Differential geometry and differential equations
May 22 2025, 2 hours

Exercise 1

1. Let us define
F R3 — R
(,y,2) — (1+2%)% —y?>— 2%

This map is C*. In order to show that & = F~1({0}) is a C* submanifold of R? with
dimension dim(R?) — dim(R) = 2, it suffices to show that F' is a submersion at every
point of &.

Let (z,y,2) € € be arbitrary. We show that the linear map

dF (z,y,2) = ((hg, by, h.) € R* = 4a(1 + 2®)h, — 2yh, — 2zh, € R)

is surjective. As its codomain is R, it is enough to show that it is non-zero. We observe
that y?> + 22 = (1 + 2%)? > 1, s0 y # 0 or z # 0. In the first case,

In the second case,
dF(z,y,2)(0,0,1) = =2z # 0.

This shows that dF'(z,y, z) # 0.
2. First, we observe that v is C? (actually, C*) and v(t) € £ for any ¢t € R, as

(14 0%)? =1 = cos?(t) + sin®(t).

Second, we compute the tangent spaces to £. For any (z,y,2) € &, Tzy€ =
KerdF(z,y, z), where F' is the map introduced at the previous question, i.e.

Tiay,-€ = {(hg, hy, h.), 4x(1 + xQ)hx — 2yh, — 2zh, = 0}
= {(21’(1 + $2)7 -v, _Z)}J_>

hence (T(:,D,W)S)L = Vect{(2z(1 + %), —y, —2) }.
Finally, we check that 7" (t) € (Tv(t)é')L for any ¢t € R.
Let us fix t € R. From the last equality, it holds

(T,y(lt)c‘,')L = Vect{(0, — cos(t), — sin(t))}.
As 7"(t) = (0, — cos(t), —sin(t)), it is true that v"(t) € (T, €)™

Exercise 2

We want to solve the scalar autonomous equation v’ = F(u), where F' = (z € R — 2% — 1).
The map F' cancels at —1 and 1. Therefore, the constant maps

u:t€ER —1, (1)
ug:t € R — —1, (2)

are solutions. Since they are defined over all R, they are maximal.
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Let us now find the non-constant solutions. The three maximal intervals over which F' does
not cancel are | — oo; —1[,] — 1;1[,]1;+oo[. If u : I — R is a solution of the equation, we
know from the class that u([) is a subset of one of these intervals. Therefore, there are
three families of non-constant maximal solutions.

Family 1 : maximal solutions with image in |1; +o0l.

We denote ¢ : z € R\ {-1,1} — %ln(l

z—1|
|z+1]

) the map suggested in the hint. It is differen-

tiable, with derivative

1

, 1 1 1 1
q)(x)_§<x—1_x+1)_x2—1_F(x)’ Vo e RA{-1 1)

Therefore, ®jj1; ;o0 :]1; +00[— R is a primitive of + over ]1;4oc0|.

As ® has a positive derivative, it is strictly increasing. It goes to —oo at 1 and to 0 at +o0,
meaning that its image is | — 0o; 0[. It is therefore a homeomorphism between ]1; 00| and
| — 00; 0]

We compute CDHILFOO[ ;] — 00; 0[—=]1; +o0[. Let t €] — 00;0[ be arbitrary. Let us denote
y = @HI{JFOO[(t). It must hold

t=(y)
1 ly — 1|
Z1In
2 ly + 1
1 <y—1)
— (Y
2 y+1

(asy > 1),

from which we deduce 1 ot
. o 1+e
Do (t) =y = 1_ g2t

From Theorem 5.4 from the lecture notes, the maximal solutions with image in |1;+o0o|
are all maps of the form

1 4 e2t=D)

Titool(t = D)

for all D € R.
Family 2 : maximal solutions with image in | — 1;1[.
The reasoning is very similar to the previous one. A primitive of % over | — 1;1[ is ®jj_y,1y.

This (decreasing) map is a homeomorphism from | — 1; 1] to R, with reciprocal
1 — th
1 .
®Zyy(t) = 1+ e2t’ VteR.

Therefore, the maximal solutions with image in | — 1; 1] are all maps of the form

1 — e2(t7D)

-1

for any D € R.
Family 3 : maximal solutions with image in | — co; —1].




The reasoning is the same as for Family 1. The map ®_._1[ is a homeomorphism from
| — 00; —1] to ]0; +o0[, with reciprocal

1+ e
71 _ .
O ey (t) = T VE€J0; 400,

Therefore, the maximal solutions with image in | — oo; —1[ are all maps of the form

1 —I— eQ(t*D)

t €]D; +oo[— &1 = {2 D) (5)

[]—o0;—1]

(t—D)

for all D € R.
Summary : the maximal solutions are all maps from Equations (1), (2), (3), (4), (5).

Exercise 3

1. The considered equation can be written as

where, for any t € R, A(t) = ((1},;;6% e;) (Observe that A is continuous, so we are

in the setting considered in class.)
We define r : t — (et te! ) and show that r is the maximal solution of

{7“’(75) = Al)r(t)
r(0) = L.

From Theorem 5.9 in the lecture notes, this ensures that r(t) = R(t,0) for any ¢ € R.
The initial condition is satisfied :
10
r(0) = (O 1) .

For the differential equation, we note that r is differentiable. For any ¢ € R,
1—t e\ (et te
/“wr@)"((L—t%e—t t) (t 1—%#)
_ (e (T+t)e
S \1 2t
=7r'(t).

2. Maximal solutions are all maps of the form ¢t € R — R(¢,0) (), for some «, 5 € R.
Let us find «, 8 such that R(1,0) (3) = (9).

This equation rewrites
e e\ (fa) (0
1 2)\p) \1/)°

Its only solution is @ = —1, 8 = 1. The corresponding maximal solution is

teR — ((t_l)et).

1—t+¢t?
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Exercise 4 The equation can be written (z,y) = F(z,y), where F is defined as
F: R = R?
-1
(z,y) — (rcy, h) :

Note that F is C'. We are therefore in the setting of autonomous equations considered in
class.

1. a) Equilibria are points (z¢, yo) such that F(zo, ) = 0. This is equivalent to

$090:07
w—1_,
24+1
0

The second equation is equivalent to yo € {—1,1} and, when yo # 0, the first
equation holds true if and only if o = 0. Therefore, the only solutions are

(z0,90) = (0, —1) and (zo, yo) = (0, 1).

These are the equilibria.
b) The Jacobian matrix of F at any point (z,y) € R? is

Yy A
JF(J},y) = _2:(:(y271) 2y .

(z241)2 241

In particular,

-1 0 10
JF(0,—-1) = ( 0 _2> and JF(0,—1) = <O 2) .
The eigenvalues of the first matrix are —1 and —2 : all have a negative real part.
Therefore, from Theorem 6.11 from the lecture notes, (0, —1) is asymptotically stable
(and, consequently, also stable).
The eigenvalues of the first matrix are 1 and 2 : one of them (both, actually) has a
positive real part. Therefore, (0,1) is unstable.
2. a) Let us assume that there exists ¢y € I such that y(ty) = 1. Let us fix such t,. We

define

(z,9) : R — R2,

t — (z(tp)et~"0,1).

The solution (z,y) is the maximal solution to the following Cauchy problem :

{ ($’y>, = F($’y>

(x(to), y(to)) = (x(to), 1).

The map (Z,7) is also a solution to this Cauchy problem. Indeed,

(Z(to), §(to)) = (x(to), 1)

and, for any t € R,

T'(t) = x(to)e' ™" = ()Y (1),

yt)? —1

T(t)2+1

As it is global, it can only be a maximal solution. The maximal solution is unique,

from the Cauchy-Lipschitz theorem (which applies, because F' is C', hence locally
Lipschitz). Therefore, (x,y) = (Z,7) and I = R.

()= 0=
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b) We use the previous subquestion to compute the orbit of (1,1). From the above, the
maximal solution (z,y) such that (x(0),y(0)) = (1,1) is

teR — (e 1).

Therefore, the orbit of (1,1) is {(e’,1),t € R} =R} x {1}.
Similarly, the maximal solution (z,y) such that (z(0),y(0)) = (—1,1) is

teR — (=€ 1).

Therefore, the orbit of (—1,1) is {(—e€’,1),t € R} = R* x {1}.
3. a) Let us fix ¢; € I such that z(¢;) = 0. Let u : [ — R be the maximal solution of the
following Cauchy problem :
{ o= ut-1
uty) = y(t).

It is one of the solutions found at Exercise 2.

We define ~
(z,9) : I — R2?,
t — (0,u(t)).

This maps satisfies the equation (%,)" = F(&, ), since, for any t € I,
#'(t) =0=z(t)j(t),

~/ o - 2 _ﬂ(t)2—1
g (t) =u'(t) = u(t) —1—m.

As (2(t1),9(t1)) = (0,u(ty)) = (0,y(t1)), it is a solution of the Cauchy problem

{ (z,9) = F(z,7)
(Z(t), 9(t1)) = (0,y(t1))-

Since (x,y) is the maximal solution of the same Cauchy problem, we must have
J C Jand (z,y) = (#,§) on J (from the Cauchy-Lipschitz theorem).
The last thlng we have to show is that J = J, i.e. the inclusion is an equality. First,
we show that sup J = sup J. We proceed by contradiction, and assume supJ <
sup J. In this case, sup J < +o0. In addition, since u = y on J and y is continuous
at sup J, it must hold that u goes to y(sup J) at sup J. This contradicts the théoréme
des bouts.
An identical result shows that inf J = inf J, hence J = J.

b) Let a be an arbitrary element from R\ {—1,1}. From the reasoning done for the
previous subquestion, the orbit of (0, a) is the image of

(Z,9) : I — R2,
t — (0,u(t)),

where u : I — R is the maximal solution of
o= ur-1
u(ty) = a.

Since a # =£1, u is not one of the constant solutions of Exercise 2. We have the
following three possibilities :



1. @ > 1 : in this case, the image of u is the image of the map ®~! appearing at
Equation (3), which is |1; +oo[. The image of (Z,7) is then

{0} x]1; 400,

which means that this set is an orbit.

2. —1 < a < 1 : the image of u is the image of ®~! from Equation (4). The orbit

is then
{0}x] — 1;1].
3. a < —1 : the image of u is the image of ®~! from Equation (5). The orbit is
then
{0} x] — o0; —1].

4. a) From Question 2., if there exists ¢; € I such that |y(t;)| =1 (i.e. y(t1) = Lory(t,) =
—1), then y is constant, so that |y(t)| = 1 for any ¢ € I. This is in contradiction
with the assumption that |y(ty)| > 1 for some ¢, € I. This shows that |y(¢)| # 1, for
allt € 1.

The image of |y| is an interval, as |y| is continuous (from the intermediate values
theorem). It intersects |1;+oo[ and does not contain 1. Therefore, it is a subset of
]1; +00[, meaning that |y(¢)| > 1 for all t € I.

b) The map f is differentiable, as it is a sum of products of differentiable maps. For
eacht € I,

(1)

/ 2 1 /
o) = =225 2 = 1) +2 (14— ) ou)
(

)
@yt e 1 y(t)? -1
-2 b7 =042 (1 ) (T ) v

() w0 e
=2 (3G + ) (00 1)
= 0.

Therefore, f is constant.
c¢) The orbit of (z(t),y(to)) is

{(2(®),y(t)),t € I}.

Let us show that this set is included in O.

For any t € I, x(t) is non-zero and has the same sign as z(ty) (since z is continuous
and does not cancel on I). Therefore, x(t) € F.

In addition, still for any t,

¢ =10 = (1+ g ) 007 - ),
=yl = 1 o
Ca(t)?

=y(t) ==+ 1+—m(t)2+1‘



Since |y(t)] > 1 > 0 for any ¢ € I, y cannot cancel, hence the sign of y is constant,
equal to sign(y(to)). This implies that, for any ¢ € I,

: Cx(t)?

y(t) = sign(y(to))y /1 + PO
which shows that (z(¢),y(t)) € O.

d) Let us discuss the case where £ = RY and y(ty) > 0. The other three cases are
almost identical.
The map z is continuous, and strictly increasing (as @’ = zy > 0 on I). Its domain is
an open interval, hence its image is also an open interval, which we call |a; B[C R*
(with 3 possibly equal to +00). To show that

{(=(t),y(t), t € I} = O,

it is enough to show that |a; f[= E, that is to say a = 0 and § = +oo.
First, we show that « = 0. For this, we observe that (z,y) is bounded in the
neighborhood of inf I, because

J?(t) t—inf I :
Cx(t)? toinfr Ca?
t) = —_— 1 .
y(t) z(t)? +1 Tt

From the thoéréme des bouts, it holds inf I = —oo. In addition, for any ¢ € I,

2'(t) = x(t)y(t) > x(t),

hence [In(z)]'(t) > 1, which implies that, for all ¢ €] — 0o; o],

In(z(t)) = In(x(to)) — / n(2)) (s)ds

Therefore, In(z(t)) - —oo when ¢ — —oo, which means that & = lim_,, x = 0.
Second, we show that § = +o00. The reasoning is similar as before, but it is easier
to proceed by contradiction : we assume that § < +oo. Then (x,y) is bounded in
the neighborhood of sup I, hence sup I = 400, from the théoréme des bouts. For
any t € [to; +00],

In(z(t)) = In(x(to)) +/ [In(z)]'(s)ds

to
> In(x(to)) + (t — to).
t—+o00 t——+00 . :
Therefore, In(z(t)) — +o00, hence x(t) — 400, meaning that § = +o0, which
is a contradiction.

5. The size of the arrows has been divided by 2 for better lisibility.






