zr
Algorithm 4: Nesterov’s algorithm with constant parameters

With this choice, Nesterov’s method converges to the minimizer linearly,

with decay rate
[ 1L
1—.,/E
L Y

which is similar to the convergence rate of heavy ball, but true for all strongly
convex functions, not only quadratic ones!
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Theorem 1.2.2: Nesterov’s method: smooth strongly convex

case

Let 0 < < L be fixed. Let f be an L-smooth and p-strongly convex

function.
Let (z¢)ten be the sequence computed by Algorithm 4. For all ¢t € N,

f(@) = flz.) <2 <1 - \/%>t (f(z0) — f(.))-

w

When f is not strongly convex, it is not possible to set parameters «; and
f; to constant values. A more complicated (and admittedly mysterious, at
first sight) definition must be used, described in the following algorithm.

Input: Starting point xg, number of iterations 7', smoothness
parameter L.

Set x_1 = xg, 0 = %, A =0;

fort=0,...,T—1do

define
W VI
t = )
2

b= S5
Tyl = T — O(Vf (ZEt + 675(1&5 — l't_l)) -+ ,Bt(l't — xt—l)-

end

return rr
Algorithm 5: Nesterov’s algorithm with changing parameters

The convergence rate of this algorithm is given in the following theorem.

Theorem 1.2.3: Nesterov’s method: smooth convex case

Let L > 0 be fixed. Let f be an L-smooth convex function.
Let (x;)ien be the sequence computed by Algorithm 5. For all ¢t € N,

L
1@) = f(@.) < Gaplleo —
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Comparing the rates in Theorems 1.1.11 and 1.2.3 shows the superiority
of Nesterov’s method over gradient descent for smooth convex functions f:

1
gradient descent rate: O (;) :

Nesterov’s method rate: O (t%) .

Actually, it is possible to show that Nesterov’s method is optimal for

smooth convex functions among all first-order algorithms. In other words, for

any first-order algorithm (that is, an algorithm which only exploits gradient

information about f), there exists an “adversarial” objective function f,
which is L-smooth and convex, such that, after ¢ steps,

3L
2llzo — ..

fxe) = flze) > 3201 1?2

This means that, up to the constant, no first-order algorithm can achieve a
better convergence rate than the one in Theorem 1.2.3.

Nesterov’s method is also optimal for smooth strongly convex functions
among all first-order algorithms: no first-order algorithm can achieve a better
convergence rate, for L-smooth and p-strongly convex functions, than the one
guaranteed by Theorem 1.2.2.

1.3 References

The main references used to prepare these notes are the original article where
Polyak introduced the heavy ball algorithm,

e Some methods of speeding up the convergence of iteration methods,
by B. T. Polyak, Ussr computational mathematics and mathematical
physics, volume 4(5), pages 1-17 (1964),

four classical books on optimization,

o [ntroduction to optimization, by B.T. Polyak, Optimization Software
(1987),

o Introductory lectures on convexr optimization: a basic course, by Y.
Nesterov, Springer Science & Business Media, volume 87 (2003),
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e Convex optimization, by S. Boyd and L. Vandenberghe, Cambridge
University Press (2004),

o Optimization for data analysis, by S. J. Wright and B. Recht, Cam-
bridge University Press (2022).

and two blog posts by S. Bubek on Nesterov’s method for smooth convex
functions,

e http://blogs.princeton.edu/imabandit/2013/04/01/accelerat
edgradientdescent/,

e http://blogs.princeton.edu/imabandit/2018/11/21/a-short-p
roof-for-nesterovs-momentum/.

Interested readers can read the following research article for more infor-
mation on the convergence issues of Heavy Ball on non-quadratic functions:

e Provable non-accelerations of the Heavy-Ball method, de B. Goujaud,
A. Taylor et A. Dieuleveut, arXiv preprint arXiv:2307.11291, 2023.

For another presentation of the advanced aspects of gradient descent, the
reader can also refer to

e Lecture notes on advanced gradient descent, by C. Royer, https://ww
w.lamsade.dauphine.fr/Y7Ecroyer/ensdocs/GD/LectureNotesOML
-GD.pdf (2021).


http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
http://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
http://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf
https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/GD/LectureNotesOML-GD.pdf

Chapter 2

Non-convex optimization

2.1 Introduction

Let us consider a general unconstrained minimization problem:

[ find z, such that f(z,) = mingcg~ f(z), ]

for some f: R™ — R. We assume that at least one minimizer, x,, exists. We
also assume througout the lecture that f is C*°, to avoid regularity issues.

In the previous chapter, we have discussed how to find a good approxima-
tion of a minimizer, under the hypothesis that f is convex. In this chapter,
we discuss the situation where f is not convex. The main messages to un-
derstand and remember will be as follows.

e Non-convex optimization is fundamentally more difficult than convex
optimization.

e [t is very rarely possible to certifiably find a global minimizer of a non-
convex problem. At best, one can certifiably find a second-order critical
point.

e Many simple and efficient algorithms can find approximate second-
order critical points.

e There are problems for which all second-order critical points are global
minimizers (although this is not the general situation). For these prob-
lems, the simple and efficient algorithms above therefore find an ap-
proximate global minimizer.

35
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2.1.1 Why non-convex optimization is difficult

We first try to give an intuition of why non-convex optimization is much
more difficult than convex optimization.

We consider the one-dimensional case, n = 1. Let us imagine that we run
a first-order algorithm (that is, an algorithm which can access the value of
f and Vf at any desired point, and must return an approximate minimizer
based on this information only). After some time, the algorithm has queried
the values of f and Vf at several points, for instance {—3, -1, —%, %,3}.
The gathered information is represented on Figure 2.1.

If f is convex, this already gives significant information on the minimum
and minimizer of f. Indeed, the graph of f is above its tangents, and below its
chords, which provides upper and lower bounds for f, as shown on Figure 2.2.
One can use them to estimate the minimum and minimizer of f. For instance,
from the upper and lower bounds of Figure 2.2, one can deduce that

1. the minimum of f is between —3/8 and 1/8;
2. the minimizer(s) of f belong(s) to the interval [—1/2;5/6].

In particular, from this information, one knows' the value of min f with
precision % and the minimizer with precision %

But if f is not convex, this information does not allow to distinguish, for
instance, the two functions plotted in Figure 2.3.

The function represented on the left reaches its minimum at 1/2, and
this minimum is 0. The function on the right reaches its minimum at —2,
and this minimum is —1. The difference between the minimums of these
two functions is 1, and the difference between the minimizers is 2.5: one
cannot produce estimations for the minimal value and minimizer of f with a
precision comparable to the convex setting.

Intuitively, to compute a trustworthy approximation of min f or argmin f
without the convexity assumption, one needs to sample f on a fine grid. As
soon as there is a “hole” in the sampling set?, one cannot know whether the
function takes large or small values in this hole, hence one cannot compute
a precise estimate of min f or argminf. In 1D, it may be possible to sample

I'The minimum is in the interval [f%; é] The middle point of this interval, fé, is
therefore an approximation of min f which is at most i away from the truth.
2The sampling set is the set of points at which the algorithm queries the values of f

and Vf. In our example, it is {—3,—1,—-1/2,3/2,3}.
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4 -2 0 2 4

Figure 2.1: Values of f and Vf at —3,—1,—%,%,3.

Figure 2.2: Upper and lower bounds on f, deduced from the information on
Figure 2.1, under the assumption that f is convex; the graph of f must be
entirely contained in the shaded zone.
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Figure 2.3: Two possible non-convex functions compatible with the informa-
tion displayed on Figure 2.1.

f on a fine grid, but if n is large, this is out of question: the number of
sampling points on a fine grid grows exponentially with the dimension.

As a consequence, if f is not convex, we must give up the idea of finding
an approximate minimizer. In the rest of the lecture, we will see which kind
of points we can hope to find, and how.

2.2 Ciritical points

A first idea is to look for a local minimizer instead of a global one. It turns
out that this is also out of reach, at least for pathological functions.® Thus,
we lower our expectations again: instead of looking for a local minimizer,
we simply look for a point at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

3A class of optimization problems for which finding a local minimizer is NP-hard is
for instance presented in the article On the complexity of finding a local minimizer of a
quadratic function over a polytope, by A A. Ahmadi and J. Zhang, Mathematical Pro-
gramming, volume 195, pages 783-792 (2022)
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Proposition 2.2.1

For any x € R", if z is a local minimizer of f, then
Vf(x) =0 and Hess f(z) > 0.

Almost conversely, if V f(xz) = 0 and Hess f(x) > 0, then z is a local
minimizer of f.

Definition 2.2.2

We say that an element = of R" is
e a first-order critical point of fif V f(z) =0,

e a second-order critical point of f if V f(x) = 0 and Hess f(x) > 0.

Example 2.2.3

We consider the map f: (z1,22) € R* = 23 — 22 € R.
Its gradient and Hessian have the following formulas:

Vo = (v1,72) €R?, Vf(z) = (2v1,—2z,) and Hess f(z) = (295%).

Therefore, f has a single first-order critical point, which is (0,0). This

point is not a second-order critical point, because (3 %) is not positive

semidefinite.

In the following two sections, we will see that, contrarily to global or local
minimizers, second-order critical points can always be found with arbitrary
precision by simple and relatively fast* algorithms.

At this point of the lecture, students often ask me: “Why do we bother
discussing how to find second-order critical points? We want a global
minimizer; we are not interested in second-order critical points.” There

4pelatively fast = whose running time is polynomial in the desired precision, the di-
mension of the problem and some basic smoothness parameters of the objective function
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are two motivations.

e Asdiscussed above, in the non-convex setting, the strongest prop-
erty that we can prove about an optimization algorithm is essen-
tially that it is able to find a second-order critical point. There-
fore, if we want to have some rigorous theoretical criterion to
assess the quality of an algorithm or to compare algorithms to-
gether, it is a reasonable choice.

e For most functions f encountered in practice, second-order crit-
ical points turn out to be local minimizers.® In various inter-
esting situations (including the training of neural networks), it
has moreover been observed that all second-order critical points
of f are approximate global minimizers - or even exactly global
minimizers. We will give an example in Section 2.5. In these sit-
uations, finding a second-order critical point therefore provides a
global minimizer.

“Most, but not all functions! The map (z — z%), for instance, has a second-order
critical point at 0, but no local minimizer.

2.3 Convergence of gradient descent

Let us first consider the simplest first-order algorithm, gradient descent. In
the previous lecture, we have seen that it successfully finds a global minimizer
in the convex setting. In the non-convex setting, we will see that it always
finds a first-order critical point and, “almost always”, a second-order one.
(The notion of “almost always” will of course be properly defined.)

We assume that f is L-smooth for some L > 0: For any x,y € R",
IVf(x) = VIl < Lz —yll.

We consider gradient descent with constant stepsize, equal to 1/L: start-
ing from an arbitrary zo € R", we define a sequence (z;)en by

1
Ti41 = Ty — va@t)
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2.3.1 Convergence to a first-order critical point

Theorem 2.3.1

Let T' € N be fixed. We consider the following algorithm:

1. Run T steps of gradient descent, which defines a sequence
(l’o,iﬂl, 500 ,:L‘T).

2. Compute T},;, = argming, ||V f(2¢)|| and define 7 = 271,
3. Return 2.

Then

Vs < /220 = Fe-)),

We say that Zp is a O(1/v/T)-approximate first-order critical point.

Proof. As seen in the proof of Corollary 1.1.7,

VLEN, () < Fla) — o VI,

which implies

N

IV F )| < 2L(f () — F(2.).

t

Since ||V f(Z7)|| < ||V f(z)|| for any t <T,
TV f(@r)I]* < 2L(f(xo) — f(x.)),

Il
o

which implies

Vs < /2L = FGoe))

2.3.2 Convergence to a second-order critical point

The previous theorem shows that gradient descent always finds approximate
first-order critical points. It even provides a convergence rate. For second-
order critical points, the picture is more complicated.
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For some choices of initial points x, it may happen that gradient descent
does not get close to an approximate second-order critical point, even when
run for an infinite number of steps. For instance, if xq is a first-order, but
not second-order, critical point of f, then

Top=T1 =Ta = ...,

because V f(xg) = 0, hence gradient descent stays stuck at xy and never
reaches a second-order critical point.

The following theorem shows that this phenomenon is very rare: for “gen-
eral” initializations, it does not happen, and gradient descent converges to a
second-order critical point.

Let f be an L-smooth function. We assume that
e f has only a finite number of first-order critical points;
e fis coercive (i.e. f(x) — +oo when ||z|| = +00).

We consider gradient descent with constant stepsize a €]0; 1/.
For almost any z,* (2;)ien converges to a second-order critical point.

%that is, for all xg outside a zero-Lebesgue measure set

J

Intuition of proof. The finiteness of the critical set and the coercivity of f
imply that (z;);en converges to a first-order critical point whatever z,. We
admit this fact for simplicity.

We must show that, if x..; is a first-order but not second-order critical
point of f, then (x;);eny does not converge to x.., for almost any z,. We
consider such a critical point; up to translation, we can assume that it is 0.

We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, whose radius we call rq:

1
Vo € B(0,m0), f(z) =5 {x, Mz) +(z,b),
for some n x n symmetric matrix M.

For any z € B(0,79), Vf(x) = Mz + b. Since 0 is a first-order critical

point, we necessarily have b = 0. In addition, Hess f(z) = M for any z €



2.3. CONVERGENCE OF GRADIENT DESCENT 43

B(0,79). The assumption that 0 is not a second-order critical point is then
equivalent to the fact that M % 0.
The matrix M can be diagonalized in an orthonormal basis:

A1 ... O
M—UT(: :)U,
0 .. Xn

with Ay > --- > ), the eigenvalues of M and U an orthonormal matrix.
Up to a change of coordinates, we can assume U = Id. Since M ¥ 0, the
smallest eigenvalue of M is negative: A, < 0.

We proceed by contradiction, and assume that the sequence (z;)ien of
gradient descent iterates converges to x. = 0. Then x; belongs to B(0,7g)
for any t large enough, in which case

xt+1 = Tt — OéVf(.ﬂUt)
=x, — oMz,

(l—a)\l)itt,l
(1_04)\.n)$t,n

We fix ty such that this relation holds for any ¢t > ty. Then, for any s € N,

(l—a)\l)sl‘tOJ
$t0+8 = ( > .
(I=adn )zt ,n
If the sequence converges to 0, all the coordinates of ;s must go to 0 when

s goes to +oo (for any fixed t), which means that

s—+400

VEe{l,...,n}, (1—aX)’zyr — O. (2.1)

We have said that A, < 0, hence 1 < 1 —a), and (1 — a),)® 4 0 when
s — +o00. In order for Property (2.1) to hold, we must therefore have

Ltyn = 0.

To summarize, we have shown that, if (x;);eny converges to 0, then, for
some tg,

2y, € E & {z € B(0,19) such that z, = 0}.

As a consequence,
2o € (Id — aVf) " (&).
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(For any map ¢ : R™ — R", we define g (&) as the set of points x such that
gio(x) = go otimes) o g(z) € £) Therefore, the set of initial points g for
which the gradient descent iterates may converge to 0 is included in

Jad—avs) ).

teN

The set £ has zero Lebesgue measure and one can check that Id —aV f is a
diffeomorphism, hence (Id — aV f)7*(€) has zero Lebesgue measure for any
t € N, and the set of “problematic” initial points also has zero Lebesgue
measure.

]

2.4 A second-order method

The theorem stated in the previous paragraph only states that gradient de-
scent converges to a second-order critical point (for almost any initial point
xg). It does not say anything about the convergence rate. And it turns out
that there are functions f for which convergence is terribly slow.

To overcome this possible slow convergence, several strategies are possible.
One of them is to add “noise” to gradient iterates from time to time, to help
them get away faster from first-order critical points. The interested reader
will find a description in How to escape saddle points efficiently, by C. Jin,
R. Ge, P. Netrapalli, S. Kakade and M. Jordan (ICML 2017)

Another one is to explicitely exploit the information provided by second-
order derivatives. This yields the family of second-order methods. In this sec-
tion, we briefly describe one member of this family: the trust-region method.

Second-order derivatives provide local quadratic approximations of f.

Proposition 2.4.1

For any x € R",

f(@+h) = f(z)+ (b, Vf(2)) + % (h, Hess f(z)h) + o(|hl]*). (2.2)

To define x;,, from x;, it is therefore reasonable to set

. 1
he = angain (10 + 0,90} + 5 (s flan))
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and xy11 = xy + hy. In the definition of h;, R; is a positive number, the
trust radius. Intuitively, it represents the radius of the region over which the
quadratic approximation (2.2) is valid. Choosing it properly is important for
the good behavior of the algorithm.

We provide convergence guarantees for this algorithm under the assump-
tion that Hess f is Lo-Lipschitz for some Ly > 0:

Vr,y,h € R", [[(Hess f(z) — Hess f(y))hl| < Loz — yl[ [|A]].

Theorem 2.4.2

Let € > 0 be fixed.
We run the trust-region algorithm as described above, with R; = ‘L/—f
for any t. We stop the algorithm if

IV f () + Hess f (1) hull

< Ve
| Fe]|

and return x;;q.
2 — f(zs
For any xy € R", the algorithm stops after at most O (W

iterations and the output @ fine is an approximate second-order critical
point, in the sense that

€
||vf(xfinal)|| N L_2 and  Amin (Hessf(xfinal)) 2 _\/E-

(The notation “<” means “smaller up to a moderate multiplicative
constant” and A, is the smallest eigenvalue.)

2.5 Example: phase retrieval

In the last part of this lecture, we give an example of a non-convex problem
where it turns out that all second-order critical points are global minimizers
and, moreover, it is possible to rigorously prove this fact. This example is
phase retrieval.

In phase retrieval, one wants to recover an unknown vector .. € C".
Some linear maps Ly, ..., L, : C* — C are fixed and one has access to

Y1 = ‘Ll(xtrue)‘> ey Ym = |Lm<xtrue)|-
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Here, the double bar, “ |.| ” denotes the standard complex modulus. This
problem is notably motivated by applications in imaging.

Since, for any a € R, k < m, |Lk(eio‘xtme)'\ = €| | Li,(Ztrue)| = | Li(Tirue)),
it is not possible to distinguish x.,e from € “xue, knowing only vy, ..., Ym.
However, when m > 4n, it is possible to prove that, for almost all linear
forms Ly, ..., Ly, Ty is uniquely determined by vy, ..., 4, up to multipli-
cation by some unitary complex number €. In this case, which algorithm
can recover Tipye!

Recovering x.. is equivalent to finding z € C" such that

|Li(z)] = y1, -y [ L (@) = Y-

The modulus is non-differentiable, but its square is, so it is simpler to rewrite
these equalities as

[Li@)* =i, L (@) =y,

An intuitive idea to find such an z is to minimize the square-norm error

between (|Li(z)|?, ..., |Ln(z)[?) and (y%,...,v2), that is
L(x) =Y (1Lu(@)P —57)".
k=1

The function £ is not convex. Therefore, attempting to minimize it with
a first or second-order algorithm may fail: the algorithm will typically find
a second-order critical point, but this critical point may not be the global
minimizer Tipqye-

Numerically, it can indeed happen that the algorithm returns a point
which is not close to x4.... However, when m is large enough compared to n
and the linear maps L1, ..., L,, are sufficiently “incoherent” with each other,
it empirically seems that “bad” critical points do not exist®.

This fact can be rigorously established, although under strong assump-
tions on L,...,L,,. Specifically, we assume that Li,..., L,, are generated
randomly and independently according to a normal distribution (that is, for
each k, the coordinates of L in the canonical basis are independent real-
izations of complex Gaussian variables with unit variance). We also assume
that

m > Cnlog®(n).

Sor, at least, are sufficiently rare so that a first or second-order algorithm does not find

them



2.5. EXAMPLE: PHASE RETRIEVAL 47

Theorem 2.5.1: Sun, Qu, Wright (2018)

Under the above assumptions, the second-order critical points of £
are exactly its global minimizers {€"“x..., @ € R}, with probability at
least 1 — %

As a consequence, in this setting, it is possible to recover xy.. by simply
running gradient descent on L, since Theorem 2.3.2 guarantees that gradient
descent converges to a second-order critical point for almost any initialization.

2.5.1 Exercise

In the exercise, for simplicity, we consider a real (and not complex, as pre-
sented above) phase retrieval problem:

recover z, € R” from | (z,,v1)|,..., | (s, V)| ?
Here, vy, ..., v, are known vectors in R™, “(.,.)” denotes the usual Euclidean
scalar product and “|.|” is the absolue value.
Observe that | (x.,vx) | = | (=24, vg) | for any k& = 1,...,m, hence re-

covery of x, is at best possible up to sign. This is the real counterpart to
the complex notion of “equality up to multiplication by a unitary complex
number”.

1. We define yy, = | (x4, vx) | for any k= 1,...,m and

L : R — R
o= S (o) — yR)%

Show that a vector x € R” is a global minimizer of £ if and only if

| (z,vp) | = | (@, vp) |, VE=1,...,m.

2. Show that £ is C* and that, for all x, h € R",

Vﬁ(x) = 4Z(<$,Uk>2 - yl%) <.’L‘, vk> Uk,

k=1

VEL(x) - (hyh) = 4 (3 (wvi)® = i) (hov)”.
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The goal of the exercise is to give an intuition as to why the second-order
critical points of £ are its global minimizers, provided that m is large enough
and vy, ..., v, are chosen at random (Theorem 2.5.1). A precise study of L
would be too long, and require tedious computations. Therefore, we will focus
on the much simpler object EL : R" — R, where “E” is the expectation with
respect to vy, ..., Un.

3. From now on, we assume that vy, ..., v,, are chosen at random accord-
ing to independent normal distributions (that is, each coordinate of
each vy is independently chosen according to the law A(0,1)).

Show that, for any x, h € R,

E(VL(x)) = 4m ((3[[x|]* — [Ja.|[*) @ — 2w, 2) 2) |
E(V2L(x) - (h,h)) = 4m (6 (z, h)* — 2 (., h)®
+l2]* = [l )IRI?) -

[Hint: you can admit that, for arbitrary a,b € R™ and any k,

E({(a,vi)? (b, vp) vp) = 2 {a, b) a + ||a||?b,
E({a, vx)” (b, 0)*) = 2 {a, b)" + |al [*[[b].

Do not treat 41, ...,y as constants: they depend on vy, ..., vp,.]

4. Assuming, for simplicity, x, # 0, compute the first and second-order
critical points of EL.

[Remark : for any z,h € R”, it holds V(EL)(z) = E(VL(z)) and
V2(EL)(z) - (h,h) = E(V?L(x) - (h,h)).]

Solution

1. For any = € R", L(x) > 0 (since it is a sum of squares). In addition,
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Consequently, min £ = 0 and, for any z € R",

x is a global minimizer of £

< L(z)=0
= 3 (e o) ) =0

k=1
— <£C,'Uk>2—y]%:0, Vk = ) , T
— <1’,Uk>::|:|<l'*,’l)k>|, VEk =1, , TN
= [(z, o) | = {zon) |, VE=1,...,m

2. The map L is polynomial in the coordinates of x. It is thus C*°.
Let us compute its derivatives. For any x € R", the gradient VL(x) is
the only vector such that

L(zx+w)=L(x)+ (VL(x),w) + o||w]]).
And, for any z, w,

(<$ + w, v;.c)2 — y,%)2

NE

L(x+w)=

b
Il
—

(@, 0)? — 47 + 2 (w, v08) (w, v) + o([w]]))’

[
NE

=
Il
—

[((z,00)* = 2)°

[
NE

e
Il
MR

4 (G, — 9) {o, ) v + o o]

= L(x)+4)_ ({&,v)? — 47) (2, vx) (w, vx) + o] |w]])

k=1

= L(z) + <4Z ((z, o) — ¥}) (z, ve) Ukaw> + o([|w]])-

k=1
We thus have
42 z, )% — yi) {2, vk) vk
k=1
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As to the Hessian at a point x € R", it is the only quadratic function such
that, for any [ € R"”,

(VL@@ + h),1) = (VL)1) + V2L(x) - (h,1) + o(|[A]])-

For any x, h, [,

(<ZE + h, Uk>2 — yz) <CL’ + h,Uk> <Uk, l>

NE

(VL(x + h),l) =4

b
Il
_

(¢, 00)” =y + 2 (2, ve) (B, on) + o(|R]1))

)

i
I

X ((x,vg) + (h,vg)) (Vg, 1)

(G2, ve)” = i) {2, v) v, 1)

1

k=1
+ (3 (0" = ) (hy k) (g, 1) | + o([[])
= )+ 4 (3,0 = i) (g, h) (v, ) + o([|A]]).
k=1
Consequently
VL — 433 ) — ) o) ()
k=1

which implies that, for any z, h,

V2L(x Z z, )% — y2) (h,ug)” .

k=1

Another possibility to solve the question would have been to compute the
partial derivatives. Indeed, we know that, for any z, h € R",

o (@)
VL(z) = : and  V2f( Z

o ()

8:1718:15 j
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3. For any x € R",

E(VL(x)) =4) E ((z,v:)° v) — 4 ZE (20, vk)? (0, vg) V)

Z3H$H2 —42 (@ w) o + [ P)
— s (Gl =l ) 2 = 2 (52 0.).
For any z,h € R,

m

E ((z,05)" (h,or)®) =4 "B ((@, ve)? (b, ve)?)

1 k=1

(2 (x, 1) + ||z 7I%)

H
[(\)
NE

E (V*L(z) - (h,h)) =

i

=12

NE

i

1

—42 (e, 1)+ ||z ?]181%)

= 4m (6 (x,h)” ~ <w*, h)* + (311> = [la- ] P)I[AI]%) -

4. We start with the first-order critical points. For any z € R", V(EL)(z) =
0 if and only if

Am ((3[)z|]* = ||z]|?) x — 2 (zs, ) 2,) = 0.
This happens if and only if
Bllz[1* = [l |* = (2., 2) = 0 (2.3)

or
2(z,, )

L.
Bl — [l

The set of vectors x satisfying Equation (2.3) is

el
V3
Additionally, a vector x satisfies Equation (2.4) if and only if it is colinear to

z, (that is, z = Az, for some A € R) and the colinearity factor A is such that
0 # 3|Az|* = [|z.][* = (3A* = Dl I”

Bllof[* = [lz.]]* #0 and = (2.4)

u € {z, )} ||ul| = 1}.
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and
ALy = X
B 2 (T4, A1)
3P = [ 2
2\
BEYVIEE

These two equations are equivalent to the following conditions:
1. 32 —1#0;
2. A= #’\_1, thatis A =0or 1 = 3)\%1, that is A € {—1,0, 1}.
Consequently, the set of vectors = which satisfy Equation (2.4) is
{—2.,0,2.}.
We have therefore shown that the set of first-order critical points of EL

1S
Mol e fea frull = 1V U {—a, 0,23
V3

A second-order critical point of EL is a point x such that

1. z is first-order critical;

2. V?EL(z) = 0.

Let us consider a first-order critical point z, and determine whether V2ZEL(z) =
0.

e First case: x = ch/glu for some unit-normed vector u orthogonal to x,.

2
- |I$*|I2> ||h||2>

V2EL(2) - (24, 7.) = —8m||x.|]* < 0.
Therefore, VZEL(x) # 0.

For any h,
V2EL(z) - (h, h)

—4m <6<H3%Hu,h>2 —2(x,, h)* + (3‘

=dm (2]z.]|* (u, h)> — 2 (2., 1)) .

[EAN

V3

In particular,
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e Second case: x = 0.

For any h,
VZEL(x) - (h,h) = —4m(2 (z,, h) + ||z.|[*||2]]?).
In particular,
V2EL(z) - (24, 2.) = —12]||2.|]* < 0.
Therefore, VZEL(z) # 0.

e Third case: x = +ux,.

For any h,
VIEL(x) - (h h) = 8m (2 {2, h)? + [fe. 1A%
This is a sum of squares, hence always nonnegative: VZEL(z) = 0.

The only second-order critical points are —z, and z,.
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