Differential geometry and differential equations May 22 2025, 2 hours

Exercise 1

1. Let us define

$$F: \mathbb{R}^3 \to \mathbb{R}$$
$$(x, y, z) \to (1 + x^2)^2 - y^2 - z^2.$$

This map is C^{∞} . In order to show that $\mathcal{E} = F^{-1}(\{0\})$ is a C^{∞} submanifold of \mathbb{R}^3 with dimension $\dim(\mathbb{R}^3) - \dim(\mathbb{R}) = 2$, it suffices to show that F is a submersion at every point of \mathcal{E} .

Let $(x, y, z) \in \mathcal{E}$ be arbitrary. We show that the linear map

$$dF(x, y, z) = ((h_x, h_y, h_z) \in \mathbb{R}^3 \to 4x(1+x^2)h_x - 2yh_y - 2zh_z \in \mathbb{R})$$

is surjective. As its codomain is \mathbb{R} , it is enough to show that it is non-zero. We observe that $y^2 + z^2 = (1 + x^2)^2 \ge 1$, so $y \ne 0$ or $z \ne 0$. In the first case,

$$dF(x, y, z)(0, 1, 0) = -2y \neq 0.$$

In the second case,

$$dF(x, y, z)(0, 0, 1) = -2z \neq 0.$$

This shows that $dF(x, y, z) \neq 0$.

2. First, we observe that γ is C^2 (actually, C^{∞}) and $\gamma(t) \in \mathcal{E}$ for any $t \in \mathbb{R}$, as

$$(1+0^2)^2 = 1 = \cos^2(t) + \sin^2(t).$$

Second, we compute the tangent spaces to \mathcal{E} . For any $(x, y, z) \in \mathcal{E}$, $T_{(x,y,z)}\mathcal{E} = \text{Ker } dF(x, y, z)$, where F is the map introduced at the previous question, i.e.

$$T_{(x,y,z)}\mathcal{E} = \{(h_x, h_y, h_z), 4x(1+x^2)h_x - 2yh_y - 2zh_z = 0\}$$

= $\{(2x(1+x^2), -y, -z)\}^{\perp},$

hence $(T_{(x,y,z)}\mathcal{E})^{\perp} = \text{Vect}\{(2x(1+x^2), -y, -z)\}.$

Finally, we check that $\gamma''(t) \in (T_{\gamma(t)}\mathcal{E})^{\perp}$ for any $t \in \mathbb{R}$.

Let us fix $t \in \mathbb{R}$. From the last equality, it holds

$$(T_{\gamma(t)}\mathcal{E})^{\perp} = \text{Vect}\{(0, -\cos(t), -\sin(t))\}.$$

As $\gamma''(t) = (0, -\cos(t), -\sin(t))$, it is true that $\gamma''(t) \in (T_{\gamma(t)}\mathcal{E})^{\perp}$.

Exercise 2

We want to solve the scalar autonomous equation u' = F(u), where $F = (x \in \mathbb{R} \to x^2 - 1)$. The map F cancels at -1 and 1. Therefore, the constant maps

$$u_1: t \in \mathbb{R} \to 1,\tag{1}$$

$$u_2: t \in \mathbb{R} \to -1, \tag{2}$$

are solutions. Since they are defined over all \mathbb{R} , they are maximal.

Let us now find the non-constant solutions. The three maximal intervals over which F does not cancel are $]-\infty;-1[,]-1;1[,]1;+\infty[$. If $u:I\to\mathbb{R}$ is a solution of the equation, we know from the class that u(I) is a subset of one of these intervals. Therefore, there are three families of non-constant maximal solutions.

Family 1: maximal solutions with image in $]1; +\infty[$.

We denote $\Phi: x \in \mathbb{R} \setminus \{-1, 1\} \to \frac{1}{2} \ln \left(\frac{|x-1|}{|x+1|}\right)$ the map suggested in the hint. It is differentiable, with derivative

$$\Phi'(x) = \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) = \frac{1}{x^2 - 1} = \frac{1}{F(x)}, \quad \forall x \in \mathbb{R} \setminus \{-1, 1\}.$$

Therefore, $\Phi_{[1;+\infty[}:]1;+\infty[\to\mathbb{R}$ is a primitive of $\frac{1}{F}$ over $]1;+\infty[$.

As Φ has a positive derivative, it is strictly increasing. It goes to $-\infty$ at 1 and to 0 at $+\infty$, meaning that its image is $]-\infty;0[$. It is therefore a homeomorphism between $]1;+\infty[$ and $]-\infty;0[$.

We compute $\Phi_{||1;+\infty[}^{-1}:]-\infty;0[\rightarrow]1;+\infty[$. Let $t\in]-\infty;0[$ be arbitrary. Let us denote $y=\Phi_{||1;+\infty[}^{-1}(t)$. It must hold

$$t = \Phi(y)$$

$$= \frac{1}{2} \ln \left(\frac{|y-1|}{|y+1|} \right)$$

$$= \frac{1}{2} \ln \left(\frac{y-1}{y+1} \right)$$
(as $y > 1$),

from which we deduce

$$\Phi_{|]1;+\infty[}^{-1}(t) = y = \frac{1 + e^{2t}}{1 - e^{2t}}.$$

From Theorem 5.4 from the lecture notes, the maximal solutions with image in $]1;+\infty[$ are all maps of the form

$$t \in]-\infty; D[\to \Phi_{\parallel 1; +\infty[}^{-1}(t-D) = \frac{1+e^{2(t-D)}}{1-e^{2(t-D)}},$$
 (3)

for all $D \in \mathbb{R}$.

Family 2: maximal solutions with image in]-1;1[.

The reasoning is very similar to the previous one. A primitive of $\frac{1}{F}$ over]-1;1[is $\Phi_{|]-1;1[}$. This (decreasing) map is a homeomorphism from]-1;1[to \mathbb{R} , with reciprocal

$$\Phi_{|]-1;1[}^{-1}(t) = \frac{1 - e^{2t}}{1 + e^{2t}}, \quad \forall t \in \mathbb{R}.$$

Therefore, the maximal solutions with image in]-1;1[are all maps of the form

$$t \in \mathbb{R} \to \Phi_{|]-1;1[}^{-1}(t-D) = \frac{1 - e^{2(t-D)}}{1 + e^{2(t-D)}},$$
 (4)

for any $D \in \mathbb{R}$.

Family 3: maximal solutions with image in $]-\infty;-1[$.

The reasoning is the same as for Family 1. The map $\Phi_{\parallel -\infty;-1}$ is a homeomorphism from $]-\infty;-1[$ to $]0;+\infty[$, with reciprocal

$$\Phi_{|]-\infty;-1[}^{-1}(t) = \frac{1 + e^{2t}}{1 - e^{2t}}, \quad \forall t \in]0; +\infty[.$$

Therefore, the maximal solutions with image in $]-\infty;-1[$ are all maps of the form

$$t \in]D; +\infty[\to \Phi_{||-\infty;-1[}^{-1}(t-D) = \frac{1 + e^{2(t-D)}}{1 - e^{2(t-D)}},$$
 (5)

for all $D \in \mathbb{R}$.

Summary: the maximal solutions are all maps from Equations (1), (2), (3), (4), (5).

Exercise 3

1. The considered equation can be written as

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = A(t) \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$

where, for any $t \in \mathbb{R}$, $A(t) = \begin{pmatrix} 1-t & e^t \\ (1-t^2)e^{-t} & t \end{pmatrix}$. (Observe that A is continuous, so we are in the setting considered in class.)

We define $r:t\to \left(\begin{smallmatrix}e^t&te^t\\t&1+t^2\end{smallmatrix}\right)$ and show that r is the maximal solution of

$$\begin{cases} r'(t) &= A(t)r(t) \\ r(0) &= I_2. \end{cases}$$

From Theorem 5.9 in the lecture notes, this ensures that r(t) = R(t, 0) for any $t \in \mathbb{R}$. The initial condition is satisfied:

$$r(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

For the differential equation, we note that r is differentiable. For any $t \in \mathbb{R}$,

$$A(t)r(t) = \begin{pmatrix} 1-t & e^t \\ (1-t^2)e^{-t} & t \end{pmatrix} \begin{pmatrix} e^t & te^t \\ t & 1+t^2 \end{pmatrix}$$
$$= \begin{pmatrix} e^t & (1+t)e^t \\ 1 & 2t \end{pmatrix}$$
$$= r'(t).$$

2. Maximal solutions are all maps of the form $t \in \mathbb{R} \to R(t,0) \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, for some $\alpha, \beta \in \mathbb{R}$. Let us find α, β such that $R(1,0) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. This equation rewrites

$$\begin{pmatrix} e & e \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Its only solution is $\alpha = -1, \beta = 1$. The corresponding maximal solution is

$$t \in \mathbb{R} \to \begin{pmatrix} (t-1)e^t \\ 1-t+t^2 \end{pmatrix}$$
.

Exercise 4 The equation can be written (x,y)' = F(x,y), where F is defined as

$$F : \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to \left(xy, \frac{y^2-1}{x^2+1}\right).$$

Note that F is C^1 . We are therefore in the setting of autonomous equations considered in class.

1. a) Equilibria are points (x_0, y_0) such that $F(x_0, y_0) = 0$. This is equivalent to

$$x_0 y_0 = 0,$$

$$\frac{y_0^2 - 1}{x_0^2 + 1} = 0.$$

The second equation is equivalent to $y_0 \in \{-1, 1\}$ and, when $y_0 \neq 0$, the first equation holds true if and only if $x_0 = 0$. Therefore, the only solutions are

$$(x_0, y_0) = (0, -1)$$
 and $(x_0, y_0) = (0, 1)$.

These are the equilibria.

b) The Jacobian matrix of F at any point $(x, y) \in \mathbb{R}^2$ is

$$JF(x,y) = \begin{pmatrix} y & x \\ -\frac{2x(y^2-1)}{(x^2+1)^2} & \frac{2y}{x^2+1} \end{pmatrix}.$$

In particular,

$$JF(0,-1) = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$
 and $JF(0,-1) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

The eigenvalues of the first matrix are -1 and -2: all have a negative real part. Therefore, from Theorem 6.11 from the lecture notes, (0, -1) is asymptotically stable (and, consequently, also stable).

The eigenvalues of the first matrix are 1 and 2 : one of them (both, actually) has a positive real part. Therefore, (0,1) is unstable.

2. a) Let us assume that there exists $t_0 \in I$ such that $y(t_0) = 1$. Let us fix such t_0 . We define

$$(\tilde{x}, \tilde{y})$$
 : $\mathbb{R} \to \mathbb{R}^2$,
 $t \to (x(t_0)e^{t-t_0}, 1)$.

The solution (x, y) is the maximal solution to the following Cauchy problem:

$$\begin{cases} (x,y)' &= F(x,y) \\ (x(t_0),y(t_0)) &= (x(t_0),1). \end{cases}$$

The map (\tilde{x}, \tilde{y}) is also a solution to this Cauchy problem. Indeed,

$$(\tilde{x}(t_0), \tilde{y}(t_0)) = (x(t_0), 1)$$

and, for any $t \in \mathbb{R}$,

$$\tilde{x}'(t) = x(t_0)e^{t-t_0} = \tilde{x}(t)\tilde{y}(t),$$

 $\tilde{y}'(t) = 0 = \frac{\tilde{y}(t)^2 - 1}{\tilde{x}(t)^2 + 1}.$

As it is global, it can only be a maximal solution. The maximal solution is unique, from the Cauchy-Lipschitz theorem (which applies, because F is C^1 , hence locally Lipschitz). Therefore, $(x, y) = (\tilde{x}, \tilde{y})$ and $I = \mathbb{R}$.

b) We use the previous subquestion to compute the orbit of (1,1). From the above, the maximal solution (x,y) such that (x(0),y(0))=(1,1) is

$$t \in \mathbb{R} \to (e^t, 1).$$

Therefore, the orbit of (1,1) is $\{(e^t,1), t \in \mathbb{R}\} = \mathbb{R}_+^* \times \{1\}$. Similarly, the maximal solution (x,y) such that (x(0),y(0)) = (-1,1) is

$$t \in \mathbb{R} \to (-e^t, 1).$$

Therefore, the orbit of (-1,1) is $\{(-e^t,1), t \in \mathbb{R}\} = \mathbb{R}_-^* \times \{1\}$.

3. a) Let us fix $t_1 \in I$ such that $x(t_1) = 0$. Let $u : \tilde{I} \to \mathbb{R}$ be the maximal solution of the following Cauchy problem:

$$\begin{cases} u' = u^2 - 1 \\ u(t_1) = y(t_1). \end{cases}$$

It is one of the solutions found at Exercise 2.

We define

$$\begin{array}{ccc} (\tilde{x},\tilde{y}) & : & \tilde{I} & \to & \mathbb{R}^2, \\ & t & \to & (0,u(t)). \end{array}$$

This maps satisfies the equation $(\tilde{x}, \tilde{y})' = F(\tilde{x}, \tilde{y})$, since, for any $t \in \tilde{I}$,

$$\tilde{x}'(t) = 0 = \tilde{x}(t)\tilde{y}(t),$$

$$\tilde{y}'(t) = u'(t) = u(t)^2 - 1 = \frac{\tilde{y}(t)^2 - 1}{\tilde{x}(t)^2 + 1}.$$

As $(\tilde{x}(t_1), \tilde{y}(t_1)) = (0, u(t_1)) = (0, y(t_1))$, it is a solution of the Cauchy problem

$$\begin{cases}
(\tilde{x}, \tilde{y})' = F(\tilde{x}, \tilde{y}) \\
(\tilde{x}(t_1), \tilde{y}(t_1)) = (0, y(t_1)).
\end{cases}$$

Since (x, y) is the maximal solution of the same Cauchy problem, we must have $\tilde{J} \subset J$ and $(x, y) = (\tilde{x}, \tilde{y})$ on \tilde{J} (from the Cauchy-Lipschitz theorem).

The last thing we have to show is that $\tilde{J}=J$, i.e. the inclusion is an equality. First, we show that $\sup \tilde{J}=\sup J$. We proceed by contradiction, and assume $\sup \tilde{J}<\sup J$. In this case, $\sup \tilde{J}<+\infty$. In addition, since u=y on \tilde{J} and y is continuous at $\sup \tilde{J}$, it must hold that u goes to $y(\sup \tilde{J})$ at $\sup \tilde{J}$. This contradicts the théorème des bouts.

An identical result shows that $\inf \tilde{J} = \inf J$, hence $\tilde{J} = J$.

b) Let a be an arbitrary element from $\mathbb{R} \setminus \{-1,1\}$. From the reasoning done for the previous subquestion, the orbit of (0,a) is the image of

$$\begin{array}{cccc} (\tilde{x},\tilde{y}) & : & \tilde{I} & \to & \mathbb{R}^2, \\ & t & \to & (0,u(t)), \end{array}$$

where $u: \tilde{I} \to \mathbb{R}$ is the maximal solution of

$$\begin{cases} u' = u^2 - 1 \\ u(t_1) = a. \end{cases}$$

Since $a \neq \pm 1$, u is not one of the constant solutions of Exercise 2. We have the following three possibilities:

1. a > 1: in this case, the image of u is the image of the map Φ^{-1} appearing at Equation (3), which is $]1; +\infty[$. The image of (\tilde{x}, \tilde{y}) is then

$$\{0\} \times]1; +\infty[,$$

which means that this set is an orbit.

2. -1 < a < 1: the image of u is the image of Φ^{-1} from Equation (4). The orbit is then

$$\{0\} \times]-1;1[.$$

3. a<-1 : the image of u is the image of Φ^{-1} from Equation (5). The orbit is then

$$\{0\}\times]-\infty;-1[.$$

4. a) From Question 2., if there exists $t_1 \in I$ such that $|y(t_1)| = 1$ (i.e. $y(t_1) = 1$ or $y(t_1) = -1$), then y is constant, so that |y(t)| = 1 for any $t \in I$. This is in contradiction with the assumption that $|y(t_0)| > 1$ for some $t_0 \in I$. This shows that $|y(t)| \neq 1$, for all $t \in I$.

The image of |y| is an interval, as |y| is continuous (from the intermediate values theorem). It intersects $]1; +\infty[$ and does not contain 1. Therefore, it is a subset of $]1; +\infty[$, meaning that |y(t)| > 1 for all $t \in I$.

b) The map f is differentiable, as it is a sum of products of differentiable maps. For each $t \in I$,

$$f'(t) = -2\frac{x'(t)}{x(t)^3} (y(t)^2 - 1) + 2\left(1 + \frac{1}{x(t)^2}\right) y'(t)y(t)$$

$$= -2\frac{x(t)y(t)}{x(t)^3} (y(t)^2 - 1) + 2\left(1 + \frac{1}{x(t)^2}\right) \left(\frac{y(t)^2 - 1}{x(t)^2 + 1}\right) y(t)$$

$$= 2\left(-\frac{y(t)}{x(t)^2} + \frac{y(t)}{x(t)^2}\right) (y(t)^2 - 1)$$

$$= 0.$$

Therefore, f is constant.

c) The orbit of $(x(t_0), y(t_0))$ is

$$\{(x(t), y(t)), t \in I\}.$$

Let us show that this set is included in \mathcal{O} .

For any $t \in I$, x(t) is non-zero and has the same sign as $x(t_0)$ (since x is continuous and does not cancel on I). Therefore, $x(t) \in E$. In addition, still for any t,

$$C = f(t) = \left(1 + \frac{1}{x(t)^2}\right) (y(t)^2 - 1),$$

$$\Rightarrow y(t)^2 = 1 + \frac{Cx(t)^2}{x(t)^2 + 1},$$

$$\Rightarrow y(t) = \pm \sqrt{1 + \frac{Cx(t)^2}{x(t)^2 + 1}}.$$

Since |y(t)| > 1 > 0 for any $t \in I$, y cannot cancel, hence the sign of y is constant, equal to $sign(y(t_0))$. This implies that, for any $t \in I$,

$$y(t) = \text{sign}(y(t_0))\sqrt{1 + \frac{Cx(t)^2}{x(t)^2 + 1}},$$

which shows that $(x(t), y(t)) \in \mathcal{O}$.

d) Let us discuss the case where $E = \mathbb{R}_+^*$ and $y(t_0) > 0$. The other three cases are almost identical.

The map x is continuous, and strictly increasing (as x' = xy > 0 on I). Its domain is an open interval, hence its image is also an open interval, which we call $]\alpha; \beta[\subset \mathbb{R}_+^*]$ (with β possibly equal to $+\infty$). To show that

$$\{(x(t), y(t)), t \in I\} = \mathcal{O},$$

it is enough to show that $\alpha; \beta = E$, that is to say $\alpha = 0$ and $\beta = +\infty$.

First, we show that $\alpha = 0$. For this, we observe that (x, y) is bounded in the neighborhood of inf I, because

$$y(t) = \sqrt{1 + \frac{Cx(t)^2}{x(t)^2 + 1}} \xrightarrow{t \to \inf I} \sqrt{1 + \frac{C\alpha^2}{\alpha^2 + 1}}.$$

From the thoérème des bouts, it holds inf $I = -\infty$. In addition, for any $t \in I$,

$$x'(t) = x(t)y(t) > x(t),$$

hence $[\ln(x)]'(t) > 1$, which implies that, for all $t \in]-\infty; t_0]$,

$$\ln(x(t)) = \ln(x(t_0)) - \int_t^{t_0} [\ln(x)]'(s) ds$$

< \ln(x(t_0)) - (t_0 - t).

Therefore, $\ln(x(t)) \to -\infty$ when $t \to -\infty$, which means that $\alpha = \lim_{-\infty} x = 0$. Second, we show that $\beta = +\infty$. The reasoning is similar as before, but it is easier to proceed by contradiction: we assume that $\beta < +\infty$. Then (x, y) is bounded in the neighborhood of $\sup I$, hence $\sup I = +\infty$, from the théorème des bouts. For any $t \in [t_0; +\infty[$,

$$\ln(x(t)) = \ln(x(t_0)) + \int_{t_0}^t [\ln(x)]'(s) ds$$
$$> \ln(x(t_0)) + (t - t_0).$$

Therefore, $\ln(x(t)) \xrightarrow{t \to +\infty} +\infty$, hence $x(t) \xrightarrow{t \to +\infty} +\infty$, meaning that $\beta = +\infty$, which is a contradiction.

5. The size of the arrows has been divided by 2 for better lisibility.

