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Exercise 1

1. Let us define
F : R3 → R

(x, y, z) → (1 + x2)2 − y2 − z2.

This map is C∞. In order to show that E = F−1({0}) is a C∞ submanifold of R3 with
dimension dim(R3) − dim(R) = 2, it suffices to show that F is a submersion at every
point of E .
Let (x, y, z) ∈ E be arbitrary. We show that the linear map

dF (x, y, z) =
(
(hx, hy, hz) ∈ R3 → 4x(1 + x2)hx − 2yhy − 2zhz ∈ R

)
is surjective. As its codomain is R, it is enough to show that it is non-zero. We observe
that y2 + z2 = (1 + x2)2 ≥ 1, so y ̸= 0 or z ̸= 0. In the first case,

dF (x, y, z)(0, 1, 0) = −2y ̸= 0.

In the second case,
dF (x, y, z)(0, 0, 1) = −2z ̸= 0.

This shows that dF (x, y, z) ̸= 0.
2. First, we observe that γ is C2 (actually, C∞) and γ(t) ∈ E for any t ∈ R, as

(1 + 02)2 = 1 = cos2(t) + sin2(t).

Second, we compute the tangent spaces to E . For any (x, y, z) ∈ E , T(x,y,z)E =
Ker dF (x, y, z), where F is the map introduced at the previous question, i.e.

T(x,y,z)E = {(hx, hy, hz), 4x(1 + x2)hx − 2yhy − 2zhz = 0}
= {(2x(1 + x2),−y,−z)}⊥,

hence
(
T(x,y,z)E

)⊥ = Vect{(2x(1 + x2),−y,−z)}.
Finally, we check that γ′′(t) ∈

(
Tγ(t)E

)⊥ for any t ∈ R.
Let us fix t ∈ R. From the last equality, it holds(

Tγ(t)E
)⊥ = Vect{(0,− cos(t),− sin(t))}.

As γ′′(t) = (0,− cos(t),− sin(t)), it is true that γ′′(t) ∈
(
Tγ(t)E

)⊥.

Exercise 2
We want to solve the scalar autonomous equation u′ = F (u), where F = (x ∈ R → x2 − 1).
The map F cancels at −1 and 1. Therefore, the constant maps

u1 : t ∈ R → 1, (1)
u2 : t ∈ R → −1, (2)

are solutions. Since they are defined over all R, they are maximal.
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Let us now find the non-constant solutions. The three maximal intervals over which F does
not cancel are ] −∞;−1[, ] − 1; 1[, ]1; +∞[. If u : I → R is a solution of the equation, we
know from the class that u(I) is a subset of one of these intervals. Therefore, there are
three families of non-constant maximal solutions.
Family 1 : maximal solutions with image in ]1; +∞[.
We denote Φ : x ∈ R \ {−1, 1} → 1

2 ln
(

|x−1|
|x+1|

)
the map suggested in the hint. It is differen-

tiable, with derivative

Φ′(x) = 1
2

(
1

x− 1
− 1

x + 1

)
= 1

x2 − 1
= 1

F (x)
, ∀x ∈ R \ {−1, 1}.

Therefore, Φ|]1;+∞[ :]1; +∞[→ R is a primitive of 1
F

over ]1; +∞[.
As Φ has a positive derivative, it is strictly increasing. It goes to −∞ at 1 and to 0 at +∞,
meaning that its image is ]−∞; 0[. It is therefore a homeomorphism between ]1; +∞[ and
] −∞; 0[.
We compute Φ−1

|]1;+∞[ :] − ∞; 0[→]1; +∞[. Let t ∈] − ∞; 0[ be arbitrary. Let us denote
y = Φ−1

|]1;+∞[(t). It must hold

t = Φ(y)

= 1
2

ln
(
|y − 1|
|y + 1|

)
= 1

2
ln
(
y − 1
y + 1

)
(as y > 1),

from which we deduce
Φ−1

|]1;+∞[(t) = y = 1 + e2t

1 − e2t .

From Theorem 5.4 from the lecture notes, the maximal solutions with image in ]1; +∞[
are all maps of the form

t ∈] −∞;D[→ Φ−1
|]1;+∞[(t−D) = 1 + e2(t−D)

1 − e2(t−D) , (3)

for all D ∈ R.
Family 2 : maximal solutions with image in ] − 1; 1[.
The reasoning is very similar to the previous one. A primitive of 1

F
over ] − 1; 1[ is Φ|]−1;1[.

This (decreasing) map is a homeomorphism from ] − 1; 1[ to R, with reciprocal

Φ−1
|]−1;1[(t) = 1 − e2t

1 + e2t , ∀t ∈ R.

Therefore, the maximal solutions with image in ] − 1; 1[ are all maps of the form

t ∈ R → Φ−1
|]−1;1[(t−D) = 1 − e2(t−D)

1 + e2(t−D) , (4)

for any D ∈ R.
Family 3 : maximal solutions with image in ] −∞;−1[.
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The reasoning is the same as for Family 1. The map Φ|]−∞;−1[ is a homeomorphism from
] −∞;−1[ to ]0; +∞[, with reciprocal

Φ−1
|]−∞;−1[(t) = 1 + e2t

1 − e2t , ∀t ∈]0; +∞[.

Therefore, the maximal solutions with image in ] −∞;−1[ are all maps of the form

t ∈]D; +∞[→ Φ−1
|]−∞;−1[(t−D) = 1 + e2(t−D)

1 − e2(t−D) , (5)

for all D ∈ R.
Summary : the maximal solutions are all maps from Equations (1), (2), (3), (4), (5).

Exercise 3

1. The considered equation can be written as(
x′(t)
y′(t)

)
= A(t)

(
x(t)
y(t)

)
,

where, for any t ∈ R, A(t) =
(

1−t et

(1−t2)e−t t

)
. (Observe that A is continuous, so we are

in the setting considered in class.)
We define r : t →

(
et tet

t 1+t2

)
and show that r is the maximal solution of{

r′(t) = A(t)r(t)
r(0) = I2.

From Theorem 5.9 in the lecture notes, this ensures that r(t) = R(t, 0) for any t ∈ R.
The initial condition is satisfied :

r(0) =
(

1 0
0 1

)
.

For the differential equation, we note that r is differentiable. For any t ∈ R,

A(t)r(t) =
(

1 − t et

(1 − t2)e−t t

)(
et tet

t 1 + t2

)
=
(
et (1 + t)et
1 2t

)
= r′(t).

2. Maximal solutions are all maps of the form t ∈ R → R(t, 0) ( α
β ), for some α, β ∈ R.

Let us find α, β such that R(1, 0) ( α
β ) = ( 0

1 ).
This equation rewrites (

e e
1 2

)(
α
β

)
=
(

0
1

)
.

Its only solution is α = −1, β = 1. The corresponding maximal solution is

t ∈ R →
(

(t− 1)et
1 − t + t2

)
.
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Exercise 4 The equation can be written (x, y)′ = F (x, y), where F is defined as

F : R2 → R2

(x, y) →
(
xy, y2−1

x2+1

)
.

Note that F is C1. We are therefore in the setting of autonomous equations considered in
class.
1. a) Equilibria are points (x0, y0) such that F (x0, y0) = 0. This is equivalent to

x0y0 = 0,
y2

0 − 1
x2

0 + 1
= 0.

The second equation is equivalent to y0 ∈ {−1, 1} and, when y0 ̸= 0, the first
equation holds true if and only if x0 = 0. Therefore, the only solutions are

(x0, y0) = (0,−1) and (x0, y0) = (0, 1).

These are the equilibria.
b) The Jacobian matrix of F at any point (x, y) ∈ R2 is

JF (x, y) =

(
y x

−2x(y2−1)
(x2+1)2

2y
x2+1

)
.

In particular,

JF (0,−1) =
(
−1 0
0 −2

)
and JF (0,−1) =

(
1 0
0 2

)
.

The eigenvalues of the first matrix are −1 and −2 : all have a negative real part.
Therefore, from Theorem 6.11 from the lecture notes, (0,−1) is asymptotically stable
(and, consequently, also stable).
The eigenvalues of the first matrix are 1 and 2 : one of them (both, actually) has a
positive real part. Therefore, (0, 1) is unstable.

2. a) Let us assume that there exists t0 ∈ I such that y(t0) = 1. Let us fix such t0. We
define

(x̃, ỹ) : R → R2,
t → (x(t0)et−t0 , 1).

The solution (x, y) is the maximal solution to the following Cauchy problem :{
(x, y)′ = F (x, y)

(x(t0), y(t0)) = (x(t0), 1).

The map (x̃, ỹ) is also a solution to this Cauchy problem. Indeed,

(x̃(t0), ỹ(t0)) = (x(t0), 1)

and, for any t ∈ R,

x̃′(t) = x(t0)et−t0 = x̃(t)ỹ(t),

ỹ′(t) = 0 = ỹ(t)2 − 1
x̃(t)2 + 1

.

As it is global, it can only be a maximal solution. The maximal solution is unique,
from the Cauchy-Lipschitz theorem (which applies, because F is C1, hence locally
Lipschitz). Therefore, (x, y) = (x̃, ỹ) and I = R.
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b) We use the previous subquestion to compute the orbit of (1, 1). From the above, the
maximal solution (x, y) such that (x(0), y(0)) = (1, 1) is

t ∈ R → (et, 1).

Therefore, the orbit of (1, 1) is {(et, 1), t ∈ R} = R∗
+ × {1}.

Similarly, the maximal solution (x, y) such that (x(0), y(0)) = (−1, 1) is

t ∈ R → (−et, 1).

Therefore, the orbit of (−1, 1) is {(−et, 1), t ∈ R} = R∗
− × {1}.

3. a) Let us fix t1 ∈ I such that x(t1) = 0. Let u : Ĩ → R be the maximal solution of the
following Cauchy problem : {

u′ = u2 − 1
u(t1) = y(t1).

It is one of the solutions found at Exercise 2.
We define

(x̃, ỹ) : Ĩ → R2,
t → (0, u(t)).

This maps satisfies the equation (x̃, ỹ)′ = F (x̃, ỹ), since, for any t ∈ Ĩ,

x̃′(t) = 0 = x̃(t)ỹ(t),

ỹ′(t) = u′(t) = u(t)2 − 1 = ỹ(t)2 − 1
x̃(t)2 + 1

.

As (x̃(t1), ỹ(t1)) = (0, u(t1)) = (0, y(t1)), it is a solution of the Cauchy problem{
(x̃, ỹ)′ = F (x̃, ỹ)

(x̃(t1), ỹ(t1)) = (0, y(t1)).

Since (x, y) is the maximal solution of the same Cauchy problem, we must have
J̃ ⊂ J and (x, y) = (x̃, ỹ) on J̃ (from the Cauchy-Lipschitz theorem).
The last thing we have to show is that J̃ = J , i.e. the inclusion is an equality. First,
we show that sup J̃ = sup J . We proceed by contradiction, and assume sup J̃ <
sup J . In this case, sup J̃ < +∞. In addition, since u = y on J̃ and y is continuous
at sup J̃ , it must hold that u goes to y(sup J̃) at sup J̃ . This contradicts the théorème
des bouts.
An identical result shows that inf J̃ = inf J , hence J̃ = J .

b) Let a be an arbitrary element from R \ {−1, 1}. From the reasoning done for the
previous subquestion, the orbit of (0, a) is the image of

(x̃, ỹ) : Ĩ → R2,
t → (0, u(t)),

where u : Ĩ → R is the maximal solution of{
u′ = u2 − 1

u(t1) = a.

Since a ̸= ±1, u is not one of the constant solutions of Exercise 2. We have the
following three possibilities :
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1. a > 1 : in this case, the image of u is the image of the map Φ−1 appearing at
Equation (3), which is ]1; +∞[. The image of (x̃, ỹ) is then

{0}×]1; +∞[,

which means that this set is an orbit.
2. −1 < a < 1 : the image of u is the image of Φ−1 from Equation (4). The orbit

is then
{0}×] − 1; 1[.

3. a < −1 : the image of u is the image of Φ−1 from Equation (5). The orbit is
then

{0}×] −∞;−1[.

4. a) From Question 2., if there exists t1 ∈ I such that |y(t1)| = 1 (i.e. y(t1) = 1 or y(t1) =
−1), then y is constant, so that |y(t)| = 1 for any t ∈ I. This is in contradiction
with the assumption that |y(t0)| > 1 for some t0 ∈ I. This shows that |y(t)| ≠ 1, for
all t ∈ I.
The image of |y| is an interval, as |y| is continuous (from the intermediate values
theorem). It intersects ]1; +∞[ and does not contain 1. Therefore, it is a subset of
]1; +∞[, meaning that |y(t)| > 1 for all t ∈ I.

b) The map f is differentiable, as it is a sum of products of differentiable maps. For
each t ∈ I,

f ′(t) = −2 x
′(t)

x(t)3

(
y(t)2 − 1

)
+ 2

(
1 + 1

x(t)2

)
y′(t)y(t)

= −2x(t)y(t)
x(t)3

(
y(t)2 − 1

)
+ 2

(
1 + 1

x(t)2

)(
y(t)2 − 1
x(t)2 + 1

)
y(t)

= 2
(
− y(t)
x(t)2 + y(t)

x(t)2

)(
y(t)2 − 1

)
= 0.

Therefore, f is constant.
c) The orbit of (x(t0), y(t0)) is

{(x(t), y(t)), t ∈ I}.

Let us show that this set is included in O.
For any t ∈ I, x(t) is non-zero and has the same sign as x(t0) (since x is continuous
and does not cancel on I). Therefore, x(t) ∈ E.
In addition, still for any t,

C = f(t) =
(

1 + 1
x(t)2

)
(y(t)2 − 1),

⇒ y(t)2 = 1 + Cx(t)2

x(t)2 + 1
,

⇒ y(t) = ±

√
1 + Cx(t)2

x(t)2 + 1
.
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Since |y(t)| > 1 > 0 for any t ∈ I, y cannot cancel, hence the sign of y is constant,
equal to sign(y(t0)). This implies that, for any t ∈ I,

y(t) = sign(y(t0))

√
1 + Cx(t)2

x(t)2 + 1
,

which shows that (x(t), y(t)) ∈ O.
d) Let us discuss the case where E = R∗

+ and y(t0) > 0. The other three cases are
almost identical.
The map x is continuous, and strictly increasing (as x′ = xy > 0 on I). Its domain is
an open interval, hence its image is also an open interval, which we call ]α; β[⊂ R∗

+
(with β possibly equal to +∞). To show that

{(x(t), y(t)), t ∈ I} = O,

it is enough to show that ]α; β[= E, that is to say α = 0 and β = +∞.
First, we show that α = 0. For this, we observe that (x, y) is bounded in the
neighborhood of inf I, because

x(t) t→inf I−→ α,

y(t) =

√
1 + Cx(t)2

x(t)2 + 1
t→inf I−→

√
1 + Cα2

α2 + 1
.

From the thoérème des bouts, it holds inf I = −∞. In addition, for any t ∈ I,

x′(t) = x(t)y(t) > x(t),

hence [ln(x)]′(t) > 1, which implies that, for all t ∈] −∞; t0],

ln(x(t)) = ln(x(t0)) −
∫ t0

t

[ln(x)]′(s)ds

< ln(x(t0)) − (t0 − t).

Therefore, ln(x(t)) → −∞ when t → −∞, which means that α = lim−∞ x = 0.
Second, we show that β = +∞. The reasoning is similar as before, but it is easier
to proceed by contradiction : we assume that β < +∞. Then (x, y) is bounded in
the neighborhood of sup I, hence sup I = +∞, from the théorème des bouts. For
any t ∈ [t0; +∞[,

ln(x(t)) = ln(x(t0)) +
∫ t

t0

[ln(x)]′(s)ds

> ln(x(t0)) + (t− t0).

Therefore, ln(x(t)) t→+∞−→ +∞, hence x(t) t→+∞−→ +∞, meaning that β = +∞, which
is a contradiction.

5. The size of the arrows has been divided by 2 for better lisibility.
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