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Solution

Exercise 1
The map g ◦ f is C1, as it is the composition of two C1 maps. For any h ∈ Rn1 ,

d(g ◦ f)(a)(h) = dg(f(a)) ◦ df(a)(h) = dg(f(a)) (df(a)(h)) .

For any h, since dg(f(a)) is injective (as g is an immersion at f(a)), d(g ◦ f)(a)(h)
can only be zero if df(a)(h) = 0. As df(a) is also injective (f is an immersion at a),
this is equivalent to h = 0. Therefore, d(g ◦ f)(a) is injective, meaning that g ◦ f is
an immersion at a.

Exercise 2
For any (a, b) ∈ Rd × Rd,

f(a, b) = 1
2

d∑
i=1

(a⊙ b− y)2
i

= 1
2

d∑
i=1

(aibi − yi)2.

From this expression, we see that f is polynomial. In particular, it is C∞.
For any (a, b) ∈ Rd × Rd, for any k ∈ {1, . . . , d},

∂f

∂ak
(a, b) = 1

2
∂ [(akbk − yk)2]

∂ak
(a, b)

= bk(akbk − yk).

For the same reason,

∂f

∂bk
(a, b) = ak(akbk − yk).

For any (a, b) ∈ Rd × Rd, the gradient is thus

∇f(a, b) =



∂f
∂a1

(a,b)

...
∂f
∂ad

(a,b)
∂f
∂b1

(a,b)

...
∂f
∂bd

(a,b)



=


b1(a1b1−y1)

...
bd(adbd−yd)
a1(a1b1−y1)

...
ad(adbd−yd)
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=
(

b⊙(a⊙b−y)
a⊙(a⊙b−y)

)
.

Exercise 3

1. The set A1 is not a submanifold. Explanation sketch : if it is a submanifold,
then, since it contains a whole neighborhood of (1, 1), it must have dimension
2. But submanifolds of R2 with dimension 2 are open sets, and A1 is not open.
The set A2 is a submanifold : since it is an open set of R2, it is a submanifold
with dimension 2.
The set A3 is a submanifold. Explanation sketch : it is the image of x ∈]−2; 2[→
(x2, x), which is an immersion, and a homeomorphism onto its image (with
reciprocal (x, y) → y).
The set A4 is not a submanifold, because it has a non-regular point at (2, 2). This
can be rigorously proved in a similar manner as for the graph of the absolute
value.

2.

•
(1, 1)

-1 1
-1

1

A2 = R+
∗ × R

(The tangent space is R2.)

•
(1, 1)

1
-1

1

A3 = {(x2, x), x ∈ ]−2; 2[}
(The tangent space is (2, 1)R.)

Exercise 4

1. We define
f : R3 → R,

(x, y, z) → x2 + y2 − z2 − 1.

The map f is C∞. We have E1 = f−1({0}). Therefore, if we can show that f
is a submersion at p for any p ∈ E1, then E1 is a submanifold of class C∞ and
dimension 3 − 1 = 2.
Let p = (x, y, z) be any element of E1. The differential of f at p is the linear
map

df(p) : R3 → R,
(h, k, l) → 2(xh + yk − zl).

This map is not the null map, because x, y, z cannot be all zero (otherwise
p = (0, 0, 0), which is impossible since (0, 0, 0) /∈ E1). Therefore, its image is a
subspace of R, which is not {0} : it is R. Consequently, df(p) is surjective, so f
is a submersion at p.
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2. For any (x, y, z) ∈ E1,

T(x,y,z)E1 = Ker(df(x, y, z))
= {(h, k, l) ∈ R3 s.t. 2(xh + yk − zl) = 0}
= {(x, y,−z)}⊥.

Exercise 5

1. For any t ∈ R, g ◦ f(t) is well defined, because (f(t))2 = 1
t2+1 ∈ R∗. Let us fix

any t ∈ R and show that g ◦ f(t) = t.

g ◦ f(t) = g

(
t3 − t,

1
t2 + 1

, (t− 1)2
)

= 1
2

t2+1
− (t− 1)2

2

= t2 + 1 − (t− 1)2

2
= 2t

2
= t.

2. Since E2 is the image of f , it holds that E2 is a C∞ submanifold of R3, with
dimension 1, provided that we can prove the following two properties :

1. f is an immersion at any point ;
2. f is a homeomorphism between R and f(R).

For the first point, we fix an arbitrary t ∈ R and show that f ′(t) ̸= 0. It holds

f ′(t) =
(

3t2 − 1,− 2t
(t2 + 1)2 , 2(t− 1)

)
.

The third coordinate is zero if and only if t = 1. But, when t = 1, the first
coordinate is 2 ̸= 0. Therefore, at least one of the coordinates of f ′(t) is non-
zero, meaning that f ′(t) ̸= 0.
For the second point, we use the fact that g ◦ f = IdR. Since IdR is injective, f
must be injective as well. In addition, f is surjective onto its image, so that f
is a bijection from R to f(R). Its inverse is g|f(R), which is a continuous map.
Therefore, f is a homeomorphism between R and f(R).

3. For any t ∈ R,

T(
t3−t, 1

t2+1
,(t−1)2

)E2 = Im(df(t))

= Vect{f ′(t)}

= Vect
{(

3t2 − 1,− 2t
(t2 + 1)2 , 2(t− 1)

)}
.
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Exercise 6

1. For any p ∈ G, the set ]0; 1[×R is a neighborhood of p, and

G ∩ (]0; 1[×R) = graph(f).

Therefore, from the definition “by graph” of submanifolds, G is a submanifold
of R2 with dimension 1 ; it is a curve.

2. The set G is not compact. To check it, we can notice, for instance, that the
sequence (2−n, f(2−n))n∈N has no converging subsequence with limit point in G
(if it had, the limit point should be of the form (0, a) for some a ∈ R, but G
contains no such point).
Therefore, G is a connected non-compact curve. It is diffeomorphic to R.

3. We define

ϕ : ]0; 1[ → R2

x → (x, f(x)).

It is a global parametrization :
— its domain, ]0; 1[, is an open interval ;
— ϕ(]0; 1[) = G, from the definition of G ;
— it is a diffeomorphism between ]0; 1[ and G : indeed, it is a bijection, and

its reciprocal is (a, b) ∈ G → a, which is a C1 map, from the lecture (it is
the projection onto the first coordinate).

4.

ℓ(G) =
∫ 1

0
||ϕ′(x)||2dx

=
∫ 1

0
||(1, f ′(x))||2dx

=
∫ 1

0

√
1 + (f ′(x))2dx.

Exercise 7

1. The maps (x, y, z) → x ∈ R and (x, y, z) → z ∈ R are C∞ on S2\{(0, 0, 1)}, from
the class. Therefore, (x, y, z) → 1 − z ∈ R is also C∞ and (x, y, z) → x

1−z
∈ R

is C∞ on S2 \ {(0, 0, 1)}, since it is the quotient of two C∞ maps such that the
denominator does not vanish (it does not vanish because (0, 0, 1) is the only
point in S2 whose last coordinate is 1).
Similarly, (x, y, z) → y

1−z
is C∞.

Since its two components are C∞, ϕ is C∞ on S2 \ {(0, 0, 1)}.
2. a)

a2 + b2 + 1 = x2 + y2 + (1 − z)2

(1 − z)2
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= 1 − z2 + (1 − z)2

(1 − z)2

= (1 + z) + (1 − z)
1 − z

= 2
1 − z

.

Therefore,

2a
a2 + b2 + 1

=
2 x

1−z
2

1−z

= x.

Similarly, it holds 2b
a2+b2+1 = y. For the last term,

a2 + b2 − 1
a2 + b2 + 1

= 1 − 2
a2 + b2 + 1

= 1 − 2
2

1−z

= z.

b) First, we show that ϕ is injective. Let (x, y, z), (x′, y′, z′) ∈ S2 \ {(0, 0, 1)} be
such that ϕ(x, y, z) = ϕ(x′, y′, z′). We define (a, b) = ϕ(x, y, z) = ϕ(x′, y′, z′).
From the previous subquestion,

(x, y, z) =
(

2a
a2 + b2 + 1

,
2b

a2 + b2 + 1
,
a2 + b2 − 1
a2 + b2 + 1

)
= (x′, y′, z′).

This shows the injectivity.
Let us show that ϕ is surjective. Let (a, b) ∈ R2 be arbitrary. We show that
there exists (x, y, z) ∈ S2 \ {(0, 0, 1)} such that ϕ(x, y, z) = (a, b). Let us
define (x, y, z) by the formula from the previous subquestion :

(x, y, z) =
(

2a
a2 + b2 + 1

,
2b

a2 + b2 + 1
,
a2 + b2 − 1
a2 + b2 + 1

)
.

This is a point in S2 \ {(0, 0, 1)}. Indeed,

x2 + y2 + z2 = 4a2 + 4b2 + (a2 + b2 − 1)2

(a2 + b2 + 1)2

= (a2 + b2 + 1)2

(a2 + b2 + 1)2

= 1,

so that (x, y, z) belongs to S2. Moreover, if x = y = 0, it means that a = b = 0
(since x, y are the quotient of a and b with a non-zero term). In this case,
z = −1

+1 = −1. Therefore, (x, y, z) ̸= (0, 0, 1).

5



As expected, it holds

ϕ(x, y, z) =

(
2a

a2+b2+1

1 − a2+b2−1
a2+b2+1

,
2b

a2+b2+1

1 − a2+b2−1
a2+b2+1

)
= (a, b).

This concludes the proof of the surjectivity, hence of the bijectivity.
For an arbitrary (a, b) ∈ R2, let us denote (x, y, z) = ϕ−1(a, b) ∈ S2 \
{(0, 0, 1)}. By definition of the inverse, it must hold ϕ(x, y, z) = (a, b). The-
refore, from the previous question,

ϕ−1(a, b) =
(

2a
a2 + b2 + 1

,
2b

a2 + b2 + 1
,
a2 + b2 − 1
a2 + b2 + 1

)
.

3. The map ϕ−1 is C∞, when seen as a map from R2 to R3 (each component is a
quotient of polynomial maps, whose denominator never vanishes). Therefore, it
is also C∞ as a map from R2 to S2 \ {(0, 0, 1)}.
We have shown that ϕ is a C∞ map, which is a bijection between S2 \{(0, 0, 1)}
and R2, and whose reciprocal is also C∞. Consequently, ϕ is a C∞-diffeomorphism.
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