Differential geometry, mid-term

March 11 2025, 2 hours

You can use any written or printed material.

For each exercise, the number of points is an indication; it may change. You can write in either English or French, but don't forget quantifiers!

Exercise 1 (1.5 points)

Let n_1, n_2, n_3 be positive integers, $f : \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}, g : \mathbb{R}^{n_2} \to \mathbb{R}^{n_3}$ be C^1 maps, and $a \in \mathbb{R}^{n_1}$ be a point. Show that if f is an immersion at a, and g an immersion at f(a), then $g \circ f$ is an immersion at a.

Exercise 2 (2 points)

Let $d \in \mathbb{N}^*$ be fixed. For any $a, b \in \mathbb{R}^d$, we denote $a \odot b$ the vector in \mathbb{R}^d whose coordinates are the multiplications of the coordinates of a and b:

$$\forall i \le d, (a \odot b)_i = a_i b_i$$

We fix an arbitrary $y \in \mathbb{R}^d$ and define

$$\begin{array}{rccc} f & : & \mathbb{R}^d \times \mathbb{R}^d & (= \mathbb{R}^{2d}) & \to & \mathbb{R}, \\ & & (a,b) & & \to & \frac{1}{2} \left| |a \odot b - y| \right|_2^2 \end{array}$$

Show that f is C^{∞} , and compute its gradient.

Exercise 3 (3 points)

For this exercise, you do not need to justify your answers.

- 1. For each of the four sets given below, say whether it is a submanifold of \mathbb{R}^2 .
- 2. For each submanifold, draw on the figure the affine tangent space at (1, 1).

Exercise 4 (2.5 points)

We define $E_1 = \{(x, y, z) \in \mathbb{R}^3 \text{ s.t. } x^2 + y^2 = z^2 + 1\}.$

- 1. Show that E_1 is a C^{∞} submanifold of \mathbb{R}^3 . Specify the dimension.
- 2. Compute the tangent space to E_1 at any point.

Exercise 5 (4 points)

We define

- 1. Show that $g \circ f = \mathrm{Id}_{\mathbb{R}}$.
- 2. Show that $E_2 \stackrel{def}{=} \left\{ \left(t^3 t, \frac{1}{t^2 + 1}, (t 1)^2\right), t \in \mathbb{R} \right\}$ is a C^{∞} submanifold of \mathbb{R}^3 . Specify the dimension.
- 3. Compute the tangent space to E_2 at any point.

Exercise 6 (3 points)

Let $f:]0; 1[\rightarrow \mathbb{R}$ be a C^1 map. We consider its graph

$$G = \{ (x, f(x)), x \in]0; 1[\} \subset \mathbb{R}^2.$$

- 1. Justify that G is a curve.
- 2. Which simple curve is it diffeomorphic to? (You can admit that G is connected.)
- 3. Give a global parametrization of G.
- 4. Express the length of G as a function of f'.

Exercise 7 : stereographic projection (4 points)

We define

$$\phi : \mathbb{S}^2 \setminus \{ (0,0,1) \} \to \mathbb{R}^2,$$

$$(x,y,z) \to \left(\frac{x}{1-z}, \frac{y}{1-z} \right) ,$$

(You can admit that $\mathbb{S}^2 \setminus \{(0,0,1)\}$ is a C^{∞} submanifold of \mathbb{R}^3 , with dimension 2.)

- 1. Show that ϕ is C^{∞} .
- 2. a) Let $(x, y, z) \in \mathbb{S}^2 \setminus \{(0, 0, 1)\}, (a, b) \in \mathbb{R}^2$ be such that $\phi(x, y, z) = (a, b)$. Show that

$$(x, y, z) = \left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right).$$

b) Show that ϕ is a bijection between $\mathbb{S}^2 \setminus \{(0,0,1)\}\$ and \mathbb{R}^2 and give an explicit expression for $\phi^{-1} : \mathbb{R}^2 \to \mathbb{S}^2 \setminus \{(0,0,1)\}.$

3. Show that ϕ is a C^{∞} -diffeomorphism.