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1 Exercises

Exercise 1: linear inverse problems
Let d, m be positive integers, with d ≤ m. Let A ∈ Rm×d be a matrix. For a
given y ∈ Rm, we consider the inverse problem

find x ∈ Rd such that Ax = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
of orthogonal matrices U ∈ Rm×m, V ∈ Rd×d, and nonnegative numbers
λ1 ≥ · · · ≥ λd ∈ R+, such that

A = UDV,

with

D =


λ1 0 ... 0

0 λ2

...
... ... ...

λd
... 0

...
...

0 ... ... 0

 . (1)

This decomposition of A is called the singular value decomposition (SVD).
The numbers λ1, . . . , λd are the singular values. They are uniquely de-
fined.
a) Let v1 ∈ Rd be such that ||v1||2 = 1 and

||Av1||2 = max
v∈Rd,||v||2=1

||Av||2.

Then, let v2, . . . , vd be such that, for any k, vk ∈ Vect{v1, . . . , vk−1}⊥,
||vk||2 = 1, and

||Avk||2 = max
v∈Vect{v1,...,vk−1}⊥

||v||2=1

||Av||2.

Show that this definition is valid (i.e. that the maximums exist) and
that (v1, . . . , vd) is an orthonormal basis of Rd.
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b) Show that, for any k, k′ ∈ {1, . . . , d} with k ̸= k′, ⟨Avk, Avk′⟩ = 0.
[Hint: assume k < k′. Show that, from the definition of vk, it holds
for any θ ∈ R that ||A(cos(θ)vk + sin(θ)vk′)||2 ≤ ||Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to θ must be 0 at θ = 0.]

c) For any k = 1, . . . , d, let us set λk = ||Avk||2. Show that the λk are
nonnegative, and that λ1 ≥ λ2 ≥ · · · ≥ λd.

d) Show that there exists an orthonormal basis (u1, . . . , um) of Rm such
that

∀k ≤ d, Avk = λkuk.

e) Let D be defined as in Equation (1), U be the matrix whose columns
are u1, . . . , um, and V the matrix whose rows are v1, . . . , vd. Show that
U, V are orthogonal matrices, and

A = UDV.

f) Show that the singular values are uniquely defined: if Ũ , Ṽ , λ̃1, . . . , λ̃d

is another SVD of A, then λ̃k = λk for any k.
3. We assume that A, y satisfy the conditions of Question 1, and denote

x∗ the solution of Problem (Lin-inverse). For ϵ ∈ Rm such that y + ϵ
also satisfies the conditions of Question 1, we denote xϵ the solution of
Problem (Lin-inverse) when y is replaced with y + ϵ.
a) Assuming y ̸= 0, show that, for any ϵ,

||xϵ − x∗||2
||x∗||2

≤ λ1

λd

||ϵ||2
||y||2

.

b) Show that the inequality is tight (that is, it is not true anymore if λ1

λd

is replaced with a smaller constant).
c) Under which condition on λ1 and λd is Problem (Lin-inverse) stable?

Exercise 2: an example of linear inverse problem
Let d be a positive integer, and µ a positive real number.
For a given y ∈ Rd, we consider the inverse problem

find x ∈ Rd,

such that xi + µ

(
d∑

k=1

xk

)
= yi, ∀i ∈ {1, . . . , d}.
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1. Show that, for any y, the problem has exactly one solution.
2. For which values of µ can we say that the problem is stable?

Exercise 3 (2024 exam) We consider the problem

recover (x1, x2) ∈ R2

from y1
def
= x1

and y2
def
=

x2

1 + x2
1

.

Is reconstruction unique? Stable?

Exercise 4: intersection of convex sets
Let d ∈ N∗ be fixed. Let C1, . . . , CS ⊂ Rd be closed convex non-empty sets.
We consider the problem

find x ∈ Rd,

such that x ∈ Cs, ∀s ≤ S. (2)

For any s ≤ S, we denote Ps the projector onto Cs: for any z ∈ Rd, Ps(z) is
the point of Cs which is at minimal distance from z:

||Ps(z) − z||2 = min
a∈Cs

||a − z||2.

It is a classical result from convex analysis that Ps is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets Cs are sufficiently simple so that the corresponding projections can be
numerically computed.
The goal of the exercise is to present an algorithm to solve (2).
1. We consider any s ∈ {1, . . . , S}.

a) Show that, for all z ∈ Rd, a ∈ Cs,

⟨a − Ps(z), z − Ps(z)⟩ ≤ 0

b) Show that, for all z, z′ ∈ Rd,

⟨Ps(z
′) − Ps(z), z − z′ − Ps(z) + Ps(z

′)⟩ ≤ 0
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c) Show that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z
′)||22 + ||Ps(z) − Ps(z

′) − z + z′||22 ≤ ||z − z′||22.

d) Deduce from the previous question that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z
′)||2 ≤ ||z − z′||2,

and that the inequality is strict, unless Ps(z) − Ps(z
′) = z − z′.

The algorithm starts with an arbitrary initial point x0 ∈ Rd. It then com-
putes iteratively a sequence of iterates (xk)k∈N defined by

∀n ∈ N, ∀s ∈ {1, . . . , S}, xnS+s = Ps(xnS+(s−1)).

We assume that Problem (2) has at least one solution:

C1 ∩ C2 ∩ · · · ∩ CS ̸= ∅.

2. a) Show that, for any x∗ ∈ ∩s≤SCs, the sequence (||xk − x∗||2)k∈N is
non-increasing, hence that it converges. Let us call ℓ(x∗) ∈ R the
limit.

b) Show that (xkS)k∈N has a converging subsequence. We denote x∞ ∈ Rd

the limit.
c) Show that x∞ ∈ ∩s≤SCs.

[Hint: show that P1(x∞) is a limit point of (xkS+1)k∈N, then that, for
any x∗ ∈ ∩s≤SCs,

||x∞ − x∗||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

Using Question 1.d), show that x∞ ∈ C1. Iterate the reasoning to
show that x∞ ∈ Cs for any s ≤ S.]

d) Show that xk
k→+∞−→ x∞.

Exercise 5: real phase retrieval
This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex, as in class) coordinates.
A real phase retrieval problem is any problem of the form

find x ∈ Rd
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such that | ⟨x, vs⟩ | = ys, ∀s ≤ m, (Real-PR)

where v1, . . . , vm is a known family of vectors in Rd, y1, . . . , ym are given and
“|.|” denotes the absolute value.
Since multiplication by −1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by −1.
We say that a family of vectors (v1, . . . , vm) satisfies the complement property
if, for any S ⊂ {1, . . . , m},

Vect{vs}s∈S = Rd or Vect{vs}s/∈S = Rd.

1. In this question, we show that (v1, . . . , vm) satisfies the complement
property if and only if, for any y1, . . . , ym, the solution of Problem
(Real-PR) (when it exists) is unique.
a) Let us assume that (v1, . . . , vm) satisfies the complement property.

Let y1, . . . , ym be any numbers. Let x, x′ ∈ Rd be such that, for any
s ≤ m,

| ⟨x, vs⟩ | = ys = | ⟨x′, vs⟩ |.

Show that x = x′ or x = −x′.
[Hint: apply the complement property for S = {s, ⟨x, vs⟩ = ⟨x′, vs⟩}.]

b) Let us assume that (v1, . . . , vm) does not satisfy the complement prop-
erty. Show the existence of z1, z2 ∈ Rd \ {0} such that

∀s ≤ m, ⟨z1, vs⟩ = 0 or ⟨z2, vs⟩ = 0.

c) Define x = z1 + z2, x′ = z1 − z2 and show that Problem (Real-PR)
may have a non-unique solution.

2. a) Show that, if (Real-PR) has a unique solution for any y1, . . . , ym, then
m ≥ 2d − 1.

b) Conversely, we assume that m ≥ 2d − 1. Show that, for almost any
(v1, . . . , vm) ∈ (Rd)m, Problem (Real-PR) has a unique solution for
any y1, . . . , ym.

3. Provide an explicit example of a family (v1, v2, v3) ∈ (R2)3 and of a
family (v1, v2, v3, v4, v5) ∈ (R3)5 for which Problem (Real-PR) has a
unique solution for any y1, . . . , ym.
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Exercise 6: correctness guarantees for Basis Pursuit
Let d, m, k be positive integers. For some matrix A ∈ Rm×d, we consider the
problem

minimize ||x||1
for x ∈ Rd (Basis Pursuit)

such that Ax = y.

We assume that the 4k-restricted isometry constant of A satisfies

δ4k <
1

4
.

Let x∗ be any vector with at most k non-zero coordinates. We consider
Problem (Basis Pursuit) for y = Ax∗. Let xBP be any solution. The goal of
the exercise is to show that, necessarily,

xBP = x∗.

1. We define

h = xBP − x∗,

T∗ = {i, x∗i ̸= 0}.

Show that
||hT c

∗ ||1 ≤ ||hT∗ ||1.

(For any vector z ∈ Rd and E ⊂ {1, . . . , d}, zE is the vector obtained
from z by setting to 0 all coordinates corresponding to indices outside
E.)

2. Up to permuting the coordinates of x∗, xBP and the columns of A, we
can assume that

T∗ = {1, 2, . . . ,Card(T∗)}

and the coordinates of h are non-increasing, in absolute value, outside
T∗:

|hCard(T∗)+1| ≥ |hCard(T∗)+2| ≥ ... ≥ |hd|.

Let us partition {Card(T∗) + 1, . . . , d} into sets T1, T2, . . . , TL of size 3k:

T1 = {Card(T∗) + 1, . . . ,Card(T∗) + 3k},
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T2 = {Card(T∗) + 3k + 1, . . . ,Card(T∗) + 6k},

. . .

TL = {Card(T∗) + 3(L − 1)k + 1, . . . , d}.

a) Show that, for any l ∈ {2, . . . , L},

||hTl
||22 ≤

||hTl−1
||21

3k
.

[Hint: for each s ∈ Tl, show that |hs| ≤ ||hTl−1
||1

3k
.]

b) Show that
L∑

l=2

||hTl
||2 ≤ ||hT∗||1√

3k
.

c) Deduce from the last question that

L∑
l=2

||hTl
||2 ≤ ||hT∗||2√

3
.

3. a) Show that Ah = 0.
b) Show that

||Ah||2 ≥ (1 − δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑

l=2

||hTl
||2.

c) Conclude.

Exercise 7: guarantees for nuclear norm minimization
Let d1, d2, m, r be positive integers. For some linear operator L : Rd1×d2 →
Rm, we consider the problem

minimize ||X||∗
for X ∈ Rd1×d2 (Nuclear-min)

such that L(X) = y.

We assume that the 5r-restricted isometry constant of L satisfies

δ5r <
1

10
.
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Let X∗ be a matrix with rank at most r. Let XNM be a solution of Problem
(Nuclear-min) with y = L(X∗). The goal of the exercise is to show that

XNM = X∗.

To simplify notation, we assume d1 ≥ d2. If we multiply the matrices to
the left and to the right by suitably chosen orthogonal matrices (the inverse
of the orthogonal matrices of the SVD of X∗), we can assume that X∗ is
diagonal:

X∗ =


λ1 0 ... 0

0 λ2

...
... ... ...

λd2
... 0

...
...

0 ... ... 0

 ,

with the λs are nonnegative and ordered: λ1 ≥ λ2 ≥ ... ≥ λd2 ≥ 0.
1. Show that λr+1 = · · · = λd2 = 0.

We set H = XNM − X∗ and write its block decomposition

H =

(
H11 H12 ↕ r

H21 H22 ↕ d1 − r

)r d2−r

.

We set
H0 =

(
H11 H12

H21 0

)
and Hc =

(
0 0
0 H22

)
.

We assume that H22 is diagonal, with nonnegative ordered diagonal entries.
(This is only for simplicity. In the general case, the same reasoning is valid; it
suffices to add at the right place multiplications by the orthogonal matrices
appearing in the SVD of H22.)

H22 =


µ1 0 ... 0

0 µ2

...
... ... ...

µd2−r

... 0
...

...
0 ... ... 0

 , with µ1 ≥ · · · ≥ µd2−r ≥ 0.

We define matrices Hc,1, . . . , Hc,L such that, for any l, Hc,l is equal to Hc,
except that coefficients µs have been replaced with 0 for all

s /∈ {3(l − 1)r + 1, . . . , 3lr}.
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With this definition, Hc,1, . . . , Hc,L are a sequence of diagonal matrices, such
that

Hc =
L∑

l=1

Hc,l.

2. Show that
||H0||∗ ≥ ||Hc||∗.

[Hint: ||X∗ + Hc||∗ = ||X∗||∗ + ||Hc||∗.]
3. a) Following the reasoning of the previous exercise, show that

L∑
l=2

||Hc,l||F ≤ ||H0||∗√
3r

.

b) Show that rank(H0) ≤ 2r and

||H0||∗ ≤
√
2r||H0||F .

c) Deduce that
L∑

l=2

||Hc,l||F ≤
√

2

3
||H0||F .

4. a) Show that

||L(H)||2 ≥ (1 − δ5r)||H0 + Hc,1||F − (1 + δ5r)
L∑

l=2

||Hc,l||F .

.
b) Conclude.
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Exercise 8: Prony’s method for super-resolution
Let S ∈ N∗ be fixed. We want to recover a measure

µ0 =
S∑

s=1

asδτs ,

where a1, . . . , aS are non-zero complex numbers, and τ1, . . . , τS are distinct
elements of [0; 1[. We assume that we have access to its 2S lowest-frequency
Fourier coefficients:

µ̂0[k] =

∫ 1

0

e−2πiktdµ(t) =
S∑

s=1

ase
−2πikτs , for k = −(S − 1), . . . , S.

In this exercise, we present a purely non-convex algorithm to perform the
reconstruction, called Prony’s method.
1. Show that there exists a unique polynomial P with degree S and leading

coefficient equal to 1 such that

P
(
e2πiτs

)
= 0, ∀s = 1, . . . , S

Express it as a function of τ1, . . . , τS.
2. Let P be the polynomial defined in the previous question. We call

p0, . . . , pS ∈ C its coefficients:

P (X) =
S∑

s=0

psX
s.

The goal is to show that p
def
=

( p0
...

pS

)
is the unique (up to scalar multi-

plication) element in the kernel of

M
def
=


µ̂0[−(S − 1)] µ̂0[−(S − 2)] . . . µ̂0[1]

µ̂0[−(S − 2)] µ̂0[−(S − 3)] . . . µ̂0[2]
...

...
µ̂0[0] µ̂0[1] . . . µ̂0[S]

 .

a) Show that p ∈ Ker(M).
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b) We now prove uniqueness. Let q =

( q0
...

qS

)
be in Ker(M). We define

Q(X) =
S∑

s=0

qsX
s.

Show that, for any d = 0, . . . , S − 1,

S∑
s=1

e−2πidτsasQ
(
e2πiτs

)
= 0.

c) Deduce from the previous question that q = λp for some λ ∈ C.
[Hint: use the fact that the so-called Vandermonde matrix

1 1 . . . 1
e−2πiτ1 e−2πiτ2 . . . e−2πiτS

...
...

e−2πi(S−1)τ1 e−2πi(S−1)τ2 . . . e−2πi(S−1)τS


is invertible.]

3. Using the previous question, propose an algorithm to recover µ0.
Compared to the total variation approach seen in class, this algorithm is much
simpler. In addition, it succeeds whatever the values of a1, . . . , aS, τ1, . . . , τS.
However, it is difficult to use as such in practice, since it is very sensitive
to noise, and therefore requires a high precision on the measures µ̂0[k]. In
addition, it cannot handle some natural generalizations of the problem, like
the case where some Fourier measurements are missing.

Exercise 9: super-resolution as a semidefinite program
In this exercise, we discuss one method for solving the total variation mini-
mization problem

minimize ||µ||T V

for µ ∈ M([0; 1[), (Min TV)
such that µ̂[k] = yk, ∀k = −N, . . . , N.

In the lecture, we have introduced the dual of (Min TV):

maximize Re ⟨z, y⟩
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for z ∈ C2N+1 (Dual TV)

such that

∣∣∣∣∣
N∑

k=−N

zke2πikt

∣∣∣∣∣ ≤ 1, ∀t ∈ R.

We have said that both problems have the same optimal value, and (more or
less) that the minimizers of (Min TV) can be recovered from the maximizers
of (Dual TV). We can therefore focus on solving (Dual TV), which is a
convex problem with an infinite number of constraints.
We admit the following result.

Theorem 1 : Fejér-Riesz

Let P (e2πit) =
∑2N

k=−2N pke2πikt be a trigonometric polynomial with
degree at most 2N . The following two properties are equivalent.

1. P has real nonnegative values on the unit circle (that is,
P (e2πit) ∈ R+ for all t ∈ R).

2. There exists a finite number of trigonometric polynomials
Q1, . . . , Qn, each with degree at most N , such that P (e2πit) =∑n

k=1 |Qk (e
2πit)|2.

1. Let z ∈ C2N+1 be any vector. Show that
∣∣∣∑N

k=−N zke2πikt
∣∣∣ ≤ 1 for

all t ∈ R if and only if there exists a finite number of trigonometric
polynomials P1, . . . , Pn with degree at most N such that∣∣∣∣∣

N∑
k=−N

zke2πikt

∣∣∣∣∣
2

+
n∑

l=1

∣∣Pl

(
e2πit

)∣∣2 = 1, ∀t ∈ R. (3)

2. Let P1, . . . , Pn be trigonometric polynomials with degree at most N . Let
p(1), . . . , p(n) ∈ C2N+1 be the vectors of their coefficients:

Pl

(
e2πit

)
=

N∑
k=−N

p
(l)
k e2πikt.

Show that the polynomials satisfy Equality (3) if and only if the ma-
trix A = zz∗ +

∑n
l=1 p(l)p(l)∗ ∈ C(2N+1)×(2N+1) satisfies, for all d =
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−2N, . . . , 2N ,

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 if d ̸= 0

= 1 if d = 0.

3. Show that a matrix A ∈ C(2N+1)×(2N+1) can be written as A = zz∗ +∑n
l=1 p(l)p(l)∗ for some vectors p(1), . . . , p(n) ∈ C2N+1 if and only if A −

zz∗ ⪰ 0.
4. Show that a matrix A ∈ C(2N+1)×(2N+1) satisfies the inequality A−zz∗ ⪰

0 if and only if 
z−N

...
zN

z−N . . . zN 1

A

 ⪰ 0.

5. Deduce from the previous questions that Problem (Dual TV) is equiva-
lent to

maximize Re ⟨z, y⟩
over all z ∈ C2N+1, A ∈ C(2N+1)×(2N+1)

such that
2N+1−max(0,−d)∑

k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},

2N+1∑
k=1

Ak,k = 1,

and


1

A z

z∗

 ⪰ 0,

which is a classical (finite-dimensional) semidefinite optimization prob-
lem.

Exercise 10 (2024 exam)
Let d, k, m ∈ N∗ be fixed, with k ≪ d.
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For any E ⊂ {1, . . . , d}, we define eE ∈ Rd the vector such that

(eE)i = 1, ∀i ∈ E,

(eE)i = −1, ∀i ∈ {1, . . . , d} \ E.

We say that a vector x ∈ Rd is k-regular if there exist E1, . . . , Ek ⊂ {1, . . . , d}
and s1, . . . , sk ∈ R such that

x = s1eE1 + · · · + skeEk
.

Let Ek ⊂ Rd be the set of k-regular vectors.
For given A ∈ Rm×d, y ∈ Rm, we consider the problem

recover x ∈ Rd

knowing that x ∈ Ek, (Regular)
and Ax = y.

1. Is this problem convex or non-convex?
2. Show that the extremal points of {x ∈ Rd, ||x||∞ ≤ 1} are the vectors

eE, for all E ⊂ {1, . . . , d}.
3. Propose a convex relaxation for Problem (Regular).
4. In the context of Problem (Regular), propose a reasonable notion of

k-restricted isometry constant for the matrix A.
5. a) Compute the dual problem to your convex relaxation.

b) In this question, we assume k = 1 and y ̸= 0. Let x0 be the (unknown)
solution of Problem (Regular) (that is, a 1-regular vector such that
Ax0 = y). Let us assume that there exists c ∈ Rm such that

||AT c||1 = 1

and (AT c)i > 0, ∀i ≤ d such that (x0)i = ||x0||∞,

(AT c)i < 0, ∀i ≤ d such that (x0)i = −||x0||∞.

Using the dual certificate strategy, show that x0 is the unique mini-
mizer of your convex relaxation.

[Remark: actually, for k > 1, and even for many ground truths when k = 1,
this relaxation is most often not tight. The goal of the exercise is to get more
familiarity with the notions of convex relaxations and dual certificates; the
considered convex relaxation is not interesting per se.]

16



Exercise 11: alternating projections for phase retrieval
We consider a generic phase retrieval problem:

find x ∈ Cd

such that |Ls(x)| = ys, ∀s ≤ m, (PR)

where L1, . . . , Lm : Cd → C are known linear maps, and y1, . . . , ym ∈ R+ are
given.
We define A : x ∈ Cd → (Ls(x))s=1,...,m ∈ Cm and

E = {h ∈ Cm such that |hs| = ys, ∀s = 1, . . . , m} .

1. a) Show that, if x is a solution of (PR), then A(x) is a solution of the
following problem:

find z ∈ Range (A) ∩ E . (Set intersection)

b) Conversely, show that, if z is a solution of (Set intersection), then
z = A(x) for some solution x of (PR).

This shows that, to solve Problem (PR), it suffices to solve (Set intersection).
2. Give the explicit expression of a function projE : Cm → Cm such that,

∀z ∈ Cm, projE(z) ∈ argminh∈E ||h − z||2.

We call projE a projection onto E .
We define projRange(A) the standard orthogonal projection onto Range(A).
The alternating projections algorithm, introduced in [Gerchberg and Sax-
ton, 1972], addresses Problem (Set intersection) as follows: it starts at an
arbitrary point z0 ∈ Cm, and iteratively defines, for all t ∈ N,

zt+1 = projRange(A) ◦ projE(zt).

3. Show that the sequence of iterates (zt)t∈N is bounded and satisfies

||projE(zt+1) − zt+1||2 ≤ ||projE(zt) − zt||2, ∀t ∈ N∗.

This property does not guarantee that (zt)t∈N converges towards a solution of
(Set intersection) and, indeed, convergence does not always occur. However,
it occurs sufficiently often so that alternating projections are one of the most
standard phase retrieval algorithms.
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Exercise 12: rank 1 approximation (local convergence)
This exercise and the next one are inspired by [Chi, Lu, and Chen, 2019].
Let M ∈ Rd×d be a positive semidefinite matrix. We consider the problem
of finding the rank 1 matrix which best approximates M in Frobenius norm.
As any semidefinite matrix with rank at most 1 can be written as xxT for
some vector x ∈ Rd, this amounts to finding a minimizer of

f : x ∈ Rd → 1

4
||xxT − M ||2F .

(The constant 1
4

is only here to make formulas slightly nicer.)
1. Let λ1, λ2, . . . , λd ≥ 0 be the eigenvalues of M , sorted in nonincreasing

order. We assume that 1 = λ1 > λ2.
Let (u1, . . . , ud) be an orthonormal basis of eigenvectors.
a) Show that, for any x, f(x) = 1

4
(||x||42 − 2 ⟨x, Mx⟩ + ||M ||2F ).

b) Show that f has at least one minimizer.
c) Show that, for all x ∈ Rd,

∇f(x) = ||x||22x − Mx.

d) Show that the minimizers of f are u1 and −u1.
We imagine that we run gradient descent on f , with stepsize τ ≤ 1

2
, starting

at a point x0 ∈ Rd such that

||x0 − u1||2 <
1 − λ2

7
.

It yields a sequence of iterates (xt)t∈N. We are going to show that it converges
to u1 exponentially fast, more precisely that, for all t ∈ N,

||xt − u1||2 ≤
(
1 − (1 − λ2)τ

2

)t

||x0 − u1||2. (4)

For all t, we define αt ∈ R, vt ∈ Rd such that

xt = αtu1 + vt and vt ∈ Vect{u2, . . . , ud}.

2. For any t, express ||xt − u1||2 as a function of |αt − 1| and ||vt||2.
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3. a) Show that, for any t,

αt+1 = (1 + τ)αt − τα3
t − ταt||vt||22;

vt+1 = (1 − τ(α2
t + ||vt||22))vt + τMvt.

b) Show that the first of these equalities is equivalent to

αt+1 − 1 = (1 − ταt(αt + 1)) (αt − 1) − ταt||vt||22.

From now on, we assume that Inequality (4) is true up to some step t.
4. Show that 1 −

(
1−λ2

7

)
≤ αt ≤ 1 +

(
1−λ2

7

)
and ||vt||2 ≤ 1−λ2

7
.

5. Using Question 3.b), show that

|αt+1 − 1| ≤
(
1 − 5

7
(1 − λ2)τ

)
|αt − 1| + 8

49
(1 − λ2)τ ||vt||2.

6. a) Using Question 3.a), show that

||vt+1||2 ≤ (1 − τ(α2
t + ||vt||22 − λ2))||vt||2.

[Hint: decompose vt onto the orthogonal basis (u1, . . . , ud).]
b) Show that 0 ≤ 1 − τ(α2

t + ||vt||22 − λ2) ≤ 1 − 5
7
(1 − λ2)τ .

7. a) Combine Questions 5 and 6 and show that√
|αt+1 − 1|2 + ||vt+1||22 ≤

(
1 − (1 − λ2)τ

2

)√
|αt − 1|2 + ||vt||22.

b) Conclude.

Exercise 13: rank 1 approximation (global convergence)
We keep the notation of the previous exercise. In particular, we still consider
the function

f : x ∈ Rd → 1

4
||xxT − M ||2F ,

and still assume that 1 = λ1 > λ2.
1. Show that, for any x ∈ Rd,

Hessf(x) = ||x||22Id + 2xxT − M.
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2. a) Compute the first-order critical points of f .
b) Compute the second-order critical points of f .

3. Show that, for almost any x0, if we choose a small enough stepsize, the
sequence of gradient descent iterates converges to a minimizer of f .
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2 Answers

Answer of Exercise 1
1. Problem (Lin-inverse) has at least one solution if and only if y ∈ Range(A).

This solution, which we denote x∗, is unique if the set

{x ∈ Rd such that Ax = Ax∗} = {x∗ + h, h ∈ Ker(A)}

is the singleton {x∗}. This happens if and only if A is injective (that is
Ker(A) = {0}).

2. a) The application v ∈ Rd → ||Av||2 ∈ R is continuous. The unit sphere
of Rd is compact. Therefore, the maximum

max
v∈Rd,||v||2=1

||Av||2

exists (i.e. there is a vector v1 at which the maximum is attained).
Similarly, for any k ∈ {2, . . . , d}, the set

{v ∈ Vect{v1, . . . , vk−1}⊥, |||v||2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v ∈ Rd → ||Av||2 ∈ R is still continuous. Therefore,
the maximum in the definition of vk exists.
From the definition, the family (v1, . . . , vd) contains d vectors of Rd,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k′ ∈ {1, . . . , d} be such that k ̸= k′. We can assume that k < k′.
Let us show that

⟨Avk, Avk′⟩ = 0.

From the definition of vk′ ,

vk′ ∈ Vect{v1, . . . , vk′−1}⊥ ⊂ Vect{vk}⊥ ⇒ ⟨vk′ , vk⟩ = 0.

As a consequence, for any θ ∈ R,

|| cos(θ)vk + sin(θ)vk′||2 =
√
cos2(θ)||vk||22 + sin2(θ)||vk′ ||22 = 1. (5)

In addition, vk is in Vect{v1, . . . , vk−1}⊥ and vk′ is in Vect{v1, . . . , vk′−1}⊥ ⊂
Vect{v1, . . . , vk−1}⊥, so

cos(θ)vk + sin(θ)vk′ ∈ Vect{v1, . . . , vk−1}⊥. (6)
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Equations (5) and (6), together with the definition of vk, imply:

||A (cos(θ)vk + sin(θ)vk′) ||2 ≤ ||Avk||2, ∀θ ∈ R.

We raise this inequality to the square: for all θ ∈ R,

||A (cos(θ)vk + sin(θ)vk′) ||22
= cos2(θ)||Avk||22 + 2 sin(θ) cos(θ) ⟨Avk, Avk′⟩ + sin2(θ)||Avk′||22
≤ ||Avk||22.

This means that the map θ → cos2(θ)||Avk||22+2 sin(θ) cos(θ) ⟨Avk, Avk′⟩+
sin2(θ)||Avk′||22 reaches its maximum at θ = 0. In particular, its deriva-
tive at 0 must be 0:

0 = −2 cos(0) sin(0)||Avk||22 + 2(cos2(0) − sin2(0)) ⟨Avk, Avk′⟩
+ 2 sin(0) cos(0)||Avk′ ||22

= 2 ⟨Avk, Avk′⟩ .

Therefore, ⟨Avk, Avk′⟩ = 0.
c) The λk are nonnegative because a norm is always nonnegative. To

show that (λ1, . . . , λd) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k′ ∈ {1, . . . , d}
with k < k′, we have seen that vk′ belongs to Vect{v1, . . . , vk−1}⊥, and
||vk′||2 = 1. Hence, from the definition of vk,

λk = ||Avk||2 ≥ ||Avk′||2 = λk′ .

d) Let D be the smallest index such that λD = 0 (it is possible that
λk ̸= 0 for all k ≤ d, in which case we set D = d + 1).
For any k = 1, . . . , D − 1, we set

uk =
Avk

||Avk||
=

Avk

λk

.

This is an orthonormal family of Rm: for any k < D, ||uk|| = 1, and
for any k, k′ < D with k ̸= k′, it holds

⟨uk, uk′⟩ = ⟨Avk, Avk′⟩
λkλk′

= 0

from Question 2.b). We define uD, . . . , um so that (u1, . . . , um) is an
orthonormal basis of Rm.
For any k < D, we have Avk = λkuk by construction. And for any
k = D, ..., d, since λk = ||Avk|| = 0, it also holds Avk = 0 = λkuk.
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e) The matrices U, V are orthogonal because their columns (resp. rows,
for V ) form an orthonormal basis of Rm (resp. Rd).
The equation

∀k ≤ d, Avk = λkuk

reads, in matricial form,

A
(
v1 . . . vd

)
=
(
u1 . . . um

)


λ1 0 ... 0

0 λ2

...
... ... ...

λd
... 0

...
...

0 ... ... 0

 ,

which is equivalent to
AV T = UD,

which is in turn equivalent, since V T V = V V T = Id, to

A = UDV.

f) Let Ũ , Ṽ , λ̃1, . . . , λ̃d be another SVD of A. Let us denote

D̃ =



λ̃1 0 ... 0

0 λ̃2

...
... ... ...

λ̃d
... 0

...
...

0 ... ... 0

 .

From the definition of the SVD,

A = UDV = ŨD̃Ṽ

⇒ AT A = V T DT DV = Ṽ T D̃T D̃Ṽ .

The matrix DT D is diagonal, with coefficients on the diagonal λ2
1, . . . , λ2

d.
The matrices V and V T are inverse one from each other, since V is an
orthogonal matrix. As a consequence, V T (DT D)V is the eigenvector
decomposition of AT A and λ2

1, . . . , λ2
d are the eigenvalues of AT A.

For the same reason, λ̃2
1, . . . , λ̃2

d are the eigenvalues of AT A. Since the
eigenvalues of a matrix are uniquely defined and λ2

1, . . . , λ2
d as well as
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λ̃2
1, . . . , λ̃2

d are ordered (they are non-increasing sequences), we must
have

λ2
1 = λ̃2

1, . . . , λ2
d = λ̃2

d,

which implies, since the λk and λ̃k are nonnegative,

λ1 = λ̃1, . . . , λd = λ̃d,

3. a) We assume that A, y and A, y+ ϵ satisfy the conditions of Question 1,
that is A is injective, and y, y + ϵ belong to Range(A).
We consider the SVD of A, as in Question 2. We observe that λ1 ̸=
0, . . . , λd ̸= 0, otherwise D would not be injective, and A would not
be either.
We have

UDV x∗ = Ax∗ = y and UDV xϵ = Axϵ = y + ϵ,

⇒ D(V x∗) = UT y and D(V xϵ) = UT (y + ϵ) = UT y + UT ϵ.
(7)

We respectively denote (xV,k)k≤d, (x
(ϵ)
V,k)k≤d, (yU,k)k≤m and (ϵU,k)k≤m

the coordinates of V x∗, V xϵ, UT y and UT ϵ. From Equation (7), for
all k ≤ d,

λkxV,k = yU,k and λkx
(ϵ)
V,k = yU,k + ϵU,k,

⇒ xV,k =
yU,k

λk

and x
(ϵ)
V,k =

yU,k

λk

+
ϵU,k

λk

and, for all k = d + 1, . . . , m,

yU,k = ϵU,k = 0.

From these equalities we deduce

||V x∗||2 =

(
d∑

k=1

x2
V,k

)1/2

=

(
d∑

k=1

y2
U,k

λ2
k

)1/2

≥

(
d∑

k=1

y2
U,k

λ2
1

)1/2

=
1

λ1

(
m∑

k=1

y2
U,k

)1/2

=
||UT y||2

λ1
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and

||V (x∗ − xϵ)||2 =

(
d∑

k=1

(
xV,k − x

(ϵ)
V,k

)2)1/2

=

(
d∑

k=1

ϵ2U,k

λ2
k

)1/2

≤

(
d∑

k=1

ϵ2U,k

λ2
d

)1/2

=
1

λd

(
m∑

k=1

ϵ2U,k

)1/2

=
||UT ϵ||2

λd

.

Therefore,
||V (x∗ − xϵ)||2

||V x∗||2
≤ λ1

λd

||UT ϵ||2
||UT y||2

and, since V, U are orthogonal matrices, hence preserve the norm of
vectors,

||x∗ − xϵ||2
||x∗||2

≤ λ1

λd

||ϵ||2
||y||2

.

b) Let us consider the following y and ϵ:

y = Ue1, ϵ = Ued,

where e1, ed respectively denote the first and d-th vector in the canon-
ical basis of Rm. Then

x∗ =
1

λ1

V T ẽ1, xϵ =
1

λ1

V T ẽ1 +
1

λd

V T ẽd,

where ẽ1, ẽd respectively denote the first and d-th vector in the canon-
ical basis of Rd. Therefore,

||x∗ − xϵ||2
||x∗||2

=
λ1

λd

||V T ẽd||2
||V T ẽ1||2

=
λ1

λd

=
λ1

λd

||ϵ||2
||y||2

.

c) The inverse problem is stable if λ1

λd
is of order 1 (say ≤ 10).
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Answer of Exercise 2
1. We are exactly in the same setting as the previous exercise, with

A =


1 µ . . . µ
µ 1 . . .
... . . . ...
µ . . . 1

 .

According to Question 1 of the previous exercise, we must show that A
is injective and surjective. Given that A is square, it is enough to show
that A is injective.
To show that A is injective, we consider z ∈ Ker(A) and show that,
necessarily, z = 0. From the definition of the kernel,

zi + µ

(
d∑

k=1

zk

)
= 0, ∀i ∈ {1, . . . , d}.

Therefore, all coordinates of z are equal:

z1 = z2 = · · · = zd = −µ

(
d∑

k=1

zk

)
.

We plug this into the first equation:

(1 + dµ)z1 = 0.

Since µ > 0, we must have z1 = 0, and therefore z2 = · · · = zd = 0, that
is z = 0.

2. Following the previous exercise, we compute the singular value decom-
position of A. As A is a symmetric matrix, its singular values are the
absolute values of its eigenvalues. Let us compute the eigenvalues.
Let for the moment λ ∈ R be any eigenvalue, and let z be an associated
eigenvector. From the definition of A,

zi + µ

(
d∑

k=1

zk

)
= λzi, ∀i ∈ {1, . . . , d}.
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Therefore, if λ ̸= 1, it holds

z1 = z2 = · · · = zd =
µ

λ − 1

(
d∑

k=1

zk

)
,

which means that z is a constant vector.
Conversely, if z is a constant vector, we see that it is an eigenvector,
with eigenvalue 1 + dµ.
Since the set of constant vectors has dimension 1, we conclude that
there is exactly one eigenvalue different from 1, which is 1+ dµ and has
multiplicity 1.
Since A are d eigenvalues (when counted with multiplicity), the only
other eigenvalue is 1, with multiplicity d − 1.
The eigenvalues are nonnegative, so they are the same as the singular
values.
From the previous exercise, the inverse problem is stable if the ratio
between that largest and smallest singular values is of order 1, that is if
1 + dµ is of order 1. In other words, reconstruction is stable when µ is
at most of order 1

d
.

Answer of Exercise 3
[Caution: this is a non-linear inverse problem. Therefore, it cannot be ana-
lyzed using the results on linear inverse problems.]

Reconstruction is unique: for any (x1, x2) ∈ R2 and associated measurements
(y1, y2), it holds (x1, x2) = (y1, (1 + y2

1)y2). Therefore, the measurements
(y1, y2) uniquely determine (x1, x2).
Reconstruction is not stable. Indeed, for any ϵ > 0, there exist pairs (x1, x2)
and (x′

1, x′
2), with associated measurements (y1, y2), (y

′
1, y′

2) such that

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

≤ ϵ
||(x1, x2) − (x′

1, x′
2)||2

||(x1, x2)||2
.

To show it, we can consider the pairs (x1, x2) = (t, t) and (x′
1, x′

2) = (t, 0),
for some t > 0 to be defined later. Then

||(x1, x2) − (x′
1, x′

2)||2
||(x1, x2)||2

=
t√
2t

=
1√
2
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while

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

=
t

1+t2

t
√

1 + 1
(1+t2)2

=
1

(1 + t2)
√

1 + 1
(1+t2)2

≤ 1

t2
.

Consequently, if t ≥ 21/4

ϵ1/2 , it holds

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

≤ ϵ
||(x1, x2) − (x′

1, x′
2)||2

||(x1, x2)||2
.

Answer of Exercise 4
1. a) Let z ∈ Rd, a ∈ Cs be fixed. For any ϵ ∈ [0; 1], the vector

(1 − ϵ)Ps(z) + ϵa

belongs to Cs, since Ps(z) and a belong to Cs and Cs is convex. There-
fore, from the definition of the projection,

||Ps(z) − z||22 ≤ ||(1 − ϵ)Ps(z) + ϵa − z||2

= ||Ps(z) − z||2 − ϵ ⟨a − Ps(z), z − Ps(z)⟩
+ ϵ2||a − Ps(z)||22.

Therefore, for any ϵ ∈]0; 1],

⟨a − Ps(z), z − Ps(z)⟩ ≤ ϵ||a − Ps(z)||22.

If we let ϵ go to 0, we get that ⟨a − Ps(z), z − Ps(z)⟩ ≤ 0.
b) Let z, z′ ∈ Rd be fixed. We apply the previous question to a = Ps(z

′),
then to a = Ps(z):

⟨Ps(z
′) − Ps(z), z − Ps(z)⟩ ≤ 0,

⟨Ps(z) − Ps(z
′), z′ − Ps(z

′)⟩ ≤ 0.

We sum the two inequalities and get the desired result.
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c) Let z, z′ ∈ Rd be fixed.

||Ps(z) − Ps(z
′)||22 + ||Ps(z) − Ps(z

′) − z + z′||22
= ||z − z′||22 + 2||Ps(z) − Ps(z

′)||22 + 2 ⟨Ps(z) − Ps(z
′), z′ − z⟩

= ||z − z′||22 + 2 ⟨Ps(z
′) − Ps(z), z − z′ − Ps(z) + Ps(z

′)⟩
≤ ||z − z′||22.

The last inequality is a consequence of Question 1.b).
d) For all z, z′ ∈ Rd, from the previous question, since ||Ps(z) − Ps(z

′) −
z + z′||22 ≥ 0, we must have

||Ps(z) − Ps(z
′)||22 ≤ ||z − z′||22,

hence ||Ps(z) − Ps(z
′)||2 ≤ ||z − z′||2. In addition, if the inequality

is not strict, it must hold ||Ps(z) − Ps(z
′) − z + z′||22 = 0, so that

Ps(z) − Ps(z
′) − z + z′ = 0, hence Ps(z) − Ps(z

′) = z − z′.
2. a) Let k ∈ N be fixed. Let n ∈ N, s ∈ {1, . . . , S} be such that k =

nS + (s − 1). Then xk+1 = xnS+s = Ps(xk). In addition, x∗ = Ps(x∗)
because x∗ is in Cs, so

||xk+1 − x∗||2 = ||Ps(xk) − Ps(x∗)||2 ≤ ||xk − x∗||2.

The last inequality is true from Question 1.d). The sequence is there-
fore nonincreasing. It has a limit as any nonnegative nonincreasing
sequence of real numbers has a limit.

b) The sequence (xkS)k∈N is bounded: for any k,

||xkS||2 ≤ ||x∗||2 + ||xkS − x∗||2
≤ ||x∗||2 + ||x0 − x∗||2.

From Bolzano-Weierstrass theorem, it has a converging subsequence.
c) As P1 is continuous (from Question 1.d), it is even 1-Lipschitz) and x∞

is a limit point of (xkS)k∈N, P1(x∞) is a limit point of (P1(xkS))k∈N =
(xkS+1)k∈N.
Since ||xkS −x∗||2

k→+∞−→ ℓ(x∗) and ||xkS+1 −x∗||2
k→+∞−→ ℓ(x∗), we must

have

||x∞ − x∗||2 = ℓ(x∗),
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||P1(x∞) − P1(x∗)||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

This implies that ||x∞ − x∗||2 = ||P1(x∞) − P1(x∗)||2. From Question
1.d), we must have

x∞ − x∗ = P1(x∞) − P1(x∗) = P1(x∞) − x∗,

so that x∞ = P1(x∞), which is equivalent to x∞ ∈ C1.
We can reapply iteratively the same reasoning: as x∞ = P1(x∞) is
a limit point of (xkS+1)k∈N, P2(x∞) is a limit point of (xkS+2)k∈N,
which allows to show that ||x∞ − x∗||2 = ||P2(x∞) − P2(x∗)||2, hence
x∞ = P2(x∞), so that x∞ ∈ C2. And so on.

d) As x∞ belongs to ∩s≤SCs, Question 2.a) tells us that (||xk −x∞||2)k∈N
is nonincreasing. This sequence has a subsequence which goes to 0
(since x∞ is a limit point of (xk)k∈N). Therefore, the whole sequence
goes to 0, which means that xk

k→+∞−→ x∞.

Answer of Exercise 5
1. a) We set S = {s ≤ m, ⟨x, vs⟩ = ⟨x′, vs⟩}. From the complement prop-

erty, either Vect{vs}s∈§ = Rd or Vect{vs}s/∈S = Rd.
First case: Vect{vs}s∈§ = Rd. For any s ∈ S,

⟨x − x′, vs⟩ = ⟨x, vs⟩ − ⟨x′, vs⟩ = 0.

Consequently, x − x′ ∈ Vect{vs}⊥
s∈§ = {0}, meaning that x = x′.

Second case: Vect{vs}s/∈§ = Rd. For any s, | ⟨x, vs⟩ | = | ⟨x′, vs⟩ |, hence
⟨x, vs⟩ = ± ⟨x′, vs⟩. For any s /∈ S, ⟨x, vs⟩ ≠ ⟨x′, vs⟩, so that ⟨x, vs⟩ =
− ⟨x′, vs⟩, and

⟨x + x′, vs⟩ = 0.

Consequently, x + x′ ∈ Vect{vs}⊥
s/∈§ = {0}, meaning that x = −x′.

b) Let S ⊂ {1, . . . , m} be such that

Vect{vs}s∈§ ̸= Rd and Vect{vs}s/∈§ ̸= Rd.

Then
Vect{vs}⊥

s∈§ ̸= {0} and Vect{vs}⊥
s/∈§ ̸= {0}.

Let z1 ∈ Vect{vs}⊥
s∈§ and z2 ∈ Vect{vs}⊥

s/∈§ be two non-zero vectors.
For each s ≤ m,
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• if s ∈ S, then ⟨z1, vs⟩ = 0,

• if s /∈ S, then ⟨z2, vs⟩ = 0.
c) For all s ≤ m, | ⟨x, vs⟩ | = | ⟨x′, vs⟩ |. Indeed, either ⟨z1, vs⟩ = 0, in

which case
⟨x, vs⟩ = ⟨z2, vs⟩ = − ⟨x′, vs⟩ ,

or ⟨z2, vs⟩ = 0, in which case

⟨x, vs⟩ = ⟨z1, vs⟩ = ⟨x′, vs⟩ .

Therefore, x and x′ are two solutions of Problem (Real-PR) for y =
(| ⟨x, vs⟩ |)s∈S. But x ̸= x′, since z2 ̸= 0, and x ̸= −x′, since z1 ̸= 0.

2. a) Let us assume m ≤ 2d − 2. Let S ⊂ {1, . . . , m} have cardinality
min(d − 1, m). It must hold Vect{vs}s∈S ̸= Rd, since Vect{vs}s∈S has
dimension at most Card(S) ≤ d − 1.
On the other hand, {1, . . . , m} \ S has cardinality m − Card(S) =
max(0, m − d+1) ≤ d − 1. It must therefore also hold Vect{vs}s/∈S ̸=
Rd.
This shows that the complement property does not hold. From Ques-
tion 1., Problem (Real-PR) has a non-unique solution for some values
of y1, . . . , ym.

b) For each n, let λn denote the Lebesgue measure over Rn.
For any A ⊂ {1, . . . , m} with cardinality at most d − 1 and each
a ∈ {1, . . . , m} \ A, we define

EA,a =
{
(v1, . . . , vm) ∈ (Rd)m, va ∈ Vect{vs}s∈A

}
.

Observe that, for each A, a,

Answer of Exercise 6
1. The vector x∗ is feasible for the problem (Basis Pursuit): Ax∗ = y.

Therefore, its ℓ1-norm is at least as large as the optimal value of the
problem:

||x∗||1 ≥ ||xBP ||1 = ||x∗ + h||1.

As a consequence,∑
i∈T∗

|x∗i| = ||x∗||1
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≥ ||x∗ + h||1
=
∑

i

|(x∗ + h)i|

=
∑
i∈T∗

|x∗i + hi| +
∑
i/∈T∗

|hi|

≥
∑
i∈T∗

(|x∗i| − |hi|) +
∑
i/∈T∗

|hi|

=

(∑
i∈T∗

|x∗i|

)
− ||hT∗||1 + ||hT c

∗ ||1.

This implies ||hT∗||1 ≥ ||hT c
∗ ||1.

2. a) For any s ∈ Tl, s′ ∈ Tl−1, because the coordinates of h are non-
increasing outside T∗,

|hs′| ≥ |hs|.
This implies that, for any s ∈ Tl,

||hTl−1
||1 =

∑
s′∈Tl−1

|hs′| ≥ (Card(Tl−1))|hs| = 3k|hs|.

From this, we deduce that

||hTl
||22 =

∑
s∈Tl

|hs|2

≤
∑
s∈Tl

||hTl−1
||21

(3k)2

=
||hTl−1

||21
(3k)2

(Card(Tl))

≤
||hTl−1

||21
3k

.

b)

L∑
l=2

||hTl
||2 ≤ 1√

3k

L−1∑
l=1

||hTl
||1 from the previous question

≤ 1√
3k

L∑
l=1

||hTl
||1
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=
||hT c

∗ ||1√
3k

≤ ||hT∗ ||1√
3k

from the first question.

c) By Cauchy-Schwarz,

||hT∗||1 ≤
√

Card(T∗)||hT∗ ||2 ≤
√

k||hT∗||2.

Combined with the previous question, it yields

L∑
l=2

||hTl
||2 ≤ ||hT∗||2√

3
.

3. a) As xBP is a feasible point of Problem (Basis Pursuit), we have AxBP =
y = Ax∗ = A(xBP − h) = AxBP − Ah. Consequently, Ah = 0.

b) As h = hT∗∪T1 + hT2 + · · · + hTL
, we have

||Ah||2 = ||AhT∗∪T1+AhT2+· · ·+AhTL
||2 ≥ ||AhT∗∪T1||2−

L∑
l=2

||AhTl
||2.

The vector hT∗∪T1 has at most Card(T∗) + Card(T1) ≤ k + 3k = 4k
non-zero coordinates. From the definition of the restricted isometry
constant,

||AhT∗∪T1||2 ≥ (1 − δ4k)||hT∗∪T1||2.

Similarly, for any l ∈ {2, . . . , L},

||AhTl
||2 ≤ (1 + δ4k)||hTl

||2.

This gives the desired inequality:

||Ah||2 ≥ (1 − δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑

l=2

||hTl
||2.

c) Together, the previous two subquestions imply

(1 − δ4k)||hT∗∪T1||2 ≤ (1 + δ4k)
L∑

l=2

||hTl
||2
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Using also Question 2.c,

(1 − δ4k)||hT∗||2 ≤ (1 − δ4k)||hT∗∪T1||2

≤ (1 + δ4k)
||hT∗||2√

3
.

Since δ4k < 1/4, this implies

3

4
||hT∗ ||2 ≤ 5

4

||hT∗||2√
3

⇒ 3
√
3

5
||hT∗ ||2 ≤ ||hT∗ ||2.

Since 3
√
3

5
> 1, this implies ||hT∗||2 = 0: the coordinates of h with

indices in T∗ are zero. From the first question, the coordinates of h
with indices in T c

∗ are therefore also zero, so h = 0 and

xBP = x∗.

Answer of Exercise 7
1. Since all non-zero columns of X∗ are linearly independent, the rank of

X∗ is the number of non-zero columns, that is the number of non-zero λs.
Since rank(X∗) ≤ r, at most the r largest singular values are non-zero.

2. The matrix X∗ +Hc is diagonal. The coefficients on its diagonal (which
are its singular values, since they are nonnegative) are λ1, . . . , λr, µ1, . . . , µd2−r.
Therefore,

||X∗ + Hc||∗ =
r∑

s=1

λs +

d2−r∑
s=1

µs = ||X∗||∗ + ||Hc||∗.

In addition, since XNM is a solution of Problem (Nuclear-min) and X∗
is a feasible point of this problem,

||X∗||∗ ≥ ||XNM ||∗
= ||X∗ + H||∗
= ||X∗ + Hc + H0||∗
≥ ||X∗ + Hc||∗ − ||H0||∗
= ||X∗||∗ + ||Hc||∗ − ||H0||∗.

Therefore, ||H0||∗ ≥ ||Hc||∗.
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3. a) For any l ∈ {2, . . . , L},

||Hc,l||F =

 3lr∑
s=3(l−1)r

µ2
s

1/2

≤

 3lr∑
s=3(l−1)r+1

 1

3r

3(l−1)r∑
t=3(l−2)r+1

µs

21/2

=

 1

3r

 3(l−1)r∑
t=3(l−2)r+1

µs

21/2

=
||Hc,l−1||∗√

3r
.

Therefore,

L∑
l=2

||Hc,l||F ≤
L∑

l=2

||Hc,l−1||∗√
3r

≤
L∑

l=1

||Hc,l||∗√
3r

=
||Hc||∗√

3r

≤ ||H0||∗√
3r

.

b) The rank of H0 is the dimension of the vector space generated by its
columns. The first r columns, which form the matrix

(
H11
H21

)
, generate

a space with dimension at most r. The last d2 − r columns, which
form the matrix

(
H12
0

)
, generate a vector space which is included in

Rr × {0}d1−r, and therefore has dimension at most r. Therefore, the
two sets of columns generate a set with dimension at most r+ r = 2r,
hence

rank(H0) ≤ 2r.

Let us denote α1, . . . , αd2 the singular values of H0, ordered by de-
creasing order. Then, for the same reason as in Question 1., α2r+1 =
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· · · = αd2 = 0, so that

||H0||∗ =
2r∑

s=1

αs

≤
√
2r

(
2r∑

s=1

α2
s

)1/2

by Cauchy-Schwarz

=
√
2r||H0||F .

[Remark: since multiplying a matrix with an orthogonal matrix does
not change its Frobenius norm, the Frobenius norm of any matrix is
equal to the Frobenius norm of the diagonal part of its singular value
decomposition. It is therefore the ℓ2-norm of its singular values.]

c)
∑L

l=2 ||Hc,l||F ≤ ||H0||∗√
3r

≤
√
2r||H0||F√

3r
=
√

2
3
||H0||∗.

4. a)

||L(H)||2 =

∣∣∣∣∣
∣∣∣∣∣L
(

H0 + Hc,1 +
L∑

l=2

Hc,l

)∣∣∣∣∣
∣∣∣∣∣
2

≥ ||L(H0 + Hc,1)||2 −
L∑

l=2

||L(Hc,l)||2

≥ (1 − δ5r)||H0 + Hc,1||F − (1 + δ5r)
L∑

l=2

||Hc,l||F .

We have used the definition of the restricted isometry constant, the
fact that rank(Hc,l) ≤ 3r for any l, and that rank(H0 + Hc,1) ≤
rank(H0) + rank(Hc,1) ≤ 2r + 3r = 5r.

b) From the previous two questions,

||L(H)||2 ≥ (1 − δ5r)||H0 + Hc,1||F − (1 + δ5r)

√
2

3
||H0||F

≥ (1 − δ5r)||H0||F − (1 + δ5r)

√
2

3
||H0||F

≥

(
9

10
− 11

10

√
2

3

)
||H0||F .
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For the second inequality, we have use the facts that the non-zero
coefficients of H0 and Hc,1 are at different positions, hence ||H0 +

Hc,1||F =
√

||H0||2F + ||Hc,1||2F ≥ ||H0||F .
As L(H) = 0 (XNM and X0 are feasible for Problem (Nuclear-min))
and 9

10
− 11

10

√
2
3

> 0, this implies ||H0||F = 0.
As a consequence, H0 = 0. From Question 2., Hc = 0. This means
that H = 0 and XNM = X∗.

Answer of Exercise 9
1. ∣∣∣∣∣

N∑
k=−N

zke2πikt

∣∣∣∣∣ ≤ 1, ∀t ∈ R,

⇐⇒

∣∣∣∣∣
N∑

k=−N

zke2πikt

∣∣∣∣∣
2

≤ 1, ∀t ∈ R,

⇐⇒ 1 −

∣∣∣∣∣
N∑

k=−N

zke2πikt

∣∣∣∣∣
2

∈ R+ ∀t ∈ R.

From Fejér-Riesz’ theorem, this property holds if and only if there exists
trigonometric polynomials P1, . . . , Pn with degree at most N such that,
for all t ∈ R,

1 −

∣∣∣∣∣
N∑

k=−N

zke2πikt

∣∣∣∣∣
2

=
n∑

l=1

∣∣Pl

(
e2πit

)∣∣2 ,

which is equivalent to
∣∣∣∑N

k=−N zke2πikt
∣∣∣2 +∑n

l=1 |Pl (e
2πit)|2 = 1.

2. Let a−2N , . . . , a2N denote the coefficients of the polynomial in Equal-
ity (3):

2N∑
d=−2N

ade2πidt =

∣∣∣∣∣
N∑

k=−N

zke2πikt

∣∣∣∣∣
2

+
n∑

l=1

∣∣Pl

(
e2πit

)∣∣2
=

(
N∑

k=−N

zke2πikt

)(
N∑

k=−N

zke−2πikt

)
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+
n∑

l=1

(
N∑

k=−N

p
(l)
k e2πikt

)(
N∑

k=−N

p
(l)
k e−2πikt

)

=
N∑

k=−N

N∑
k′=−N

(
zkzk′ +

n∑
l=1

p
(l)
k p

(l)
k′

)
e2πi(k−k′)t

=
2N∑

d=−2N

∑
−N≤k,k′≤N

k−k′=d

(
zkzk′ +

n∑
l=1

p
(l)
k p

(l)
k′

)
e2πidt

=
2N∑

d=−2N

∑
−N≤k≤N

s.t. −N≤k−d≤N

(
zkzk−d +

n∑
l=1

p
(l)
k p

(l)
k−d

)
e2πidt

=
2N∑

d=−2N

N−max(0,−d)∑
k=−N+max(0,d)

(
zkzk−d +

n∑
l=1

p
(l)
k p

(l)
k−d

)
e2πidt

=
2N∑

d=−2N

 N−max(0,−d)∑
k=−N+max(0,d)

Ak+N+1,k+N+1−d

 e2πidt

=
2N∑

d=−2N

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d

 e2πidt.

As a consequence, ad =
∑2N+1−max(0,−d)

k=1+max(0,d) Ak,k−d for all d = −N, ..., N ,
and Equality (3) holds if and only if, for any d = −N, . . . , N ,

ad =

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 1 if d = 0,

= 0 otherwise.

3. If A = zz∗ +
∑n

l=1 p(l)p(l)∗ for some vectors p(1), . . . , p(n) ∈ C2N+1, then
A − zz∗ =

∑n
l=1 p(l)p(l)∗, which is semidefinite positive:

∀x ∈ C2N+1, x∗(A − zz∗)x =
n∑

l=1

|
〈
p(l), x

〉
|2 ≥ 0.

Conversely, let us assume that A − zz∗ ⪰ 0. Let B ∈ C(2N+1)×(2N+1) be
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a square root of A − zz∗ (that is, a matrix such that BB∗ = A − zz∗).1
Let p(1), . . . , p(2N+1) be the column vectors of B. Then

A − zz∗ =
2N+1∑

l=1

p(l)p(l)∗,

which implies A = zz∗ +
∑n

l=1 p(l)p(l)∗ for n = 2N + 1.
4. Let us denote

G =


1

A z

z∗

 ∈ C(2N+2)×(2N+2)

and show, as required, that A − zz∗ ⪰ 0 if and only if G ⪰ 0.

(G ⪰ 0) ⇐⇒ (∀h ∈ C2N+2, h∗Gh ≥ 0)

⇐⇒
(

∀h̃ ∈ C2N+1, u ∈ C,
(

h̃
u

)∗
G
(

h̃
u

)
) ≥ 0

)
⇐⇒

(
∀h̃ ∈ C2N+1, u ∈ C, h̃∗Ah̃ + 2Re

(
u
〈

h̃, z
〉)

+ |u|2 ≥ 0
)

⇐⇒
(

∀h̃ ∈ C2N+1, t ∈ R, ϕ ∈ R,

h̃∗Ah̃ + 2Re
(

teiϕ
〈

h̃, z
〉)

+ |teiϕ|2 ≥ 0
)

⇐⇒
(

∀h̃ ∈ C2N+1, t ∈ R, ϕ ∈ R,

h̃∗Ah̃ + 2tRe
(

eiϕ
〈

h̃, z
〉)

+ t2 ≥ 0
)

(a)⇐⇒
(

∀h̃ ∈ C2N+1, ϕ ∈ R, h̃∗Ah̃ −
(
Re
(

eiϕ
〈

h̃, z
〉))2

≥ 0

)
(b)⇐⇒

(
∀h̃ ∈ C2N+1, h̃∗Ah̃ − |

〈
h̃, z
〉

|2 ≥ 0
)

⇐⇒
(

∀h̃ ∈ C2N+1, h̃∗(A − zz∗)h̃ ≥ 0
)

⇐⇒ A − zz∗ ⪰ 0.

Equivalence (a) is true because, for any h̃ and ϕ, it holds that the poly-
nomial t → h̃∗Ah̃ + 2tRe

(
eiϕ
〈

h̃, z
〉)

+ t2 is nonnegative over R if and

1All semidefinite positive matrices have square roots; it is most easily proved by writing
the semidefinite matrix in an eigenvector basis.
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only if its discriminant is nonpositive:

4
(
Re
(

eiϕ
〈

h̃, z
〉))2

− 4h̃∗Ah̃ ≤ 0,

which is exactly h̃∗Ah̃ −
(
Re
(

eiϕ
〈

h̃, z
〉))2

≥ 0.

Equivalence (b) is true because, for any h̃, we have h̃∗Ah̃−
(
Re
(

eiϕ
〈

h̃, z
〉))2

≥
0 for all ϕ ∈ R if and only if the minimum over ϕ of this quantity is non-
negative, and the minimum is precisely

h̃∗Ah̃ − |
〈

h̃, z
〉

|2.

5. Since both problems have the same objective function, it suffices to show
that z is feasible for (Dual TV) if and only if z is feasible for the other
problem, that is there exists A ∈ C(2N+1)×(2N+1) such that

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},

2N+1∑
k=1

Ak,k = 1,

and


1

A z

z∗

 ⪰ 0.

Let us first assume that z is feasible for (Dual TV):
∣∣∣∑N

k=−N zke2πikt
∣∣∣ ≤ 1

for all t ∈ R. From Question 1, there exists trigonometric polynomials
with degree at most N , P1, . . . , Pn, such that∣∣∣∣∣

N∑
k=−N

zke2πikt

∣∣∣∣∣
2

+
n∑

l=1

∣∣Pl

(
e2πit

)∣∣2 = 1.

We denote p(1), . . . , p(n) the vectors of their coefficients and set A =
zz∗ +

∑n
l=1 p(l)p(l)∗. From Question 2, we have

2N+1−max(0,−d)∑
k=1+max(0,d)

Ak,k−d = 0 for all d ∈ {−2N, . . . , 2N} \ {0},
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2N+1∑
k=1

Ak,k = 1.

From Question 3, A − zz∗ ⪰ 0, hence from Question 4,
1

A z

z∗

 ⪰ 0.

The existence of A is proved.
Conversely, let us assume the existence of A, and show that

∣∣∣∑N
k=−N zke2πikt

∣∣∣ ≤
1 for all t ∈ R. From Question 4, A − zz∗ ⪰ 0. Therefore, from Ques-
tion 3, there exist p(1), . . . , p(n) such that

A = zz∗ +
n∑

l=1

p(l)p(l)∗.

Let us denote P1, . . . , Pn the corresponding trigonometric polynomials.
From Question 2, they satisfy Equality (3)∣∣∣∣∣

N∑
k=−N

zke2πikt

∣∣∣∣∣
2

+
n∑

l=1

∣∣Pl

(
e2πit

)∣∣2 = 1, ∀t ∈ R.

From Question 1, this means that
∣∣∣∑N

k=−N zke2πikt
∣∣∣ ≤ 1 for all t ∈ R.

Answer of Exercise 10
1. It is a non-convex problem, because Ek is not-convex. Indeed, Ek contains

ReE for all E ⊂ {1, . . . , d}, therefore Conv(Ek) ⊃ Vect
(
{eE}E⊂{1,...,d}

)
=

Rd. But Ek ̸= Rd (it is a finite union of k-dimensional vector subspaces
of Rd, and k < d), so Ek is different from its convex hull.

2. First, let x be any point of this set, which we denote M. We assume that
x ̸= eE for all E and show that x is not extremal. For all i, xi ∈ [−1; 1].
Since x ̸= eE for all E, there exists an index i such that xi ̸= −1 and
xi ̸= 1 (i.e. xi ∈] − 1; 1[). We define y, z ∈ Rd such that

yj = zj = xj, ∀j ̸= i,

yi = 1,
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zi = −1.

Then x = (1 − t)y + tz for t = 1−xi

2
∈ [0; 1]. The vectors y, z belong to

M and are different from x. Therefore, x is not extremal.
Now, let us fix E ⊂ {1, . . . , d}. The vector eE is in M. Let us show that
it is extremal. Let y, z ∈ M and t ∈ [0; 1] be such that eE = (1−t)y+tz.
We must show that either y or z is equal to eE.
If t = 0, then y = eE. If t = 1, then z = eE. Let us assume 0 < t < 1
and show that y = z = eE. For all i ≤ d, if i ∈ E, then (eE)i = 1. Since
yi ≤ 1 and zi ≤ 1, it holds

1 = (eE)i = (1 − t)yi + tzi ≤ (1 − t) + t = 1.

The inequality must be an equality, meaning that yi = zi = 1 = (eE)i.
The same reasoning applies if i /∈ E. It shows that y, z and eE are equal.

3. The problem we want to solve is (assuming that a solution exists)

minimize ||x||reg

over x ∈ Rd such that Ax = y,

where, for any x, ||x||reg = min{s ∈ {1, . . . , d}, x ∈ Es}.
Following the intuition discussed in the lectures, since the vectors eE are
the extremal points of the ℓ∞ ball, it makes sense to approximate ||.||reg

with the infinity ball, yielding the convex problem

minimize ||x||∞
over x ∈ Rd (Relax-Reg)

such that Ax = y.

4. Mimicking the definition of k-restricted isometry constant for sparse
recovery, we could define the k-restricted isometry constant of A as the
smallest positive number δk > 0 (if it exists) such that, for all x ∈ Ek,

(1 − δk)||x||2 ≤ ||Ax||2 ≤ (1 + δk)||x||2.

5. a) Problem (Relax-Reg) can be rewritten as a min-max problem:

min
x∈Rd

max
z∈Rm

||x||∞ + ⟨y − Ax, z⟩
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=min
x∈Rd

max
z∈Rm

⟨y, z⟩ + ||x||∞ −
〈
x, AT z

〉
We compute the dual by exchanging the minimum and maximum:

max
z∈Rm

min
x∈Rd

⟨y, z⟩ + ||x||∞ −
〈
x, AT z

〉
=max

z∈Rm
⟨y, z⟩ + min

x∈Rd

(
||x||∞ −

〈
x, AT z

〉)
= max

z∈Rm

||AT z||1≤1

⟨y, z⟩ .

Indeed, minx∈Rd ||x||∞ −
〈
x, AT z

〉
= −∞ if ||AT z||1 > 1: denoting

h ∈ Rd the vector such that hi = 1 if (AT z)i ≥ 0 and hi = −1 if
(AT z)i < 0, we have, for all t ≥ 0,

||th||∞ −
〈
th, AT z

〉
= t − t||AT z||1
= −t(||AT z||1 − 1),

which goes to −∞ when t goes to ∞.
On the other hand, if ||AT z||1 ≤ 1, then ||x||∞ −

〈
x, AT z

〉
≥ ||x||∞ −

||x||∞||AT z||1 ≥ 0 for all x ∈ Rd. Since x = 0 yields the value 0, the
minimum is zero.
The dual problem is

maximize ⟨y, z⟩ ,

over z ∈ Rd

such that ||AT z||1 ≤ 1.

b) First, we observe that (xo, zo) ∈ Rd ×Rm is primal-dual optimal if and
only if

||xo||∞ = max
z∈Rm

⟨y, z⟩ + ||xo||∞ −
〈
xo, AT z

〉
= ⟨y, zo⟩ + ||xo||∞ −

〈
xo, AT zo

〉
= min

x∈Rd
⟨y, zo⟩ + ||x||∞ −

〈
x, AT zo

〉
= ⟨y, zo⟩ .

This is equivalent to
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• xo is primal feasible: y = Axo;
• ||AT z0||1 = 1;
• (xo)i = sgn((AT zo)i)||xo||∞ for all i such that (AT zo)i ̸= 0.

We observe that (x0, c) is primal-dual optimal. Indeed, x0 is primal
feasible and c is dual feasible. For any i, (x0)i = ±||x0||∞ (because
k = 1, hence x0 is proportional to eE for some set E). Therefore, from
the definition of c, (AT c)i ̸= 0 and (AT c)i has the same sign as (x0)i,
meaning that

(x0)i = sgn((AT c)i)||x0||∞.

Therefore, x0 is a minimizer of (Relax-Reg).
Let us show that the minimizer is unique. Let x∗ be any minimizer
of (Relax-Reg). Then (x∗, c) is primal-dual optimal. Therefore, y =
Ax∗ and

(x∗)i = sgn((AT c)i)||x∗||∞ for all i such that (AT c)i ̸= 0.

This means that

(x∗)i = ||x∗||∞,∀i ≤ d such that (x0)i = ||x0||∞,

(x∗)i = −||x∗||∞,∀i ≤ d such that (x0)i = −||x0||∞.

Consequently, x∗ is proportional to x0. Since Ax∗ = y = Ax0 and y ̸=
0, the proportionality constant is equal to 1, meaning that x∗ = x0.

Answer of Exercise 11
2. Let z belong to Cm. Let us determine argminh∈E ||h − z||2. A vector h
belongs to E if and only if there exists ϕ1, . . . , ϕm ∈ R such that

hs = yse
iϕs , ∀s = 1, . . . , m.

Therefore,

min
h∈E

||h − z||2 = min
h∈E

(
m∑

j=1

|hj − zj|2
)1/2

= min
ϕ1,...,ϕm∈R

(
m∑

j=1

|yje
iϕj − zj|2

)1/2
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= min
ϕ1,...,ϕm∈R

(
m∑

j=1

y2
j − 2Re(yjzje

−iϕj) + |zj|2
)1/2

.

This formula is minimized exactly when −Re(yjzje
−iϕj) is minimized for all

j = 1, . . . , m. When yj = 0 or zj = 0, −Re(yjzje
−iϕj) = 0 for all real numbers

ϕj, so all real numbers ϕj are minimizers. When yj, zj ̸= 0, the minimum is
attained when

ϕj ≡ phase(yjzj) [2π],

which is equivalent to ϕj ≡ phase(zj) [2π], since yj is a positive real number.
To summarize, an element h of E minimizes the distance to z if and only if,
for all j ≤ m,

hj = yje
iphase(zj) if yj, zj ̸= 0,

hj = 0 if yj = 0,

hj = yje
iϕj for some ϕj ∈ R if zj = 0.

Therefore, a possible expression for projE is to define, for every z ∈ Cm,

projE(z) =
(
yje

iphase(zj)
)

j=1,...,m
,

with the convention that eiphase(zj) = 1 if zj = 0.

Answer of Exercise 12
1. a) For any x ∈ Rd,

f(x) =
1

4
||xxT − M ||2F

=
1

4
Tr
(
(xxT − M)(xxT − M)T

)
=

1

4
Tr
(
xxT xxT − MxxT − xxT M + MMT

)
=

1

4

(
Tr
(
xxT xxT

)
− 2Tr

(
MxxT

)
+ Tr

(
MMT

))
=

1

4

(
Tr
(
xT xxT x

)
− 2Tr

(
xT (Mx)

)
+ ||M ||2F

)
=

1

4

(
||x||42 − 2 ⟨x, Mx⟩ + ||M ||2F

)
.
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b) For any x ∈ Rd, ||Mx||2 ≤ λ1||x||2, hence | ⟨x, Mx⟩ | ≤ λ1||x||22, and

f(x) ≥ ||x||42
4

− λ1||x||22
2

=
||x||22
2

(
||x||22
2

− λ1

)
→ +∞ when ||x||2 → +∞.

This shows that f is coercive. It is also continuous, hence has a
minimizer.

c) For all x, h ∈ Rd,

f(x + h) =
1

4

(
||x + h||42 − 2 ⟨x + h, M(x + h)⟩ + ||M ||2F

)
=

1

4

( (
||x||22 + 2 ⟨x, h⟩ + ||h||22

)2
− 2 (⟨x, Mx⟩ + ⟨h, Mx⟩ + ⟨x, Mh⟩ + ⟨h, Mh⟩) + ||M ||2F

)
=

1

4

(
||x||42 + 4||x||22 ⟨x, h⟩ − 2 ⟨x, Mx⟩ − 4 ⟨Mx, h⟩ + ||M ||2F + o(||h||2)

)
= f(x) +

〈
||x||22x − Mx, h

〉
+ o(||h||2).

Therefore, ∇f(x) = ||x||22x − Mx.
d) Let us first consider an arbitrary minimizer xmin. We must have

0 = ∇f(xmin) = ||xmin||22xmin − Mxmin.

As a consequence, Mxmin = ||xmin||22xmin, which means that xmin is
an eigenvector of M , with eigenvalue ||xmin||22. In particular, there
exists k = 1, . . . , d such that

• xmin is an eigenvector of M with eigenvalue λk;
• ||xmin||22 = λk, that is, ||xmin|| =

√
λk.

This shows that minimizers of f are necessarily of the form xmin =√
λkv, for v a unitary eigenvector associated to the eigenvalue λk.

Now, we compute the minimizers. For k ≤ d and v as above,

f
(√

λkv
)
=

1

4

(∣∣∣∣∣∣√λkv
∣∣∣∣∣∣4

2
− 2

〈√
λkv, M

√
λkv
〉
+ ||M ||2F

)
=

1

4

(
−λ2

k + ||M ||2F
)

.
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This is minimal if and only if λk = λ1(= 1) and v is an eigenvector
associated to the eigenvalue λ1, that is to say v = ±u1. Therefore,
the minimizers are u1 and −u1.

2. As xt − u1 = (αt − 1)u1 + vt and u1 ⊥ vt, the norm is

||xt − u1||2 =
√

|αt − 1|2 + ||vt||22.

3. a)

xt+1 = xt − τ∇f(xt)

= αtu1 + vt − τ(||xt||22xt − Mxt)

= αtu1 + vt − τ(||xt||22(αtu1 + vt) − αtMu1 − Mvt)

= αt(1 − τ ||xt||22)u1 + (1 − τ ||xt||2)vt + ταtu1 + τMvt

= αt(1 − τ(α2
t + ||vt||22) + τ)u1 + (1 − τ(α2

t + ||vt||2))vt + τMvt.

As vt and Mvt belong to Vect{u2, . . . , ud},

αt+1 = αt(1 − τ(α2
t + ||vt||22) + τ) = (1 + τ)αt − τα3

t − ταt||vt||22;
vt+1 = (1 − τ(α2

t + ||vt||2))vt + τMvt.

b)

(1 + τ)αt − τα3
t − ταt||vt||22 = 1 +

[
(1 + τ)αt − τα3

t − ταt||vt||22 − 1
]

= 1 +
[
αt − 1 + ταt(1 − α2

t ) − ταt||vt||22
]

= 1 +
[
(1 − ταt(αt + 1))(αt − 1) − ταt||vt||22

]
.

4. We have

|1 − αt| ≤ ||xt − u1||2
≤ ||x0 − u1||2 from Eq. (4)

<
1 − λ2

7
.

Therefore, 1 −
(
1−λ2

7

)
< 1 − |1 − αt| ≤ αt ≤ 1 + |1 − αt| < 1 +

(
1−λ2

7

)
.

And ||vt|| ≤ ||xt − u1||2 < 1−λ2

7
.
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5. From Question 3.b),

|αt+1 − 1| ≤ |1 − ταt(αt + 1)| |αt − 1| + τ |αt| ||vt||22.

We prove the result by showing

|1 − ταt(αt + 1)| ≤ 1 − 5

7
(1 − λ2)τ ; (8a)

τ |αt| ||vt||22 ≤ 8

49
(1 − λ2)τ ||vt||2. (8b)

For Equation (8a), we must show

−
(
1 − 5

7
(1 − λ2)τ

)
≤ 1 − ταt(αt + 1) ≤ 1 − 5

7
(1 − λ2)τ.

The left-hand side is equivalent to

τ

(
αt(αt + 1) +

5

7
(1 − λ2)

)
≤ 2,

which is true because τ ≤ 1
2
, αt ≤ 1+

(
1−λ2

7

)
≤ 8

7
and 1− λ2 ≤ 1, hence

τ

(
αt(αt + 1) +

5

7
(1 − λ2)

)
≤ 1

2

(
8

7
× 15

7
+

5

7

)
=

155

98
≤ 2.

The right-hand side is equivalent to

αt(αt + 1) ≥ 5

7
(1 − λ2),

which is true because αt ≥ 1 −
(
1−λ2

7

)
≥ 6

7
and αt + 1 ≥ 1, so

αt(αt + 1) ≥ 6

7
≥ 5

7
≥ 5

7
(1 − λ2).

Equation (8a) is proved.
For Equation (8b), we must show that

|αt| ||vt||2 ≤ 8

49
(1 − λ2).

We have already said that αt ≤ 8
7
, and we know from the previous

question that ||vt||2 < 1−λ2

7
.

|αt| ||vt||2 ≤ 8

7
× 1 − λ2

7
=

8

49
(1 − λ2).
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6. a) From Question 3.a), vt+1 = Htvt, where

Ht =
(
1 − τ(α2

t + ||vt||22)
)
Id + τM.

On the subspace Vect{u2, . . . , ud}, which vt belongs to, M represents a
symmetric linear operator with eigenvalues λ2, . . . , λd. Therefore, Ht

is a symmetric linear operator, with eigenvalues (1 − τ(α2
t + ||vt||22))+

τλk for k = 2, . . . , d.
All these eigenvalues are nonnegative,2 hence the operator norm of Ht

(still restricted to the subspace Vect{u2, . . . , ud}) is its largest eigen-
value: (

1 − τ(α2
t + ||vt||22)

)
+ τλ2 = 1 − τ(α2

t + ||vt||22 − λ2),

which implies

||vt+1||2 ≤
(
1 − τ(α2

t + ||vt||22 − λ2)
)

||vt||2.

b) We have seen in the previous question (in footnote) that 0 ≤ τλ2 ≤
1 − τ(α2

t + ||vt||22 − λ2). Let us show that 1 − τ(α2
t + ||vt||22 − λ2) ≤

1 − 5
7
(1 − λ2)τ , which is equivalent to

α2
t + ||vt||22 ≥ 5

7
+

2

7
λ2

We recall that αt ≥ 1 −
(
1−λ2

7

)
.

α2
t + ||vt||22 ≥

(
1 −

(
1 − λ2

7

))2

= 1 − 2
1 − λ2

7
+

(
1 − λ2

7

)2

=
5

7
+

2

7
λ2 +

(
1 − λ2

7

)2

≥ 5

7
+

2

7
λ2.

2Observe that τ(α2
t + ||vt||2) ≤ 1

2 ||xt||22 ≤ 1
2 (1 + ||xt − u1||2)2 ≤ 1

2

(
8
7

)2
< 1.
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7. a) Combining the last questions, we get

|αt+1 − 1| ≤
(
1 − 5

7
(1 − λ2)τ

)
|αt − 1| + 8

49
(1 − λ2)τ ||vt||2;

||vt+1||2 ≤
(
1 − 5

7
(1 − λ2)τ

)
||vt||2.

Expressed in terms of ℓ2-norms, this implies

||(|αt+1 − 1| , ||vt+1||2)||2

≤
∣∣∣∣∣∣∣∣(1 − 5

7
(1 − λ2)τ

)
(|αt − 1| , ||vt||2) +

(
8

49
(1 − λ2)τ ||vt||2, 0

)∣∣∣∣∣∣∣∣
2

≤
(
1 − 5

7
(1 − λ2)τ

)
||(|αt − 1| , ||vt||2)||2 +

8

49
(1 − λ2)τ ||vt||2

(triangular inequality)

≤
(
1 − 5

7
(1 − λ2)τ +

8

49
(1 − λ2)τ

)
||(|αt − 1| , ||vt||2)||2

=

(
1 − 27

49
(1 − λ2)τ

)
||(|αt − 1| , ||vt||2)||2

≤
(
1 −

(
1 − λ2

2

)
τ

)
||(|αt − 1| , ||vt||2)||2 .

b) We prove Inequality (4) by iteration over t. For t = 0, it is true. Now,
if it is true for some t, the previous question implies

||xt+1 − u1||2 =
√

|αt+1 − 1|2 + ||vt+1||22

≤
(
1 − (1 − λ2)τ

2

)√
|αt − 1|2 + ||vt||22

=

(
1 − (1 − λ2)τ

2

)
||xt − u1||2

≤
(
1 − (1 − λ2)τ

2

)t+1

||x0 − u1||2.
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Answer of Exercise 13
1. In the previous exercise, we have seen that, for all x ∈ Rd,

∇f(x) = ||x||22x − Mx.

We compute the Hessian of f using the Taylor expansion at order 1 :
∇f(x + h) = ∇f(x) + Hessf(x)(h) + o(h), for all x ∈ Rd and h ∈ Rd

going to zero. For any x, h ∈ Rd,

∇f(x + h) = (||x + h||22)(x + h) − M(x + h)

= (||x||2 + 2 ⟨x, h⟩ + o(h))(x + h) − Mx − Mh

= ∇f(x) + ||x||2h + 2 ⟨x, h⟩ x − Mh + o(h).

Therefore, for any x, h ∈ Rd,

Hessf(x)(h) = ||x||2h + 2 ⟨x, h⟩ x − Mh

= ||x||2h + 2xxT h − Mh

= (||x||2Id + 2xxT − M)h,

which implies the desired result.
2. a) We first observe that, for any x ∈ Rd, if x is first-order critical, then

∇f(x) = 0, hence
Mx = ||x||22x,

so that x is an eigenvector of M . We can therefore restrict our search
for first-order critical points to the set of eigenvectors, which we will
more conveniently write

{rv, r ∈ R+, v is a unit eigenvector of M}.

Let v be a unit eigenvector, and r be in R+. Let us denote λ the
eigenvalue associated to v. When is rv a first-order critical point?

∇f(rv) = 0 ⇐⇒ ||rv||2(rv) − M(rv) = 0

⇐⇒ r3v − rλv = 0

⇐⇒ r(r2 − λ) = 0.

Therefore, rv is a first-order critical point if and only if r = 0 or3

r =
√

λ.
3As r is in R+, it is impossible that r = −

√
λ.
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The set of first-order critical points is

{0} ∪ {
√

λv, v unit eigenvector of M, λ associated eigenvalue}.

b) A second-order critical point is a first-order critical point at which the
Hessian is positive semidefinite.
First, we see that 0 is not a second-order critical point:

Hessf(0) = −M,

which is not semidefinite positive, since 1 is an eigenvalue of M , hence
−1 is an eigenvalue of −M .
Now, let v be a unit eigenvector of f and λ its associated eigenvalue.
Let us determine when

√
λv is a second-order critical point.

Hessf
(√

λv
)
= λId + 2λvvT − M.

If λ = λ1, then this matrix is semidefinite positive, hence
√

λv is a
second-order critical point. Indeed, for any h ∈ Rd,〈

h,Hessf(
√

λv)h
〉
= λ||h||2 + 2λ ⟨v, h⟩2 − ⟨h, Mh⟩

≥ λ||h||2 + 2λ ⟨v, h⟩2 − λ1||h||2

= 2λ ⟨v, h⟩2

≥ 0.

Conversely, if λ ̸= λ1, then the matrix is not semidefinite positive.
Indeed, let h be an eigenvector associated with eigenvalue λ1. Then
⟨h, v⟩ = 0 (since M is symmetric, the eigenvectors associated with
different eigenvalues are orthonormal). Therefore,〈

h,Hessf(
√

λv)h
〉
= λ||h||2 + 2λ ⟨v, h⟩2 − ⟨h, Mh⟩

= λ||h||2 − ⟨h, Mh⟩
= λ||h||2 − λ1||h||2

< 0.

Consequently,
√

λv is a second-order critical point if and only if λ =
λ1 = 1. Therefore, f has exactly two second-order critical points,
which are u1 and −u1, where u1 is a unit eigenvector associated with
eigenvalue 1.
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3. The map f is polynomial in the coordinates of x, therefore analytic. It is
also coercive, as shown in Question 1.b) of the previous exercise. There-
fore, we can apply a theorem seen in class (more precisely, the remark
after the theorem: the theorem requires f to have a Lipschitz gradient,
but the remark removes this assumption): for almost any x0, provided
that the stepsize is small enough, gradient descent on f starting at x0

converges towards a second-order critical point. Since the second-order
critical points are the global minimizers (recall that we had computed
the minimizers in Question 1.d) of the previous exercise), the result fol-
lows.
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