Differential geometry, mid-term March 11 2025, 2 hours

Solution

Exercise 1

The map $g \circ f$ is C^1 , as it is the composition of two C^1 maps. For any $h \in \mathbb{R}^{n_1}$,

$$d(g \circ f)(a)(h) = dg(f(a)) \circ df(a)(h) = dg(f(a)) \left(df(a)(h) \right).$$

For any h, since dg(f(a)) is injective (as g is an immersion at f(a)), $d(g \circ f)(a)(h)$ can only be zero if df(a)(h) = 0. As df(a) is also injective (f is an immersion at a), this is equivalent to h = 0. Therefore, $d(g \circ f)(a)$ is injective, meaning that $g \circ f$ is an immersion at a.

Exercise 2

For any $(a, b) \in \mathbb{R}^d \times \mathbb{R}^d$,

$$f(a,b) = \frac{1}{2} \sum_{i=1}^{d} (a \odot b - y)_i^2$$
$$= \frac{1}{2} \sum_{i=1}^{d} (a_i b_i - y_i)^2.$$

From this expression, we see that f is polynomial. In particular, it is C^{∞} . For any $(a,b) \in \mathbb{R}^d \times \mathbb{R}^d$, for any $k \in \{1,\ldots,d\}$,

$$\frac{\partial f}{\partial a_k}(a,b) = \frac{1}{2} \frac{\partial \left[(a_k b_k - y_k)^2 \right]}{\partial a_k}(a,b)$$
$$= b_k (a_k b_k - y_k).$$

For the same reason,

$$\frac{\partial f}{\partial b_k}(a,b) = a_k(a_k b_k - y_k).$$

For any $(a, b) \in \mathbb{R}^d \times \mathbb{R}^d$, the gradient is thus

$$\nabla f(a,b) = \begin{pmatrix} \frac{\partial f}{\partial a_1}(a,b) \\ \vdots \\ \frac{\partial f}{\partial a_d}(a,b) \\ \frac{\partial f}{\partial b_1}(a,b) \\ \vdots \\ \frac{\partial f}{\partial b_d}(a,b) \end{pmatrix}$$
$$= \begin{pmatrix} b_1(a_1b_1-y_1) \\ \vdots \\ b_d(a_db_d-y_d) \\ a_1(a_1b_1-y_1) \\ \vdots \\ a_d(a_db_d-y_d) \end{pmatrix}$$

$$= \left(\begin{smallmatrix} b \odot (a \odot b - y) \\ a \odot (a \odot b - y) \end{smallmatrix}\right).$$

Exercise 3

The set A₁ is not a submanifold. Explanation sketch : if it is a submanifold, then, since it contains a whole neighborhood of (1, 1), it must have dimension
But submanifolds of ℝ² with dimension 2 are open sets, and A₁ is not open. The set A₂ is a submanifold : since it is an open set of ℝ², it is a submanifold with dimension 2.

The set A_3 is a submanifold. Explanation sketch : it is the image of $x \in]-2$; $2[\rightarrow (x^2, x)$, which is an immersion, and a homeomorphism onto its image (with reciprocal $(x, y) \rightarrow y$).

The set A_4 is not a submanifold, because it has a non-regular point at (2, 2). This can be rigorously proved in a similar manner as for the graph of the absolute value.

(The tangent space is \mathbb{R}^2 .)

Exercise 4

1. We define

$$\begin{array}{rccc} f & : & \mathbb{R}^3 & \rightarrow & \mathbb{R}, \\ & & (x,y,z) & \rightarrow & x^2 + y^2 - z^2 - 1 \end{array}$$

The map f is C^{∞} . We have $E_1 = f^{-1}(\{0\})$. Therefore, if we can show that f is a submersion at p for any $p \in E_1$, then E_1 is a submanifold of class C^{∞} and dimension 3 - 1 = 2.

Let p = (x, y, z) be any element of E_1 . The differential of f at p is the linear map

$$\begin{aligned} df(p) &: & \mathbb{R}^3 & \to & \mathbb{R}, \\ & & (h,k,l) & \to & 2(xh+yk-zl). \end{aligned}$$

This map is not the null map, because x, y, z cannot be all zero (otherwise p = (0, 0, 0), which is impossible since $(0, 0, 0) \notin E_1$). Therefore, its image is a subspace of \mathbb{R} , which is not $\{0\}$: it is \mathbb{R} . Consequently, df(p) is surjective, so f is a submersion at p.

2. For any $(x, y, z) \in E_1$,

$$T_{(x,y,z)}E_1 = \text{Ker}(df(x,y,z))$$

= {(h, k, l) $\in \mathbb{R}^3$ s.t. 2(xh + yk - zl) = 0}
= {(x, y, -z)}^{\perp}.

Exercise 5

1. For any $t \in \mathbb{R}$, $g \circ f(t)$ is well defined, because $(f(t))_2 = \frac{1}{t^2+1} \in \mathbb{R}^*$. Let us fix any $t \in \mathbb{R}$ and show that $g \circ f(t) = t$.

$$g \circ f(t) = g\left(t^3 - t, \frac{1}{t^2 + 1}, (t - 1)^2\right)$$
$$= \frac{1}{\frac{2}{t^2 + 1}} - \frac{(t - 1)^2}{2}$$
$$= \frac{t^2 + 1 - (t - 1)^2}{2}$$
$$= \frac{2t}{2}$$
$$= t.$$

- 2. Since E_2 is the image of f, it holds that E_2 is a C^{∞} submanifold of \mathbb{R}^3 , with dimension 1, provided that we can prove the following two properties :
 - 1. f is an immersion at any point;
 - 2. f is a homeomorphism between \mathbb{R} and $f(\mathbb{R})$.

For the first point, we fix an arbitrary $t \in \mathbb{R}$ and show that $f'(t) \neq 0$. It holds

$$f'(t) = \left(3t^2 - 1, -\frac{2t}{(t^2 + 1)^2}, 2(t - 1)\right).$$

The third coordinate is zero if and only if t = 1. But, when t = 1, the first coordinate is $2 \neq 0$. Therefore, at least one of the coordinates of f'(t) is non-zero, meaning that $f'(t) \neq 0$.

For the second point, we use the fact that $g \circ f = \mathrm{Id}_{\mathbb{R}}$. Since $\mathrm{Id}_{\mathbb{R}}$ is injective, f must be injective as well. In addition, f is surjective onto its image, so that f is a bijection from \mathbb{R} to $f(\mathbb{R})$. Its inverse is $g_{|f(\mathbb{R})}$, which is a continuous map. Therefore, f is a homeomorphism between \mathbb{R} and $f(\mathbb{R})$.

3. For any $t \in \mathbb{R}$,

$$T_{\left(t^{3}-t,\frac{1}{t^{2}+1},(t-1)^{2}\right)}E_{2} = \operatorname{Im}(df(t))$$

= Vect{ $f'(t)$ }
= Vect{ $\left\{ \left(3t^{2}-1,-\frac{2t}{(t^{2}+1)^{2}},2(t-1)\right)\right\}$.

Exercise 6

1. For any $p \in G$, the set $[0; 1] \times \mathbb{R}$ is a neighborhood of p, and

$$G \cap (]0; 1[\times \mathbb{R}) = \operatorname{graph}(f).$$

Therefore, from the definition "by graph" of submanifolds, G is a submanifold of \mathbb{R}^2 with dimension 1; it is a curve.

2. The set G is not compact. To check it, we can notice, for instance, that the sequence $(2^{-n}, f(2^{-n}))_{n \in \mathbb{N}}$ has no converging subsequence with limit point in G (if it had, the limit point should be of the form (0, a) for some $a \in \mathbb{R}$, but G contains no such point).

Therefore, G is a connected non-compact curve. It is diffeomorphic to \mathbb{R} .

3. We define

$$\phi :]0;1[\rightarrow \mathbb{R}^2 \\ x \rightarrow (x,f(x)).$$

It is a global parametrization :

- its domain,]0; 1[, is an open interval;
- $-\phi(]0;1[) = G$, from the definition of G;
- it is a diffeomorphism between]0;1[and G : indeed, it is a bijection, and its reciprocal is $(a,b) \in G \rightarrow a$, which is a C^1 map, from the lecture (it is the projection onto the first coordinate).

	Λ	
4	Ŧ	•

$$\ell(G) = \int_0^1 ||\phi'(x)||_2 dx$$

=
$$\int_0^1 ||(1, f'(x))||_2 dx$$

=
$$\int_0^1 \sqrt{1 + (f'(x))^2} dx$$

Exercise 7

1. The maps $(x, y, z) \to x \in \mathbb{R}$ and $(x, y, z) \to z \in \mathbb{R}$ are C^{∞} on $\mathbb{S}^2 \setminus \{(0, 0, 1)\}$, from the class. Therefore, $(x, y, z) \to 1 - z \in \mathbb{R}$ is also C^{∞} and $(x, y, z) \to \frac{x}{1-z} \in \mathbb{R}$ is C^{∞} on $\mathbb{S}^2 \setminus \{(0, 0, 1)\}$, since it is the quotient of two C^{∞} maps such that the denominator does not vanish (it does not vanish because (0, 0, 1) is the only point in \mathbb{S}^2 whose last coordinate is 1).

Similarly, $(x, y, z) \to \frac{y}{1-z}$ is C^{∞} .

Since its two components are C^{∞} , ϕ is C^{∞} on $\mathbb{S}^2 \setminus \{(0,0,1)\}$.

2. a)

$$a^{2} + b^{2} + 1 = \frac{x^{2} + y^{2} + (1 - z)^{2}}{(1 - z)^{2}}$$

$$= \frac{1 - z^2 + (1 - z)^2}{(1 - z)^2}$$
$$= \frac{(1 + z) + (1 - z)}{1 - z}$$
$$= \frac{2}{1 - z}.$$

Therefore,

$$\frac{2a}{a^2 + b^2 + 1} = \frac{2\frac{x}{1-z}}{\frac{2}{1-z}} = x.$$

Similarly, it holds $\frac{2b}{a^2+b^2+1} = y$. For the last term,

$$\frac{a^2 + b^2 - 1}{a^2 + b^2 + 1} = 1 - \frac{2}{a^2 + b^2 + 1}$$
$$= 1 - \frac{2}{\frac{2}{1-z}}$$
$$= z.$$

b) First, we show that ϕ is injective. Let $(x, y, z), (x', y', z') \in \mathbb{S}^2 \setminus \{(0, 0, 1)\}$ be such that $\phi(x, y, z) = \phi(x', y', z')$. We define $(a, b) = \phi(x, y, z) = \phi(x', y', z')$. From the previous subquestion,

$$(x, y, z) = \left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right) = (x', y', z').$$

This shows the injectivity.

Let us show that ϕ is surjective. Let $(a, b) \in \mathbb{R}^2$ be arbitrary. We show that there exists $(x, y, z) \in \mathbb{S}^2 \setminus \{(0, 0, 1)\}$ such that $\phi(x, y, z) = (a, b)$. Let us define (x, y, z) by the formula from the previous subquestion :

$$(x, y, z) = \left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right).$$

This is a point in $\mathbb{S}^2 \setminus \{(0,0,1)\}$. Indeed,

$$\begin{aligned} x^2 + y^2 + z^2 &= \frac{4a^2 + 4b^2 + (a^2 + b^2 - 1)^2}{(a^2 + b^2 + 1)^2} \\ &= \frac{(a^2 + b^2 + 1)^2}{(a^2 + b^2 + 1)^2} \\ &= 1, \end{aligned}$$

so that (x, y, z) belongs to \mathbb{S}^2 . Moreover, if x = y = 0, it means that a = b = 0 (since x, y are the quotient of a and b with a non-zero term). In this case, $z = \frac{-1}{+1} = -1$. Therefore, $(x, y, z) \neq (0, 0, 1)$.

As expected, it holds

$$\phi(x, y, z) = \left(\frac{\frac{2a}{a^2 + b^2 + 1}}{1 - \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}}, \frac{\frac{2b}{a^2 + b^2 + 1}}{1 - \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}}\right)$$
$$= (a, b).$$

This concludes the proof of the surjectivity, hence of the bijectivity. For an arbitrary $(a,b) \in \mathbb{R}^2$, let us denote $(x,y,z) = \phi^{-1}(a,b) \in \mathbb{S}^2 \setminus \{(0,0,1)\}$. By definition of the inverse, it must hold $\phi(x,y,z) = (a,b)$. Therefore, from the previous question,

$$\phi^{-1}(a,b) = \left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right).$$

3. The map ϕ^{-1} is C^{∞} , when seen as a map from \mathbb{R}^2 to \mathbb{R}^3 (each component is a quotient of polynomial maps, whose denominator never vanishes). Therefore, it is also C^{∞} as a map from \mathbb{R}^2 to $\mathbb{S}^2 \setminus \{(0,0,1)\}$.

We have shown that ϕ is a C^{∞} map, which is a bijection between $\mathbb{S}^2 \setminus \{(0, 0, 1)\}$ and \mathbb{R}^2 , and whose reciprocal is also C^{∞} . Consequently, ϕ is a C^{∞} -diffeomorphism.