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Chapter 1

Reminder on differential calculus

What you should know or be able to do after this chapter

• Know the definition of the differential, and be able to use it.

• Be able to compute the differential or partial derivatives of a function,
when given an explicit expression.

• Be able to convert between the different expressions of the differential
(linear map ↔ Jacobian matrix ↔ partial derivatives).

• Know that a differentiable map has partial derivatives, but be able
to give an example of a map which has partial derivatives, and no
differential.

• Prove the classical result on the differentiability of a composition of
differentiable functions.

• Be able to apply this result to an explicit example (with no error on
the point at which each differential must be computed!).

• Know the definition of the gradient and Hessian.

• Know the definitions of homeomorphism and diffeomorphism.

• When you want to prove that a function is locally invertible, think to
the local inversion theorem, and be able to apply it correctly.

• When you want to parametrize a set defined by an equation, think to
the implicit function theorem, and be able to apply it correctly.
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8 CHAPTER 1. REMINDER ON DIFFERENTIAL CALCULUS

• Propose examples which show that the assumption “∂yf(x0, y0) is bi-
jective” is necessary.

• Know the definition of an immersion and a submersion.

• Be able to apply the normal form theorems on explicit examples.

• When you want to upper bound the values of a differentiable function,
or the difference between its values, think to the mean value inequality,
and be able to apply it.

1.1 Definition of differentiability

Let (E, ||.||E), (F, ||.||F ), and (G, ||.||G) be normed vector spaces. We denote
the set of continuous linear mappings from E to F by L(E,F ) 1.

Definition 1.1 : differentiability at a point

Let U ⊂ E be an open set, and f : U → F be a function.
If x is a point in U , we say that f is differentiable at x if there exists
L ∈ L(E,F ) such that

||f(x+ h)− f(x)− L(h)||F
||h||E

→ 0 as ||h||E → 0,

(or, equivalently, f(x+ h) = f(x) + L(h) + o(||h||E)).
We then call L the differential of f at x and denote it df(x).

Remark

If (E, ||.||E) = (R, |.|), then the differential, when it exists, takes the
form

h ∈ R → hzx ∈ F,

for a certain element zx in F . In this case, we write

f ′(x) = zx.

1Recall that when E is of finite dimension, all linear mappings from E to F are con-
tinuous. This is no longer true if E is of infinite dimension.



1.2. PARTIAL DERIVATIVES 9

We then recover the well-known formula:

f(x+ h) = f(x) + f ′(x)h+ o(h) as h→ 0.

Definition 1.2 : functions of class Cn

Let U ⊂ E be an open set, and f : U → F a function.
The function f is said to be differentiable on U if it is differentiable at
every point of U .
It is of class C1 if it is differentiable and df : U → L(E,F ) is a
continuous mapping.
More generally, for any n ≥ 1, it is of class Cn if it is differentiable
and df is of class Cn−1.
It is of class C∞ if it is of class Cn for every n ≥ 1.

We won’t revisit the basic properties related to differentiability (e.g., the
sum of differentiable functions is differentiable, etc.), except for the one on
functions defined by composition.

Theorem 1.3 : composition of differentiable functions

Let U ⊂ E, V ⊂ F be open sets. Let f : U → V and g : V → G be
two functions. Let x ∈ U .
If f is differentiable at x and g is differentiable at f(x), then

• g ◦ f is differentiable at x;

• d(g ◦ f)(x) = dg(f(x)) ◦ df(x).

1.2 Partial derivatives

In differential geometry, it is common to perform explicit calculations involv-
ing differentials of functions from Rn to Rm. For this purpose, it is useful to
represent differentials as matrices of size m× n (or vectors if m = 1) whose
coordinates can be computed. The concept of partial derivatives allows us
to achieve this.
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Definition 1.4 : partial derivative

Let n ∈ N∗. Let U be an open subset of Rn, and f : U → R a function.
Let x = (x1, . . . , xn) ∈ U . For any i = 1, . . . , n, we say that f is
differentiable with respect to its i-th variable at x if the function

y → f(x1, . . . , xi−1, y, xi+1, . . . )

is differentiable at xi. We then denote the derivative as ∂if(x), ∂xi
f(x),

or ∂f
∂xi

(x).

Remark

If f is differentiable at x, then it is also differentiable at x with respect
to each of its variables. The converse is not necessarily true.

Remark

More generally, if E1, . . . , En, F are normed vector spaces, U is an open
subset of E1 × · · · × En, and f : U → F is a function, we can define,
for all x = (x1, . . . , xn) ∈ U and i = 1, . . . , n, the partial derivative of
f with respect to xi,

∂xi
f(x) ∈ L(Ei, F ).

Now let n,m ∈ N∗ be integers, U an open subset of Rn, and f : U → Rm

a differentiable function. For any x, df(x) is a linear mapping from Rn →
Rm; we denote Jf(x) its matrix representation in the canonical bases. If
we identify Rn (respectively Rm) with the set of column vectors of size n
(respectively m), then

∀u ∈ Rn, df(x)(u) = Jf(x)× u.

The matrix Jf(x) is called the Jacobian matrix of f at the point x.
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Proposition 1.5

Let f1, . . . , fm : U → R be the components of f . Then, for any x,

Jf(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)
...

...
...

∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xn

(x)

 .

Proof. Fix x = (x1, . . . , xn) ∈ U . Let ν ∈ 1, . . . , n. Denote eν as the ν-th
vector of the canonical basis of Rn (i.e., the vector whose coordinates are all
0 except the ν-th one, which is 1).

According to the definition of the differential,

f(x1, . . . , xν−1, y, xν+1, . . . ) = f(x+ (y − xν)eν)
= f(x) + (y − xν)df(x)(eν) + o(y − xν)

as y → xν .

For any µ ∈ 1, . . . ,m, we have

fµ(x1, . . . , xν−1, y, xν+1, . . . ) = fµ(x) + (y − xν)(df(x)(eν))µ + o(y − xν)
as y → xν .

Thus, according to the definition of the partial derivative,

∂νfµ(x) = lim
y→xν

fµ(x1, . . . , xν−1, y, xν+1, . . . )− fµ(x)
y − xν

= (df(x)(eν))µ.

By the definition of the Jacobian matrix, (Jf(x))µ,ν = (df(x)(eν))µ, so

(Jf(x))µ,ν = ∂νfµ(x).
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Example 1.6

Let f : R2 → R2 be such that, for every (x1, x2) ∈ R2,

f(x1, x2) = (x1x2, x1 + x2).

It is differentiable. Its Jacobian matrix is

∀(x1, x2) ∈ R2, Jf(x1, x2) =
(
x2 x1
1 1

)
and its differential is

∀(x1, x2), (h1, h2) ∈ R2, df(x1, x2)(h1, h2) = (h1x2 + h2x1, h1 + h2).

In the particular case where m = 1, the Jacobian matrix has a single row:

∀x ∈ U, Jf(x) =
(

∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
)
.

Its transpose is then called the gradient :

∀x ∈ U, ∇f(x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

For all x ∈ U, h = (h1, . . . , hn) ∈ Rn,

df(x)(h) = Jf(x)
( h1

...
hn

)
=

n∑
i=1

∂f

∂xi
(x)hi = ⟨∇f(x), h⟩,

where the notation “⟨., .⟩” denotes the usual scalar product in Rn.
Still assuming m = 1, let us consider the case where f is twice differen-

tiable. Its second differential can also be represented by a matrix. Indeed,
for any x, d2f(x) = d(df)(x) belongs to L(Rn,L(Rn,R)). The map

(h, l) ∈ Rn × Rn → d2f(x)(h)(l) (1.1)

is therefore bilinear. As stated in the following property, it is even a quadratic
form (i.e., it is symmetric), and the matrix associated with it in the canonical
basis has a simple expression in terms of the partial derivatives of f .
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Proposition 1.7 : Hessian matrix

Let x ∈ U . The map defined in (1.1) is a symmetric bilinear form. The
matrix representing it in the canonical basis is

H(f)(x) =


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2∂xn
(x)

...
...

...
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) . . . ∂2f

∂x2
n
(x)

 . (1.2)

It is called the Hessian matrix of f at point x.

Exercise 1 : Proof of Proposition 1.7

1. Prove Equation (1.2).
In the rest of the exercise, we show that H(f)(x) is symmetric. For
this, we fix i, j ∈ {1, . . . , n} such that i ̸= j and show

∂

∂xi

∂f

∂xj
(x) = ∂

∂xj

∂f

∂xi
(x).

We denote ei, ej the i-th and j-th vectors of the canonical basis. For
any t, u ∈ R such that x+ tei + uej ∈ U , we define

ϕ(t, u) = f(x+ tei + uej)− f(x+ tei)− f(x+ uej) + f(x).

2. a) Show that, for all t, u close enough to 0,

ϕ(t, u) =
∫ u

0

[
∂f

∂xj
(x+ tei + sej)−

∂f

∂xj
(x+ sej)

]
ds.

b) Let ϵ > 0 be any positive number. Show that, for all t, s close
enough to 0,∣∣∣∣ ∂f∂xj (x+ tei + sej)−

∂f

∂xj
(x+ sej)− t

∂

∂xi

∂f

∂xj
(x)
∣∣∣∣ ≤ ϵ (|t|+ |s|) .
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c) Deduce from the previous question that, for all t, u close enough
to 0, ∣∣∣∣ϕ(t, u)− tu ∂

∂xi

∂f

∂xj
(x)
∣∣∣∣ ≤ ϵ(|t| |u|+ |u|2).

d) Show that, for all t, u close enough to 0,∣∣∣∣ϕ(t, u)− tu ∂

∂xj

∂f

∂xi
(x)
∣∣∣∣ ≤ ϵ(|t| |u|+ |t|2).

e) Conclude.

1.3 Local inversion
Definition 1.8 : homeomorphism

Let U, V be two topological spacesa. A map ϕ : U → V is a homeo-
morphism from U to V if it satisfies the following three properties:

1. ϕ is a bijection from U to V ;

2. ϕ is continuous on U ;

3. ϕ−1 is continuous on V .
aReaders not familiar with the concept of "topological space" can limit them-

selves to the case where U and V are two metric spaces, or even to the case where
U and V are subsets, respectively, of Rn1 and Rn2 for n1, n2 ∈ N.

Definition 1.9 : diffeomorphism

Let n ∈ N∗ be an integer, U, V ⊂ Rn be two open sets. A map ϕ : U →
V is a diffeomorphism if it satisfies the following three properties:

1. ϕ is a bijection from U to V ;

2. ϕ is C1 on U ;

3. ϕ−1 is C1 on V .
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If, moreover, ϕ and ϕ−1 are Ck for an integer k ∈ N∗, we say that ϕ is
a Ck-diffeomorphism.

Theorem 1.10 : local inversion

Let n, k ∈ N∗ be integers, U, V ⊂ Rn be two open sets, and x0 ∈ U .
Let ϕ : U → V be a Ck map.
If dϕ(x0) ∈ L(Rn,Rn) is bijective, then there exist Ux0 ⊂ U an open
neighborhood of x0 and Vϕ(x0) ⊂ V an open neighborhood of ϕ(x0)
such that ϕ is a Ck-diffeomorphism from Ux0 to Vϕ(x0).

For the proof of this result, one can refer to [Paulin, 2009, p. 250].
An important consequence of the local inversion theorem is the implicit

functions theorem, which allows to parameterize the set of solutions of an
equation.

Theorem 1.11 : implicit functions

Let n,m ∈ N∗. Let U ⊂ Rn × Rm be an open set, f : U → Rm be a
Ck map for an integer k ∈ N∗, and (x0, y0) be a point in U such that

f(x0, y0) = 0.

If ∂yf(x0, y0) ∈ L(Rm,Rm) is bijective, then there exist

• an open neighborhood U(x0,y0) ⊂ U of (x0, y0),

• an open neighborhood Vx0 ⊂ Rn of x0,

• a map g : Vx0 → Rm of class Ck

such that, for all (x, y) ∈ Rn × Rm,(
(x, y) ∈ U(x0,y0) and f(x, y) = 0

)
⇐⇒ (x ∈ Vx0 and y = g(x)) .

To get an intuitive feeling on this theorem, the condition "f(x, y) = 0"
should be interpreted as an equation depending on a parameter x, whose
unknown is y. The theorem states that, in the neighborhood of (x0, y0), the
equation has, for each value of the parameter x, a unique solution (which is
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−2 −1 1 2

−0.5

0.5

V1

U(1,1/2)

Figure 1.1: In blue, {(x, y) ∈ R2, cos(πx)− cos(πy) + 3x2y2 + x4

4 = 0}. This
set is not the graph of a function. However, the part of the set inside U(1,1/2)
coincides with the graph of a function g : V1 → R.

g(x)) and that this solution is Ck relatively to x.

Example 1.12

There exists an open neighborhood U(1,1/2) ⊂ R2 of (1, 1/2) and an
open neighborhood U1 ⊂ R of 1 such that the solutions of the equation

cos(πx)− cos(πy) + 3x2y2 + x4

4
= 0

for (x, y) ∈ U(1,1/2) are exactly the points of the set {(x, g(x))} for a
certain function g : U1 → R of class C∞.
This is proven by applying the implicit functions theorem to

f : (x, y) ∈ R× R → cos(πx)− cos(πy) + 3x2y2 + x4

4
∈ R.

The bijectivity assumption of ∂yf(1, 1/2) is indeed satisfied:

∂yf(1, 1/2) = π + 3 ̸= 0.

The set of solutions to the equation is represented in Figure 1.1.
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Proof of the implicit function theorem. Let us define

ϕ : U → Rn × Rm

(x, y) → (x, f(x, y)).

This is a Ck function, and for all (h, l) ∈ Rn × Rm,

dϕ(x0, y0)(h, l) = (h, df(x0, y0)(h, l))
= (h, ∂xf(x0, y0)(h) + ∂yf(x0, y0)(l)).

The map dϕ(x0, y0) is injective. Indeed, for all (h, l) ∈ Rn × Rm such that
dϕ(x0, y0)(h, l) = 0,

h = 0 and ∂yf(x0, y0)(l) = 0.

Since ∂yf(x0, y0) is bijective, this implies l = 0. Thus, dϕ(x0, y0) is an injec-
tive map from Rn × Rm to Rn × Rm. Therefore, it is bijective (its domain
and codomain have the same dimension).

We apply the local inversion theorem at (x0, y0). There exists an open
neighborhood U(x0,y0) of (x0, y0), an open neighborhood V of ϕ(x0, y0) =
(x0, 0) such that ϕ is a Ck-diffomorphism from U(x0,y0) to V . Let

ψ : V → U(x0,y0)

be its inverse.
For all (x, y) ∈ V , we write ψ(x, y) = (ψ1(x, y), ψ2(x, y)) ∈ Rn ×Rm. For

all (x, y) ∈ V ,

(x, y) = ϕ ◦ ψ(x, y)
= ϕ(ψ1(x, y), ψ2(x, y))
= (ψ1(x, y), f(ψ1(x, y), ψ2(x, y))).

Therefore,
ψ1(x, y) = x.

We set

Vx0 = {x ∈ Rn, (x, 0) ∈ V };
g : x ∈ Vx0 → ψ2(x, 0) ∈ Rm.
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As required, Vx0 is an open neighborhood of x0 and g is Ck. For all (x, y) ∈
Rn × Rm,(

(x, y) ∈ U(x0,y0) and f(x, y) = 0)
⇐⇒

(
(x, y) ∈ U(x0,y0) and ϕ(x, y) = (x, 0)

)
⇐⇒

(
(x, y) ∈ U(x0,y0) and (x, 0) ∈ V et (x, y) = ψ(x, 0)

)
⇐⇒ ((x, 0) ∈ V and (x, y) = ψ(x, 0) = (x, ψ2(x, 0)))
⇐⇒ (x ∈ Vx0 and y = g(x)) .

1.4 Immersions and submersions
We now introduce two particular categories of differentiable functions: im-
mersions and submersions. These functions will have an important role in
the remainder of the course because they represent two of the main ways of
showing that a given set is a submanifold.

Let n,m ∈ N∗ be integers. Let f : U ⊂ Rn → Rm be a Ck map (for some
k ≥ 1), with U an open set.

Definition 1.13 : immersions and submersions

For any point x ∈ U , we say that f is an immersion at x if df(x) : Rn →
Rm is injective. We say that f is an immersion if it is an immersion
at every point x ∈ U .
For any point x ∈ U , we say that f is a submersion at x if df(x) : Rn →
Rm is surjective. We say that f is a submersion if it is a submersion
at every point x ∈ U .

Remark

The function f can only be an immersion if n ≤ m and a submersion
if n ≥ m.

If f is an immersion at a point x, it is injective in a neighborhood of x (a
consequence of Theorem 1.14). However, being an immersion is a significantly
stronger property than local injectivity. Similarly, a submersion is locally
surjective, but not all locally surjective functions are submersions.
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When n ≤ m, the simplest immersion from Rn to Rm is the function

(x1, . . . , xn) ∈ Rn → (x1, . . . , xn, 0, . . . , 0) ∈ Rm.

The following theorem asserts that, in the neighborhood of every point, up
to a change of coordinates in the codomain (i.e., a transformation of the
codomain by a diffeomorphism), all immersions are equal to this one.

Theorem 1.14 : normal form of immersions

Suppose that 0Rn ∈ U and f(0Rn) = 0Rm .
If f is an immersion at 0Rn , there exists a neighborhood U ′ of 0Rn and
a Ck-diffeomorphism ψ from a neighborhood of 0Rm to a neighborhood
of 0Rm such that

∀(x1, . . . , xn) ∈ U ′, ψ ◦ f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Proof. Suppose that f is an immersion at 0Rn .
Let e1, . . . , en be the vectors of the canonical basis of Rn, and ϵ1, . . . , ϵm

be those of the canonical basis of Rm. Let us first prove the result under the
assumption that

∀r ∈ {1, . . . , n}, df(0Rn)(er) = ϵr.

Define

ϕ : Rm → Rm

(x1, . . . , xm) → f(x1, . . . , xn) + (0, . . . , 0, xn+1, . . . , xm).

We have ϕ(0) = 0. Moreover, ϕ is a Ck map, and for any h = (h1, . . . , hm) ∈
Rm,

ϕ(0Rm)(h) = df(0Rn)(h1, . . . , hn) + (0, . . . , 0, hn+1, . . . , hm).

From this formula, it can be verified that dϕ(0)(ϵr) = ϵr for all r = 1, . . . ,m,
meaning that dϕ(0) = IdRm . In particular, dϕ(0) is bijective.

According to the inverse function theorem, there exist open neighbor-
hoods V1, V2 of 0Rm such that ϕ is a Ck-diffeomorphism between them. Let
ψ : V2 → V1 be its inverse. For any x = (x1, . . . , xn) ∈ U ′ def= f−1(V2),

f(x1, . . . , xn) = ϕ(x1, . . . , xn, 0, . . . , 0),
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so

ψ ◦ f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

This completes the proof of the theorem under the assumption that df(0)(er) =
ϵr for all r = 1, . . . , n.

Now, let’s drop this assumption. For any r ∈ {1, . . . , n}, denote vr =
df(0Rn)(er). As df(0Rn) is injective, the family (v1, . . . , vn) is linearly inde-
pendent; it can be completed to a basis of Rm, denoted by (v1, . . . , vm). Let
L ∈ L(Rm,Rm) be such that

∀r ∈ {1, . . . ,m}, L(vr) = ϵr.

It is a bijection since it sends a basis to a basis.
Let f̃ = L ◦ f . We have f̃(0Rn) = 0Rm and df̃(0Rn) = L ◦ df(0Rn). In

particular, f̃(0Rn) is an immersion at 0. For any r ∈ {1, . . . , n},

df̃(0Rn)(er) = L(df(0Rn)(er)) = L(vr) = ϵr.

Thus, the function f̃ satisfies our previous assumption. Consequently, there
exist U ′ an open neighborhood of 0Rn and ψ̃ a diffeomorphism between two
neighborhoods of 0Rm such that, for all (x1, . . . , xn) ∈ U ′,

ψ̃ ◦ f̃(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0),
meaning (ψ̃ ◦ L) ◦ f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

We set ψ = ψ̃ ◦ L to conclude.

A similar result holds for submersions and has a similar proof. When
n ≥ m, the simplest submersion from Rn to Rm is the projection onto the
first m coordinates:

(x1, . . . , xn) ∈ Rn → (x1, . . . , xm) ∈ Rm.

Subject to a change of coordinates in the domain, all submersions are locally
equal to this one.
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Theorem 1.15 : normal form of submersions

Suppose that 0Rn ∈ U and f(0Rn) = 0Rm .
If f is a submersion at 0Rn , there exist U1, U2 open neighborhoods of
0Rn and a Ck diffeomorphism ϕ : U1 → U2 such that

∀(x1, . . . , xn) ∈ U1, f ◦ ϕ(x1, . . . , xn) = (x1, . . . , xm).

1.5 Mean value inequality
Let’s conclude this chapter with a useful inequality, the mean value inequality.

Let (E, ||.||E) and (F, ||.||F ) be normed vector spaces. We equip L(E,F )
with the uniform norm: for any u ∈ L(E,F ),

||u||L(E,F ) = sup
x∈E\{0}

||u(x)||F
||x||E

.

Theorem 1.16 : mean value inequality

Let U ⊂ E be a convex open set, and f : U → F a differentiable
function.
Suppose there exists M ∈ R+ such that

∀x ∈ U, ||df(x)||L(E,F ) ≤M.

Then,
∀x, y ∈ U, ||f(x)− f(y)||F ≤M ||x− y||E.

For the proof of this result, one can refer to [Paulin, 2009, p. 237].

Remark

Be careful not to forget the convexity assumption. The theorem may
be false if it is not satisfied.
For example, the function f : R \ {0} → R defined by f(x) = −1 for
all x < 0 and f(x) = 1 for all x > 0 satisfies

|f ′(x)| ≤ 0 for all x ∈ R \ {0}

(as its derivative is zero).
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However, it is not true that |f(x)− f(y)| = 0 for all x, y ∈ R \ {0}.

Exercise 2 : classical application of the mean value inequality

Let n,m ∈ N∗ be integers. Let f : Rn → Rm be a differentiable
function such that, for any x ∈ Rn,

||df(x)||L(Rn,Rm) ≤ 1.

Show that, for any x ∈ Rn,

||f(x)|| ≤ ||f(0)||+ ||x||.



Chapter 2

Submanifolds of Rn

What you should know or be able to do after this chapter

• Have an intuition of what is a submanifold of Rn. In particular, from
a drawing of a subset of R2 or R3, be able to guess with confidence
whether it represents a submanifold or not.

• Know the four definitions of a submanifold of Rn.

• When given the explicit expression of a set, be able to prove that it is
a submanifold of Rn, choosing the most appropriate of the four defini-
tions.

• Know the definition of Sn−1.

• Be able to prove that a set is a submanifold using the fact that it is a
product of submanifolds.

• Understand the proof that On(R) is a submanifold (i.e. be able to do
it again alone, given only the definition of g̃).

• Be able to use the submersion definition of submanifolds to prove that
sets are not submanifolds.

• Propose a definition of the tangent space to a submanifold, then re-
member the “true” one.

• Given a picture of a submanifold of R2 or R3, be able to draw (a
plausible version of) the tangent space at any point.

23
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• Given the explicit expression of a submanifold, be able to compute its
tangent space, choosing the most appropriate of the four formulas.

• Know the tangent space to the sphere.

• Know that the tangent space of a product submanifold is the product
of the tangent spaces.

• Be able to use the tangent space to prove that sets are not submanifolds
(when possible).

• Be able to show that a map between submanifolds is Cr, using the facts
that compositions of Cr maps are Cr and that, on a Ck-submanifold,
projections onto a coordinate are Ck.

In the whole chapter, let k, n ∈ N∗ be fixed integers.

2.1 Definition
The simplest example of a submanifold of Rn is

Rd × {0}n−d = {(x1, . . . , xd, 0, . . . , 0)|x1, . . . , xd ∈ R},

where d is any integer between 0 and n. The concept of a submanifold of
Rn generalizes this example: a set is a submanifold if it is locally the image
of Rd × {0}n−d under a diffeomorphism from Rn to Rn. Let’s formalize this
definition and provide other equivalent definitions.

Definition 2.1 : submanifolds

Let d ∈ {0, 1 . . . , n}.
Let M ⊂ Rn. We say that the set M is a submanifold of Rn of dimen-
sion d and class Ck if it satisfies one of the following properties.

1. (Definition by diffeomorphism)
For every x ∈ M , there exists a neighborhood U ⊂ Rn of x, a
neighborhood V ⊂ Rn of 0, and a Ck-diffeomorphism ϕ : U → V
such that

ϕ(M ∩ U) = (Rd × {0}n−d) ∩ V.

2. (Definition by immersion)
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M

ϕ R × {0}

Figure 2.1: Illustration of property 1 in definition 2.1: there exists a local
diffeomorphism from R2 to R2 that maps the set M onto R× {0}.

For every x ∈ M , there exists a neighborhood U ⊂ Rn of x, an
open set V in Rd, a Ck function f : V → Rn such that f is a
homeomorphism between V and f(V ),

M ∩ U = f(V )

and, denoting a as the unique pre-image of x under f , f is an
immersion at a.

3. (Definition by submersion)
For every x ∈M , there exists a neighborhood U ⊂ Rn of x, a Ck

function g : U → Rn−d that is a submersion at x such that

M ∩ U = g−1({0})

4. (Definition by graph)
For every x ∈ M , there exists a neighborhood U ⊂ Rn of x, an
open set V in Rd, a Ck function h : V → Rn−d, and a coordinate
systema in which

M ∩ U = graph(h)
def= {(x1, . . . , xd, h(x1, . . . , xd)), (x1, . . . , xd) ∈ V }.

aA coordinate system is the specification of a basis (e1, . . . , en) for Rn. In this
system, the notation (x1, . . . , xn) denotes the point x1e1 + · · ·+ xnen.



26 CHAPTER 2. SUBMANIFOLDS OF Rn

Theorem 2.2

The four properties in Definition 2.1 are equivalent.

Among the four equivalent definitions in the theorem, the definition by
diffeomorphism (property 1, illustrated in figure 2.1) is the one that most
clearly reveals the connection between a general submanifold and the "model"
submanifold Rd × {0}n−d. However, it is not the most convenient to manip-
ulate: when proving that a given set is a submanifold, the definitions by
immersion, submersion, or graph are generally more convenient, as we will
see in Section 2.2.

Remark

Pay attention to the fact that, in the definition by submersion (prop-
erty 3), the function g maps into Rn−d and not into Rd.
In a very informal way, in this definition, a submanifold is defined as
the set of points in Rn that satisfy a set of scalar equations

g(x)1 = 0, g(x)2 = 0, ...

Intuitively, we expect the set of solutions to have n − e "degrees of
freedom", where e is the number of equations. For the submanifold
defined in this way to be of dimension d, we need to have e = n − d,
meaning that g maps into Rn−d.

We advise the reader to study the examples in Section 2.2 before reading
the proof of Theorem 2.2.

Proof of Theorem 2.2. .
1 ⇒ 3 : Assume that M satisfies Property 1. We show that it satisfies

Property 3.
Let x ∈M . Consider U a neighborhood of x in Rn, V a neighborhood of

0 in Rn, and ϕ : U → V a Ck-diffeomorphism such that

ϕ(M ∩ U) = (Rd × {0}n−d) ∩ V.

Denote pr2 : Rn → Rn−d the projection onto the last n − d coordinates and
define

g = pr2 ◦ ϕ : U → Rn−d.
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It is a submersion at x because dg(x)(Rn) = pr2(dϕ(x)(Rn)) = pr2(Rn) =
Rn−d (recall that ϕ is a diffeomorphism, and thus, dϕ(x) is bijective, meaning
dϕ(x)(Rn) = Rn).

We verify that M ∩ U = g−1({0}).
For every x′ ∈M∩U , ϕ(x′) ∈ ϕ(M∩U) = (Rd×{0}n−d)∩V ⊂ Rd×{0}n−d,

so pr2 ◦ ϕ(x′) = 0, i.e., g(x′) = 0.
On the other hand, if x′ ∈ g−1({0}), then pr2(ϕ(x′)) = 0, so ϕ(x′) ∈

Rd×{0}n−d. Since x′ ∈ U , ϕ(x′) ∈ V , and thus, ϕ(x′) ∈ (Rd×{0}n−d)∩V =
ϕ(M ∩ U), implying x′ ∈M ∩ U .

3 ⇒ 4 : Assume that M satisfies Property 3. We show that it satisfies
Property 4.

Let x ∈ M . Consider U a neighborhood of x in Rn, and g : U → Rn−d a
Ck map, submersive at x, such that

M ∩ U = g−1({0}).

Let (e1, . . . , en) be an orthonormal basis of Rn such that

Vect{dg(x)(ed+1), . . . , dg(x)(en)} = Rn−d. (2.1)

(Such a basis exists because dg(x) : Rn → Rn−d is surjective.) We now use
the coordinate system defined by this basis. In this system, we denote

x = (x1, . . . , xn).

According to Equation (2.1), the derivative of g with respect to (xd+1, . . . , xn)
is surjective from Rn−d to Rn−d, hence bijective. Thus, by the implicit func-
tion theorem (Theorem 1.11), there exist U ′ ⊂ U a neighborhood of x, V a
neighborhood of (x1, . . . , xd), and h : V → Rn−d of class Ck such that

U ′ ∩ g−1({0}) = {(t, h(t)), t ∈ V }.

Hence we have M ∩ U ′ = U ′ ∩ g−1({0}) = graph(h).
4 ⇒ 2 : Let’s assume that M satisfies Property 4, and show that it

satisfies Property 2.
Let x ∈ M . Without loss of generality, we can assume x = 0 to simplify

notation. Let U be a neighborhood of x = 0 in Rn, V an open set in Rd, and
h : V → Rn−d be a Ck function such that, in a suitably chosen coordinate
system,

M ∩ U = graph(h) = {(t, h(t)) | t ∈ V }.



28 CHAPTER 2. SUBMANIFOLDS OF Rn

Note that 0 ∈ V and h(0) = 0, since x = 0 belongs to M ∩ U .
Define

f : V → Rn

t → (t, h(t)).

This is a Ck map. It is an immersion at 0 because, for any t ∈ Rd, df(0)(t)
is given by

(t1, . . . , td, dh(0)(t)),

which can only be zero if t = 0.
We have f(0) = 0 = x and f is a homeomorphism between V and f(V )

(its inverse is the projection onto the first d coordinates, which is continuous).
Furthermore,

M ∩ U = graph(h) = f(V ).

2 ⇒ 1 : Let’s assume that M satisfies Property 2, and show that it
satisfies Property 1.

Let x ∈ M . Let U, V be neighborhoods of x and 0 in Rn and Rd respec-
tively, and let f : V → Rn be a Ck map, which is a homeomorphism from V
to f(V ), such that

M ∩ U = f(V )

and f is immersive at a, where a is the unique preimage of x under f .
Without loss of generality, we can assume, for simplicity, that a = 0, i.e.,
f(0) = x.

According to the normal form theorem for immersions (Theorem 1.14),
there exist a neighborhood V ′ ⊂ V of 0Rd and a Ck diffeomorphism ϕ : A→ B
between a neighborhood A of x and a neighborhood B of 0Rn such that

∀(t1, . . . , td) ∈ V ′, ϕ ◦ f(t1, . . . , td) = (t1, . . . , td, 0, . . . , 0). (2.2)

An illustration of the various definitions in this proof is given in Figure 2.2.
Let E ⊂ A ∩ U be a neighborhood of x such that

• f−1(f(V )∩E) ⊂ V ′ (such a neighborhood exists because f is a home-
omorphism onto its image, so f−1 is well-defined and continuous on
f(V ));

• ϕ(E) ⊂ V ′ ×Rn−d (it also exists because ϕ is continuous, V ′ ×Rn−d is
open and ϕ(x) = ϕ ◦ f(0) = 0 ∈ V ′ × Rn−d).
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0

V

V ′

f

M

f(V )

A

x

ϕ

U
B

ϕ(f(V ) ∩ A)

ϕ(f(V ′))

Figure 2.2: Illustration of the objects used in the proof of the implication
2 ⇒ 1 of Theorem 2.2

Let F = ϕ(E).
The map ϕ is a Ck-diffeomorphism from E to F . Let’s show that

ϕ(M ∩ E) = (Rd × {0}n−d) ∩ F. (2.3)

For any x′ ∈ M ∩ E, we have x′ ∈ M ∩ U = f(V ), so x′ = f(t) for some
t ∈ V . As x′ ∈ f(V ) ∩ E, t is an element of V ′ according to the definition
of E. Thus, by Equation (2.2), ϕ(x′) = ϕ(f(t)) ∈ Rd × {0}n−d. Moreover,
ϕ(x′) ∈ ϕ(E) = F . Therefore, ϕ(x′) ∈ (Rd × {0}n−d) ∩ F , which shows

ϕ(M ∩ E) ⊂ (Rd × {0}n−d) ∩ F.

Conversely, if (t1, . . . , td, 0, . . . , 0) ∈ (Rd×{0}n−d)∩F , then t def= (t1, . . . , td)
is an element of V ′ (because F = ϕ(E) ⊂ V ′ × Rn−d). Therefore, according
to Equation (2.2),

(t1, . . . , td, 0, . . . , 0) = ϕ(f(t)).
As f(t) ∈ f(V ) ⊂M and f(t) ∈ ϕ−1(F ) = E, this shows that

(t1, . . . , td, 0, . . . , 0) ∈ ϕ(M ∩ E).

Hence the inclusion ϕ(M ∩ E) ⊃ (Rd × {0}n−d) ∩ F , which completes the
proof of Equation (2.3).

2.2 Examples and counterexamples
As seen in the previous section, for any d ∈ 0, . . . , n,

Rd × {0}n−d
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is a submanifold of Rn (of class C∞ and of dimension d).
Open sets provide another simple example of submanifolds: any non-

empty open set in Rn is a submanifold of dimension n of Rn.

2.2.1 Sphere

Definition 2.3

The unit sphere in Rn is the set

Sn−1 = {(x1, . . . , xn) ∈ Rn|x2
1 + · · ·+ x2

n = 1}.

Proposition 2.4

The set Sn−1 is a submanifold of Rn, of class C∞, and of dimension
n− 1a.

aIt is precisely denoted Sn−1 instead of Sn because its dimension is n− 1.

Proof. We will use the definition by submersion (Property 3 of Definition 2.1).
Let x ∈ Sn−1. Consider g : (t1, . . . , tn) ∈ Rn → t21 + · · ·+ t2n− 1 ∈ R. This

is a C∞ function. It is a submersion at x. Indeed, dg(x) is a linear map from
Rn to R, so it is either the zero map or a surjective map. Now,

∀t = (t1, . . . , tn) ∈ Rn, dg(x)(t1, . . . , tn) = 2(x1t1 + · · ·+ xntn).

Since x2
1 + · · · + x2

n = 1, x is not the zero vector, so dg(x) is not the zero
map; it is surjective.

Moreover, the definition of g implies that

Sn−1 = g−1({0}).

Property 3 of Definition 2.1 is therefore satisfied (with U = Rn).
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2.2.2 Product of submanifolds

Proposition 2.5

Let n1, n2 ∈ N∗, d1 ∈ {0, . . . , n1}, d2 ∈ {0, . . . , n2}. If M1 is a subman-
ifold of Rn1 of class Ck and dimension d1, and M2 is a submanifold of
Rn2 of class Ck and dimension d2, then

M1 ×M2
def= {(x1, x2), x1 ∈M1, x2 ∈M2}

is a submanifold of Rn1+n2 of dimension d1 + d2.

Proof. We use the definition by immersion (Property 2 of Definition 2.1).
Let x = (x1, x2) ∈M .

As M1 is a submanifold, there exists a neighborhood U1 of x1, an open
set V1 in Rd1 , and f1 : V1 → Rn1 of class Ck, which is a homeomorphism onto
its image, such that

M1 ∩ U1 = f1(V1)
and f1 is immersive at f−1

1 (x1).
Define similarly U2, V2, and f2 : V2 → Rn2 .
The function f : (t1, t2) ∈ V1 × V2 → (f1(t1), f2(t2)) ∈ Rn1+n2 is of class

Ck. It is a homeomorphism onto its image. Indeed, it is continuous (as each of
its components is continuous, since f1 and f2 are continuous). It is surjective
onto its image (from the definition of the image), and also injective (this can
be checked from the injectivity of f1 and f2). Therefore, it is a bijection.
Denoting f−1

1 and f−1
2 the respective inverses of f1 and f2), the inverse of f

is
f−1 : f(V1 × V2) → V1 × V2

(z1, z2) → (f−1
1 (z1), f−1

2 (z2)),
which is continuous because f−1

1 and f−1
2 are continuous.

Furthermore,

(M1 ×M2) ∩ (U1 × U2) = (M1 ∩ U1)× (M2 ∩ U2)
= f1(V1)× f2(V2)
= f(V1 × V2).

Finally, f is immersive at f−1(x) = (f−1
1 (x1), f−1

2 (x2)). Indeed, for any
t = (t1, t2) ∈ Rn1+n2 ,

df(f−1(x1), f−1(x2))(t1, t2) = (df1(f−1
1 (x1))(t1), df2(f−1

2 (x2))(t2)),
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which equals 0 only if t1 = 0 and t2 = 0, since df1(f−1
1 (x1)) and df2(f−1

2 (x2))
are injective.

Thus, the set M1 ×M2 satisfies Property 2 of Definition 2.1.

Example 2.6 : torus

The set T2 = S1 × S1 is a submanifold of R4, of dimension 2. It is
called a torus of dimension 2.

2.2.3 On(R)
Let Rn×n denote the set of n×n matrices with real coefficients. If we reindex
the coordinates, this set can also be viewed as Rn2 . Several important subsets
of Rn×n have a submanifold structure. Here, we focus on the orthogonal
group.

Definition 2.7 : orthogonal group

The orthogonal group is defined as

On(R) = {A ∈ Rn×n, In = tAA}.

Proposition 2.8

The set On(R) is a submanifold of Rn×n, of class C∞ and of dimension
n(n−1)

2 .

Proof. We will use the definition by submersion. Let G ∈ On(R). We must
express On(R) as g−1({0}), where g is a C∞ function, submersive at G.

A first idea is to define

g : A ∈ Rn×n → tAA− In ∈ Rn×n.

The definition of the orthogonal group implies that On(R) = g−1({0}). How-
ever, this function is not a submersion at G. Indeed,

∀A ∈ Rn×n, dg(G)(A) = tGA+ tAG,
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so dg(G)(Rn×n) is contained in Symn, the set of symmetric matrices of size
n× n. We even have dg(G)(Rn) = Symn because, for any S ∈ Symn,

dg(G)
(
GS

2

)
=

tGGS + tStGG

2
= S + tS

2
= S.

In particular, dg(G)(Rn×n) ̸= Rn×n.
Therefore, we define instead

g̃ = Tri ◦ g : Rn×n → R
n(n+1)

2 ,

where Tri is the function that extracts the upper triangular part of an n× n
matrix:

∀A ∈ Rn×n, Tri(A) = (Aij)i≤j ∈ R
n(n+1)

2 .

The function g̃ is C∞. It is a submersion at G:

dg̃(G)(Rn×n) = (Tri ◦ dg(G)) (Rn×n)
= Tri(dg(G)(Rn×n))
= Tri(Symn)

= R
n(n+1)

2 .

Furthermore, for any matrix A ∈ Rn×n, tAA = In if and only if tAA−In =
0, which is equivalent to Tri(tAA − In) = 0, since tAA − In is a symmetric
matrix. Thus,

On(R) = g̃−1({0}),

so On(R) indeed satisfies Property 3, with U = Rn×n and d = n − n(n+1)
2 =

n(n−1)
2 .

2.2.4 Equation solutions and images of maps

Proposition 2.9

Let d ∈ {0, . . . , n}. Let U be an open subset of Rn, and

g : U → Rn−d

a Ck function. Assume that g is a submersion over g−1({0}) (meaning
that g is a submersion at x for all x ∈ g−1({0})).
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Then g−1({0}) is a submanifold of Rn, of class Ck and dimension d.

Proof. This is a direct application of Definition 2.1, "submersion" version.

We have already seen two examples of submanifolds defined as in Propo-
sition 2.9:

• the sphere Sn−1 is equal to g−1({0}) for the function g : x ∈ Rn →
||x||2 − 1 ∈ R;

• the orthogonal group On(R) is equal to g−1({0}) for the function g :
A ∈ Rn×n → Tri(tAA− In) ∈ R

n(n+1)
2 .

Proposition 2.10

Let d ∈ {0, . . . , n}. Let U be an open subset of Rd, and f : U → Rn

be Ck. Assume that f is an immersion, and is a homeomorphism from
U to f(U).
Then f(U) is a submanifold of Rn, of class Ck and dimension d.

Proof. This is a direct application of Definition 2.1, "immersion" version.

Example 2.11 : spiral

Let’s define

f : R → R2

θ →
(
eθ cos(2πθ), eθ sin(2πθ)

)
.

Its image f(R) is a submanifold. It is represented in Figure 2.3.
Indeed, for any θ ∈ R,

f ′(θ) = eθ ((cos(2πθ), sin(2πθ)) + 2π (− sin(2πθ), cos(2πθ))) ,

which never vanishes (we observe, for example, that
⟨f ′(θ), (cos(2πθ), sin(2πθ))⟩ = eθ ̸= 0 for any θ ∈ R). Thus, the
map f is an immersion. Moreover, it is a homeomorphism from R to
f(R). Indeed, it is continuous, injectivea and therefore bijective onto
f(R). For any θ ∈ R,

e2θ = ||f(θ)||2,
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Figure 2.3: Image of the map f defined in Example 2.11

so θ = 1
2 log (||f(θ)||2). As a consequence, the inverse of f is given by

the following explicit expression:

f−1 : f(R) → R
(x, y) → 1

2 log(x2 + y2).

From this expression, we see that f−1 is the restriction to f(R) of a
continuous function on R2 \ (0, 0), so f−1 is continuous.

aFor any θ1, θ2, if f(θ1) = f(θ2), then e2θ1 = ||f(θ1)||2 = ||f(θ2)||2 = e2θ2 , so
θ1 = θ2.

2.2.5 Submanifolds of dimension 0 and n

Proposition 2.12

Let M be any subset of Rn. The following properties are equivalent:

1. M is a Ck-submanifold of Rn with dimension n ;

2. M is an open subset of Rn.

Proof. 1 ⇒ 2 : We assume that M is a Ck-submanifold with dimension n,
and show that it is an open set.
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Let x be any point of M . We use the “diffeomorphism” definition of
submanifolds: let U ⊂ Rn be a neighborhood of x, V ⊂ Rn a neighborhood
of 0, and ϕ : U → V a Ck-diffeomorphism such that

ϕ(M ∩ U) = (Rn × {0}n−n) ∩ V = V.

Since ϕ is a bijection from U to V , this equality implies that M ∩ U = U .
Therefore, M contains U , a neighborhood of x. Since this property is true
at any point x, M is an open set.

2 ⇒ 1 : We assume that M is an open set, and show that it is a sub-
manifold with dimension n.

Let x be a point in M . We show that M satisfies the “diffeomorphism”
definition of submanifolds. We set U = B(x, r), for r > 0 small enough so
that U ⊂ M . We also set V = B(0, r) and ϕ : y ∈ U → y − x ∈ V . This
map is a diffeomorphism (with reciprocal (y ∈ V → y + x ∈ U)). It holds

ϕ(M ∩ U) = ϕ(U) = V = (Rn × {0}n−n) ∩ V.

Proposition 2.13

Let M be any subset of Rn. The following properties are equivalent:

1. M is a Ck-submanifold of Rn with dimension 0 ;

2. M is a discrete set.a

aThe set M is discrete if, for any x ∈ M , there exists U ⊂ Rn a neighborhood
of x such that M ∩ U = {x}.

Proof. 1 ⇒ 2 : We assume that M is a Ck-submanifold with dimension 0,
and show that it is a discrete set.

Let x be any point of M . Let us show that there exists U a neighborhood
of x such that M ∩ U = {x}.

We use the “diffeomorphism” definition of submanifolds: let U ⊂ Rn be
a neighborhood of x, V ⊂ Rn a neighborhood of (0, . . . , 0) and ϕ : U → V a
Ck-diffeomorphism such that

ϕ(M ∩ U) = (R0 × {0}n) ∩ V = {(0, . . . , 0)}.
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Figure 2.4: The graph of the absolute value is not a submanifold of R2.

As ϕ is injective and ϕ(M ∩ U) contains only one point, M ∩ U itself must
be a singleton. Since it contains x, M ∩ U = {x}.

2 ⇒ 1 : We assume that M is a discrete set, and show that it is a
submanifold of Rn, of dimension 0.

Let x be any point in M . We show that M satisfies the “diffeomorphism”
definition of submanifolds in the neighborhood of x.

Let U ⊂ Rn be a neighborhood of x such that M ∩ U = {x}. Let us set
V = {u−x, u ∈ U} (the translation of U by −x) and ϕ : y ∈ U → y−x ∈ V .
This is a C∞-diffeomorphism (with reciprocal (y ∈ V → y + x ∈ U)). It
holds

ϕ(M ∩ U) = ϕ({x}) = {ϕ(x)} = {(0, . . . , 0)} = (R0 × {0}n) ∩ V.

2.2.6 Two counterexamples

The graph of the absolute value (Figure 2.4) is not a submanifold of R2.
Intuitively, the reason is that this graph has a “non-regular” point at (0, 0).

To prove this rigorously, the simplest way is to proceed by contradic-
tion. Assume that it is a submanifold and denote its dimension by d. Then,
according to the "submersion" definition of submanifolds (Property 3 of Def-
inition 2.1), there exists U ⊂ R2 a neighborhood of (0, 0) and g : U → R2−d
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Figure 2.5: The "eight" is not a submanifold of R2.

a function, at least C1, submersive at (0, 0), such that

{(t, |t|), t ∈ R} ∩ U = g−1({0}). (2.4)

Such a map g must satisfy, for all t close enough to 0,

if t ≤ 0, 0 = g(t, |t|) = g(t,−t),
if t ≥ 0, 0 = g(t, |t|) = g(t, t).

Differentiating these two equalities, we get:

∂1g(0, 0)− ∂2g(0, 0) = 0;
∂1g(0, 0) + ∂2g(0, 0) = 0.

This implies that ∂1g(0, 0) = ∂2g(0, 0) = 0, i.e., dg(0, 0) = 0. As dg(0, 0) is
surjective, this is impossible, unless R2−d = {0}, i.e., d = 2. But if d = 2,
then g−1({0}) = U , so Equality (2.4) implies that the graph of the absolute
value contains a neighborhood of (0, 0) in R2, which is not true. Thus, we
reach a contradiction.

The "eight" (Figure 2.5) is also not a submanifold of R2. Here, the reason
is that the eight is a regular curve but with a point of "self-intersection" at
zero. This can be rigorously demonstrated using the same method as before.
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Remark

This example highlights the importance of the property "f is a home-
omorphism onto its image" in the "immersion" definition of subman-
ifolds (Property 2 of Definition 2.1), as well as in Proposition 2.10.
Indeed, the eight is equal to f(]− π; π[), where f is the map

f : ]− π; π[ → R2

θ → (sin(θ) cos(θ), sin(θ)),

which is an immersion, and a bijection between ]−π; π[ and f(]−π; π[),
but not a homeomorphism (its inverse is not continuous).

2.3 Tangent spaces

2.3.1 Definition

Intuitively, the tangent space to a submanifold M at a point x is the set of
directions an ant could take while moving on the surface of M starting from
the point x. More formally, the definition is as follows.

Definition 2.14 : tangent space

Let M be a submanifold of Rn, and x a point on M .
The tangent space to M at x, denoted TxM , is the set of vectors v ∈ Rn

such that there exists an open interval I containing 0 and c : I → Rn

a C1 function satisfying

• c(t) ∈M for all t ∈ I;

• c(0) = x;

• c′(0) = v.

Proposition 2.15

Keeping the notation from the previous definition, the set TxM is a
vector subspace of Rn, with the same dimension as M .

Proof. This is a consequence of the following theorem.
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The four equivalent definitions of submanifolds (Definition 2.1) each pro-
vide a way to explicitly compute the tangent space.

Theorem 2.16 : computing the tangent space

Let M be a submanifold of Rn, and x a point on M . Let d be the
dimension of M .

1. (Computation by diffeomorphism)

If U and V are neighborhoods of x and 0 in Rn, respectively,
and ϕ : U → V is a Ck-diffeomorphism such that ϕ(x) = 0 and
ϕ(M ∩ U) = (Rd × {0}n−d) ∩ V , then

TxM = dϕ(x)−1(Rd × {0}n−d).

2. (Computation by immersion)

If U is a neighborhood of x in Rn, V an open set in Rd, and
f : V → Rn a Ck map, which is a homeomorphism between V
and f(V ), such that M ∩ U = f(V ) and f is an immersion at
z0

def= f−1(x), then

TxM = df(z0)(Rd)(= Im(df(z0)))

3. (Computation by submersion)

If U is a neighborhood of x and g : U → Rn−d a Ck map surjective
at x such that M ∩ U = g−1({0}), then

TxM = Ker(dg(x)).

4. (Computation by graph)

If U is a neighborhood of x, V an open set in Rd, and h : V →
Rn−d is a Ck map such that, in a well-chosen coordinate system,
M ∩ U = graph(h), then

TxM = {(t1, . . . , td, dh(x1, . . . , xd)(t1, . . . , td)), t1, . . . , td ∈ R} .

Proof. Let’s begin with Property 1. Let U , V , and ϕ be as stated in the
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property.
First, let’s prove the inclusion TxM ⊂ dϕ(x)−1(Rd × {0}n−d). Let v be

an arbitrary element in TxM ; we will show that it belongs to dϕ(x)−1(Rd ×
{0}n−d).

Let c be as in the definition of the tangent space, i.e. a C1 map from an
open interval I containing 0 to Rn, with images in M , such that c(0) = x
and c′(0) = v.

For any t close enough to 0, c(t) belongs to U , so ϕ(c(t)) is well-defined.
Moreover, since ϕ(M ∩ U) ⊂ Rd × {0}n−d, we must have

0 = ϕ(c(t))d+1 = · · · = ϕ(c(t))n.

Differentiating these equalities at t = 0 gives:

0 = dϕ(c(0))(c′(0))d+1 = dϕ(x)(v)d+1,

. . .

0 = dϕ(x)(v)n.

Therefore, dϕ(x)(v) ∈ Rd × {0}n−d, i.e., v ∈ dϕ(x)−1(Rd × {0}n−d).
Now, let’s prove the other inclusion: dϕ(x)−1(Rd × {0}n−d) ⊂ TxM . Let

v ∈ dϕ(x)−1(Rd × {0}n−d); we will show that v ∈ TxM .
Denote

w = dϕ(x)(v) ∈ Rd × {0}n−d.

We must find a function c as in the definition of the tangent space. We will
define it as the preimage by ϕ of a function γ with images in Rn such that
γ(0) = 0 and γ′(0) = w.

Choose an open interval I containing 0 small enough, and define

γ : I → Rn

t → tw.

This is a C∞ function satisfying

γ(0) = 0 and γ′(0) = w.

If I is small enough, γ(I) ⊂ V . Thus, we can define

c = ϕ−1 ◦ γ : I → Rn.
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This is a Ck function. It takes values in M because γ(t) ∈ Rd × {0}n−d for
all t ∈ I (since w ∈ Rd × {0}n−d). Therefore,

c(t) ∈ ϕ−1 ((Rd × {0}n−d
)
∩ V

)
= M ∩ U.

Moreover,
c(0) = ϕ−1(γ(0)) = ϕ−1(0) = x

and

w = γ′(0)
= (ϕ ◦ c)′(0)
= dϕ(c(0))(c′(0))
= dϕ(x)(c′(0)).

Therefore,

c′(0) = dϕ(x)−1(w) = v.

the map c satisfies the properties required in the definition of the tangent
space. Therefore,

v ∈ TxM.

This completes the proof of the equality

TxM = dϕ(x)−1(Rd × {0}n−d).

Before proving the remaining three properties of the theorem, let’s observe
that the equality we have just obtained already shows that TxM is a vector
subspace of Rn of dimension d. Indeed, it is the image of a vector subspace
of dimension d of Rn (Rd × {0}n−d) under a linear isomorphism (dϕ(x)−1).

This observation simplifies the proof of properties 2, 3, and 4. Indeed,
the sets

df(z0)(Rd),Ker(dg(x))
and {(t1, . . . , td, dh(x1, . . . , xd)(t1, . . . , td)), t1, . . . , td ∈ R},

which appear in these properties, are vector subspaces of Rn of dimension
d (the first is the image of Rd by an injective linear map, the second is the
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kernel of a surjective linear map from Rn to Rn−d, and the third is generated
by the following free family of d elements:

(1, 0, . . . , 0, dh(x1, . . . , xd)(1, 0, . . . , 0)),
. . . ,

(0, . . . , 0, 1, dh(x1, . . . , xd)(0, . . . , 0, 1))).

To show that they are equal to TxM , it is therefore sufficient to prove either

• that they contain TxM ,

• or that they are included in TxM .

Let’s prove Property 2. Let U , V , and f be as in the statement of the
property. We will show that

df(z0)(Rd) ⊂ TxM. (2.5)

Let v ∈ df(z0)(Rd) be arbitrary; let’s show that v ∈ TxM . Let a ∈ Rd

be such that df(z0)(a) = v. Choose an interval I ⊂ R containing 0, small
enough, and define

c : I → Rn

t → f(z0 + ta).
the map c is well-defined if I is small enough, as z0 + ta ∈ V for all t ∈ I. It
is a Ck (thus C1) function. For all t ∈ I, c(t) ∈ f(V ) ⊂M . Moreover,

c(0) = f(z0) = x

and
c′(0) = df(z0)(a) = v.

This shows that v ∈ TxM . Thus, Equation (2.5) is true.
Now let’s prove Property 3. Let U and g be as in the statement of the

property. We will show that

TxM ⊂ Ker(dg(x)).

Let v ∈ TxM be arbitrary. Let us show that v is in Ker(dg(x)). Let I
be an interval in R containing 0, and c : I → Rn as in the definition of the
tangent space.
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For any t close enough to 0, c(t) is an element of U ; it is also an element
of M . Since M ∩ U = g−1({0}),

0 = g(c(t)).

Differentiating this equality at 0,

0 = dg(c(0))(c′(0)) = dg(x)(v).

Therefore, v ∈ Ker(dg(x)).
Finally, let’s prove Property 4. Let U , V , and h be as in the statement

of this property. Let

E = {(t1, . . . , td, dh(x1, . . . , xd)(t1, . . . , td)), t1, . . . , td ∈ R}

We show that
E ⊂ TxM.

Let (t, dh(x1, . . . , xd)(t)) ∈ E, with t ∈ Rd. Let us show that this is an
element of TxM .

Choose an interval I in R containing 0 small enough, and define

c : I → Rn

s → ((x1, . . . , xd) + st, h((x1, . . . , xd) + st)).

This function is well-defined if I is small enough, as (x1, . . . , xd) + st belongs
to V for all s ∈ I (since V contains (x1, . . . , xd) and is open). It is of class
Ck (thus C1). It is in the graph of h, and therefore in M . Moreover,

c(0) = (x1, . . . , xd, h(x1, . . . , xd)) = x

and
c′(0) = (t, dh(x1, . . . , xd)(t)).

This shows that (t, dh(x1, . . . , xd)(t)) ∈ TxM .

To finish with the definitions, let’s introduce the affine tangent space,
which is simply the tangent space, translated so that it goes through the
point x. This is not a notion that we will particularly use in the rest of the
course, except in the figures: it is much more natural to draw tangent spaces
that really touch1 the submanifold they are associated with than tangent
spaces which all contain 0.

1The word "tangent" comes from the Latin verb tangere, which means "to touch".
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Figure 2.6: The sphere S2 and its affine tangent space at a few points.

Definition 2.17

If M is a submanifold of Rn and x ∈M , the affine tangent space to M
at x is the set

x+ TxM.

2.3.2 Examples

In this paragraph, we go back to the examples of submanifolds from Sec-
tion 2.2 and compute their tangent spaces.

Proposition 2.18 : tangent space of the sphere

For any x ∈ Sn−1,

TxSn−1 = {x}⊥ = {t ∈ Rn, ⟨t, x⟩ = 0}.

Proof. Let’s define, as in Subsection 2.2.1,

g : Rn → R
(t1, . . . , tn) → t21 + · · ·+ t2n − 1.

It satisfies Sn−1 = g−1({0}) and is a submersion at x. According to Property 3
of Theorem 2.16,

TxSn−1 = Ker(dg(x)).
Now, for any t ∈ Rn, dg(x)(t) = 2 ⟨x, t⟩. Therefore,

TxSn−1 = {x}⊥.
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Proposition 2.19 : tangent space of a product submanifold

Let n1, n2 ∈ N∗. Assume M1 is a submanifold of Rn1 and M2 is a
submanifold of Rn2 . For any x = (x1, x2) ∈M1 ×M2,

Tx(M1 ×M2) = Tx1M1 × Tx2M2

= {(t1, t2), t1 ∈ Tx1M1, t2 ∈ Tx2M2}.

Proof. Let x = (x1, x2) ∈M1 ×M2.
We will use the expression for the tangent space associated with the

"immersion" definition of submanifolds (Property 2 of Theorem 2.16).
Let d1 be the dimension of M1. Assume U1 is a neighborhood of x1 in

Rn1 , V1 a neighborhood of 0 in Rd1 , and f1 : V1 → Rn1 a map which is a
homeomorphism onto its image, such that

M1 ∩ U1 = f1(V1)

and f1 is immersive at z1 = f−1(x1).
Define similarly d2, U2, V2, f2 : V2 → Rn2 and z2.
According to Property 2 of Theorem 2.16, we have

Tx1M1 = df1(z1)(Rd1) and Tx2M2 = df2(z2)(Rd2).

Moreover, as shown in the proof of Proposition 2.5, the map f : (t1, t2) ∈
V1 × V2 → (f1(t1), f2(t2)) ∈ Rn1+n2 is a homeomorphism onto its image,
satisfies

f(V1 × V2) = (M1 ×M2) ∩ (U1 × U2)

and is immersive at (z1, z2) = f−1(x). From Property 2 of Theorem 2.16, we
have

Tx(M1 ×M2) = df(z1, z2)(Rd1+d2)
= {df(z1, z2)(t1, t2), t1 ∈ Rd1 , t2 ∈ Rd2}
= {(df1(z1)(t1), df2(z2)(t2)), t1 ∈ Rd1 , t2 ∈ Rd2}
= df1(z1)(Rd1)× df2(z2)(Rd2)
= Tx1M1 × Tx2M2.
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Example 2.20 : tangent space of the torus

For any (x1, x2) ∈ T2 = S1 × S1,

T(x1,x2)T2 = Tx1S1 × Tx2S1 = {x1}⊥ × {x2}⊥.

If we fix θ1, θ2 such that x1 = (cos(θ1), sin(θ1)), x2 = (cos(θ2), sin(θ2)),
we have

{x1}⊥ = (sin(θ1),− cos(θ1))R
= {(t1 sin(θ1),−t1 cos(θ1)), t1 ∈ R}

and similarly for x2. This allows us to write the previous expression
for the tangent to the torus in a slightly more explicit way:

T(x1,x2)T2 = {(t1 sin(θ1),−t1 cos(θ1), t2 sin(θ2),−t2 cos(θ2)), t1, t2 ∈ R}.

Proposition 2.21 : tangent space of the orthogonal group

For any G ∈ On(R),

TGOn(R) = {GR,R ∈ Rn×n is antisymmetric}.

Proof. Let G ∈ On(R).
As shown in the proof of Proposition 2.8, On(R) is equal to g̃−1({0}),

where g̃ is defined as

g̃ : Rn×n → R
n(n+1)

2

A → Tri(tAA− In).

The map g̃ is a submersion at G, with differential

dg̃(G) : A ∈ Rn×n → Tri(tGA+ tAG) ∈ R
n(n+1)

2 .

According to Property 3 of Theorem 2.16,

TGOn(R) = Ker(dg̃(G)) =
{
A ∈ Rn×n,Tri(tGA+ tAG) = 0

}
.

Now, for any A,

Tri(tGA+ tAG) = 0 ⇐⇒ tGA+ tAG = 0
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(because tGA+ tAG is symmetric)
⇐⇒ (tGA) + t(tGA) = 0
⇐⇒ tGA = R for some antisymmetric R
⇐⇒ A = GR for some antisymmetric R

(because GtG = In).

Therefore,

TGOn(R) = {GR,R ∈ Rn×n is antisymmetric}.

Proposition 2.22

Let d ∈ {0, . . . , n}. Let U be an open set in Rn, and g : U → Rn−d be
a Ck function. Assume that g is a submersion on g−1({0}).
For any x ∈ g−1({0}),

Tx(g−1({0})) = Ker(dg(x)).

Proof. This is a direct application of Property 3 of Theorem 2.16.

Proposition 2.23

Let d ∈ {0, . . . , n}. Let U be an open set in Rd, and f : U → Rn be
an immersion, which is a homeomorphism from U to f(U).
For any x ∈ f(U),

Txf(U) = df(z)(Rd),

where z is the element of U such that x = f(z).

Proof. This is a direct application of Property 2 of Theorem 2.16.

Example 2.24 : tangent space of the spiral

Consider the map from Example 2.11:

f : R → R2

θ →
(
eθ cos(2πθ), eθ sin(2πθ)

)
.
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Figure 2.7: The spiral from Example 2.24 and its affine tangent space at a
few points.

Let (x, y) ∈ f(R). Denote θ ∈ R the real number such that (x, y) =
f(θ). According to Proposition 2.23:

T(x,y)f(R) = f ′(θ)R
= eθ((cos(2πθ), sin(2πθ)) + 2π(− sin(2πθ), cos(2πθ)))R
= (x− 2πy, y + 2πx)R
= {((x− 2πy)t, (y + 2πx)t), t ∈ R}.

An illustration is shown on Figure 2.7.

2.3.3 Application: proof that a set is not a submanifold

Let us go back to the second set considered in Subsection 2.2.6, the “eight”,
represented on Figure 2.5. This set is

M
def= {f(θ), θ ∈]− π; π[} .

where f is defined as

f : ]− π; π[ → R2

θ → (sin(θ) cos(θ), sin(θ)).
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Here, we prove that M is not a submanifold of R2 using a different technique
from Subsection 2.2.6.

By contradiction, let us assume that it is a submanifold. We compute its
tangent space at (0, 0).

First, we define
c1 = f :]− π; π[→ R2.

It holds c1(t) ∈M for all t ∈]− π; π[, c1(0) = (0, 0) and c1 is C1. Therefore,

(1, 1) = c′1(0) ∈ T(0,0)M. (2.6)

Second, we define

c2 : ]− π; π[ → R2

θ → (sin(θ) cos(θ),− sin(θ)).

It holds c2(t) ∈ M for all t ∈] − π; π[. Indeed, for any t ∈] − π; 0[, c2(t) =
f(t+π) ∈M ; c2(0) = f(0) ∈M and, for any t ∈]0; π[, c2(t) = f(t−π) ∈M .
In addition, c2(0) = (0, 0) and c2 is C1. Therefore,

(1,−1) = c′2(0) ∈ T(0,0)M. (2.7)

As T(0,0)M is a vector subspace of R2, Equations (2.6) and (2.7) together
imply that

T(0,0)M = R2.

In particular, since the dimension of the tangent space is the same as the
dimension of the submanifold, dimM = 2. In virtue of Proposition 2.12, M
must thus be an open set of R2. As this is not true (because, for instance,
M contains no element of the form (t, 0), except (0, 0) itself, so it does not
contain a neighborhood of (0, 0)), we have reached a contradiction.

2.4 Maps between submanifolds

2.4.1 Definition of C1 maps

In this section, we consider functions between two submanifolds M ⊂ Rn1

and N ⊂ Rn2 :
f : M → N.
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If M = Rd1 × {0}n1−d1 and N = Rd2 × {0}n2−d2 , f is essentially a function
from Rd1 to Rd2 . The notions of "differentiability" and "differential" are then
well-defined for f , in accordance with Chapter 1.

However, if M is not a vector subspace of Rn1 , this is no longer the case:
Definition 1.1 involves linear maps between the domain and codomain, which
do not exist if the sets are not vector spaces.

To give a meaning to the notion of “differentiability” for f , one can use
the fact that M and N are identifiable with open sets in Rd1 and Rd2 through
diffeomorphisms. We say that f is differentiable if, when composed with these
diffeomorphisms, it is a differentiable map from an open set in Rd1 to Rd2 .
This is, in a slightly different form, the content of the following definition.

Definition 2.25 : C1 map from a submanifold to Rm

Let m ∈ N.
Consider M a Ck submanifold of Rn, and a function

f : M → Rm.

We say that f is of class C1 if, for any integer s ∈ N∗, any open set V
in Rs, and any C1 function ϕ : V → Rn such that ϕ(V ) ⊂M , the map

f ◦ ϕ : V → Rm

is of class C1.

Remark

Similarly, one can define the notion of function of class Cr from M to
Rm, for any r = 1, . . . , k. Simply replace “C1” with “Cr” in the above
definition.
It can be shown that a function of class Cr is necessarily of class Cr′

for any r′ ≤ r.

Example 2.26 : projection onto a coordinate

Let M ⊂ Rn be a Ck-submanifold. For any r = 1, . . . , n, we define the
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projection onto the r-th coordinate

πr : M → R
(x1, . . . , xn) → xr.

This is a Ck map.

Proof. Let r ∈ {1, . . . , n}. Let us fix s ∈ N∗, V an open set in Rs, and
ϕ : V → Rn of class Ck such that ϕ(V ) ⊂M . For any x ∈ Rs, denote ϕ(x) =
(ϕ1(x), . . . , ϕn(x)). The components ϕ1, . . . , ϕn are Ck. Hence, πr ◦ ϕ = ϕr is
Ck.

Definition 2.27 : C1 function between two submanifolds

Let M,N be two Ck submanifolds, respectively of Rn1 and Rn2 . Con-
sider a function

f : M → N.

Since N ⊂ Rn2 , we can view f as a map from M to Rn2 rather than
from M to N . We say that f is of class C1 (more generally, Cr, for
r ∈ {1, . . . , k}) between M and N if it is of class C1 (more generally,
Cr) when viewed as a map from M to Rn2 .

Example 2.28 : projection on a product submanifold

Let A,B be two Ck-submanifolds, respectively of Ra and Rb. Recall
that A×B is a submanifold of Ra+b (Proposition 2.5).
We define the projection onto A as

πA : A×B → A
(xA, xB) → xA.

This is a Ck function.
Similarly, the projection onto B is Ck.

Proof. Consider πA as a function from A × B to Ra and show that this
function is Ck. Take s ∈ N∗, V an open set in Rs, and ϕ : V → Ra+b a Ck

map such that ϕ(V ) ⊂ A×B.
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For any x ∈ Rs, denote ϕ(x) = (ϕ1(x), . . . , ϕa+b(x)). The functions
ϕ1, . . . , ϕa+b are Ck. The function πA ◦ ϕ is given by

∀x ∈ Rs, πA ◦ ϕ(x) = πA(ϕ1(x), . . . , ϕa(x)︸ ︷︷ ︸
element of A

, ϕa+1(x), . . . , ϕa+b(x))︸ ︷︷ ︸
element of B

= (ϕ1(x), . . . , ϕa(x)).

Thus, πA ◦ ϕ is equal to (ϕ1, . . . , ϕa), which is Ck, and consequently, πA ◦ ϕ
is Ck.

Definitions 2.25 and 2.27 are more abstract than the definition of differ-
entiability for a function from Rn to Rm. However, one must not be intim-
idated. In practice, one rarely needs to resort to these definitions to show
that a map is C1 (or, more generally, Cr). Indeed, as is the case for maps
from Rn → Rm, basic operations preserve differentiability. For instance, if
M is a submanifold and m an integer, the sum of two Cr functions from M
to Rm is also Cr. Similarly, the product of two Cr functions from M to R is
Cr. We will not state each of these properties here, only the one related to
composition.

Proposition 2.29 : composition of C1 functions

Let M,N,P be three Ck submanifolds of, respectively, RnM , RnN , and
RnP . Consider two functions

f1 : M → N and f2 : N → P.

If f1 and f2 are of class Cr, for some r ∈ {1, . . . , k}, then

f2 ◦ f1 : M → P

is also of class Cr.

Proof. We view f2 ◦ f1 as a function from M to RnP and show that this
function is Cr. Let s ∈ N∗ be an integer, V an open set in Rs and ϕ : V →
RnM a Cr function such that ϕ(V ) ⊂M . We must show that f2 ◦ f1 ◦ ϕ is of
class Cr on V .

Since f1 : M → N is of class Cr, it is also Cr when viewed as a function
from M to RnN . From Definition 2.25, f1 ◦ ϕ : V → RnN is Cr. Moreover,
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(f1 ◦ ϕ)(V ) ⊂ f1(M) ⊂ N . As f2 : N → P ⊂ RnP is Cr, the function
f2 ◦ (f1 ◦ ϕ) is Cr, also from Definition 2.25.

Since f2 ◦ f1 ◦ ϕ = f2 ◦ (f1 ◦ ϕ), this proves that f2 ◦ f1 ◦ ϕ is Cr.

Exercise 3

Show that the map

f : S1 → S1

(x1, x2) → (x2
1, x2

√
1 + x2

1)

is well-defined and C∞.

Definition 2.30 : diffeomorphism between manifolds

Let M,N be two Ck submanifolds of Rn1 and Rn2 , respectively. Con-
sider a map

ϕ : M → N.

For any r ∈ {1, . . . , k}, we say that ϕ is a Cr-diffeomorphism between
M and N if it satisfies the following three properties:

1. ϕ is a bijection from M to N ;

2. ϕ is of class Cr on M ;

3. ϕ−1 is of class Cr on N .

2.4.2 [More advanced] Differentials

Note that, contrarily to what we did for maps from Rn to Rm, we have defined
the notion of differentiable function between manifolds without introducing
the notion of differential. Nevertheless, one can still define this notion; this
is the aim of the following definition.

Definition 2.31 : differential on manifolds

Let M,N be two Ck submanifolds of, respectively, Rn1 and Rn2 . Let

f : M → N

be a Cr function, where r ∈ {1, . . . , k}.
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Let x ∈ M . For any v ∈ TxM , fix Iv an open interval in R containing
0 and cv : I → Rn1 as in the definition of the tangent space (2.14), i.e.,
a C1 function with values in M such that cv(0) = x and c′v(0) = v.
The differential of f at x, denoted df(x), is the following map:

df(x) : TxM → Tf(x)N
v → (f ◦ cv)′(0).

The map df(x) is well-defined: f ◦ cv : Iv → Rn2 is a C1 function, with
values in N , such that f ◦ cv(0) = f(x), so (f ◦ cv)′(0) is indeed an element
of Tf(x)N .

Remark

If M is an open subset of Rn1 , then f , viewed as a function from this
open subset of Rn1 to Rn2 , is differentiable in the usual sense, and the
differentials defined in Definitions 1.1 and 2.31 coincide, as in that case,
denoting df(x) the usual differential,

(f ◦ cv)′(0) = df(cv(0))(c′v(0)) = df(x)(v).

Theorem 2.32

We keep the notation from Definition 2.31.
The map df(x) does not depend on the choice of intervals Iv and func-
tions cv.
Moreover, it is linear.

Proof. Let v ∈ TxM . Show that df(x)(v) = (f ◦ cv)′(0) does not depend on
the choice of Iv and cv. To do this, we will give an alternative expression for
df(x)(v) that does not involve Iv or cv.

Let d1 and d2 be the dimensions of M and N . We use the “diffeo-
morphism” definition of submanifolds (Property 1 of Definition 2.1). Let
UM , VM ⊂ Rn1 be neighborhoods of x and 0, respectively, and ϕM : UM → VM
be a Ck-diffeomorphism such that ϕM(x) = 0 and

ϕM(M ∩ UM) = (Rd1 × {0}n1−d1) ∩ VM .
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Denote ϕ−1
M,0 the restriction of ϕ−1

M to (Rd1 × {0}n1−d1) ∩ VM . We have

df(x)(v) = (f ◦ cv)′(0)
= (f ◦ ϕ−1

M,0 ◦ ϕM ◦ cv)′(0)
= ((f ◦ ϕ−1

M,0) ◦ ϕM ◦ cv)′(0).

The map f ◦ ϕ−1
M,0 is defined on an open subset of Rd1 (actually, on (Rd1 ×

{0}n1−d1) ∩ VM , but this is exactly an open set of Rd1 if one ignores the
(n1 − d1) zeros). It is of class Cr on this subset, since it is the composition
of two Cr maps. Thus, the maps f ◦ ϕ−1

M,0, ϕM and cv are defined on open
subsets of Rn (for different values of n) and differentiable in the usual sense.
The usual theorem on the composition of differentials then gives

df(x)(v) = (d(f ◦ ϕ−1
M,0)(ϕM ◦ cv(0)) ◦ dϕM(cv(0)))(c′v(0))

= d(f ◦ ϕ−1
M,0)(0) ◦ dϕM(x)(v).

As announced, this expression does not depend on cv or Iv, which completes
the first part of the proof.

The linearity of df(x) follows from the same argument. Indeed, our rea-
soning shows that

df(x) = d(f ◦ ϕ−1
M,0)(0) ◦ dϕM(x),

i.e., df(x) is the composition of two linear maps. Therefore, it is linear.

As the notion of differentiability, the notion of differential for maps be-
tween manifolds is governed by almost the same rules as for maps between
Rm and Rn. Let’s state, for example, the rule of composition of differentials.

Proposition 2.33

Let M,N,P be three Ck submanifolds of RnM , RnN , and RnP , respec-
tively. Consider two C1 maps,

f1 : M → N and f2 : N → P.

For any x ∈M ,

d(f2 ◦ f1)(x) = df2(f1(x)) ◦ df1(x).
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Proof. Let v ∈ TxM . Show that

d(f2 ◦ f1)(x)(v) = df2(f1(x)) ◦ df1(x)(v).

Let Iv be an open interval in R containing 0, and let cv : Iv → RnM be a C1

function such that cv(Iv) ⊂ M , cv(0) = x, and c′v(0) = v. The definition of
the differential gives

d(f2 ◦ f1)(x)(v) = (f2 ◦ f1 ◦ cv)′(0).

Let w = (f1 ◦ cv)′(0) = df1(x)(v) ∈ RnN . The function f1 ◦ cv : Iv → RnN

is C1 and f1 ◦ cv(Iv) ⊂ N . It satisfies f1 ◦ cv(0) = f1(x) and, by definition of
w, (f1 ◦ cv)′(0) = w. The definition of the differential for f2 then gives

df2(f1(x))(w) = (f2 ◦ f1 ◦ cv)′(0).

Thus,

d(f2 ◦ f1)(x)(v) = df2(f1(x))(w)
= df2(f1(x))(df1(x)(v))
= [df2(f1(x)) ◦ df1(x)] (v).

To give one more example of a standard result from differential calculus
which straightforwardly generalizes to differential calculus on submanifolds,
let us state the submanifold version of the local inversion theorem.

Theorem 2.34 : local inversion on submanifolds

Let M,N be two Ck submanifolds of Rn1 and Rn2 , respectively. Let
x0 ∈M . For r ∈ {1, . . . , k}, consider a Cr map,

f : M → N.

If df(x0) : Tx0M → Tf(x0)N is bijective, then there exist Ux0 an open
neighborhood of x0 in M and Vf(x0) an open neighborhood of f(x0) in
N such that f is a Cr-diffeomorphism from Ux0 to Vf(x0).
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Proof. Let d be the dimension of M . Note that N has the same dimension
as M : df(x0) is a bijective linear map between Tx0M and Tf(x0)N , so

dimTf(x0)N = dimTx0M = d.

Let UM , VM ⊂ Rn1 be open neighborhoods of x0 and 0, respectively, and
ϕM : UM → VM a Ck-diffeomorphism such that

ϕM(M ∩ UM) = (Rd × {0}n1−d) ∩ VM ,
and ϕM(x0) = 0.

Similarly, let UN , VN ⊂ Rn2 be open neighborhoods of f(x0) and 0, and
ϕN : UN → VN a Ck-diffeomorphism such that

ϕN(N ∩ UN) = (Rd × {0}n2−d) ∩ VN ,
and ϕN(f(x0)) = 0.

The idea of the proof is to go back to the case where f is defined on an
open subset of Rd and then apply the classical local inversion theorem. To
do this, we "transfer" f to a map from Rd × {0}n1−d to Rd × {0}n2−d by
composing it with the diffeomorphisms ϕM and ϕN .

More precisely, let ϕ−1
M,0 be the restriction of ϕ−1

M to (Rd × {0}n1−d)∩ VM .
Define

g
def= ϕN ◦ f ◦ ϕ−1

M,0 : (Rd × {0}n1−d) ∩ VM → (Rd × {0}n2−d) ∩ VN .
This definition is valid if we reduce UM , VM so that f(UM) ⊂ UN . The map g
is Cr and its differential at 0 is injective: it is the composition of dϕN(f(x0)),
df(x0), and dϕ−1

M,0(0), all of which are injective. Since it goes from Rd to Rd,
it is bijective2.

According to the classical local inversion theorem (Theorem 1.10), there
exist EM , EN open neighborhoods of 0 in Rd such that g is a Cr-diffeomorphism
from EM × {0}n1−d to EN × {0}n2−d. Then f is a Cr-diffeomorphism from
Ux0

def= ϕ−1
M (EM × {0}n1−d) to Vf(x0)

def= ϕ−1
N (EN × {0}n2−d): on these sets,

f = ϕ−1
N ◦ g ◦ ϕM .

Since ϕM is a diffeomorphism (of class Ck hence also of class Cr) from Ux0

to EM × {0}n1−d, g is a Cr-diffeomorphism from EM × {0}n1−d to EN ×
{0}n2−d, and ϕ−1

N is a diffeomorphism (Ck hence also Cr) from EN ×{0}n2−d

to Vf(x0), the map f is a composition of Cr-diffeomorphisms, hence a Cr-
diffeomorphism.

2We can see ϕN ◦ f ◦ ϕ−1
M,0 as a map between two open subsets of Rd.



Chapter 3

Riemannian geometry

What you should know or be able to do after this chapter

• Know the definition of curves and parametrized curves.

• Given a curve, introduce a convenient parametrization of it,

– either a local one as in Proposition 3.4,

– or a global one, as in Corollary 3.7.

• Know that a connected curve is diffeomorphic to either S1 or R.

• Be able to manipulate the length of a curve (e.g. compute it, when
possible, or upper bound it otherwise).

• In general dimension, propose a definition of distance intrinsic to a
manifold, and remember the “standard” one.

• Understand (i.e. be able to reexplain) the intuition of why minimizing
paths satisfy the geodesic equation.

• Know the explicit description of geodesics on the sphere.

• Know the relation between minimizing paths and geodesics (a minimiz-
ing path is a geodesic, and a geodesic is locally a minimizing path).

Let k, n ∈ N∗ be fixed.
In the previous chapter, we introduced the concept of differentiability for

maps between submanifolds. This concept allows one to study the topological

59
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properties of submanifolds: one may wonder which submanifolds are diffeo-
morphic to each other and what properties characterize whether or not they
are diffeomorphic. Informally speaking, one can ask questions like: "Is a
donut diffeomorphic to a balloon?"1

In this chapter, we delve into finer properties of submanifolds, specifically
metric properties involving notions of length, angle, etc. We will introduce a
notion of isometry, which is more restrictive than that of diffeomorphism (in
the sense that two isometric manifolds are necessarily diffeomorphic, whereas
the converse is not true).

As the formal definitions of these properties are subtle, and since the
objective here is only to provide an overview rather than a complete descrip-
tion, we will mainly focus on the simplest case, one-dimensional submani-
folds. Submanifolds of general dimension will be discussed only towards the
end of the chapter.

3.1 Submanifolds of dimension 1
Definition 3.1 : curve

A curve is a submanifold of Rn of dimension 1.

3.1.1 Parametrized curves

Curves, in comparison to higher-dimensional manifolds, have the particular-
ity that they admit a simple parametrization. In essence, they can be seen as
the image of an open set of R through a C1 function. This parametrization
allows for a convenient definition of metric quantities, as we will see later in
this section.

Definition 3.2 : parametrized curve

A parametrized curve of class Ck is a pair (I, γ), where I is an interval
in R and γ : I → Rn is a Ck function.

The image of a parametrized curve is not necessarily a submanifold of
Rn, especially because the curve can intersect itself (we say that it has a
multiple point). However, the following proposition shows that the image of

1Answer: no.
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Figure 3.1: The image of the parametrized curve γ : t ∈ R→ (t(t+1)2, t2(t+
1)) (left figure) is not a submanifold of R2 because (0, 0) is a multiple point.
However, γ(]− ϵ; ϵ[) is a submanifold of R2 for any sufficiently small ϵ (right
figure).

a parametrized curve (I, γ) locally defines a submanifold, in the vicinity of
points where γ′ does not vanish. This result is illustrated in Figure 3.1.

Proposition 3.3

Let (I, γ) be a parametrized curve. For t ∈ I̊ and x = γ(t), we say
that x is a regular point if γ′(t) ̸= 0.
In this case, there exists ϵ > 0 such that ]t− ϵ; t+ ϵ[⊂ I, and the set

C
def= γ(]t− ϵ; t+ ϵ[)

is a curve. Moreover,
TxC = Rγ′(t).

Proof. Assume x is regular, i.e., γ is an immersion at t. If we can show that,
for ϵ > 0 sufficiently small, γ induces a homeomorphism from ]t − ϵ; t + ϵ[
to its image, the theorem is proved. Indeed, we can then choose ϵ > 0 small
enough so that γ′ does not vanish (i.e., γ is immersive) over the entire interval
]t− ϵ; t+ ϵ[. Proposition 2.10 then ensures that

C
def= γ(]t− ϵ; t+ ϵ[)

is a submanifold of Rn of dimension 1, i.e., a curve, and Property 2 of The-
orem 2.16 tells us that

TxC = Im(dγ(t)) = Rγ′(t).
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To show that γ induces a homeomorphism from ]t− ϵ; t+ ϵ[ to its image
if ϵ > 0 is sufficiently small, we use the normal form theorem for immersions
(Theorem 1.14). Let ψ be a diffeomorphism from a neighborhood of x to a
neighborhood of 0Rn and ϵ > 0 be such that

∀t′ ∈]t− ϵ; t+ ϵ[, ψ ◦ γ(t′) = (t′, 0, . . . , 0).

Defining π1 : Rn → R as the projection onto the first coordinate, we have

∀t′ ∈]t− ϵ; t+ ϵ[, π1 ◦ ψ ◦ γ(t′) = t′.

Consequently, γ is injective on ]t − ϵ; t + ϵ[. It is therefore a bijection from
]t − ϵ; t + ϵ[ to its image. It is continuous. From the previous equation, its
reciprocal is π1 ◦ ψ, which is continuous, so γ is a homeomorphism between
]t− ϵ; t+ ϵ[ and γ(]t− ϵ; t+ ϵ[).

Conversely, any curve is locally the image of a parametrized curve.

Proposition 3.4

Let C ⊂ Rn be a Ck curve. For any x ∈ C, there exists a neighborhood
V of x in Rn and a parametrized curve (I, γ) of class Ck such that

C ∩ V = γ(I).

Proof. Let x be in C. From the “immersion” definition of submanifolds, there
exists a neighborhood V of x, an open set U ⊂ R and a Ck map f : U → Rn,
which is a homeomorphism onto its image, such that

C ∩ V = f(U). (3.1)

Let t0 ∈ U be the preimage of x by f (that is, f(t0) = x). The set U may
not be an interval but, if we replace V with a smaller set, we can replace U
with the connected component of t0, while keeping Equality (3.1) true. We
can then set I = U and γ = f .

Actually, any connected curve2 is the image of a parametrized curve (glob-
ally, not locally as in the previous proposition). This is a consequence of the
following theorems.

2Some reminders on connectedness can be found in Appendix A.
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Theorem 3.5 : compact curves

Let M ⊂ Rn be a compact and connected curve of class Ck. It is
Ck-diffeomorphic to the circle S1.

Theorem 3.6 : non-compact curves

Let M ⊂ Rn be a connected non-compact curve of class Ck. It is
Ck-diffeomorphic to R.

The proof of these theorems is difficult. We will limit ourselves to the
proof of the first one, which will be given in subsection 3.1.2. The proof of
the second one uses partly the same strategy but requires additional ideas.

Corollary 3.7 : global parametrization of connected curves

Let M ⊂ Rn be a connected curve of class Ck.

• If M is non-compact, there exists a parametrized curve (I, γ) of
class Ck such that

– I is an open interval;

– γ(I) = M ;

– γ is a diffeomorphism between I and M .

• If M is compact, then, for any a, b ∈ R such that a < b, there
exists a parametrized curve ([a; b[, γ) of class Ck such that

– γ([a; b[) = M ;

– γ is a diffeomorphism between ]a; b[ and M \ {γ(a)} and a
bijection between [a; b[ and M ;

– limb γ
(r) = γ(r)(a) for any r ∈ {0, . . . , k}.

In both cases, we call such parametrized curve a global parametrization
of M .

Proof. First, ifM is non-compact, from Theorem 3.6, there exists ϕ : R→M
a Ck-diffeomorphism. We can set I = R and γ = ϕ.
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Let us now assume that M is compact. Let ϕ : S1 → M be a Ck-
diffeomorphism as in Theorem 3.5. We define

σ : [a; b[ → S1

t →
(
cos
(
2π t−a

b−a

)
, sin

(
2π t−a

b−a

))
.

and set γ = ϕ ◦ σ : [a; b[→ M . It defines a parametrized curve of class Ck.
Since σ is a bijection between [a; b[ and S1, and ϕ a bijection between S1 and
M , γ is a bijection between [a; b[ and M . And since σ is a diffeomorphism
between ]a; b[ and S1 \ {σ(a)}, and ϕ a diffeomorphism between S1 \ {σ(a)}
and M \ {ϕ ◦ σ(a)}, γ is a diffeomorphism between ]a; b[ and M \ {γ(a)}. In
addition, as σ (hence also γ) is the restriction to [a; b[ of a (b − a)-periodic
Ck function, it holds, for all r ∈ {0, . . . , k},

γ(r)(t) t→b−→ γ(r)(a).
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3.1.2 Proof of Theorem 3.5

The proof is intricate. Students are not expected to read it, but can do so if
they are curious. In this case, they are encouraged to focus on the following
two things first:

• understand the statements of Lemmas 3.8 to 3.11, and why these lem-
mas imply the theorem (roughly this page and the next two);

• in a second time, read the proof of Lemma 3.10, focusing on under-
standing the definitions of the various objects and Figure 3.3 rather
than the precise technical details.

The proof relies on several intermediate lemmas, the proofs of which will
be given later.

The first lemma, whose proof is based solely on the definition of subman-
ifolds and the compactness of M , asserts that M can be covered by a finite
number of open sets diffeomorphic to ]− 1; 1[.

Lemma 3.8

There exists a finite number of open sets in M , denoted U1, . . . , US,
such that

1. M = U1 ∪ · · · ∪ US ;

2. for every s ≤ S, Us is Ck-diffeomorphic to ]− 1; 1[.

The principle of the proof is to consider a finite covering as in the previ-
ous lemma and to construct, step by step, a progressively smaller covering
by gradually merging the open sets of the covering. Let (U1, . . . , US) be a
covering as in Lemma 3.8. For every s, let

ϕs :]− 1; 1[→ Us

be a Ck-diffeomorphism.
We will now judiciously choose two open sets Us1 , Us2 and merge them to

obtain, according to the properties of Us1 ∩ Us2 ,

• either directly that M is Ck-diffeomorphic to S1;

• or that there exists a covering as in Lemma 3.8, with size S−1 instead
of S.
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−1 1

ϕ1

U1

−1 1

ϕ2

U2

−1 1

ϕ3

U3

−1 1
ϕ4

U4

−1 1

ϕ5

U5

−1 1

ϕ6

U6

Figure 3.2: Illustration of Lemma 3.8: the curve M (the black line) and its
covering by the open sets Us.

In the first case, the proof is complete. In the second case, the procedure
will be iteratively reapplied to obtain a covering with a decreasing number
of elements.

The following lemma indicates what Us1 ∩ Us2 might look like.

Lemma 3.9

For all s1, s2 ≤ S distinct, the intersection Us1 ∩Us2 satisfies one of the
following properties:

1. Us1 ∩ Us2 is empty.

2. Us1 ∩Us2 has a single connected component. In this case, we are
in one of the following situations:

(a) Us1 ⊂ Us2 or Us2 ⊂ Us1 ;

(b) ϕ−1
s1 (Us1 ∩ Us2) and ϕ−1

s2 (Us1 ∩ Us2) are intervals of the form
]− 1;α[ or ]α; 1[, with α ∈]− 1; 1[.

3. Us1 ∩Us2 has two connected components. In this case, ϕ−1
s1 (Us1 ∩

Us2) and ϕ−1
s2 (Us1 ∩ Us2) are of the form ] − 1;α[∪]β; 1[, with

α, β ∈]− 1; 1[, α < β.

We can show that there exist s1, s2 ∈ {1, . . . , S} distinct such that Us1 ∩



3.1. SUBMANIFOLDS OF DIMENSION 1 67

Us2 ̸= ∅. Indeed, let’s proceed by contradiction and suppose there are no
s1 ̸= s2 such that Us1 ∩ Us2 ̸= ∅. Then we are in one of the following
situations:

1. S = 1;

2. S > 1 and Us1 ∩ Us2 = ∅ for all s1 ̸= s2.

In the first case, we must have M = U1. Since U1 is Ck-diffeomorphic
to ] − 1; 1[, M is also. This is impossible: the compact set M cannot be
diffeomorphic to the non-compact set ]− 1; 1[. In the second case,

U1 and U2 ∪ · · · ∪ US

are non-empty, disjoint open sets whose union is M . So M is not con-
nected: again, this leads to an impossibility. Therefore, we can choose
s1, s2 ∈ {1, . . . , S} distinct such that Us1 ∩ Us2 ̸= ∅.

Since the intersection Us1 ∩Us2 is non-empty, we are in situation 2 or 3 of
Lemma 3.9. If we are in situation 3, the following lemma directly concludes
the proof of the theorem.

Lemma 3.10 : two connected components

If Us1 , Us2 satisfy Property 3 of Lemma 3.9, thenM is Ck-diffeomorphic
to S1.

If, on the contrary, we are in Situation 2, another lemma must be used.

Lemma 3.11 : one connected component

If Us1 , Us2 satisfy Property 2 of Lemma 3.9, then Us1 ∪ Us2 is Ck-
diffeomorphic to ]− 1; 1[.

In this case, we obtain that {Us, s ̸= s1, s2}∪{Us1 ∪Us2} is a collection of
open sets, Ck-diffeomorphic to ]− 1; 1[, whose union is the entire M . Thus,
we have found a set Ũ1, . . . , ŨS−1 of open sets satisfying the properties of
Lemma 3.8 but with cardinality strictly less than S.

We can then reapply the same reasoning: there exist s̃1 ̸= s̃2 such that
Ũs̃1 ∩ Ũs̃2 ̸= ∅. If the intersection has two connected components, then M
is Ck-diffeomorphic to S1, which concludes the proof. If it has only one
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connected component, then we can find a set of S − 2 open sets satisfying
the properties of Lemma 3.8. And so on.

The reasoning cannot be applied more than S times (otherwise, we would
find a covering of M by a negative number of open sets). Therefore, there
must come a time when the intersection has two connected components,
which implies that M is Ck-diffeomorphic to S1 and concludes.

Proof of Lemma 3.8. First, consider any x ∈ M . Let V be an open neigh-
borhood of x in Rn, I an open neighborhood of 0 in R, and f : I → V a Ck

map which is a homeomorphism onto its image, such that

f(I) = V ∩M

and f is immersive at z0 = f−1(x). (This is the "immersion" definition of a
submanifold of dimension 1 - Property 2 of Definition 2.1.)

By reducing I and V slightly, we can assume that I is a bounded open
interval and that f is immersive over the entire I. We set

U(x) = f(I) = V ∩M.

It is an open subset of M . Moreover, it is Ck-diffeomorphic to I (indeed,
it is homeomorphic to I by hypothesis on f ; for any x′, df(x′) is injective,
hence bijective, from Tx′I to Tf(x′)M ; according to the local inversion theorem
2.34, f is then a local Ck-diffeomorphism, implying that f−1 is Ck). Since
any non-empty open interval in R is Ck-diffeomorphic to ] − 1; 1[, U(x) is
Ck-diffeomorphic to ]− 1; 1[.

Now we no longer consider a fixed x.
For any x ∈M , x ∈ U(x) ⊂ ∪x′∈MU(x′). Thus,

M ⊂
⋃

x′∈M

U(x′),

meaning that the U(x′), for all x′ ∈ M , form a covering of M by open
sets. Since M is compact, we can extract a finite sub-covering: there exist
x1, . . . , xS such that

M = U(x1) ∪ · · · ∪ U(xS).

As we have seen that U(xs) is diffeomorphic to ]−1; 1[ for every s, the result
is proved.
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Proof of Lemma 3.9. The set ϕ−1
s1 (Us1 ∩ Us2) is an open subset of ] − 1; 1[.

Therefore, it can be expressed as a union of disjoint open intervals in ]−1; 1[
(see Example A.5):

ϕ−1
s1 (Us1 ∩ Us2) =

⋃
l∈E

]al; bl[,

where E is an index set (which can be finite or infinite).
Let’s start by assuming that there exists k ∈ E such that −1 < ak <

bk < 1. We will show that in this case, Us2 ⊂ Us1 .
The function ϕ−1

s2 ◦ϕs1 : ϕ−1
s1 (Us1∩Us2)→]−1; 1[ is continuous and injective

(being the composition of two continuous and injective maps). Hence, it is
monotonic on each interval contained in ϕ−1

s1 (Us1 ∩ Us2). Let’s assume, for
example, that it is increasing on ]ak; bk[ (a similar reasoning can be applied
if it is decreasing).

Set
Bk = lim

t→b−k

ϕ−1
s2 ◦ ϕs1(t).

(Note that the limit exists: ϕ−1
s2 ◦ ϕs1 is an increasing and bounded function,

as its values are between −1 and 1; therefore, it converges in b−k to a value
in ]− 1; 1].)

It is impossible that Bk < 1. Indeed, if Bk < 1, then ϕs2(Bk) is well-
defined and, by the continuity of ϕs2 ,

ϕs2(Bk) = ϕs2( lim
t→b−k

ϕ−1
s2 ◦ ϕs1(t))

= lim
t→b−k

ϕs1(t)

= ϕs1(bk).

Thus, ϕs1(bk) ∈ ϕs1(]− 1; 1[) ∩ ϕs2(]− 1; 1[) = Us1 ∩ Us2 , implying

bk ∈ ϕ−1
s1 (Us1 ∩ Us2) =

⋃
l∈E

]al; bl[.

Therefore, bk ∈]al; bl[ for some l ∈ E such that l ̸= k, and for this l, we must
have ]ak; bk[∩]al; bl[ ̸= ∅, contradicting the fact that the intervals ]al; bl[ are
disjoint. Thus, Bk = 1.

Similarly, we define

Ak = lim
t→a+

k

ϕ−1
s2 ◦ ϕs1(t)
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and the same reasoning shows that Ak = −1.
The image of ]ak; bk[ under ϕ−1

s2 ◦ ϕs1 is an interval (it is the image of an
interval under a continuous function); it is included in ]− 1; 1[, and we have
just seen that

ϕ−1
s2 ◦ ϕs1(t)

t→b−k−→ 1 and ϕ−1
s2 ◦ ϕs1(t)

t→a+
k−→ −1.

Thus,

ϕ−1
s2 ◦ ϕs1(]ak; bk[) =]− 1; 1[

⇒ Us2 = ϕs2(]− 1; 1[) = ϕs2(ϕ−1
s2 ◦ ϕs1(]ak; bk[)) = ϕs1(]ak; bk[) ⊂ Us1 .

Thus, we have shown that if there exists k ∈ E such that −1 < ak < bk <
1, then Us2 ⊂ Us1 , placing us in Case 2a of the lemma’s statement. Now,
suppose that there is no k ∈ E such that −1 < ak < bk < 1. This means
that for every l ∈ E, al = −1 or bl = 1 (or both). Considering the fact that
the intervals ]al; bl[ are disjoint, we have five possibilities:

(i) ϕ−1
s1 (Us1 ∩ Us2) = ∅ ;

(ii) ϕ−1
s1 (Us1 ∩ Us2) =]− 1; 1[ ;

(iii) ϕ−1
s1 (Us1 ∩ Us2) =]− 1;α[ for some α ∈]− 1; 1[ ;

(iv) ϕ−1
s1 (Us1 ∩ Us2) =]α; 1[ for some α ∈]− 1; 1[ ;

(v) ϕ−1
s1 (Us1 ∩ Us2) =]− 1;α[∪]β; 1[, with α, β ∈]− 1; 1[, α < β.

In Case (i), we must have Us1 ∩Us2 = ∅ (since ϕs1 is surjective onto Us1);
thus, we are in Case 1 of the lemma’s statement.

In Case (ii), we have

Us1 = ϕs1(]− 1; 1[) = ϕs1(ϕ−1
s1 (Us1 ∩ Us2)) = Us1 ∩ Us2 ,

so Us1 ⊂ Us2 ; we are in Case 2a of the lemma’s statement.
In Case (iii) or (iv), Us1 ∩ Us2 has exactly one connected component (see

Proposition A.7); in Case (v), Us1 ∩ Us2 has two connected components.
Therefore, we are in Case 2b or 3 of the lemma’s statement, respectively.
(Note that the reasoning we have done for ϕ−1

s1 (Us1 ∩ Us2) is also valid for
ϕ−1
s2 (Us1 ∩ Us2): this set is also of the form ] − 1;α[ or ]α; 1[ if Us1 ∩ Us2 has

a single connected component and Us1 ̸⊂ Us2 , Us2 ̸⊂ Us1 , and of the form
]− 1;α[∪]α; β[ if Us1 ∩ Us2 has two connected components.)
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Proof of Lemma 3.10. .
First step: Let’s begin by assuming that Us1 ∪ Us2 is Ck-diffeomorphic

to S1. Then Us1 ∪ Us2 is an open and closed subset of M (open because it’s
a union of open sets, closed because it’s homeomorphic to a compact set,
hence compact). As M is connected and Us1 ∪ Us2 is non-empty, we must
have (according to Proposition A.2)

M = Us1 ∪ Us2 .

Thus, M is Ck-diffeomorphic to S1.
Second step: Let’s show that Us1 ∪ Us2 is Ck-diffeomorphic to S1.
Let C1, C2 be the two connected components of Us1 ∩ Us2 . Since we are

in Case 3 of Lemma 3.9, there exist α1, β1 such that

ϕ−1
s1 (C1) =]− 1;α1[ and ϕ−1

s1 (C2) =]β1; 1[ (3.2)
or ϕ−1

s1 (C1) =]β1; 1[ and ϕ−1
s1 (C2) =]− 1;α1[.

By exchanging C1 and C2 if necessary, we can assume that Equation (3.2) is
true. Similarly, there exist α2, β2 such that

ϕ−1
s2 (C1) =]− 1;α2[ and ϕ−1

s2 (C2) =]β2; 1[ (3.3)
or ϕ−1

s2 (C1) =]β2; 1[ and ϕ−1
s2 (C2) =]− 1;α2[.

By replacing ϕs2 with ϕ̃s2 : t ∈] − 1; 1[→ ϕs2(−t) (which is also a Ck-
diffeomorphism from ] − 1; 1[ to Us2), we can assume that Equation (3.3)
is true.

Proposition 3.12

The map ϕ−1
s2 ◦ϕs1 is a decreasing Ck-diffeomorphism from ]− 1;α1[ to

]− 1;α2[ and from ]β1; 1[ to ]β2; 1[.

Proof. Let’s prove it for the intervals ] − 1;α1[ and ] − 1;α2[; the proof is
identical for ]β1; 1[ and ]β2; 1[.

Since ϕs1 is a Ck-diffeomorphism from ] − 1;α1[ to C1, and ϕ−1
s2 is a Ck-

diffeomorphism from C1 to ]−1;α2[, the map ϕ−1
s2 ◦ϕs1 is a Ck-diffeomorphism

from ]− 1;α1[ to ]− 1;α2[. Let’s show that it is decreasing.
As a diffeomorphism between two intervals is always strictly monotonic,

it suffices to show that it is not increasing. Assume, by contradiction, that
it is increasing. Then

ϕ−1
s2 ◦ ϕs1(t) t→α1−→ α2,
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Us1

−1 1

×c1 ×c2 ×α1 ×
β1 ×c3 ×c4

Us2

−1 1

×
d2

×
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×
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×
β2

×
d4

×
d3

M

•P4

•P3

•P2

•P1

ϕs1

ϕs2
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××
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ei π
4ei 3π

4

ei 5π
4 ei 7π

4

Figure 3.3: Illustration of the notation in Lemma 3.10 and schematic repre-
sentation of the diffeomorphism from S1 to M (ei

π
4 is mapped to P3, etc.).

which implies

ϕs2(α2) = ϕs2

(
lim
t→α1

ϕ−1
s2 ◦ ϕs1(t)

)
= lim

t→α1
ϕs1(t) = ϕs1(α1)

and therefore
ϕs1(α1) ∈ Us1 ∩ Us2 ,

which contradicts the fact that ϕ−1
s1 (Us1 ∩ Us2) =] − 1;α1[∪]β1; 1[ and does

not contain α1. Therefore, it is impossible for ϕ−1
s2 ◦ ϕs1 to be increasing.

Fix four real numbers c1, c2, c3, c4 such that −1 < c1 < c2 < α1 and
β1 < c3 < c4 < 1 (see Figure 3.3 for an illustration of the notation). For all
k = 1, 2, 3, 4, denote

Pk = ϕs1(ck) and dk = ϕ−1
s2 (Pk) = ϕ−1

s2 (ϕs1(ck))

Since c1, c2 belong to ] − 1;α1[ and c1 < c2, Proposition 3.12 implies that
d1, d2 belong to ]− 1;α2[ and d2 < d1. Similarly, d3, d4 belong to ]β2; 1[ and
d4 < d3. Note (this will be useful later) that, again due to Proposition 3.12:

ϕs1(]− 1; c1]) = ϕs2(ϕ−1
s2 ◦ ϕs1(]− 1; c1])) = ϕs2([d1;α2[),
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ϕs1([c1; c2]) = ϕs2([d2; d1]),
ϕs1([c2;α1[) = ϕs2(]− 1; d2]),
ϕs1(]β1; c3]) = ϕs2([d3; 1[), (3.4)
ϕs1([c3; c4]) = ϕs2([d4; d3]),
ϕs1([c4; 1[) = ϕs2(]β2; d4]).

Now, let’s construct a Ck-diffeomorphism ψ : S1 → M . We will impose,
as shown in Figure 3.3,

ψ
(
ei

π
4
)

= P3, ψ
(
ei

3π
4

)
= P2, ψ

(
ei

5π
4

)
= P1, ψ

(
ei

7π
4

)
= P4. (3.5)

We will define ψ piecewise as follows:

ψ(eiθ) = ϕs1 ◦ δs1(θ) for all θ ∈
[
−π

4
; 5π

4

]
; (3.6a)

ψ(eiθ) = ϕs2 ◦ δs2(θ) for all θ ∈
[

3π
4

; 9π
4

]
, (3.6b)

with δs1 :
[
−π

4 ; 5π
4

]
→]−1; 1[ and δs2 :

[3π
4 ; 9π

4

]
→]−1; 1[ appropriately chosen

functions.
We start by choosing δs1 . Let δs1 be a C∞-diffeomorphism from

[
−π

4 ; 5π
4

]
to [c1; c4] such that

δs1

(
−π

4

)
= c4, δs1

(π
4

)
= c3, δs1

(
3π
4

)
= c2, δs1

(
5π
4

)
= c1. (3.7)

(Such a diffeomorphism exists, see Proposition B.3 in the appendix).
Now, let’s define δs2 . The definitions in Equations (3.6a) and (3.6b) must

coincide at the points where they both give a value to ψ. Thus, for all
θ ∈

[3π
4 ; 5π

4

]
,

ϕs1(δs1(θ)) = ϕs2(δs2(θ))

and, for all θ ∈
[7π

4 ; 9π
4

]
,

ϕs1(δs1(θ − 2π)) = ϕs2(δs2(θ)).

Define

δs2(θ) = ϕ−1
s2 (ϕs1(δs1(θ))) for all θ ∈

[
3π
4

; 5π
4

]
, (3.8a)
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δs2(θ) = ϕ−1
s2 (ϕs1(δs1(θ − 2π))) for all θ ∈

[
7π
4

; 9π
4

]
. (3.8b)

It can be verified that the quantities above are well-defined, thanks to the
equalities in Equation (3.7), which imply that δs1(θ) and δs1(θ − 2π) belong
to ]− 1;α1[∪]β1; 1[ for all θ ∈

[3π
4 ; 5π

4

]
∪
[7π

4 ; 9π
4

]
. With these definitions, δs2

is alreadya C∞-diffeomorphism between
[3π

4 ; 5π
4

]
and[

ϕ−1
s2

(
ϕs1

(
δs1

(
3π
4

)))
;ϕ−1

s2

(
ϕs1

(
δs1

(
5π
4

)))]
= [d2; d1]

and between
[7π

4 ; 9π
4

]
and[

ϕ−1
s2

(
ϕs1

(
δs1

(
−π

4

)))
;ϕ−1

s2

(
ϕs1

(
δs1

(π
4

)))]
= [d4; d3].

On
[5π

4 ; 7π
4

]
, let’s define δs2 as any C∞-increasing diffeomorphism from[5π

4 ; 7π
4

]
to [d1; d4] whose derivatives up to order k at the endpoints of the

interval are compatible with those of the definitions (3.8a) and (3.8b): for all
k′ = 1, . . . , k,

δ(k′)
s2

(
5π
4

)
= (ϕ−1

s2 ◦ ϕs1 ◦ δs1)(k′)
(

5π
4

)
,

δ(k′)
s2

(
7π
4

)
= (ϕ−1

s2 ◦ ϕs1 ◦ δs1)(k′)
(
−π

4

)
.

Such a diffeomorphism exists (see Proposition B.4 in the appendix). With
these definitions, δs2 is a Ck-diffeomorphism from

[3π
4 ; 9π

4

]
to [d2; d3].

Now, we have finished defining ψ, in accordance with Equations (3.6a) and
(3.6b). Let’s verify that this definition indeed makes it a Ck-diffeomorphism
from S1 to Us1∪Us2 . First, it is a Ck function: it is Ck on

{
eiθ, θ ∈

]
−π

4 ; 5π
4

[}
since ϕs1 ◦ δs1 is, and it is Ck on

{
eiθ, θ ∈

]3π
4 ; 9π

4

[}
since ϕs2 ◦ δs2 is. Thus, it

is Ck on the union of these two sets, which is the entire S1.

Proposition 3.13

The map ψ establishes a bijection from S1 to Us1 ∪Us2 , and its inverse
is given by:

ζ(x) = eiδ
−1
s1 (ϕ−1

s1 (x)) for all x ∈ ϕs1([c1; c4]),
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= eiδ
−1
s2 (ϕ−1

s2 (x)) for all x ∈ ϕs2([d2; d3]).

Proof. The map ψ is surjective onto Us1 ∪ Us2 . Indeed, according to its
definition (Equations (3.6a) and (3.6b)),

ψ(S1) = ϕs1

(
δs1

([
−π

4
; 5π

4

]))
∪ ϕs2

(
δs2

([
3π
4

; 9π
4

]))
= ϕs1([c1; c4]) ∪ ϕs2([d2; d3])

Now,

Us1 ∪ Us2 = ϕs1(]− 1; 1[) ∪ ϕs2(]− 1; 1[)
= ϕs1(]− 1; c1]) ∪ ϕs1(]c1; c4[) ∪ ϕs1([c4; 1[)

∪ ϕs2(]− 1; d2]) ∪ ϕs2(]d2; d3[) ∪ ϕs2([d3; 1[)
= ϕs2([d1;α2[) ∪ ϕs1(]c1; c4[) ∪ ϕs2(]β2; d4])

∪ ϕs1([c2;α2[) ∪ ϕs2(]d2; d3[) ∪ ϕs1(]β1; c3])
=(by Equation (3.4))
⊂ ϕs1(]c1; c4[) ∪ ϕs2(]d2; d3[)
⊂ Us1 ∪ Us2 ,

which implies ϕs1([c1; c4]) ∪ ϕs2([d2; d3]) = Us1 ∪ Us2 .
On the other hand, ψ is injective. To show this, suppose θ, θ′ ∈ R such

that
ψ(eiθ) = ψ(eiθ′),

and prove that eiθ = eiθ
′ . First, if both θ and θ′ belong to

[
−π

4 ; 5π
4

]
(modulo

2π), then, according to the definition (3.6a) and the injectivity of ϕs1 and
δs1 ,

θ ≡ θ′[2π] ⇒ eiθ = eiθ
′
.

Similarly, if both θ and θ′ belong to
[3π

4 ; 9π
4

]
(modulo 2π), then eiθ = eiθ

′ .
Now, assume that neither of these situations holds, for example, that θ be-
longs to

[
−π

4 ; 5π
4

]
but not to

[3π
4 ; 9π

4

]
(meaning θ belongs to

]
π
4 ; 3π

4

[
) and

θ′ belongs to
[3π

4 ; 9π
4

]
but not to

[
−π

4 ; 5π
4

]
(meaning θ′ belongs to

]5π
4 ; 7π

4

[
).

Then

ψ(eiθ) ∈ ϕs1

(
δs1

(]
π

4
; 3π

4

[))
= ϕs1(]c2; c3[)
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ψ(eiθ′) ∈ ϕs2

(
δs2

(]
5π
4

; 7π
4

[))
= ϕs2(]d1; d4[).

However, ϕs1(]c2; c3[) and ϕs2(]d1; d4[) have an empty intersection (see Figure
3.3; this is verified with Equation (3.4)). Therefore, we cannot have ψ(eiθ) =
ψ(eiθ′): this case is impossible. This completes the proof of injectivity.

Thus, we have shown that ψ is a bijection. The formula for the inverse
follows from the definition of ψ in Equations (3.6a) and (3.6b).

Finally, since ψ−1 = ζ is of class Ck (the functions δs1 , δs2 , ϕs1 , ϕs2 are
Ck), ψ is a Ck-diffeomorphism.

Proof of Lemma 3.11. The proof is quite similar to that of Lemma 3.10, and
only the main ideas will be outlined here.

We assume that Us1 , Us2 satisfy Property 2 of Lemma 3.9. If Us1 ⊂
Us2 , then Us1 ∪ Us2 = Us2 is Ck-diffeomorphic to ] − 1; 1[, according to our
assumptions on Us2 . The same holds if Us2 ⊂ Us1 .

We can therefore assume that the sub-property 2b is true: ϕ−1
s1 (Us1 ∩Us2)

and ϕ−1
s2 (Us1∩Us2) are of the form ]−1;α[ or ]α; 1[. We can assume that they

are respectively equal to ]α1; 1[ and ]α2; 1[ for real numbers α1, α2 ∈] − 1; 1[
(see Figure 3.4 for an illustration of the notation).

Let c1, c2 ∈]α1; 1[ such that c1 < c2. We denote

P1 = ϕs1(c1), P2 = ϕs1(c2),
d1 = ϕ−1

s2 (P1), d2 = ϕ−1
s2 (P2).

Since ϕ−1
s2 ◦ ϕs1 is a decreasing Ck-diffeomorphism from ]α1; 1[ to ]α2; 1[ (for

the same reasons as in Proposition 3.12), we have α2 < d2 < d1 < 1.
We define ψ :]− 1; 1[→ Us1 ∪ Us2 as follows:

ψ(x) = ϕs1(δs1(x)) for all x ∈
]
−1; 1

2

]
(3.9a)

ψ(x) = ϕs2(δs2(x)) for all x ∈
[
−1

2
; 1
[

(3.9b)

where δs1 is a C∞-diffeomorphism from
]
−1; 1

2

]
to ]− 1; c2] such that

δs1

(
−1

2

)
= c1, δs1

(
1
2

)
= c2,
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Us1

−1 1

×α1 ×c1 ×c2

Us2

−1 1

×
α2

×
d2

×
d1

M

•P2

•P1

ϕs1

ϕs2

×−1
2

×1
2

−1

1

Figure 3.4: Illustration of the notation of Lemma 3.11 and a schematic rep-
resentation of the diffeomorphism from ]− 1; 1[ to Us1 ∪ Us2 .

and δs2 is a decreasing Ck-diffeomorphism from
[
−1

2 ; 1
[

to ]−1; d1] such that,
on
[
−1

2 ; 1
2

]
,

δs2 = ϕ−1
s2 ◦ ϕs1 ◦ δs1

and, on
[1

2 ; 1
[
, δs2 is any decreasing Ck-diffeomorphism from

[1
2 ; 1
[

to ]−1; d2]
such that, for all k′ = 1, . . . , k,

δ(k′)
s2

(
1
2

)
=
(
ϕ−1
s2 ◦ ϕs1 ◦ δs1

)(k′)
(

1
2

)
.

The existence of δs1 , δs2 is guaranteed by Propositions B.3 and B.4. With
these definitions for δs1 , δs2 , the definition of ψ in Equations (3.9a) and (3.9b)
is valid. Moreover, the function ψ is of class Ck.

The same reasoning as in Proposition 3.13 can be used to show that ψ is
a bijection between ]− 1; 1[ and Us1 ∪ Us2 . Its inverse is given by

ζ(x) = δ−1
s1 (ϕ−1

s1 (x)) for all x ∈ ϕs1(]− 1; c2]),
= δ−1

s2 (ϕ−1
s2 (x)) for all x ∈ ϕs2(]− 1; d1]).

Since this inverse is Ck, ψ is a Ck-diffeomorphism between ] − 1; 1[ and
Us1 ∪ Us2 .
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3.1.3 Length and arc length parametrization

We will now define the length of a curve. Intuitively, what is it? Let (I, γ)
be a global parameterization of the curve, and imagine an ant walking along
the curve: at time t, it is at point γ(t). The length of the arc is the total
distance covered by the ant over time. As, at time t, its absolute velocity is
||γ′(t)||2, the length should be defined as the integral over I of ||γ′||2.

Definition 3.14 : length of a curve

Let M be a connected curve. Let (I, γ) be a global parameterization
of M . The length of M is defined as

ℓ(M) =
∫
I

||γ′(t)||2dt.

Proposition 3.15

The length is well-defined: if (I, γ) and (J, δ) are two global parame-
terizations of M , then∫

I

||γ′(t)||2dt =
∫
J

||δ′(t)||2dt.

Proof. Let’s consider the case where M is non-compact. Then γ and δ are
diffeomorphisms from (respectively) I and J to M . Let

θ = γ−1 ◦ δ : J → I.

It is a diffeomorphism from J to I, and we have δ = γ ◦ θ. Then∫
J

||δ′(t)||2 dt =
∫
J

||(γ ◦ θ)′(t)||2 dt

=
∫
J

|θ′(t)| ||γ′ ◦ θ(t)||2 dt

=
∫
I

||γ′(t)||2 dt.

The last equality is obtained by the change of variable formula applied to
the function ||γ′||, with change of variable given by θ.
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We omit the case where M is compact. The principle is the same, with
a subtlety related to the fact that γ and δ are not exactly diffeomorphisms
from their domain to M .3

Definition 3.16 : arc length

A global parametrization (I, γ) of a connected curve M is called an
arc length parametrization if

||γ′(t)||2 = 1, ∀t ∈ I.

It is worth noting that if (I, γ) is an arc length parametrization of M ,
then the length of M is equal to the length of I:

ℓ(M) =
∫
I

1 dt = sup I − inf I.

Theorem 3.17 : existence of an arc length parametrization

For every connected curve M , there exists an arc length parametriza-
tion.

Proof. Let’s consider the case where M is not compact (the compact case
is similar with slightly different notation). Let ϕ : R → M be a Ck-
diffeomorphism. We seek an arc length parametrization in the form (I, ϕ◦ θ)
where I is an open interval containing 0 and θ : I → R is an increasing
Ck-diffeomorphism such that θ(0) = 0.

For (I, ϕ ◦ θ) to be an arc length parametrization, it must satisfy, for all
t ∈ I ∩ R+

∗ ,

t = ℓ(ϕ ◦ θ(]0; t[))
3For particularly curious readers, here’s how to resolve this difficulty. Let a, b, c, d

be real numbers such that I = [a; b[ and J = [c; d[. Let α ∈ [0; d − c[ be such that
γ(a) = δ(c + α). By replacing (J, δ) with (J̃ , δ̃), where J̃ = [c + α; d + α[ and δ̃ = δ on
[c+α; d[ and δ̃ = δ(.− (d− c)) elsewhere (which does not change the integral of ||δ′||), we
can assume that γ(a) = δ(c). Then γ and δ are diffeomorphisms from ]a; b[ and ]c; d[ to
M − {γ(a)}. We can define, as in the non-compact case,

θ = γ−1 ◦ δ :]c; d[→]a; b[

and proceed in the same way as before.
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= ℓ(ϕ(]θ(0); θ(t)[))

=
∫ θ(t)

0
||ϕ′(s)||2 ds. (3.10)

A similar equation holds for t ∈ I ∩ R−
∗ .

Let’s define
L : R → R

T →
∫ T

0 ||ϕ
′(s)||2 ds.

This is a Ck-smooth map whose derivative does not vanish, and therefore a
Ck-diffeomorphism between R and L(R), which is an open interval. Let I be
this image. Define, as required by Equation (3.10),

θ = L−1 : I → R.

With this definition, (I, ϕ ◦ θ) is a global parametrization of M . For all
t ∈ I,

(ϕ ◦ θ)′(t) = θ′(t)ϕ′(θ(t))
= (L−1)′(t)ϕ′(θ(t))

= ϕ′(θ(t))
L′(L−1(t))

= ϕ′(θ(t))
L′(θ(t))

= ϕ′(θ(t))
||ϕ′(θ(t))||2

.

This vector always has norm 1: (I, ϕ◦θ) is an arc length parametrization.

The concept of arc length parametrization allows for the straightforward
definition of several quantities that describe the "local shape" of curves. We
do not have time to present them in detail in this course, but for general
culture, here are some examples. If (I, γ) is an arc length parametrization,
the vector

γ′(t)

is called the unit tangent vector at the point γ(t). If γ is of class C2, the
vector

γ′′(t)
||γ′′(t)||2
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is called the principal unit normal vector at γ(t) (which is well-defined only
if γ′′(t) ̸= 0), and

||γ′′(t)||2
is the curvature at γ(t) (which can be assigned a sign, positive or negative,
when the curve is a submanifold of R2). Informally, curvature characterizes
how quickly the curve "turns" in the vicinity of γ(t).

3.2 Submanifolds of any dimension

In this section, several proofs are deferred to the appendix to make reading
easier.

3.2.1 Distance and geodesics

We will now use the notion of length introduced in Definition 3.14 to define
a distance on any connected submanifold M of Rn: the distance between two
points x1, x2 is the infimum of the lengths of paths connecting these points.

In this section, we call a path connecting two points x1 and x2 any function
γ : [0;A]→M , for some A ∈ R+, such that

• γ is continuous;

• γ is piecewise C1;

• γ(0) = x1 and γ(A) = x2.

We can extend Definition 3.14 from curves to paths: the length of a path γ
is

ℓ(γ) =
∫ A

0
||γ′(t)||2dt.

Definition 3.18 : distance on a submanifold

Let M be a connected submanifold of Rn. We define a distance on M
as follows: for all x1, x2 ∈M ,

distM(x1, x2) = inf{ℓ(γ), γ is a path connecting x1 and x2}.
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Proposition 3.19

The map distM is well-defined: for all x1, x2,

{ℓ(γ), γ is a path connecting x1 and x2}

is a non-empty subset of R+, hence it admits an infimum.

Proof. See section C.1.

Proposition 3.20

The function distM is indeed a distance.

Proof. .

• Symmetry: let x1, x2 ∈ M . Consider a sequence (γn)n∈N of paths
connecting x1 to x2 such that

ℓ(γn) n→+∞−→ distM(x1, x2).

For each n, let [0;An] be the domain of γn, and define

δn : [0;An] → M
t → γn(An − t).

This is a path connecting x2 to x1. Moreover, for every n,

ℓ(δn) =
∫ An

0
|| − γ′n(An − t)||2dt =

∫ An

0
||γ′n(t)||2dt = ℓ(γn),

so that distM(x2, x1) ≤ ℓ(δn) = ℓ(γn). By taking the limit as n→ +∞,
we deduce

distM(x2, x1) ≤ distM(x1, x2).

The reasoning remains true if we exchange x1 and x2. Therefore,

distM(x1, x2) ≤ distM(x2, x1),

hence, distM(x1, x2) = distM(x2, x1).
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• Triangle inequality: let x1, x2, x3 ∈M . Let’s prove that

distM(x1, x3) ≤ distM(x1, x2) + distM(x2, x3).

Consider (γn : [0;An] → M)n∈N and (δn : [0;Bn] → M)n∈N two se-
quences of paths connecting, respectively, x1 to x2 and x2 to x3, such
that

ℓ(γn) n→+∞−→ distM(x1, x2);

ℓ(δn) n→+∞−→ distM(x2, x3).

For each n, define

ζn : [0;An +Bn] → M
t → γn(t) if t ≤ An

δn(t− An) if An < t.

For each n, we have ζn(0) = x1 and ζn(An + Bn) = x3. As γn and δn
are continuous, ζn is continuous on [0;An[ and on ]An;An + Bn]. It is
also continuous at An since it has left and right limits at this point,
which are identical:

ζn(t) t→A−
n−→ γn(An) = x2 = δn(0) t→A+

n←− ζn(t).

Therefore, the function ζn is continuous. Moreover, it is piecewise C1

since γn and δn are piecewise C1, so it is a path. Its length is

ℓ(ζn) =
∫ An+Bn

0
||ζ ′n(t)||2dt

=
∫ An

0
||γ′n(t)||2dt+

∫ An+Bn

An

||δ′n(t− An)||2dt

=
∫ An

0
||γ′n(t)||2dt+

∫ Bn

0
||δ′n(t)||2dt

= ℓ(γn) + ℓ(δn).

Thus, for every n, distM(x1, x3) ≤ ℓ(γn) + ℓ(δn), implying, in the limit,

distM(x1, x3) ≤ distM(x1, x2) + distM(x2, x3).
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• Separation: for any x ∈ M , distM(x, x) = 0: by choosing a constant
path γ with value x, we have distM(x, x) ≤ ℓ(γ) = 0.

Let’s prove the converse. For all x1, x2 ∈M and any path γ connecting
x1 to x2,

ℓ(γ) =
∫ A

0
||γ′(t)||2dt

≥
∣∣∣∣∣∣∣∣∫ A

0
γ′(t)dt

∣∣∣∣∣∣∣∣
2

(by triangle inequality)

=
∣∣∣∣∣∣[γ(t)]A0

∣∣∣∣∣∣
2

= ||x2 − x1||2.

Consequently,
distM(x1, x2) ≥ ||x2 − x1||2.

In particular, if distM(x1, x2) = 0, then ||x2 − x1||2 = 0, implying
x1 = x2.

Theorem 3.21 : existence of minimizing paths

Let M be, again, a connected submanifold of Rn, of class Ck. Addi-
tionally, suppose that

• k ≥ 2;

• M is closed in Rn.

Then, for all x1, x2 ∈M , the infimum in Definition 3.18 is a minimum:
there exists a path γ connecting x1 to x2 such that

ℓ(γ) = distM(x1, x2).

If γ is a minimizing path, as in the previous theorem, there exists a
reparametrization γ̃ def= γ ◦ ϕ of constant speed: for some c,

||γ̃′(t)||2 = c for all t.



86 CHAPTER 3. RIEMANNIAN GEOMETRY

(The argument is the same as for Theorem 3.17; one can even impose c = 1
if desired.)

These minimizing paths traversed with constant speed are characterized
by a simple differential equation, given in a new theorem.

Theorem 3.22 : geodesic equation

Keep the same notation and assumptions as in the previous theorem.
Let γ : [0;A]→M be a path connecting x1 to x2, with constant speed,
such that ℓ(γ) = distM(x1, x2). Then, γ is C2, and

γ′′(t) ∈ (Tγ(t)M)⊥, ∀t ∈ [0;A]. (3.11)

Simultaneous proof of Theorems 3.21 and 3.22. The proof is divided in sev-
eral propositions, whose proofs are in Section C.2.

Fix x1, x2. We can assume x1 ̸= x2, and denote D = distM(x1, x2).
A first natural idea for showing the existence of a path connecting x1 to

x2 with minimal length is to consider a sequence of paths (γn)n∈N such that

ℓ(γn) n→+∞−→ distM(x1, x2),

and extract a subsequence. This strategy does not succeed right away, be-
cause the set of paths is not closed, for any reasonable topology. Therefore,
we must extend our notion of paths: in this proof, we call Lipschitz path a
map γ : [0;A] → M , for some A ∈ R+, such that γ is Lipschitz, γ(0) = x1
and γ(A) = x2.

Standard properties of Lipschitz maps say that any Lipschitz path γ is dif-
ferentiable almost everywhere, and its derivative γ is (Lebesgue-)integrable.
We can thus extend the notion of legnth from paths to Lipschitz paths, by
setting

ℓ(γ) =
∫
I

||γ′(t)||2dt.

Extending the notion of paths to Lipschitz paths does not change the
distance, as shown in the next proposition, and allows the previous « natural
idea » to succeed; this is the proposition afterwards.

Proposition 3.23

distM(x1, x2) = inf{ℓ(γ), γ is a Lipschitz path connecting x1 and x2}.
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Proposition 3.24

There exists γ : [0;D] → M a 1-Lipschitz path connecting x1 to x2
such that

ℓ(γ) = D.

Theorems 3.21 and 3.22 can now be deduced from the following lemma.

Lemma 3.25

Any 1-Lipschitz path γ : [0;D] → M connecting x1 to x2 such that
ℓ(γ) = D has class C2 and satisfies Equation (3.11).

The rest of the proof consists in establishing this lemma. Let us fix γ as
in the lemma, and show that it has class C2 and satisfies Equation (3.11).

Proposition 3.26

For any map h : [0;D]→ Rn such that

• h is Lipschitz;

• h(t) ∈ Tγ(t)M for any t ∈ [0;D];

• h(0) = h(D) = 0,

it holds ∫ D

0
⟨γ′(t), h′(t)⟩ dt = 0.

If we apply the proposition to carefully chosen maps h, we get the follow-
ing regularity result.

Proposition 3.27

The map γ is C2.

From there, we can deduce that, for any h satisfying the assumptions in
Proposition 3.26,∫ D

0
⟨γ′′(t), h(t)⟩ dt = ⟨γ′(D), h(D)⟩ − ⟨γ′(0), h(0)⟩ −

∫ D

0
⟨γ′(t), h′(t)⟩ dt
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= −
∫ D

0
⟨γ′(t), h′(t)⟩ dt

= 0.

(For the first equality, we have used an integration by parts, which is possible
because we now know that γ′ is differentiable.)

The equality
∫ D

0 ⟨γ
′′(t), h(t)⟩ dt = 0 is valid for any continuous h with

values in TM , even if it is not C1 or does not satisfy h(0) = h(D) = 0.
Indeed, any such map can be approximated uniformly well (in L1) with C1

maps satisfying h(0) = h(D) = 0, so a density argument allows to extend
the equality.

In particular, we can apply the equality to h : t ∈ [0;D]→ PTγ(t)M(γ′′(t)),
where PTγ(t)M denotes the orthogonal projection onto PTγ(t)M . This yields∫ D

0
||PTγ(t)M(γ′′(t))||22dt = 0.

The integrand is positive and continuous, so PTγ(t)M(γ′′(t)) = 0 for all t,
meaning that, for all t ∈ [0;D],

γ′′(t) ∈
(
PTγ(t)M

)⊥
.

Remark

Theorem 3.21, which guarantees the existence of a path with minimal
length between arbitrary points, may no longer be true if the considered
submanifold is not closed. For example, in the submanifold M

def=
R2 \ {(0, 0)}, there is no minimizing path between (−1, 0) and (1, 0).
However, even when the submanifold M is not closed, it can be shown
(and the proof is very similar to the previous one) that any point
x1 ∈ M has a neighborhood V such that, for any x2 ∈ V , there exists
a path of minimal length between x1 and x2.
Theorem 3.22, on the other hand, remains true if the considered sub-
manifold is not closed.

Curves satisfying Equation (3.11), whether or not they are paths of min-
imal length between two points, are called geodesics.
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a geodesic a path of minimal length,
parametrized at constant speed

is

is locally

Figure 3.5: Relations between geodesics and a path of minimal length

Definition 3.28 : geodesics

Let M be a submanifold of Rn of class Ck with k ≥ 2. We call a
geodesic any map γ : I →M (for I a non-empty interval of R) of class
C2 such that, for all t ∈ I,

γ′′(t) ∈ (Tγ(t)M)⊥.

Proposition 3.29

A geodesic γ always has constant speed: ||γ′(t)||2 is independent of t.

Proof. Let γ : I →M be a geodesic in some submanifold M . Define

N : t ∈ I → ||γ′(t)||22.

This map is differentiable and, for all t,

N ′(t) = 2 ⟨γ′(t), γ′′(t)⟩ .

Now, for all t, γ′(t) ∈ Tγ(t)M , and since γ is a geodesic, γ′′(t) ∈ (Tγ(t)M)⊥.
So, for all t,

N ′(t) = 0,

which means that N , and thus also ||γ′||2, is constant.

As summarized on Figure 3.5, a path of minimal length, parametrized at
constant speed, is always a geodesic (from Theorem 3.22). The converse may
not be true (an example will be provided in Subsection 3.2.2). However, it
is locally true, as stated in the following proposition.
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Proposition 3.30 : geodesics are locally minimizing

Let M be a submanifold of Rn, of class Ck with k ≥ 2. Let I be a
non-empty interval and γ : I →M a geodesic.
For all t ∈ I, there exists ϵ > 0 such that, for all t′ ∈ [t− ϵ; t+ ϵ],

γ|[t;t′] is a path of minimal length between γ(t) and γ(t′).

Unfortunately, the proof of this proposition requires tools from differential
equations, which will only be introduced in the next chapter, so it will not
be presented here.

Exercise 4 : geodesics on product submanifolds

Let n1, n2 ∈ N∗ be integers. Let M1 ⊂ Rn1 and M2 ⊂ Rn2 be connected
submanifolds of class C2. We define M = M1 ×M2.
Let I ⊂ R be a bounded non-empty interval and γ : I →M1×M2 = M
be a map. We denote γ1 : I →M1, γ2 : I →M2 its components.
1. Show that γ is a geodesic in M if and only if γ1 is a geodesic in

M1 and γ2 is a geodesic in M2.
2. In this question, we assume that M1,M2 are closed. We also

assume that γ is a path, joining two points x = (x1, x2) and
y = (y1, y2) in M .
a) Show that, if γ1 and γ2 have constant speed, then

ℓ(γ) =
√
ℓ(γ1)2 + ℓ(γ2)2.

b) Show that, if γ has constant speed and ℓ(γ) = distM(x, y), then
γ1 and γ2 have constant speed.
[Hint: use Theorem 3.22, Question 1. and Proposition 3.29.]

c) Deduce from the previous question that

distM(x, y) ≥
√

distM1(x1, y1)2 + distM2(x2, y2)2.

d) Show that

distM(x, y) =
√

distM1(x1, y1)2 + distM2(x2, y2)2.

e) Show that γ is a path with minimal length connecting x to y,
with constant speed, if and only if γ1 is a path with minimal
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length connecting x1 to y1, with constant speed, and γ2 is a path
with minimal length connecting x2 to y2, with constant speed.

f) For n1 = n2 = 1 and M1 = M2 = R, give an example of paths
γ1, γ2 connecting 0 to 1, with minimal length (but non-constant
speed) such that γ def= (γ1, γ2) is not a path with minimal length
connecting (0, 0) to (1, 1).

3.2.2 Examples: the model submanifold and the sphere

Exercise 5 : model submanifold

For any n ∈ N∗ and d ∈ {1, . . . , n}, we define M def= Rd×{0}n−d. Give
a simple description of the geodesics in M .
(The solution is provided in Example 3.31, but do not read it before
spending some time on the exercise!)

Example 3.31 : model submanifold

Let n ∈ N∗ and d ∈ {1, . . . , n}. The geodesics of the "model" sub-
manifold M = Rd × {0}n−d are the maps γ : I → Rn of class C2 such
that

1. γd+1(t) = · · · = γn(t) = 0 for all t ∈ I (since γ(t) ∈M);

2. γ′′1 (t) = · · · = γ′′d (t) = 0 for all t ∈ I (since γ′′(t) ∈ (Tγ(t)M)⊥ =
{0}d × Rn−d).

These are the maps whose last n−d components are zero, and the first
d components are affine. Geodesics are therefore exactly the maps of
the form

γ : t ∈ I → x0 + tv,

for any x0, v ∈ Rd × {0}n−d.
More geometrically, we can say that geodesics are maps which
parametrize lines in Rd × {0} at constant speed.
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Exercise 6 : geodesics on Sn−1

Let n ∈ N∗ be fixed. We want to compute the geodesics of Sn−1.
1. Let us consider a geodesic γ, defined over an interval I. We know

that it has constant speed. Let c ∈ R+ be this speed.
a) Show that, for all t ∈ I, ⟨γ(t), γ′(t)⟩ = 0.
b) Differentiate the previous equality, and show that, for all t ∈ I,

⟨γ(t), γ′′(t)⟩+ c2 = 0.

c) Show that, for all t ∈ I, γ′′(t) = −c2γ(t).
d) Deduce from the previous equation that there exist e1, e2 ∈ Rn

such that
γ(t) = cos(ct)e1 + sin(ct)e2, ∀t ∈ I.

e) Show that ⟨e1, e2⟩ = 0 and ||e1||2 = ||e2||2 = 1.
2. Read and prove Proposition 3.32 (without looking at the proof, of

course!).

Proposition 3.32 : geodesics on Sn−1

Let n ≥ 2.
The geodesics on Sn−1 are all maps of the form

γ : I → Sn−1

t → cos(ct)e1 + sin(ct)e2,

for any non-empty interval I, any real number c > 0, and any vectors
e1, e2 ∈ Rn such that

||e1||2 = ||e2||2 = 1 and ⟨e1, e2⟩ = 0.

Remark

This means that the geodesics on the sphere are parametrizations with
constant speed of a "great circle"

{cos(s)e1 + sin(s)e2, s ∈ R},
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or an arc of it.

Proof of Proposition 3.32. First, let γ be a map of the specified form. Let’s
check that it is a geodesic. For any t,

(Tγ(t)Sn−1)⊥ =
(
{γ(t)}⊥

)⊥ = Vect{γ(t)}.

Now, for any t ∈ I,

γ′(t) = c (− sin(ct)e1 + cos(ct)e2) ;
γ′′(t) = −c2 (cos(ct)e1 + sin(ct)e2) = −c2γ(t) ∈ Vect{γ(t)}.

Therefore, the geodesic equation is satisfied.
Conversely, let γ be a geodesic defined on an interval I. Let c be its speed

(i.e., the positive real number such that ||γ′(t)||2 = c for all t; recall that γ
has constant speed according to Proposition 3.29). If c = 0, γ is constant,
so γ is of the desired form (with e1 = γ(t0) and any e2). Let us now assume
c > 0.

For any t ∈ I, γ′(t) ∈ Tγ(t)Sn−1 = {γ(t)}⊥, so

0 = ⟨γ(t), γ′(t)⟩ .

We differentiate this equality: for any t,

0 = ⟨γ(t), γ′′(t)⟩+ ⟨γ′(t), γ′(t)⟩
= ⟨γ(t), γ′′(t)⟩+ c2.

Thus, ⟨γ(t), γ′′(t)⟩ = −c2. As γ′′(t) ∈ (Tγ(t)Sn−1)⊥ = Vect{γ(t)} and γ(t) is
a unit vector, we must have

γ′′(t) = −c2γ(t).

We know that any solution to this differential equation is of the form

γ : t ∈ I → cos(ct)e1 + sin(ct)e2.

Fix e1, e2 so that γ has this expression. It remains to check that ||e1||2 =
||e2||2 = 1 and ⟨e1, e2⟩ = 0.

For this, fix any t0 ∈ I. Let

v1 = γ(t0) and v2 = γ′(t0)
c

.
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These are two unit vectors orthogonal to each other. We can express e1, e2
in terms of v1, v2:

v1 = γ(t0) = cos(ct0)e1 + sin(ct0)e2;

v2 = γ′(t0)
c

= − sin(ct0)e1 + cos(ct0)e2.

We deduce

e1 = cos(ct0)v1 − sin(ct0)v2 and e2 = sin(ct0)v1 + cos(ct0)v2.

So, ||e1||22 = cos2(ct0)||v1||22 − 2 cos(ct0) sin(ct0) ⟨v1, v2⟩ + sin2(ct0)||v2||22 = 1
and, similarly, ||e2||22 = 1, ⟨e1, e2⟩ = 0.

Remark

The example of the sphere shows that geodesics are not always paths
with minimal length between their endpoints. Indeed, for any e1, e2,
the geodesic

γ : t ∈ [0; 2π]→ cos(t)e1 + sin(t)e2

joins e1 to itself. However, the length of γ is non-zero.

Remark

The example of the sphere also shows that there can be multiple paths
γ between two points x1 and x2 such that

ℓ(γ) = distM(x1, x2)

which are different even after reparameterization.
For instance, for any vectors e1, e2 with norm 1 and orthogonal to each
other, the geodesics

γ1 : t ∈ [0; π]→ cos(t)e1 + sin(t)e2,

γ2 : t ∈ [0; π]→ cos(t)e1 − sin(t)e2

are paths of minimal length between e1 and −e1, but they are not equal
even after reparameterization.
However, it can be shown that paths of minimal length are “locally
unique”.
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Corollary 3.33 : distance on Sn−1

Let n ≥ 2. Let x1, x2 ∈ Sn−1. Then

distSn−1 = arccos(⟨x1, x2⟩).

Proof. According to Theorems 3.21 and 3.22, there exists at least one path
γ connecting x1 and x2 such that

ℓ(γ) = distSn−1(x1, x2)

and such a path, if reparameterized at constant speed, is a geodesic.
Hence,

distSn−1(x1, x2) = min{ℓ(γ), γ geodesic connecting x1 and x2}.

Let us compute this minimum.
Let γ be any geodesic connecting x1 to x2. We determine the possible

values for its length. We can be assume that it is defined on an interval of
the form [0;A]. Let c, e1, e2 be such that, for all t ∈ [0;A],

γ(t) = cos(ct)e1 + sin(ct)e2.

It must hold that x1 = γ(0) = e1 and

x2 = γ(A) = cos(cA)e1 + sin(cA)e2.

In particular, ⟨x1, x2⟩ = ⟨e1, x2⟩ = cos(cA), so

cA = arccos(⟨x1, x2⟩) + 2kπ
or cA = (2π − arccos(⟨x1, x2⟩)) + 2kπ,

for some k ∈ Z (in fact, k ∈ N since cA ≥ 0). As ℓ(γ) = cA, it follows that
the length of γ is at least

min (arccos(⟨x1, x2⟩), 2π − arccos(⟨x1, x2⟩)) = arccos(⟨x1, x2⟩).

Thus,

distSn−1(x1, x2) ≥ arccos(⟨x1, x2⟩).
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To show that the inequality is an equality, we observe that, if e2 =
x2−⟨x1,x2⟩x1√

1−⟨x1,x2⟩2 , the geodesic

γ : [0; arccos(⟨x1, x2⟩)] → Sn−1

t → cos(t)x1 + sin(t)e2

connects x1 to x2 and has length arccos(⟨x1, x2⟩).



Chapter 4

Differential equations: existence
and uniqueness

What you should know or be able to do after this chapter

• Identify a Cauchy problem.

• Know the Cauchy-Lipschitz theorem; be able to apply it to particular
situations.

• In the Cauchy-Lipschitz theorem, understand why the local Lipschitz
continuity assumption is necessary. When possible, use the fact that
the function is C1 to show that this hypothesis is verified.

• Know what a maximal solution is.

• When true, show that the maximal solution exists and is unique, using
Proposition 4.4.

• When an upper bound on the norm of the maximal solution is available,
combine it with the théorème des bouts to show that the maximal
solution is global (as in Example 4.9).

• From an inequality on the derivative of a map, apply Gronwall’s lemma
to deduce an upper bound on the norm of the map itself (see corre-
sponding exercise with Anna Florio, and the homework on the proof of
Cauchy-Lipschitz).

97
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• Know that, when the map f in the Cauchy problem is C2, the maximal
solution is differentiable with respect to t0 and u0.

• Compute the Cauchy problem to which the derivative of the maximal
solution with respect to u0 is solution (Theorem 4.10).

4.1 Cauchy-Lipschitz theorem
A Cauchy problem is a differential equation where the unknown is a function
of one variable (often denoted as t), together with an initial condition. It is
thus a problem of the following form:

{
u′ = f(t, u),

u(t0) = u0.
(Cauchy)

Here,

• f : I ×U → Rn is a fixed function, with I an open interval of R and U
an open set of Rn (for some n ∈ N∗);

• t0 is an element of I and u0 an element of U ;

• u is the unknown function, which must be defined on an interval J such
that t0 ∈ J ⊂ I, take values in U and be differentiable.

The equality "u′ = f(t, u)" is a shortened notation for "u′(t) = f(t, u(t))":
u is indeed a function, which depends on a variable, here called t.

Remark

In Problem (Cauchy), we impose the differential equation to be of order
1 (meaning it contains only one derivative). This is not a restriction.
Indeed, a Cauchy problem containing a differential equation of any
order N ≥ 1 can be reformulated as a Cauchy problem of order 1.
Precisely, consider a problem of the form

u(N) = g
(
t, u, u′, . . . , u(N−1))

u(t0) = u0,0, u′(t0) = u0,1, . . . , u(N−1)(t0) = u0,N−1.
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If we denote v0 = u, v1 = u′, . . . , vN−1 = u(N−1), it is equivalent to

v′0 = v1

. . .

v′N−2 = vN−1

v′N−1 = g(t, v0, v1, . . . , vN−1)
v0(t0) = u0,0, v1(t0) = u0,1, . . . , vN−1(t0) = u0,N−1,

which is a first-order problem on the unknown function
( v0

...
vN−1

)
.

Exercise 7

Show that a map u : J → U is a solution to Problem (Cauchy) if and
only if the map

ũ : J → J × U
t → (t, u(t))

is a solution to another Cauchy problem, where the initial condition u0
is replaced with (t0, u0) and f is replaced with a map f̃ : R×(I×U)→
Rn+1 whose definition you will provide, which does not depend on its
first argument.

The starting point of the theory of differential equations is the Cauchy-
Lipschitz theorem, which, under regularity assumptions on f , guarantees
that Problem (Cauchy) has a unique solution in the vicinity of t0.

Theorem 4.1 : Cauchy-Lipschitz

Assume f is continuous and there exists a neighborhood H ⊂ I ×U of
(t0, u0) where it is Lipschitz continuous in its second variable:

∀t, u, v such that (t, u), (t, v) ∈ H,
||f(t, u)− f(t, v)||2 ≤ C||u− v||2, (4.1)

for some constant C > 0 (which should not depend on t).
Then we have the following conclusions:
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• (Existence)
There exists an interval J ⊂ I whose interior contains t0 and
a function u : J → U of class C1 which is a solution to Prob-
lem (Cauchy).

• (Local Uniqueness)
If u1, u2 are two C1 maps solving Problem (Cauchy), defined on
intervals J1, J2 containing t0 (in their interior or on the bound-
ary), then

u1 = u2 on J1 ∩ J2 ∩ [t0 − ϵ; t0 + ϵ]

for any sufficiently small ϵ > 0.

The most classical proof of this theorem uses (implicitly or explicitly) the
Picard fixed-point theorem. Interested readers can find it, for example, in
[Benzoni-Gavage, 2010, p. 142].

The Lipschitz continuity condition around (t0, u0) (Equation (4.1)) is au-
tomatically satisfied whenever f is C1. Indeed, in this case, we can take
H = B((t0, u0), ϵ), for any ϵ > 0 sufficiently small. Equation (4.1) then
follows from the mean value inequality (Theorem 1.16), with

C = max
(t,u)∈B((t0,u0),ϵ)

||df(t, u)||L(Rn+1,Rn).

The "existence" part of the theorem holds even without the Lipschitz
condition (it suffices for f to be continuous; this is the Peano theorem).
However, the "uniqueness" part may be false without this condition. To
provide an example of possible non-uniqueness, consider the Cauchy problem

u′ =
√
u,

u(0) = 0.

It can be verified that the maps

u1 : R → R
t → t2

4 if t ≥ 0,
0 if t < 0,

u2 : R → R
t → 0,
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are both solutions to this problem. However, they are not identical.
Let’s conclude this section with a simple but useful property about the

regularity of solutions to a Cauchy problem.

Proposition 4.2

If f is of class Cr for some r ∈ N, any solution u of Problem (Cauchy)
is of class Cr+1.
In particular, if f is C∞, every solution is C∞.

Proof. We prove the result by induction on r. For r = 0, it is true: if u is a
solution, it is differentiable by definition. In particular, it is continuous. Its
derivative is

u′ = f(t, u).

Since f and u are continuous, u′ is also continuous, meaning u is C1.
Let us assume that the result holds for some r ∈ N and prove it for r+ 1.

Assume f is of class Cr+1 and let u be a solution. Since f is also of class Cr,
the induction hypothesis tells us u is Cr+1. Therefore,

u′ = f(t, u)

is a composition of Cr+1 maps. Thus, it is Cr+1, meaning u is Cr+2.

Remark : extension to Banach spaces

Here, we limit ourselves to differential equations in finite dimension,
meaning that the function u of Problem (Cauchy) takes values in Rn.
More generally, one can consider equations where the unknown func-
tion takes values in a Banach spacea, and everything said in this section
remains true, except for Peano’s theorem.

athat is, a complete normed vector space
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4.2 Maximal solutions

Definition 4.3 : maximal solutions

Let u : J → U be a solution to a problem of the form (Cauchy). We say
that it is a maximal solution of the problem if it cannot be extended
to a larger interval: for any other solution ũ : J̃ → U such that J ⊂ J̃
and ũ|J = u, we have

J̃ = J and ũ = u.

Proposition 4.4 : existence of a unique maximal solution

If the map f of Problem (Cauchy) is continuous, and Lipschitz contin-
uous in its second variable around every point, then the problem has
a unique maximal solution.
Moreover, if we denote by u : J → U this maximal solution, the set of
solutions of Problem (Cauchy) is{

u|J̃ : J̃ → U with J̃ interval such that t0 ∈ J̃ ⊂ J
}
. (4.2)

Proof. We start with a proposition (whose proof follows this one) which es-
tablishes a uniqueness result for solutions of Problem (Cauchy). This result
is very similar to the one from the Cauchy-Lipschitz theorem, but it is global,
while the Cauchy-Lipschitz theorem provides local guarantees only (unique-
ness holds in a neighborhood of t0). Here, we have a global uniqueness
guarantee because f is Lipschitz in its second variable around every point,
not just around (t0, u0).

Proposition 4.5

If u1 : J1 → U and u2 : J2 → U are two solutions of Problem (Cauchy),
then

u1 = u2 on J1 ∩ J2.

Moreover, the function u : J1 ∪ J2 → U which coincides with u1 on J1
and u2 on J2 is a solution to Problem (Cauchy).

From this proposition, we can already deduce that the maximal solution,
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if it exists, is unique and that the set of solutions of Problem (Cauchy) is
indeed the one given in Equation (4.2).

Indeed, suppose there exists a maximal solution u, defined on an interval
J . For any interval J̃ such that t0 ∈ J̃ ⊂ J , u|J̃ is a solution to Prob-
lem (Cauchy). Conversely, if v : J̃ → U is a solution to the problem, there
exists (from the previous proposition) a solution defined on J ∪ J̃ , equal to u
on J and v on J̃ . Since u is maximal, we must have J ∪ J̃ = J , i.e., J̃ ⊂ J ,
and v = u on J̃ ∩ J = J̃ . Therefore,

v = u|J̃ .

This proves Equation (4.2).
Equation (4.2), in turn, implies that the maximal solution is unique: every

solution is of the form u|J̃ for some J̃ ⊂ J . Therefore, every solution u|J̃ can
be extended to the larger interval J , except u itself.

To conclude, let’s show existence. Let us define

J = {t ∈ R, Problem (Cauchy) has a solution defined on [t0; t]} .

For any t ∈ J , let vt be a solution to Problem (Cauchy) defined on [t0; t]1
and define

u(t) = vt(t).
This defines a function u : J → U .

First, let’s show that u is a solution to Problem (Cauchy). Its domain
J is an interval: for any t, t′ ∈ J and any t′′ ∈ [t; t′], we have that either
[t0; t] or [t0; t′] contains [t0; t′′]. Thus, the restriction of vt or vt′ to [t0; t′′] is
well-defined and it is a solution to (Cauchy). Therefore, t′′ ∈ I.

The function u satisfies the initial condition: u(t0) = vt0(t0), and since
vt0 is a solution to the problem, we have vt0(t0) = u0, hence

u(t0) = u0.

We then show that for any t ∈ J , u is differentiable at t and satisfies the
equation

u′(t) = f(t, u(t)). (4.3)

Let’s fix any t ∈ J arbitrarily. To simplify notation, let’s assume t > t0 (we
can do the exact same reasoning if t < t0 and a very similar one if t = t0)
and distinguish two cases.

1We denote the interval “[t0; t]” for simplicity, but of course, if t < t0, we actually
consider the interval “[t; t0]”.
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• First case: t < sup J . In this case, let t′ ∈]t; sup J [. The function u
coincides with vt′ on [t0; t′]. Indeed, for any t′′ ∈ [t0; t′], according to
Proposition 4.5,

vt′ = vt′′ on [t; t′] ∩ [t; t′′] = [t; t′′].

So u(t′′) = vt′′(t′′) = vt′(t′′).
Since vt′ is differentiable and a solution to the Cauchy problem, the
equality u = vt′ on [t0; t′] implies that u is also differentiable on ]t0; t′[,
in particular, differentiable at t, and satisfies Equation (4.3).

• Second case: t = sup J . In this case, J is of the form [α; t] or ]α; t], for
some α ∈ [−∞; t0].
Following the same reasoning as in the first case, we see that u coincides
with vt on [t0; t]. This implies that u is differentiable on ]t0; t], which is
a neighborhood of t in J , and that Equation (4.3) is satisfied.

This ends the proof that u is a solution of Problem (Cauchy).
Finally, let’s show that this solution is maximal. Let ũ : J̃ → U be a

solution extending u (i.e., J ⊂ J̃ and ũ|J = u). For any t ∈ J̃ , ũ|[t0;t] is a
solution to Problem (Cauchy), so t belongs to J . Hence, J̃ ⊂ J . Therefore,
J̃ = J and ũ = u.

Proof of Proposition 4.5. Let u1 : J1 → U and u2 : J2 → U be two solutions
of Problem (Cauchy). Let

H = {t ∈ J1 ∩ J2 such that u1(t) = u2(t)}.

The set H is non-empty (it contains t0) and closed in J1 ∩ J2 (because u1
and u2 are continuous). If we manage to show that it is open in J1∩J2, then
H = J1 ∩ J2 (as J1 ∩ J2 is an intersection of intervals, hence a connected set)
and therefore

u1 = u2 on H = J1 ∩ J2.

Let’s show that it is open. Take any t1 ∈ H. Consider the modified
Cauchy problem. {

u′ = f(t, u),
u(t1) = u1(t1).

(Cauchy t1)

Both u1 and u2 are solutions of this problem since they are solutions of
(Cauchy) and u1(t1) = u2(t1) according to the definition of H.
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We can apply the Cauchy-Lipschitz theorem to (Cauchy t1): f is contin-
uous and Lipschitz with respect to its second variable in a neighborhood of
(t1, u1(t1)). According to the local uniqueness result of this theorem, there
exists ϵ > 0 such that

u1 = u2 on J1 ∩ J2 ∩ [t1 − ϵ; t1 + ϵ].

This implies that J1 ∩ J2 ∩ [t1 − ϵ; t1 + ϵ] ⊂ H and thus that H contains a
neighborhood of t1 in J1 ∩ J2. This shows that H is open in J1 ∩ J2.

To conclude, let u : J1 ∪ J2 → U be the function which coincides with u1
on J1 and u2 on J2. Let’s verify that it is a solution to Problem (Cauchy).

It satisfies the condition u(t0) = u0 (because u1 and u2 satisfy it). Let’s
show that it is differentiable and satisfies the equation

u′ = f(t, u). (4.4)

Using basic properties of intervals, we can check that (J1 ∪ J2) ∩ [t0; +∞[ is
included in J1 or J2. Therefore, u is differentiable on this interval (it coincides
with u1 or u2, which is differentiable) and satisfies Equation (4.4) (because
u1 and u2 satisfy it). The same holds on (J1 ∪ J2)∩] −∞; t0]. This implies
that u is differentiable and satisfies (4.4) on (J1∪J2)\{t0}. Moreover, it has
left and right derivatives at t0, which also satisfy (4.4). Due to this equality,
the left and right derivatives coincide (they are equal to f(t0, u0)) so u is
differentiable at t0 and satisfies (4.4) at this point as well.

4.3 Maximal solutions leave compact sets

In this section, we consider a Cauchy problem and assume that f is continu-
ous and Lipschitz with respect to its second variable in the vicinity of every
point. This allows us to apply the results from the previous section: there
exists a unique maximal solution u : J → U .

Proposition 4.6

The definition set J of the maximal solution u is an open interval in
R.
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Proof. We know that J is an interval. We must show that it is open.
Let T ∈ J be arbitrary. According to the Cauchy-Lipschitz theorem, the

Cauchy problem

v′ = f(t, v),
v(T ) = u(T )

has a solution v defined on an interval whose interior contains T . Let H be
this interval.

According to Proposition 4.5, since both v and u are solutions to this
Cauchy problem, the function w : J ∪ H → U which coincides with u on
J and v on H is also a solution. This function w is also a solution to the
original problem (Cauchy) (since w(t0) = u(t0) = u0).

Since u is a maximal solution, we must have J ∪ H ⊂ J , which means
H ⊂ J . Thus, J contains a neighborhood of T .

This is true for any T ∈ J , so J is open.

An important question regarding the maximal solution is to determine
its domain. In particular, is the maximal solution global, i.e., is it defined
on the same interval I as the function f? The following theorem provides a
criterion which, in some cases, answers this question.2

Theorem 4.7 : théorème des bouts

We still assume that f : I × U → Rn is continuous and Lipschitz with
respect to its second variable in the neighborhood of every point. We
still denote u : J → U the maximal solution to Problem (Cauchy).
One of the following two properties is necessarily true.

1. sup J = sup I ;

2. u “leaves any compact set of U ” in the neighborhood of sup J :
for any compact K ⊂ U , there exists η < sup J such that, for
any t ∈]η; sup J [,

u(t) ∈ U \K.

A similar result holds for inf J .

2As it does not seem to have a well-established name in English, we will stick to the
French terminology, « théorème des bouts ».
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Proof. Let’s proceed by contradiction and assume that both properties are
false. In particular, sup J < sup I, so sup J ∈ I. Let K ⊂ U be a compact
set which u does not leave: for any η < sup J , there exists t ∈]η; sup J [ such
that u(t) ∈ K.

Then, there exists (and we fix one for the rest of the proof) a sequence
(tn)n∈N of elements of J such that

tn
n→+∞−→ sup J ; u(tn) ∈ K, ∀n ∈ N.

Since K is compact, we can assume, replacing t with a subsequence if neces-
sary, that (u(tn))n∈N converges to some ulim ∈ K.

The proof will be in two steps:

1. we show that u(t)→ ulim as t→ sup J ;

2. we deduce that u can be extended to a solution to Problem (Cauchy)
defined on J ∪ {sup J}, which contradicts the maximality of u.

First step: since f is continuous, it is bounded in a neighborhood of
(ulim, sup J). So, let M ∈ R and ϵ > 0 be such that

∀(t, v) ∈] sup J − ϵ; sup J + ϵ[×B(ulim, ϵ), ||f(t, v)||2 ≤M.

Intuitively, this inequality implies that if, for some n, tn is close to sup J
and u(tn) is close to ulim, then u′ = f(t, u) is bounded by M close to tn; in
particular, ||u(t) − u(tn)||2 ≤ M |t − tn| for any t in a neighborhood of tn
whose size we can estimate. This is formalized by the following proposition
(the proof of which is given at the end of the theorem’s proof).

Proposition 4.8

Let n be any integer such that

|tn − sup J | < ϵ

2
and ||u(tn)− ulim||2 <

ϵ

2
. (4.5)

For any t ∈
]
tn − ϵ

2 max(M,1) ; tn + ϵ
2 max(M,1)

[
∩ J ,

||u(t)− u(tn)||2 ≤M |t− tn|.
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Since (tn, u(tn)) n→+∞→ (sup J, ulim), we have for any n large enough

|tn − sup J | < ϵ

2 max(M, 1)
and ||u(tn)− ulim||2 <

ϵ

2
.

For such values of n, the hypothesis (4.5) is satisfied, thus

||u(t)−u(tn)||2 ≤M |t−tn|, ∀t ∈
]
tn −

ϵ

2 max(M, 1)
; tn + ϵ

2 max(M, 1)

[
∩J.

Since tn + ϵ
2 max(M,1) > sup J , this implies that, for any t ∈ [tn; sup J [,

||u(t)− ulim||2 ≤ ||u(t)− u(tn)||2 + ||u(tn)− ulim||2
≤M |t− tn|+ ||u(tn)− ulim||2
≤M |tn − sup J |+ ||u(tn)− ulim||2
→ 0 as n→ +∞.

So u(t)→ ulim as t→ sup J .
Second step: let’s extend u continuously to J ∪ {sup J}, that is, let’s

define
ū : J ∪ sup J → U

t → u(t) if t < sup J
ulim otherwise.

This is a continuous function. It is differentiable on J and

u′(t) = f(t, u(t)) t→sup J−→ f(sup J, ulim),

which shows that u is also differentiable at sup J , with derivative f(sup J, ulim).
Therefore, the function ū is a solution to Problem (Cauchy), extending u

but not equal to u. This contradicts the maximality of u.

Proof of Proposition 4.8. We first show that for any t ∈
[
tn; tn + ϵ

2 max(M,1)

[
∩

J , ||u(t)− ulim||2 < ϵ. We can assume that the set

{t ∈ J, t ≥ tn, ||u(t)− ulim||2 ≥ ϵ}

is non-empty, otherwise the property is necessarily true. Let’s define

T = inf{t ∈ J, t ≥ tn, ||u(t)− ulim||2 ≥ ϵ}
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and show that T ≥ tn + ϵ
2 max(M,1) . Let’s assume by contradiction that this is

not the case.
By continuity of u, we must have ||u(T )− ulim||2 ≥ ϵ. For all t ∈ [tn;T [,

we have
||u(t)− ulim||2 < ϵ

and, since |t− sup J | ≤ |tn − sup J | < ϵ,

||u′(t)||2 = ||f(t, u(t))||2 ≤M.

This is also true at t = T due to the continuity of u′. Therefore, u is M -
Lipschitz on [tn;T ] and

||u(T )− ulim||2 ≤ ||u(T )− u(tn)||2 + ||u(tn)− ulim||2
≤M |T − tn|+ ||u(tn)− ulim||2
< M

ϵ

2 max(M, 1)
+ ϵ

2
≤ ϵ.

This contradicts the inequality ||u(T )− ulim||2 ≥ ϵ.
We have thus shown that for any t ∈

[
tn; tn + ϵ

2 max(M,1)

[
∩ J , ||u(t) −

ulim||2 < ϵ. Similarly, we can show that for any t ∈
]
tn − ϵ

2 max(M,1) ; tn
[
∩ J ,

||u(t)− ulim||2 < ϵ.
Consequently, for any t ∈

]
tn − ϵ

2 max(M,1) ; tn + ϵ
2 max(M,1)

[
∩ J ,

||u′(t)||2 = ||f(t, u(t))||2 ≤M.

This implies that u is M -Lipschitz on the considered interval. In particular,
for all t ∈

]
tn − ϵ

2 max(M,1) ; tn + ϵ
2 max(M,1)

[
∩ J ,

||u(t)− u(tn)||2 ≤M |t− tn|.

The following example shows how the théorème des bouts allows to prove
that a maximal solution to a differential equation is global.



110 CHAPTER 4. EXISTENCE AND UNIQUENESS

Example 4.9

Consider the problem (Cauchy), for a function f : R× Rn → Rn. As-
sume that f is continuous, Lipschitz with respect to its second variable
in the neighborhood of every point, and satisfies the inequality

||f(t, u)||2 ≤ ||u||2, ∀(t, u) ∈ R× Rn. (4.6)

Its maximal solution is global (i.e. defined on R).

Proof. Let u : J → Rn be this maximal solution. We show that J = R. We
only prove that sup J = +∞; a similar reasoning shows that inf J = −∞.

Let’s proceed by contradiction and assume that sup J < +∞. According
to the théorème des bouts, u leaves any compact set in the neighborhood of
sup J . We will obtain a contradiction by showing that u is actually bounded
in the neighborhood of sup J .

Consider the map N : t ∈ J → ||u(t)||22 ∈ R. It is differentiable and, for
all t ∈ J :

|N ′(t)| = |2 ⟨u(t), u′(t)⟩|
= 2 |⟨u(t), f(t, u(t))⟩|
≤ 2||u(t)||2||f(t, u(t))||2
≤ 2||u(t)||22
= 2N(t).

From this point on, it is possible to show that N (hence u) is bounded by
using Gronwall’s lemma (Lemma D.1 in the appendix). In the next lines,
we propose an argument which does not explicitely invoke this lemma, but
reaches the same conclusion.

We define N2 : t ∈ J → N(t)e−2t. For all t,

N ′
2(t) = (N ′(t)− 2N(t))e−2t ≤ 0,

thus N2 is non-increasing and, for all t ∈]t0; sup J [, N2(t) ≤ N2(t0) =
||u0||22e−2t0 , which implies

N(t) ≤
(
||u0||2et−t0

)2
.

Consequently, for all t ∈]t0; sup J [,

||u(t)||2 ≤ ||u0||2et−t0 ≤ ||u0||2esup J−t0 .
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If we set M = ||u0||2esup J−t0 , we obtain that u does not leave the compact
set B̄(0,M). We have reached a contradiction.

The result stated in the example remains valid if we replace the bound
(4.6) by a more general linear upper bound

||f(t, u)||2 ≤ C1||u||2 + C2, ∀(t, u) ∈ R× Rn,

for constants C1, C2 > 0.
However, it is no longer valid if we replace the bound “||u||2” with “||u||α2 ”

for a power α > 1. To convince ourselves of this, we can consider the following
Cauchy problem:

u′ = |u|α,
u(0) = 1.

We can check that its maximal solution is

u :
]
−∞; 1

α−1

[
→ R

t → 1
(1−(α−1)t)

1
α−1

,

which is not defined on R as a whole.

Exercise 8

Let f : R→ R be a C1 map such that

f(0) = 0;
f(t) ≥ t2, ∀t ∈ R.

For fixed t0, u0 ∈ R, we consider the Cauchy problem{
u′(t) = f(u(t)),
u(t0) = u0.

1. Show that this problem has a unique maximal solution.
Let J be the domain of this maximal solution, and u be the solution.
2. a) Show that, if u0 = 0, then J = R and u(t) = 0,∀t ∈ R.

b) Show that, for any t1 ∈ J , u is a solution to the Cauchy problem,
where the initial condition (t0, u0) is replaced with (t1, u(t1)).
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c) Deduce that, if u(t1) = 0 for some t1 ∈ J , then J = R and
u(t) = 0,∀t ∈ R.

Let us now assume that u0 > 0.
3. a) Show that, for all t ∈]−∞; t0] ∩ J , u(t) ∈]0;u0].

b) Deduce from the previous question that ]−∞; t0] ⊂ J .
c) Show that u(t)→ 0 when t→ −∞.

4. a) Show that − 1
u

is well-defined and negative over J .
b) Show that, for all t ∈ [t0; +∞[∩J ,

− 1
u(t)

≥ − 1
u(t0)

+ (t− t0).

c) Show that sup J < +∞.
d) Show that u(t)→ +∞ when t→ sup J .

4.4 Regularity in the initial condition

In this section, we look at the pair (t0, u0), which is the initial condition of
Problem (Cauchy), and let it vary. This defines a family of solutions to the
differential equation “u′ = f(t, u)”. When f is C2, this family of solutions
is differentiable with respect to (t0, u0). Furthermore, its partial derivatives
can be described as solutions to another Cauchy problem.

To simplify notation, we first state this result in the case where t0 is fixed
and only u0 varies. The general case is given afterwards.

Theorem 4.10 : regularity in the initial condition

Let I be a non-empty open interval of R, U an open set in Rn, and
f : I × U → Rn be a C2 map.
Let us fix t0 ∈ I. For every u0 ∈ U , let uu0 : Ju0 → U be the maximal
solution to the Cauchy problem{

u′u0 = f(t, uu0),
uu0(t0) = u0.

(Cauchy u0)

The set Ω = {(u0, t), u0 ∈ U, t ∈ Ju0} is an open subset of U × I and
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the map
V : Ω → U

(u0, t) → uu0(t)

is C1.
Moreover, for every u0, dV

du0
(u0, .) : Ju0 → L(Rn,Rn) is a solution to the

following Cauchy problem:{
d
dt

(
dV
du0

)
= df

du
(t, V (u0, t)) ◦ dV

du0
(u0, t),

dV
du0

(u0, t0) = IdRn .
(Cauchy dV

du0
)

Remark

It is not necessary to memorize by heart Problem (Cauchy dV
du0

). It
suffices to remember that V is C1. Then, (Cauchy dV

du0
) can be obtained

by differentiating (Cauchy u0). Indeed, (Cauchy u0) can be rewritten
in terms of V as {

dV
dt

(u0, t) = f(t, V (u0, t)),
V (u0, t) = u0.

Differentiating with respect to u0 both sides of each of the two equali-
ties yields exactly (Cauchy dV

du0
).

Proof of Theorem 4.10. To simplify a bit, let’s assume that f does not de-
pend on t. We can make this assumption thanks to the lemma that follows
(the proof of which is in Appendix D.2). We thus denote “f(u)” instead of
“f(t, u)”, and use interchangeably the notation “ df

du
” or “df ” for the differen-

tial.

Lemma 4.11

If the theorem holds for all maps f independent of t, it holds for all
maps f .

The following lemma further simplifies the problem by showing that it
suffices to establish the regularity of V in a neighborhood of each u0, for
times t close to t0. It is proven in Appendix D.3.
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Lemma 4.12

Assume that

for each u0 ∈ U , Ω contains a neighborhood of (u0, t0), on
which V is C1 and satisfies the equations (Cauchy dV

du0
). (4.7)

Then Ω is open, V is C1 on Ω and satisfies the equations (Cauchy dV
du0

).

It remains to show that Property (4.7) is true. Let u0 ∈ U .
First step: V is defined in a neighborhood of (u0, t0).
Let M1, ϵ > 0 be such that B(u0, ϵ) ⊂ U and

∀v ∈ B(u0, ϵ), ||f(v)||2 ≤M1.

The following proposition, proven in Appendix D.4, shows that Ω contains
B
(
u0,

ϵ
2

)
×
]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
.

Proposition 4.13

For every v ∈ B
(
u0,

ϵ
2

)
,]
t0 −

ϵ

2M1
; t0 + ϵ

2M1

[
⊂ Jv.

Furthermore, for every t ∈
]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

uv(t) ∈ B(u0, ϵ).

Second step: V is Lipschitz on this neighborhood.

For all (v, t) ∈ B
(
u0,

ϵ
2

)
×
]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

u′v(t) = f(uv(t)) ⇒ ||u′v(t)||2 ≤M1.

Therefore, for all v ∈ B
(
u0,

ϵ
2

)
, uv is M1-Lipschitz on

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

meaning that V is M1-Lipschitz with respect to its second variable.
Let M2 > 0 be such that

∀v ∈ B̄(u0, ϵ), ||df(v)||L(Rn,Rn) ≤M2.
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(Recall that f is C2. In particular, its differential is continuous on U , hence
bounded on B̄(u0, ϵ).)

The function f is M2-Lipschitz on B(u0, ϵ) by the mean value inequality.
Thus, for all v1, v2 ∈ B(u0,

ϵ
2), t ∈

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

||u′v1(t)− u′v2(t)||2 = ||f(uv1(t))− f(uv2(t))||2
≤M2||uv1(t)− uv2(t)||2.

We integrate and use the triangular inequality: for all t ∈
[
t0; t0 + ϵ

2M1

[
,

||uv1(t)− uv2(t)||2 =
∣∣∣∣∣∣∣∣uv1(t0)− uv2(t0) +

∫ t

t0

(
u′v1(s)− u′v2(s)

)
ds

∣∣∣∣∣∣∣∣
2

≤ ||uv1(t0)− uv2(t0)||2 +
∫ t

t0

||u′v1(s)− u′v2(s)||2ds

≤ ||uv1(t0)− uv2(t0)||2 +
∫ t

t0

M2||uv1(s)− uv2(s)||2ds.

Thus, according to Gronwall’s lemma (Lemma D.1 in the appendix), for all
t ∈
[
t0; t0 + ϵ

2M1

[
,

||uv1(t)− uv2(t)||2 ≤ ||uv1(t0)− uv2(t0)||2eM2(t−t0)

= ||v1 − v2||2eM2(t−t0)

≤ ||v1 − v2||2e
ϵM2
2M1 .

Symmetrically, the inequality is also valid for t ∈
]
t0 − ϵ

2M1
; t0
]
, which shows

that V is e
ϵM2
2M1 -Lipschitz with respect to its first variable on B

(
u0,

ϵ
2

)
×]

t0 − ϵ
2M1

; t0 + ϵ
2M1

[
. Hence, V is globally Lipschitz (and therefore continu-

ous) on this open set.
Third step: differentiability of V with respect to t.
According to its definition, V is differentiable with respect to its second

variable, and for all v, t,

dV

dt
(v, t) = u′v(t) = f(V (v, t)).
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Since f is continuous on U and V is continuous onB
(
u0,

ϵ
2

)
×
]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

the function dV
dt

is also continuous on this latter set.
Fourth step: differentiability of V with respect to u0
Let’s show that V has a partial derivative with respect to its first variable,

which is continuous and satisfies the Problem (Cauchy dV
du0

). We will proceed
“backwards”: we consider the solution to Problem (Cauchy dV

du0
) and show

that it is continuous and is the partial derivative of V with respect to u0.
For any v ∈ B

(
u0,

ϵ
2

)
, let wv : Ĩv ⊂

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
→ L(Rn,Rn) be the

maximal solution to the problem

w′
v(t) = df

du
(V (v, t)) ◦ wv(t)

wv(t0) = IdRn .

The maximal solution exists and is unique because, for any v, the map

(t, x) ∈
]
t0 −

ϵ

2M1
; t0 + ϵ

2M1

[
× L(Rn,Rn) → df

du
(V (v, t)) ◦ x

is M2-Lipschitz with respect to x, hence Cauchy-Lipschitz theorem applies.
The same reasoning as we did for uv in the second step shows that there

exists a constant M3 ≥ M1 such that, for any v ∈ B
(
u0,

ϵ
2

)
, the domain of

wv contains ]
t0 −

ϵ

2M3
; t0 + ϵ

2M3

[
and the map (v, t)→ wv(t) is Lipschitz and therefore continuous onB

(
u0,

ϵ
2

)
×]

t0 − ϵ
2M3

; t0 + ϵ
2M3

[
(this is the point of the proof that uses the hypothesis

that f is C2).
Finally, let’s show that V is differentiable with respect to its first variable,

and, for all v, t ∈ B
(
u0,

ϵ
2

)
×
]
t0 − ϵ

2M3
; t0 + ϵ

2M3

[
,

dV

du0
(v, t) = wv(t).

To do this, we will perform a kind of first-order Taylor expansion of Prob-
lem (Cauchy u0) in u0.
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Let v, h ∈ Rn be such that v, v + h ∈ B
(
u0,

ϵ
2

)
. Consider the map

∆ : t ∈
]
t0 −

ϵ

2M3
; t0 + ϵ

2M3

[
→ uv+h(t)− uv(t)− wv(t)(h).

We have

∆(t0) = (v + h)− v − IdRn(h) = 0.

Moreover, for any t,

∆′(t) = u′v+h(t)− u′v(t)− w′
v(t)(h)

= f(uv+h(t))− f(uv(t))−
df

du
(uv(t)) ◦ wv(t)(h)

= df

du
(uv(t))(uv+h(t)− uv(t))−

df

du
(uv(t)) ◦ wv(t)(h) + E(t)

= df

du
(uv(t))(∆(t)) + E(t)

with E(t) = f(uv+h(t))− f(uv(t))− df
du

(uv(t))(uv+h(t)− uv(t)) and thus, by
one of the Taylor inequalities,

||E(t)||2 ≤
1
2

(
sup

ṽ∈B̄(u0,ϵ)

∣∣∣∣∣∣∣∣d2f

du2 (ṽ)
∣∣∣∣∣∣∣∣
L(Rn,L(Rn,Rn))

)
||uv+h(t)− uv(t)||22.

Let C1 = 1
2 supṽ∈B̄(u0,ϵ)

∣∣∣∣∣∣d2f
du2 (ṽ)

∣∣∣∣∣∣
L(Rn,L(Rn,Rn))

and C2 be the Lipschitz con-

stant of V with respect to its first variable (whose existence we proved a few
paragraphs ago). With these notations, for any t,

||E(t)||2 ≤ C1C2||h||22

and thus ∣∣∣∣∣∣∣∣∆′(t)− df

du
(uv(t))(∆(t))

∣∣∣∣∣∣∣∣
2
≤ C1C2||h||22.

Denoting C3 = supṽ∈B̄(u0,ϵ)
∣∣∣∣ df

du
(ṽ)
∣∣∣∣
L(Rn,Rn), we deduce

||∆′(t)||2 ≤ C1C2||h||22 + C3||∆(t)||2.
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Therefore, for any t ∈
[
t0; t0 + ϵ

2M3

[
,

||∆(t)||2 =
∣∣∣∣∣∣∣∣∆(t0) +

∫ t

t0

∆′(s)ds
∣∣∣∣∣∣∣∣

2

=
∣∣∣∣∣∣∣∣∫ t

t0

∆′(s)ds
∣∣∣∣∣∣∣∣

2

≤
∫ t

t0

||∆′(s)||2 ds

≤
∫ t

t0

(
C1C2||h||22 + C3 ||∆(s)||2

)
ds

= C1C2||h||22(t− t0) +
∫ t

t0

C3 ||∆(s)||2 ds.

From Gronwall’s lemma, for any t ∈
[
t0; t0 + ϵ

2M3

[
,

||∆(t)||2 ≤ C1C2||h||22(t− t0) + C1C2C3||h||22
∫ t

t0

eC3(t−s)(s− t0)ds

= C1C2

C3
||h||22

(
eC3(t−t0) − 1

)
.

Symmetrically, the inequality is also valid if t ∈
]
t0 − ϵ

2M3
; t0
]
, provided that

we replace “eC3(t−t0)” with “eC3|t−t0|” on the right-hand side.
If we set C4 = C1C2

C3

(
e

C3ϵ
2M3 − 1

)
, we have thus shown that, for any v, h

such that v, v + h ∈ B
(
u0,

ϵ
2

)
and for any t ∈

]
t0 − ϵ

2M3
; t0 + ϵ

2M3

[
,

||V (v + h, t)− V (v, t)− wv(t)(h)||2 = ||∆(t)||2 ≤ C4||h||22.

Therefore, V is differentiable with respect to its first variable, and for any
v, t in the considered open set,

dV

du0
(v, t) = wv(t).

Conclusion.
We have seen that V is continuous on B

(
u0,

ϵ
2

)
×
]
t0 − ϵ

2M3
; t0 + ϵ

2M3

[
,

has partial derivatives with respect to each of its two variables on this open
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set, and that these partial derivatives are continuous. Therefore, V is C1

on this open set. In the fourth step, we have also shown that the partial
derivative dV

du0
is a solution to Problem (Cauchy dV

du0
). Hence, Property (4.7)

is true.

Theorem 4.14 : regularity, general case

We keep the notation from the previous theorem; f is still C2.
For any pair (t0, u0) ∈ I × U , let ut0,u0 : Jt0,u0 → U be the maximal
solution of the Cauchy problem{

u′t0,u0 = f(t, ut0,u0),
ut0,u0(t0) = u0.

(Cauchy (t0, u0))

The set Ω = {(t0, u0, t), t0 ∈ I, u0 ∈ U, t ∈ Jt0,u0} ⊂ I × U × I is open
and the map

V : Ω → U
(t0, u0, t) → ut0,u0(t)

is of class C1.
Moreover, the partial derivatives of V are solutions of the following
Cauchy problems:

d

dt

(
dV

du0

)
= df

du
(t, V (t0, u0, t)) ◦

dV

du0
(t0, u0, t),

dV

du0
(t0, u0, t0) = IdRn .

d

dt

(
dV

dt0

)
= df

du
(t, V (t0, u0, t))

(
dV

dt0
(t0, u0, t)

)
,

dV

dt0
(t0, u0, t0) = −f(t0, u0).

This theorem can be derived from the previous one as in the proof of
Lemma 4.11.
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Remark

An even more general theorem holds: we can assume that f is a func-
tion of three variables instead of two, yielding a Cauchy problem of the
form

u′ = f(t, u, a),
u(t0) = u0.

If f is C2, the maximal solutions of this problem are C1 in (t0, u0, a).



Chapter 5

Explicit solutions in particular
situations

What you should know or be able to do after this chapter

• Solve an autonomous scalar equation.

• Solve a linear scalar equation.

• Identify a linear equation.

• Know that the solution of a linear differential equation is global.

• If you admit that the resolvent of a linear equation is C1, write the
Cauchy problem to which it is a solution.

• Use this Cauchy problem to show that a given map is the resolvent of
a Cauchy problem.

• Remember that, for all t1, t2, t3, R(t3, t2)R(t2, t1) = R(t3, t1) and that,
for all t1, t2, R(t2, t1)−1 = R(t1, t2).

• Write the solution(s) of a linear equation in terms of the resolvent (with
or without source term, with or without an initial condition).

• Recall (= be able to find it again by yourself) the explicit expression
of the resolvent when the equation has constant coefficients.

• Compute the exponential of a diagonalizable matrix when the diago-
nalization is provided.

121
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5.1 Autonomous scalar equations
In this section, we consider a scalar equation (the images of u are in U ⊂ R
and not in Rn for some n > 1) and autonomous (the map f does not depend
on time). Thus, we have an equality of the form

u′ = f(u), (5.1)

for some f : U → R, with U a non-empty open subset of R. Throughout this
section, we assume that f is locally Lipschitz, so that the Cauchy-Lipschitz
theorem applies. We will describe the maximal solutions of Equation (5.1).

Let’s start with the simplest solutions: the constants.

Proposition 5.1

We assume that f is locally Lipschitz.
For any u0 ∈ U , the constant function u : t ∈ R → u0 is a maximal
solution of the differential equation (5.1) if and only if f(u0) = 0.

Proof. Let u0 ∈ U . Let u : t ∈ R → u0. Its derivative is zero. Thus, it is a
solution of the differential equation (5.1) if and only if

0 = f(u0).

When it is, it is a maximal solution as it is defined on R and can thus not
be extended.

Now, let’s describe the non-constant solutions, using the primitives of 1
f
.

Consider u : J → R a maximal solution whose derivative is not identically
zero. Let t0 ∈ J be such that u′(t0) ̸= 0. For simplicity, assume f(u(t0)) =
u′(t0) > 0; a very similar reasoning is possible if f(u(t0)) < 0.

Let ]α; β[ be the maximal interval containing u(t0) on which f is strictly
positive (with possibly α = −∞ and β = +∞).

Proposition 5.2

For any t ∈ J , u(t) ∈]α; β[.

Proof. Let’s argue by contradiction and assume it is not true. Since u(t0) ∈
]α; β[, the continuity of u and the intermediate value theorem imply that
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there exists t1 ∈ J such that u(t1) = α or u(t1) = β. Let us for instance
assume u(t1) = α.

Then u is a solution of the following Cauchy problem:{
u′ = f(u),

u(t1) = α.

The constant function ũ : t ∈ R → α is a maximal solution of this problem
(indeed, f(α) = 0, because ]α; β[ is a maximal interval on which f is strictly
positive). Since the maximal solution of the problem is unique, as f is locally
Lipschitz, u = ũ, which means u is constant. This is a contradiction.

Let Φ :]α; β[→ R be a primitive of 1
f
: for any arbitrary constant C, we

define
Φ(v) = C +

∫ v

u(t0)

1
f(s)

ds, ∀v ∈]α; β[.

This is a continuous function with strictly positive derivative. Hence, it
induces a diffeomorphism onto its image, which is an open interval, denoted
]γ; δ[.

We observe that, for any t ∈ J ,

(Φ ◦ u)′(t) = Φ′(u(t))u′(t) = u′(t)
f(u(t))

= 1.

Thus, for any t ∈ J ,

Φ ◦ u(t) = Φ ◦ u(t0) + (t− t0) = t− t0 + C.

Therefore, for any t ∈ J , u(t) = Φ−1(t− t0 + C).

Proposition 5.3

The interval J is equal to ]γ + t0 − C; δ + t0 − C[.

Proof. For any t ∈ J , since ϕ◦u(t) = t−t0+C, we must have t−t0+C ∈]γ; δ[,
thus t ∈]γ + t0−C; δ+ t0−C[. This shows that J ⊂]γ + t0−C; δ+ t0−C[.

As u is a maximal solution, it is defined on the whole ]γ+t0−C; δ+t0−C[.
Indeed, if it were not the case, the map ũ : t ∈]γ + t0 − C; δ + t0 − C[→
Φ−1(t − t0 + C) ∈ U would be a solution of Equation (5.1) that strictly
extends it.

This leads to the following theorem.
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Theorem 5.4

The non-constant maximal solutions of Equation (5.1) are all maps of
the form

t ∈]γ +D; δ +D[ → Φ−1(t−D),

where Φ is a primitive of 1
f
, defined on a maximal interval where f

does not vanish, ]γ; δ[ is the image of Φ, and D ∈ R is an arbitrary
constant.

Proof. The reasoning we just did shows that all non-constant maximal solu-
tions have this form (whereD corresponds to the previous t0−C). Conversely,
any map of this form is a solution of Equation (5.1), since, for all t,(

Φ−1)′ (t−D) = 1
Φ′ (Φ−1(t−D))

= f
(
Φ−1(t−D)

)
.

It is maximal because, when t → γ + D, Φ−1(t − D) → α or β, hence
Φ′ (Φ−1(t−D))→ 0, which means that (Φ−1)′ (t−D) diverges, hence Φ(.−
D) cannot be extended into a differentiable map in γ+D. The same reasoning
holds for δ +D.

Example 5.5

Let’s find all maximal solutions of the differential equation

u′ = −u3.

The map x→ −x3 is locally Lipschitz (it is C1). It vanishes only at 0.
Thus, the only constant solution is u ≡ 0.
Now let’s search for non-constant solutions. The maximal intervals
where x → −x3 does not vanish are ] −∞; 0[ and ]0; +∞[. On these
intervals, primitives of x→ 1

−x3 are

Φ1 : x ∈]−∞; 0[→ 1
2x2 , Φ2 : x ∈]0; +∞[→ 1

2x2 .

The first one is a bijection between ]−∞; 0[ and ]0; +∞[, with inverse

Φ−1
1 : x ∈]0; +∞[→ − 1√

2x
∈]−∞; 0[
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and the second one is a bijection between ]0; +∞[ and ]0; +∞[, with
inverse

Φ−1
2 : x ∈]0; +∞[→ 1√

2x
∈]0; +∞[.

Thus, maximal solutions are all maps of the form

u : t ∈]D; +∞[→ − 1√
2(x−D)

and u : t ∈]D; +∞[→ 1√
2(x−D)

for any real number D.

Exercise 9

Let u0 ∈ R∗
+ be fixed. Compute the maximal solution of the following

Cauchy problem: {
u′(t) = e−u(t)2

2u(t) ,

u(0) = u0.

5.2 Scalar linear equations
A scalar linear differential equation is an equation of the form

u′(t) = a(t)u(t) + b(t), (5.2)

where a, b are continuous maps on an interval I ⊂ R. The function b is
sometimes called the “source term”.

Let’s first solve this equation in the case where b is zero.

Proposition 5.6 : with no source term

Let a : I → R be a continuous map, for some open interval I. Let
A : I → R be a primitive of a. The maximal solutions of the differential
equation

u′(t) = a(t)u(t)
are all maps of the form u : t ∈ I → CeA(t), where C is an arbitrary
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real number.

Proof. A map of the form t→ CeA(t) is necessarily a solution of the equation.
It is maximal because it is defined on I.

Conversely, if u : J → R is a maximal solution, we define v : t ∈ J →
u(t)e−A(t) ∈ R. This map is differentiable and, for any t ∈ J ,

v′(t) = (u′(t)− A′(t)u(t))e−A(t) = (u′(t)− a(t)u(t))e−A(t) = 0.

This means that v is constant. Let us denote C its value. For any t ∈ J ,
u(t) = CeA(t). Since u is maximal, we must have J = I; hence, the map is of
the desired form.

Now let’s consider the general equation (5.2), without assuming that b is
zero. To solve it, we use the method called variation of constants1. Let’s
again denote A : I → R a primitive of a. For a differentiable map u : J → R
with J a subinterval of I, we write u as

u(t) = v(t)eA(t)

(by setting v(t) = u(t)e−A(t) for all t).
The map u is a solution of the equation if and only if, for all t ∈ J ,

(v′(t) + a(t)v(t))eA(t) = u′(t)
= a(t)u(t) + b(t) = a(t)v(t)eA(t) + b(t),

which is equivalent to, for all t,

v′(t) = b(t)e−A(t).

We denote B an arbitrary primitive of t→ b(t)e−A(t). The previous equation
holds if and only if there exists a real number C such that

v = C +B.

This is equivalent to the existence of C ∈ R such that, for all t ∈ J ,

u(t) = CeA(t) +B(t)eA(t).

From this reasoning, we can deduce the following theorem.

1“variation de la constante” in French
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Theorem 5.7 : solution of scalar linear equations

For any u0, the maximal solution of the Cauchy problem{
u′(t) = a(t)u(t) + b(t),
u(t0) = u0,

where a, b are continuous maps on an open interval I and u0 is a real
number, is given by

u : t ∈ I → u0e
∫ t
t0

a(s)ds +
∫ t

t0

b(s)e
∫ t
s a(τ)dτds.

5.3 Linear equations in general dimension

In this section, we consider a linear differential equation of dimension n ∈ N∗,
that is, an equation of the form

u′(t) = A(t)u(t) + b(t), (5.3)

where A ∈ C0(I,Rn×n) and b ∈ C0(I,Rn), with I an interval of R.

Proposition 5.8

The maximal solutions of Equation (5.3) are global (i.e., defined on
the entire interval I).

Proof. The proof relies on the théorème des bouts (Theorem 4.7); it is very
similar to that of Example 4.9.

Let u : J → Rn be a maximal solution. Let’s argue by contradiction and
assume that J ̸= I. For example, we assume that sup J < sup I. Let ϵ > 0
be such that [sup J − ϵ; sup J + ϵ] ⊂ I. We set t0 = sup J − ϵ.

First step: we establish an inequality relating ||u||2 and its primitive.
Let C > 0 be such that, for all t ∈ [sup J − ϵ; sup J + ϵ],

||A(t)||L(Rn,Rn) ≤ C and ||b(t)||2 ≤ C.

Such a constant exists because A and b are continuous.
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We deduce that, for all t sufficiently close to sup J ,

||u′(t)||2 ≤ C(||u(t)||2 + 1).

For all t ∈ [t0; sup J [,

||u(t)||2 =
∣∣∣∣∣∣∣∣u(t0) +

∫ t

t0

u′(s)ds
∣∣∣∣∣∣∣∣

2

≤ ||u(t0)||2 +
∫ t

t0

||u′(s)||2ds

≤ ||u(t0)||2 +
∫ t

t0

C(||u(s)||2 + 1)ds

= ||u(t0)||2 + C(t− t0) +
∫ t

t0

C||u(s)||2ds.

Second step: we upper bound ||u||2 using Gronwall’s lemma.
Gronwall’s lemma (Lemma D.1 in the appendix) then implies that, for

all t ∈ [t0; sup J [,

||u(t)||2 ≤ (||u(t0)||2 + 1) eC(t−t0) − 1 ≤ (||u(t0)||2 + 1) eCϵ − 1.

Conclusion: u is bounded in the neighborhood of sup J , meaning that
it stays within a compact subset of Rn. This contradicts the théorème des
bouts.

5.3.1 Without source term

Let’s first consider the equation without a source term:

u′(t) = A(t)u(t), (5.4)

with A ∈ C0(I,Rn×n).

Remark

Since the equation is linear in u, a linear combination of solutions
is also a solution: if u1, u2 : I → Rn are two solutions and λ, µ are
arbitrary real numbers, λu1 + µu2 is also a solution.
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Let us fix any t0 ∈ I. We denote uu0 the maximal solution of the following
Cauchy problem: {

u′(t) = A(t)u(t),
u(t0) = u0,

For any t ∈ I, from the previous remark, u0 ∈ Rn → uu0(t) ∈ Rn is a linear
map. It can therefore be represented by some matrix R(t, t0) ∈ Rn×n: for all
u0,

uu0(t) = R(t, t0)u0. (5.5)

We call R the resolvent of Equation (5.4).
If we can compute the resolvent, then we have access (according to Equa-

tion (5.5)) to all maximal solutions of our differential equation (5.4). Unfor-
tunately, in general, we cannot compute an explicit expression of R. However,
we can characterize R as the solution to a certain Cauchy problem.

Theorem 5.9

For any t0 ∈ I, R(., t0) : I → Rn×n is the maximal solution of the
Cauchy problem {

dR
dt

(t, t0) = A(t)R(t, t0),
R(t0, t0) = Idn.

Proof. Let t0 ∈ I be fixed. Let M : I → Rn×n be the maximal solution of
the Cauchy problem: {

M ′(t) = A(t)M(t),
M(t0) = Idn.

It is defined on the entire interval I according to Proposition 5.8. Let’s show
that, for all t ∈ I, M(t) = R(t, t0).

According to the definition of R (Equation (5.5)), we must show that, for
all u0 ∈ Rn and all t ∈ I, uu0(t) = M(t)u0. Let us fix u0 ∈ Rn and define
v : t ∈ I → M(t)u0. This is a differentiable map, solution of the Cauchy
problem {

v′(t) = M ′(t)u0 = A(t)M(t)u0 = A(t)v(t),
v(t0) = M(t0)u0 = u0.

Therefore, v = uu0 and we indeed have, for all t, uu0(t) = v(t) = M(t)u0.
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Exercise 10

Let us assume that n = 1 (that is, A is real-valued). Given an explicit
expression for the resolvent of Equation (5.4).
(The solution is given in a remark of the following subsection.)

Remark

It is tempting to say, by analogy with the scalar case, that the solution
to the problem {

M ′(t) = A(t)M(t),
M(t0) = Idn

is the map t ∈ I → exp
(∫ t

t0
A(s)ds

)
. Unfortunately, this is not true

(unless the matrices A(s) pairwise commute), because, in general, for
X,H ∈ Rn×n, d exp(X)(H) ̸= H exp(X).

Before moving on to linear equations with a source term, here is a classical
property of the resolvent.

Proposition 5.10

For all t1, t2, t3 ∈ I, R(t3, t2)R(t2, t1) = R(t3, t1).

Proof. Let t1, t2, t3 ∈ I be fixed. We fix any u1 ∈ Rn, and show that

R(t3, t2)R(t2, t1)u1 = R(t3, t1)u1.

Let uu1 : I → Rn be the maximal solution of the Cauchy problem{
u′u1(t) = A(t)uu1(t),
uu1(t1) = u1.

According to the definition of R, R(t3, t1)u1 = uu1(t3) and R(t2, t1)u1 =
uu1(t2).

Let u2 = R(t2, t1)u1 = uu1(t2) and uu2 : I → Rn be the maximal solution
of the Cauchy problem {

u′u2(t) = A(t)uu2(t),
uu2(t2) = u2.
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According to the definition of R, R(t3, t2)R(t2, t1)u1 = R(t3, t2)u2 = uu2(t3).
Now, uu1 is a solution of the Cauchy problem that defines uu2 . Indeed,

uu1(t2) = u2. Therefore, uu1 = uu2 , and

R(t3, t2)R(t2, t1)u1 = uu2(t3) = uu1(t3) = R(t3, t1)u1.

Corollary 5.11

For all t1, t2 ∈ I, R(t1, t2)R(t2, t1) = R(t1, t1) = Idn, hence R(t2, t1) is
invertible, with inverse R(t1, t2).

5.3.2 With a source term

We now return to the general equation (5.3) with a source term:

u′(t) = A(t)u(t) + b(t). (5.3)

As in the scalar case, the method of variation of constants allows us to
compute its solutions. Let u : I → Rn be any map. Let t0 ∈ I and v : I → Rn

be such that, for all t,
u(t) = R(t, t0)v(t)

(i.e., we set v(t) = R(t0, t)u(t)). The map u is a solution of Equation (5.3) if
and only if, for all t,

A(t)R(t, t0)v(t) +R(t, t0)v′(t) = dR

dt
(t, t0)v(t) +R(t, t0)v′(t)

= u′(t)
= A(t)u(t) + b(t)
= A(t)R(t, t0)v(t) + b(t).

This is equivalent to stating that, for all t, R(t, t0)v′(t) = b(t), i.e., v is a
primitive of t → R(t0, t)b(t). Therefore, u is a solution if and only if there
exists v0 ∈ Rn such that, for all t ∈ I,

v(t) = v0 +
∫ t

t0

R(t0, s)b(s)ds,
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which is equivalent to

u(t) = R(t, t0)v0 +
∫ t

t0

R(t, t0)R(t0, s)b(s)ds

= R(t, t0)v0 +
∫ t

t0

R(t, s)b(s)ds.

This leads us to the following theorem.

Theorem 5.12 : Duhamel’s formula

Let I be an open interval, A ∈ C0(I,Rn×n), b ∈ C0(I,Rn).
The maximal solutions of Equation (5.3) are all maps of the form

u : t ∈ I → R(t, t0)v0 +
∫ t

t0

R(t, s)b(s)ds,

for some v0 ∈ Rn.

Corollary 5.13

Let I be an open interval, A ∈ C0(I,Rn×n), b ∈ C0(I,Rn), and u0 ∈
Rn.
The maximal solution of the Cauchy problem{

u′(t) = A(t)u(t) + b(t),
u(t0) = u0

is

u : t ∈ I → R(t, t0)u0 +
∫ t

t0

R(t, s)b(s)ds.

Remark

If n = 1, the resolvent has an explicit expression. Indeed, for any t0,
R(., t0) is the maximal solution of the Cauchy problem{

dR
dt

(t, t0) = A(t)R(t, t0),
R(t0, t0) = Id1 = 1.
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(Note that if n = 1, A is a real-valued map.) Therefore, for any t,

R(t, t0) = exp
(∫ t

t0

A(s)ds
)
.

If we replace R by its value in Duhamel’s formula, we recover, as ex-
pected, Theorem 5.7.

Exercise 11

We consider the following differential equation:

u′(t) = A(t)u(t) + b(t),

with

A(t) =
(
t3 + 2t t4 + 3t2
−t2 − 1 −t3 − 2t

)
and b(t) =

(
−2t4 − 3t2 + 3

2t3 + t

)
.

Let us denote R its resolvent.
1. a) Write the Cauchy problem to which R(., 0) is a solution.

b) Show that, for all t ∈ R,

R(t, 0) =
(

1 + t2 t3

−t 1− t2
)
.

c) For all t ∈ R, compute R(0, t).
2. Find all maximal solutions of the differential equation.
3. What is the maximal solution of the following Cauchy problem?{

u′(t) = A(t)u(t) + b(t),
u(1) = ( 1

0 ) .

5.3.3 Constant coefficients

Matrix exponential When A is a constant map, the resolvent has an
explicit expression. To provide it, it is necessary to recall the definition
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and main properties of the matrix exponential. The exponential is defined
identically for matrices with real or complex coefficients. Here, we state the
definition and properties in the general case of complex coefficients.

Definition 5.14 : matrix exponential

For any matrix A ∈ Cn×n, we define

exp(A) =
+∞∑
k=0

Ak

k!
∈ Cn×n.

This definition is correct, in the sense that the series
∑+∞

k=0
Ak

k! converges
in Cn×n.

Proposition 5.15

1. For any matrix A ∈ Cn×n, if the coefficients of A are real, then
the coefficients of exp(A) are also real.

2. For all A,B ∈ Cn×n, if A and B commute (i.e., AB = BA), then

exp(A+B) = exp(A) exp(B) = exp(B) exp(A).

3. For all A,G ∈ Cn×n such that G is invertible,

exp(GAG−1) = G exp(A)G−1.

4. For any A ∈ Cn×n, the map h : t ∈ R→ exp(tA) is differentiable
and

h′(t) = A exp(tA) = exp(tA)A, ∀t ∈ R.
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Corollary 5.16 : exponential of a diagonalizable matrix

Let A ∈ Cn×n. We assume that there exist G ∈ GL(n,C) and
λ1, . . . , λn ∈ C such that

A = G

 λ1 0 ... 0
0 λ2
... ...
0 λn

G−1.

Then

exp(A) = G

 eλ1 0 ... 0
0 eλ2
... ...
0 eλn

G−1.

Proof. According to Property 3 of Proposition 5.15,

A = G exp

 λ1 0 ... 0
0 λ2
... ...
0 λn

G−1.

Moreover, for any k ∈ N, λ1 0 ... 0
0 λ2
... ...
0 λn

k

=

 λk
1 0 ... 0

0 λk
2

... ...
0 λk

n

 ,

which implies that

exp

 λ1 0 ... 0
0 λ2
... ...
0 λn

 =
+∞∑
k=0

1
k!

 λk
1 0 ... 0

0 λk
2

... ...
0 λk

n



=


∑+∞

k=0
λk1
k! 0 ... 0

0
∑+∞

k=0
λk2
k!

... ...
0

∑+∞
k=0

λkn
k!


=

 eλ1 0 ... 0
0 eλ2
... ...
0 eλn

 .
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This corollary allows to compute the exponential of any diagonalizable
matrix. For matrices that are not diagonalizable, the exponential can be
computed using the Dunford decomposition. Let’s briefly outline the main
steps of the computation.

Let A ∈ Cn×n be any matrix. The starting point of the method is to
write A in the following form:

A = G(D +N)G−1,

where G,D,N ∈ Cn×n are matrices such that

• G is invertible;

• D is diagonal;

• N is nilpotent (i.e., there exists K ∈ N∗ such that NK = 0);

• N and D commute.

This form is called the Dunford decomposition. The matrices G,D,N can
be explicitely computed from the characteristic subspaces of A, but this is
beyond the scope of this course.

Assuming we have found G,D,N , Property 5.15 allows us to write

exp(A) = G exp(D +N)G−1 = G exp(D) exp(N)G−1.

The exponential of D is given by Corollary 5.16. To compute exp(N), we
directly use the definition: since N is nilpotent, the infinite sum in the defi-
nition is actually finite. Denoting K the smallest integer such that NK = 0,
we have

exp(N) =
+∞∑
k=0

Nk

k!
=

K−1∑
k=0

Nk

k!
.

Constant coefficients Consider the following Cauchy problem, with con-
stant coefficients: {

u′(t) = Au(t) + b,
u(t0) = u0.

(5.6)

where A ∈ Rn×n, b, u0 ∈ Rn.
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Proposition 5.17

For any t0 ∈ R, the resolvent of Equation (5.6) satisfies

R(t, t0) = exp((t− t0)A), ∀t ∈ R.

Proof. For any t0, according to Theorem 5.9, R(., t0) is the maximal solution
of {

dR
dt

(t, t0) = AR(t, t0),
R(t0, t0) = Idn.

It suffices to check that (t ∈ R→ exp((t− t0)A)) is this maximal solution.
In fact, it suffices to check that (t ∈ R→ exp((t− t0)A)) is a solution of the
Cauchy problem: if it is, it is necessarily maximal since it is defined over R.

It satisfies the initial condition: exp((t0 − t0)A) = exp(0n×n) = Idn.
Moreover, according to Property 4 of Proposition 5.15, this map is differ-

entiable and, for all t ∈ R, its derivative is

A exp((t− t0)A),

so it satisfies the first equation of the Cauchy problem.

This expression for the resolvent, combined with Duhamel’s formula, pro-
vides an explicit value for the solution of the Cauchy problem (5.6).

Corollary 5.18

The maximal solution of the problem (5.6) is

u : t ∈ R → e(t−t0)Au0 +
∫ t

t0

e(s−t0)Ab, ds.

When A is invertible, this simplifies to

u : t ∈ R → e(t−t0)Au0 +
(
e(t−t0)A − Idn

)
A−1b.
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Chapter 6

Equilibria of autonomous
equations

What you should know or be able to do after this chapter

• Know the definition of the flow (ϕt)t∈R of an autonomous equation
(including the correct domain of each ϕt).

• Be able to express the maximal solution of a Cauchy problem in terms
of the flow.

• Draw the phase portrait of a two-dimensional differential equation in
the following three situations:

– when it is possible to explicitely compute the solutions,

– when you know a first integral of the differential equation and the
form of its level lines,

– approximately, once you have studied the qualitative behavior of
the solutions.

• Know the definition of stable and asymptotically stable equilibria.

• Draw the vector field associated to a two-dimensional equation (don’t
forget that it must be tangent to the orbits!).

• Be able to prove that, if A is diagonal with (real) eigenvalues λ1, . . . , λn,
an equilibrium of u′ = Au+ b is

139
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– stable if and only if λk ≤ 0 for all k ∈ {1, . . . , n};

– asymptotically stable if and only if λk < 0 for all k ∈ {1, . . . , n}.

• Know that an equilibrium u0 of an equation u′ = f(u) is

– asymptotically stable if (but not only if) Re(λk) < 0 for all k ∈
{1, . . . , n};

– unstable if (but not only if) there exists k such that Re(λk) > 0,

where λ1, . . . , λn are the (complex) eigenvalues of Jf(u0).

6.1 Definitions

The notion of “equilibrium” is mainly meaningful for autonomous problems,
i.e., for problems of the form (Cauchy) where f does not depend on t. There-
fore, in this chapter, we consider a map f : U → Rn, and, for any u0 ∈ U ,
the associated Cauchy problem{

u′ = f(u),
u(t0) = u0.

(Autonomous)

We assume that f is locally Lipschitz, so that the Cauchy-Lipschitz theorem
applies.

6.1.1 Flow

Definition 6.1 : Flow of Equation (Autonomous)

For any u0 ∈ U , let uu0 : Iu0 → U be the maximal solution of Prob-
lem (Autonomous) with t0 = 0. For any t ∈ Iu0 , we define

ϕt(u0) = uu0(t).

We call (ϕt)t∈R the flow of the differential equation.
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Remark

The domain of ϕt depends on t. For any t, it is given by

{u0 ∈ U, t ∈ Iu0}.

The most intuitive way to understand the flow is as follows. Let’s imagine
that u represents some physical quantity (such as the position or orientation
of an object, for example), and the differential equation u′ = f(u) describes
its evolution. For any t ∈ R, ϕt represents the action of the evolution on
the physical quantity u for t units of time: in our example, if an object is at
position u0 at a reference time 0, it will be at position ϕt(u0) at time t.

When f is of class C2, the map ϕt is, for any t, defined on an open set
and of class C1. It is a consequence of the results from Section 4.4 (where
the notation was different: the flow was essentially the map V ).

Let us remark that, since we consider autonomous equations only, defining
the flow using t0 = 0 as the reference point is not a limitation: as the following
proposition shows, the solution of Problem (Autonomous) can be expressed
in terms of (ϕt)t∈R even when t0 ̸= 0.

Proposition 6.2

For all t0 ∈ R, u0 ∈ U , the maximal solution of Problem (Autonomous)
is

Iu0 + t0 → U
t → ϕt−t0(u0) = uu0(t− t0).

Proof. Let v1 : I1 → U be the maximal solution of (Autonomous) and

v2 : t ∈ I2
def= Iu0 + t0 → uu0(t− t0).

We must show that these maps are equal.
First step: We show that v1 is an extension of v2.
For any t, v′2(t) = u′u0(t− t0) = f(v2(t)) and v2(t0) = uu0(0) = u0. Thus,

v2 is a solution of (Autonomous), so, from Proposition 4.4,

I2 ⊂ I1 and v2 = v1 on I2.

Second step: We show that I1 = I2.
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Similarly, the map t ∈ I1 − t0 → v1(t + t0) is a solution of Equa-
tion (Autonomous) when t0 is replaced by 0. Since uu0 = v2(. + t0) is the
maximal solution of this equation,

I1 − t0 ⊂ Iu0 = I2 − t0.

This implies I1 ⊂ I2, hence I1 = I2 and v1 = v2.

6.1.2 Phase portrait

Definition 6.3 : orbits

The set
Ou0

def= {ϕt(u0), t ∈ Iu0}.

is called the orbit of a point u0 ∈ U by the flow (ϕt)t∈R of Equa-
tion (Autonomous).

The set of orbits forms a “partition” of U , meaning that every point
belongs to an orbit (as every point belongs at least to its own orbit), and any
two orbits are either disjoint (having no common points) or identical.1 This
partition is called the phase portrait of Equation (Autonomous).

Example 6.4

Consider the function

f : R2 → R2

(x, y) → (1, y)

and the associated autonomous equation:
x′ = 1,
y′ = y,

(x(0), y(0)) = (x0, y0).

1Indeed, if for two points u0, u1 ∈ U , Ou0 ∩ Ou1 ̸= ∅, it means that there exist t0 ∈
Iu0 , t1 ∈ Iu1 such that ϕt0(u0) = ϕt1(u1). With the same reasoning as in the proof of
Proposition 6.2, we see that Iu0 + t1− t0 = Iu1 and, for all t ∈ Iu0 , ϕt(u0) = ϕt+t1−t0(u1),
which implies Ou0 = Ou1 .
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1−1

1

−1

Figure 6.1: On the left, the vector field f(x, y) = (1, y); for each (x, y) ∈ R2,
the arrow with starting point at (x, y) represents the vector f(x, y). On the
right, the phase portrait (that is, a few representative orbits).

For any x0, y0 ∈ R, the maximal solution is

u(x0,y0) : R → R2

t → (x0 + t, y0e
t),

which means that the orbit is

O(x0,y0) = {(x0 + t, y0e
t), t ∈ R}.

In order to draw the orbits, a useful observation is that this latter set
is the graph of a simple map: for any x0, y0 ∈ R,

O(x0,y0) = {(x, y0e
x−x0), x ∈ R}

= {(x, (y0e
−x0)ex), x ∈ R}.

Since (x0, y0) ∈ R2 → y0e
−x0 ∈ R is a surjective map, the orbits are all

sets of the form
{(x, cex), x ∈ R},
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for some constant c ∈ R, i.e. they are the graphs of all multiples of the
exponential map.
The phase portrait is drawn on Figure 6.1. Observe that the vector
field f is tangent to the orbits. Indeed, each orbit is the image of a
map u such that u′ = f(u). Therefore, for each t such that f(u(t)) ̸= 0,
the orbit is a 1-dimensional submanifold in the neighborhood of u(t),
with tangent space Vect{u′(t)} = Vect{f(u(t))}, from Theorem 2.16.

Exercise 12

Consider the map

f : R2 → R2

(x, y) → (x(1− x), (1− 2x)y).

The goal is the exercise is to draw the phase portrait of the correspond-
ing autonomous equation

u′ = f(u). (6.1)

Describing the orbits of an arbitrary equation may not be an easy
task. However, in this case, as in the previous example, it is possible
to explicitely compute them. This is the goal of the first question.
1. Let us fix any (x0, y0) ∈ R2. We consider the Cauchy problem

x′ = x(1− x),
y′ = (1− 2x)y,

(x(0), y(0)) = (x0, y0).

Let (x, y) : I → R2 be the maximal solution of this problem.
a) Let us assume that there exists t ∈ I such that x(t) = 0. Com-

pute (x, y) and I.
b) Let us assume that there exists t ∈ I such that x(t) = 1. Com-

pute (x, y) and I.
c) In this subquestion, and up to 1.f), we assume that x(t) /∈ {0, 1}

for all t ∈ I. It is possible to explicitely compute (x, y) and I,
and deduce the orbits from their expression. However, we will
follow a different strategy.
Show that
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• if x0 < 0, x is a decreasing map, with values in ]−∞; 0[;
• if 0 < x0 < 1, x is an increasing map, with values in ]0; 1[;
• if x0 > 1, x is a decreasing map, with values in ]1; +∞[.

d) Show that y
x(1−x) is constant on I.

e) Compute the value of y on I, in terms of x, x0, y0.
f) Show that, if x0 < 0, then x→ 0 at inf I and x→ −∞ at sup I.

[Hint: use the monotonicity of x to show the existence of limits.
Then, proceed by contradiction to show that the limits cannot
belong to ]−∞; 0[.]
With a similar reasoning, it is possible to show that

• if 0 < x0 < 1, x→ 0 at inf I and x→ 1 at sup I;
• if 1 < x0, x→ +∞ at inf I and x→ 1 at sup I.

g) Find an explicit expression for the orbit of (x0, y0).
2. Draw the phase portrait of Equation (6.1).

6.1.3 Equilibria

Definition 6.5 : equilibrium

A point u0 ∈ U is an equilibrium of the differential equation
(Autonomous) if f(u0) = 0 (in other words, if the constant function
with value u0 is a solution of (Autonomous)).

In this chapter, we will try to describe the behavior near equilibria of solu-
tions to Equation (Autonomous). Informally, we will say that an equilibrium
is stable if every solution starting close enough to the equilibrium remains
close to it, and asymptotically stable if every trajectory starting close enough
to the equilibrium converges to it

Definition 6.6 : stability

If u0 ∈ U is an equilibrium of Equation (Autonomous), we say that u0
is stable if, for every neighborhood V0 of u0, there exists a neighborhood
V1 ⊂ U of u0 such that

• for every u1 ∈ V1, ϕt(u1) is defined for every t ∈ R+ (meaning
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(a) Stable
.

(b) Asymptotically
stable

(c) Unstable
.

Figure 6.2: Trajectories of Equation (Autonomous), for three different maps
f : R2 → R2 such that (0, 0) is an equilibrium.

R+ is a subset of Iu1);

• for every u1 ∈ V1 and t ∈ R+, ϕt(u1) ∈ V0.

We say that u0 is asymptotically stable if it is stable and, furthermore,
there exists a neighborhood V2 ⊂ U of u0 such that, for every u2 ∈ V2,

ϕt(u1)
t→+∞−→ u0.

If u0 is not stable, we say it is unstable.

An illustration of these concepts can be found in Figure 6.2.

6.2 Linear equations

In this section, we study the stability of an equilibrium for a linear differential
equation with constant coefficients:

u′ = Au+ b, (6.2)

where A ∈ Rn×n and b ∈ Rn.
Let us assume that this equation has an equilibrium z0. By translation,2

2In more detail: we can consider the differential equation v′ = Av + b + Az0 instead
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we can assume z0 = 0 and thus 0 = Az0 + b = b. The equation is then simply

u′ = Au. (6.3)

Recall that, according to Corollary 5.18, the flow of any u0 ∈ Rn is

ϕt(u0) = exp(tA)u0, ∀t ∈ R.

Thus, it is necessary to study exp(tA).

6.2.1 Diagonalizable Case

First, consider the case where A is diagonalizable over C: there exist complex
numbers λ1, . . . , λn and an invertible matrix G ∈ Rn×n such that

A = G


λ1 0 . . . 0
0 λ2
... . . . ...
0 . . . 0 λn

G−1.

For any t ∈ R, according to Corollary 5.16,

exp(tA) = G


etλ1 0 . . . 0
0 etλ2

... . . . ...
0 . . . 0 etλn

G−1.

Let us fix a vector u0 ∈ Rn. Denote

G−1u0 =

g1
...
gn

 .

For all t,

ϕt(u0) = exp(tA)u0 = G

g1e
tλ1

...
gne

tλn

 . (6.4)

of (6.2). Its solutions are the maps u − z0, for all solutions u to (6.2). The point 0 is an
equilibrium of the translated equation.
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Theorem 6.7

The point 0 is a stable equilibrium of the equation (6.3) if and only if

Re(λk) ≤ 0, ∀k ∈ {1, . . . , n}.

It is an asymptotically stable equilibrium if and only if

Re(λk) < 0, ∀k ∈ {1, . . . , n}.

Proof. Let us first assume that

Re(λk) ≤ 0, ∀k ∈ {1, . . . , n}

and show that 0 is a stable equilibrium.
For all t ≥ 0,

|etλk | = etRe(λk)|eitIm(λk)| = etRe(λk) ≤ 1, ∀k ∈ {1, . . . , n}.

From Equation (6.4), we then have, for any u0 and all t ≥ 0,

||ϕt(u0)||2 ≤ |||G−1|||

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
g1e

tλ1

...
gne

tλn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ |||G−1|||
√
|g1|2 + · · ·+ |gn|2

= |||G−1||| ||Gu0||2
≤ |||G−1||| |||G||| ||u0||2. (6.5)

This proves that 0 is stable. Indeed, consider an arbitrary neighborhood
V0 ⊂ Rn of 0. Let R > 0 be such that B(0, R) ⊂ V0. Define

V1 = B

(
0, R

|||G||| |||G−1|||

)
.

From Equation (6.5), for any u0 ∈ V1, ϕt(u0) ∈ B(0, R) ⊂ V0 for all t ≥ 0,
which establishes stability.

Let us now assume that

Re(λk) < 0, ∀k ∈ {1, . . . , n}
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and show that 0 is an asymptotically stable equilibrium. We have already
shown that it is stable; let us show that there exists a neighborhood of 0
where all trajectories of the flow converge to 0. The reasoning is as before:
for each k, since Re(λk) < 0,

|etλk | = etRe(λk)|eitIm(λk)| = etRe(λk) t→+∞−→ 0,

thus etλk
t→+∞−→ 0. Consequently, for any u0,

gke
tλk

t→+∞−→ 0, ∀k ∈ {1, . . . , n}.

Equation (6.4) therefore shows that ϕt(u0)
t→+∞−→ 0 for any initial point u0.

The equilibrium is asymptotically stable.
Now let’s assume that there exists k ∈ {1, . . . , n} such that

Re(λk) > 0

and let us show that 0 is an unstable equilibrium. For this, we will prove
that every neighborhood of 0 contains a point u0 such that ||ϕt(u0)|| → +∞
as t→ +∞. Let thus V be any neighborhood of 0.

We fix k ∈ {1, . . . , n} such that Re(λk) > 0. Let u0 ∈ Rn be such
that gk ̸= 0. Such a vector u0 exists: if not all coordinates of the k-th row
of G−1 (denoted (G−1)k,:) are pure imaginary numbers, we can take u0 =
Re ((G−1)k,:) (because then Re((G−1u0)k) = ||Re ((G−1)k,:)||2 ̸= 0, hence
gk ̸= 0). If, on the contrary, all coordinates are pure imaginary numbers, we
can set u0 = Im ((G−1)k,:) (because then Im((G−1u0)k) = ||Im ((G−1)k,:)||2 ̸=
0, hence gk ̸= 0).

If we multiply u0 by a sufficiently small constant, we can assume that
u0 ∈ V . According to Equation (6.4), ||G−1ϕt(u0)||2 → +∞ as t → +∞.
Indeed, the k-th coordinate of this vector is gketλk , and∣∣gketλk

∣∣ = |gk|etRe(λk) t→+∞−→ +∞.

Now, for any t, ||ϕt(u0)||2 ≥ ||G−1ϕt(u0)||2
|||G−1||| . So ||ϕt(u0)||2 → +∞ as t → +∞,

which concludes the proof of instability.
Similarly, let’s assume that there exists k ∈ {1, . . . , n} such that

Re(λk) ≥ 0
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and let’s show that 0 is not asymptotically stable. Let’s consider again an
arbitrary neighborhood V of 0 and a point u0 ∈ V such that gk ̸= 0. Then∣∣gketλk

∣∣ = |gk|etRe(λk) ̸→ 0 as t→ +∞,

thus ||ϕt(u0)||2 ̸→ 0 as t→ +∞, so there exists at least one point in V whose
trajectory by the flow of Equation (6.3) does not go towards 0.

Exercise 13

Rewrite the previous proof, and simplify it as much as possible, in the
case where A is a real diagonal matrix.

6.2.2 Non-diagonalizable case

By lack of time, the content of this subsection will not be covered in class. It
is provided for curious readers only.

In this subsection, we extend the previous results to the case where A is
not diagonalizable over C. A classical result from linear algebra asserts that
A is triangularizable and, more precisely, that A can be written in the form

A = G


B1 0 . . . 0
0 B2
... . . . ...
0 . . . 0 BK

G−1,

where, for every k ∈ {1, . . . , K}, Bk is a square matrix, of the form

Bk =


λk ⋆ . . . ⋆

0 λk
. . . ...

... . . . . . . ⋆
0 . . . 0 λk

 ,

for some λk ∈ C. We denote nk × nk the dimension of Bk, and Nk ∈ Cnk×nk

the strictly upper triangular part of Bk, so that Bk = λkIdnk
+Nk.

For any vector u0 ∈ Rn, we write

G−1u0 =

 g1
...
gK

 ,
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where, this time, g1, . . . , gK are vectors of lengths n1, n2, . . . , nK . Analogously
to Equation (6.4), Proposition 5.15 implies that, for any t ≥ 0,

ϕt(u0) = exp(tA)u0 = G

 exp(tB1)g1
...

exp(tBK)gK

 . (6.6)

We need to compute exp(tB1), . . . , exp(tBK). For any k, Bk = λkIdnk
+Nk

and, as λkIdnk
and Nk commute,

exp(tBk) = exp(tλkIdnk
) exp(tNk) = etλk exp(tNk).

Since Nk is nilpotent, t→ exp(tNk) is a polynomial map, which is constant
(equal to Idnk

) if Nk is zero and non-constant otherwise.
We can now state and prove the following stability result.

Theorem 6.8

The point 0 is a stable equilibrium of Equation (6.3) if and only if, for
every k,

(Re(λk) < 0) or (Re(λk) = 0 and Nk = 0) .

It is an asymptotically stable equilibrium if and only if, for every k,

Re(λk) < 0.

Proof. Assume that, for every k = 1, . . . , K,

(Re(λk) < 0) or (Re(λk) = 0 and Nk = 0) .

Let’s show that 0 is a stable equilibrium. As in the proof of Theorem 6.7,
it suffices to show the existence of a constant C > 0 such that, for every
u0 ∈ Rn and every t ≥ 0,

||ϕt(u0)||2 ≤ C||u0||. (6.7)

For every k and every t, since exp(tBk) = etλk exp(tNk),

||| exp(tBk)||| = |etλk | ||| exp(tNk)||| = etRe(λk)||| exp(tNk)|||.
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For every k, if Re(λk) < 0,

etRe(λk)||| exp(tNk)|||
t→+∞−→ 0.

Indeed, the exponential term etRe(λk) goes to 0 while || exp(tNk)|| is bounded
by a polynomial in t (and recall that the product of a polynomial and an
exponential goes to 0 at +∞ if the exponential goes to 0). Since t →
etRe(λk)||| exp(tNk)||| is continuous, its convergence to 0 at +∞ implies that
it is bounded over R+. Let Mk be an upper bound.

For every k, if Re(λk) = 0 and Nk = 0, then for every t,

||| exp(tBk)||| = |etλk | = 1.

In this case, we set Mk = 1.
Finally, we define M = max(M1, . . . ,MK). From Equation (6.6), for

every u0 ∈ Rn and every t ≥ 0,

||ϕt(u0)||2 ≤M |||G|||
√
||g1||22 + · · ·+ ||gK ||2

= M |||G||| ||G−1u0||2
≤M |||G||| |||G−1||| ||u0||2.

This proves Equation (6.7), and thus establishes stability.
The reasoning is similar, but simpler, to show asymptotic stability. As-

sume that, for every k ∈ 1, . . . , K,

Re(λk) < 0.

We have just shown that in this case, the equilibrium is stable. We have also
seen that, for every k,

||| exp(tBk)|||
t→+∞−→ 0.

Thus, for every u0 ∈ Rn, according to Equation (6.6),

||ϕt(u0)||2
t→+∞−→ 0.

This shows asymptotic stability.
Now, suppose that it is not true that, for every k ∈ 1, . . . , K,

(Re(λk) < 0) or (Re(λk) = 0 and Nk = 0)
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and let’s show that 0 is unstable. This assumption implies that, for some k,

(Re(λk) > 0) or (Re(λk) = 0 and Nk ̸= 0) .

Let’s fix such a k. Let V ⊂ Rn be any neighborhood of 0.
Let’s start by assuming that Re(λk) > 0. Let u0 ∈ Rn be such that

gk ̸= 0. If we multiply it with a small enough scalar number, we can assume
that u0 ∈ V . For every sufficiently large t,

|| exp(tNk)gk||2 ≥ ||gk||2.

Indeed, t → exp(tNk)gk is a polynomial function. Either it is non-constant,
and then || exp(tNk)gk||2 → +∞ as t→ +∞, or it is constant, and then for
every t, || exp(tNk)gk||2 = || exp(0Nk)gk||2 = ||gk||2.

Thus,

|| exp(tBk)gk||2 = etRe(λk)|| exp(tNk)gk||2
t→+∞→ +∞.

According to Equation (6.6), ||ϕt(u0)||2
t→+∞−→ +∞, so (ϕt(u0))t∈R+ does not

remain in any neighborhood of 0: the equilibrium is unstable.
Now, let us assume that Re(λk) = 0 and Nk ̸= 0. Let u0 ∈ V be such

that Nkgk ̸= 0 (such u0 exists, by a similar argument as in the proof of
Theorem 6.7). Then t → exp(tNk)gk is a non-constant polynomial function
(its derivative at 0 is Nkgk ̸= 0), so

|| exp(tNk)gk||2
t→+∞−→ +∞.

Consequently, || exp(tBk)gk||2 = || exp(tNk)gk||2
t→+∞−→ +∞, which leads to

||ϕt(u0)||2
t→+∞−→ +∞ and completes the proof of instability.

Finally, we assume that there exists k ∈ {1, . . . , K} such that Re(λk) ≥ 0.
Let us show that the equilibrium is not asymptotically stable. If Re(λk) > 0
or Re(λk) = 0 and Nk ̸= 0, then the equilibrium is not stable, as we have
just shown. The only remaining case we must consider is Re(λk) = 0 and
Nk = 0. Let V ⊂ Rn be any neighborhood of 0.

Let u0 ∈ V be such that gk ̸= 0. Then, for every t ≥ 0,

|| exp(tBk)gk||2 = ||etλkgk||2 = ||gk||2.

Thus, according to Equation (6.6), ||ϕt(u0)||2 ̸→ 0 as t→ +∞. The equilib-
rium is not asymptotically stable.
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In the case where the equilibrium is not stable, we can refine the previous
reasoning to determine which trajectories of the flow tend toward 0. The
resulting statement (which we will not prove) is most simply formulated
when A is hyperbolic, as defined below.

Definition 6.9 : Hyperbolicity

We say that A is hyperbolic if all its complex eigenvalues have non-zero
real parts:

Re(λk) ̸= 0, for all k ∈ {1, . . . , K}.

Theorem 6.10 : Stable and unstable spaces

Let A be a hyperbolic matrix. Let us define

Es = {u0 ∈ Rn such that gk = 0 for all k such that Re(λk) > 0};
Eu = {u0 ∈ Rn such that gk = 0 for all k such that Re(λk) < 0}.

(These sets are called the stable and unstable subspaces of A.)
Then

Es = {u0 ∈ Rn such that ϕt(u0)
t→+∞−→ 0},

Eu = {u0 ∈ Rn such that ϕt(u0)
t→−∞−→ 0}.

Moreover, these spaces are complementary: Rn = Es ⊕ Eu.

6.2.3 Graphical representation in dimension 2

In this subsection, we draw trajectories for several hyperbolic 2× 2 matrices
A. We distinguish three cases as follows:

1. If A is diagonalizable with real eigenvalues, we can, after a change
of basis (which may not necessarily be orthogonal and can therefore
slightly distort the figure, without altering its main properties), assume
that

A =
(
λ1 0
0 λ2

)
,



6.2. LINEAR EQUATIONS 155

where λ1 ≤ λ2 are the eigenvalues. The eigenvalues are non 0 because
A is hyperbolic. The flow of a point u0 = (x0, y0) is given by

ϕt(u0) = (x0e
λ1t, y0e

λ2t), ∀t ∈ R.

To draw the phase portrait, note that the orbit of u0 is included in the
graph of the map

x ∈ R→ y0

|x0|λ2/λ1
|x|λ2/λ1 ∈ R.

(Observe that λ2/λ1 can be positive or negative, depending on whether
λ1 and λ2 have the same sign; this significantly affects the shape of the
graph.)

(a) 0 < λ1 ≤ λ2 : see Figure 6.3a. All trajectories diverge (except the
one that remains at 0).

(b) λ1 < 0 < λ2 : see Figure 6.3b. The stable space Es is the x-axis
and the unstable space Eu is the y-axis.

(c) λ1 ≤ λ2 < 0 : see Figure 6.3c. This is an asymptotically stable
case: all trajectories converge to 0.

2. If A is diagonalizable with non-real eigenvalues, let λ ∈ C be one of
the eigenvalues. The other one is λ̄. We can show that, after a suitable
change of basis,

A =
(

Re(λ) Im(λ)
−Im(λ) Re(λ)

)
.

We can check that, for any t,

exp(tA) = etRe(λ)
(

cos(tIm(λ)) sin(tIm(λ))
− sin(tIm(λ)) cos(tIm(λ))

)
,

which is the composition of a rotation with angle tIm(λ) and a homo-
thety with ratio exp(tRe(λ)).

(a) Re(λ) > 0 : see figure 6.3d. All trajectories diverge (except the
one that remains at 0).

(b) Re(λ) < 0 : see figure 6.3e. This is an asymptotically stable case:
all trajectories converge to 0.
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3. If A is not diagonalizable. In this case, A has only one eigenvalue (for
any n, a matrix of size n× n with n distinct eigenvalues is diagonaliz-
able). This eigenvalue is thus real (non-real eigenvalues can only appear
in a pair, with their conjugate). Therefore, A is triangularizable over
R. In fact, after a suitable change of basis, we can assume that

A =
(
λ 1
0 λ

)
,

where λ is the eigenvalue. Then, for any t,

exp(tA) = exp(tλId2) exp
(
t

(
0 1
0 0

))
=
(
eλt teλt

0 eλt

)
.

The flow of a point u0 = (x0, y0) is

ϕt(u0) = ((x0 + ty0)eλt, y0e
λt), ∀t ∈ R.

(a) λ > 0 : see Figure 6.3f. All trajectories diverge (except the one
that remains at 0).

(b) λ < 0 : see Figure 6.3g. This is an asymptotically stable case: all
trajectories converge to 0.

6.3 Non-linear equations

In this section, we return to Equation (Autonomous) in full generality, with-
out assuming that f is linear. We state and partially prove a theorem that
generalizes some of the results we have seen in the linear case.

Theorem 6.11

Assume that the map f in Equation (Autonomous) is C1. Let u0 ∈ U
be an equilibrium.
If all eigenvalues (over C) of the Jacobian matrix Jf(u0) have a strictly
negative real part, then u0 is asymptotically stable.
If one eigenvalue of the Jacobian matrix Jf(u0) has a strictly positive
real part, then u0 is unstable.
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(a) λ1 = 1, λ2 = 2 (b) λ1 = −1, λ2 = 1 (c) λ1 = −2, λ2 = −1

(d) λ = 1 + i (e) λ = −1 + i (f) λ = 1

(g) λ = −1

Figure 6.3: Flow of Equation (6.3) for various hyperbolic matrices.
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Partial Proof. We will only prove that, if all eigenvalues have a strictly neg-
ative real part, u0 is asymptotically stable.

Without loss of generality, we can assume u0 = 0. We assume that all
eigenvalues of Jf(0) have a strictly negative real part.

The principle of the proof is to exhibit what is called a Lyapunov function
of the system, i.e., a map from U to R that decreases along the trajectories
of Equation (Autonomous). This decrease ensures that the sublevel sets of
the Lyapunov function are stable under the flow of the differential equation.
If these sublevel sets form a “basis”3 of neighborhoods of 0 (which will be the
case), then the equilibrium is stable. By studying more precisely the decay
rate of the Lyapunov function, we can even show asymptotic stability.

Our Lyapunov function will be quadratic, and it will be defined in terms
of Jf(0). Since Jf(0) is triangularizable over C, we can fix G ∈ GL(n,C)
such that

Jf(0) = G(D +N)G−1,

with D a diagonal matrix (whose diagonal entries are the eigenvalues of
Jf(0)) and N an upper triangular matrix.

Let us set µ = maxk=1,...,K Re(Dk,k) < 0.
First, we show that we can assume |||N ||| < |µ|

2 . Let us define, for ϵ small
enough (we will specify later how small ϵ should be),

H =


1

ϵ−1

. . .
ϵ−n

 .

Then

Jf(0) = GH(H−1DH +H−1NH)H−1G−1 = GH(D +H−1NH)(GH)−1

and, for all i, j ∈ {1, . . . , n},

(H−1NH)ij = Hjj

Hii

Nij,

so that (H−1NH)ij = 0 if i ≥ j (i.e., H−1NH is strictly upper triangular)
and, if i > j, ∣∣(H−1NH)ij

∣∣ ≤ ϵ|Nij|.
3that is, if any neighborhood of 0 contains a sublevel set
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Thus, for ϵ close enough to 0, H−1NH can be arbitrarily close to 0. As a
consequence, if we replace G with GH and N with H−1NH, we can assume
that

|||N ||| < |µ|
2
.

We will use as Lyapunov function the map (u ∈ U → ||G−1u||22). Along
a trajectory (ϕt(u0)), following a computation which will be detailed later,
its derivative at a point t is 2Re ⟨G−1ϕt(u0), G−1f(ϕt(u0))⟩. To show that
the map is really a Lyapunov function, we must therefore be able to upper
bound Re ⟨G−1u,G−1f(u)⟩, for u ∈ U , with a negative quantity. For any u,

Re
(〈
G−1u,G−1f(u)

〉)
= Re

(〈
G−1u,G−1 (f(0) + Jf(0)(u) + o(||u||))

〉)
= Re

(〈
G−1u,G−1G(D +N)G−1u

〉)
+ o

(
||u||2

)
= Re

(〈
G−1u, (D +N)G−1u

〉)
+ o

(
||u||2

)
=

K∑
k=1

Re(Dk,k)|(G−1u)k|2 + Re
(〈
G−1u,NG−1u

〉)
+ o

(
||u||2

)
≤ µ||G−1u||22 + |||N ||| ||G−1u||22 + o

(
||u||2

)
≤ µ

2
||G−1u||22 + o

(
||u||2

)
=
(µ

2
+ o(1)

)
||G−1u||22.

Hence, there exists η > 0 such that, for all u ∈ B(0, η),

Re
(〈
G−1u,G−1f(u)

〉)
≤ µ

4
||G−1u||22. (6.8)

(Recall that µ is negative, so both terms in the inequality are negative.)
We can now prove asymptotic stability. Let’s start with stability. Let

V ⊂ U be any neighborhood of 0. We show that there exists W ⊂ U a
neighborhood of 0 such that, for any u1 ∈ W , ϕt(u1) is well-defined and
belongs to V for all t ∈ R+.

Let W = {u ∈ Rn such that ||G−1u||2 < ζ}, with ζ > 0 a number small
enough so that W ⊂ V ∩ B(0, η) (the set W is called a sublevel set of
(u ∈ U → ||G−1u||22)). It is an open neighborhood of 0. Let u1 ∈ W be
arbitrary. Then, for all t ≥ 0,

d

dt
||G−1ϕt(u1)||22 = 2Re

(〈
G−1ϕt(u1),

d

dt

[
G−1ϕt(u1)

]〉)



160 CHAPTER 6. EQUILIBRIA OF AUTONOMOUS EQUATIONS

= 2Re
(〈
G−1ϕt(u1), G−1f (ϕt(u1))

〉)
.

According to Equation (6.8), for all t ≥ 0 such that G−1ϕt(u1) ∈ W ,

d

dt
||G−1ϕt(u1)||22 ≤

µ

2
||G−1ϕt(u1)||22 ≤ 0 (6.9)

(that is, (u ∈ U → ||G−1u||22) is a Lyapunov function on W ).
Let t0 ∈ R+ ∪ {+∞} be the largest real number (possibly infinite) such

that, for all t ∈ [0; t0[, ϕt(u1) is well-defined and belongs to W . Since W is
bounded, ϕt(u1) does not leave any compact set in the vicinity of t0. There-
fore, if t0 < +∞, ϕt0(u1) is well-defined (by the théorème des bouts). As we
have just seen, our map (t→ ||G−1ϕt(u1)||22) is decreasing on ]0; t0[. It is also
continuous, so, if t0 < +∞, we must have

||G−1ϕt0(u1)||2 ≤ ||G−1ϕ0(u1)||2 < ζ.

Thus, G−1ϕt0(u1) ∈ W . Since W is open and the maximal solutions of
(Autonomous) are defined on open sets, there exists t1 > t0 such that, for
all t ∈ [0; t1[, ϕt(u1) is well-defined and belongs to W . This contradicts the
definition of t0. Therefore, it is impossible t0 < +∞. Hence t0 = +∞ and,
for all t ∈ R+, ϕt(u1) is well-defined and belongs to W (as well as to V , since
W ⊂ V ). This completes the proof of stability.

Asymptotic stability follows the same arguments. Let us define W as
before (for an arbitrary neighborhood V ⊂ U of 0) and consider again any
arbitrary u1 ∈ W . According to what we have just seen, the inequality (6.9)
is true for all t ≥ 0. Therefore, for all t ≥ 0,

d

dt
ln
(
||G−1ϕt(u1)||22

)
≤ µ

2
,

which implies that, for all t ≥ 0,

||G−1ϕt(u1)||22 ≤ ||G−1ϕ0(u1)||22e−
µ
2 t.

Thus ||G−1ϕt(u1)||2
t→+∞−→ 0 and, as a consequence, ||ϕt(u1)||2

t→+∞−→ 0. This
concludes the proof of asymptotic stability.
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Exercise 14

We consider the following autonomous equation:{
x′ = −x

2 +y−x(x2+y2)
1+x2+y2 ,

y′ = −x− y
2−y(x2+y2)

1+x2+y2 .

1. Show that (0, 0) is the only equilibrium of this system.
[Hint: show that any equilibrium (x0, y0) is colinear to (y0,−x0).]

2. Show that maximal solutions are global.
[Hint: remember Example 4.9.]

3. Show that (0, 0) is an asymptotically stable equilibrium.
4. a) Show that (x, y) is a solution if and only if (−y, x) is a solution.

b) Which graphical property of the phase portrait can you deduce
from the previous question?

5. Let (x, y) be a maximal solution. For any t ∈ R, we define

N(t) = x(t)2 + y(t)2.

a) Show that, for all t ∈ R, N ′(t) ≤ −N(t).
b) Show that, for all t,

N(t) ≤ N(0)e−t if t ≥ 0
≥ N(0)e−t otherwise.

In particular, N(t) t→+∞−→ 0 and, if N(0) ̸= 0, N(t) t→−∞−→ +∞.
6. For any maximal solution (x, y), we define

S(x,y) : R → R2

t →
(

etx(t)
ety(t)

)
a) Show that there exists a constant C such that, for any maximal

solution (x, y) and any t ∈ R,

||S ′
(x,y)(t)||2 ≤ Cet.
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b) Let us now consider a fixed non-constant maximal solution
(x, y). Show that, if ||(x(0), y(0))||2 > C, then S(x,y) con-
verges to a non-zero limit at −∞ and, if we denote this limit
L = (Lx, Ly), it holds

||S(x,y)(t)− L||2 ≤ Cet, ∀t ∈ R−.

c) Show that the result is also true if ||(x(0), y(0))||2 ≤ C.
[Hint: consider any (x, y) such that ||(x(0), y(0))||2 ≤ C. Show
that there exists t0 < 0 such that ||(x(t0), y(t0))||2 > C. Denote
xt0 = x(.+t0), yt0 = y(.+t0). Compute S(x,y) in terms of S(xt0 ,yt0 )
and apply the previous question to S(xt0 ,yt0 ).]

d) Show that, when t→ −∞,

x(t) = Lxe
−t +O(1);

y(t) = Lye
−t +O(1).

e) Show that there exists M > 0 and T < 0 such that, for all
t < T ,

||S ′
(x,y)(t)||2 ≤Me2t.

f) Show that S(x,y)(t) = L + O(e2t) when t → −∞, and deduce
that, when t→ −∞,

x(t) = Lxe
−t +O(et);

y(t) = Lye
−t +O(et).

g) Show that the orbit O(x,y) has the line RL as an asymptote.
7. For any maximal solution (x, y), we define

V(x,y) : R → R2

t → e
t
2Rt

(
x(t)
y(t)

)
,

where Rt =
(

cos(t) − sin(t)
sin(t) cos(t)

)
.

a) Show that there exists a constant C > 0 such that, for any
maximal solution (x, y) and any t ≥ 0,

||V ′
(x,y)(t)||2 ≤ C||(x(0), y(0))||32e−t.

[Hint: recall that, from Question 5., it holds for all t ≥ 0 that
||(x(t), y(t))||2 ≤ e−

t
2 ||x(0), y(0)||2.]
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b) For any (x, y), show that, if ||(x(0), y(0))||2 < C−1/2, then V(x,y)
converges to a non-zero limit at +∞ and, if we denote λ =
(λx, λy) this limit,

V(x,y)(t) = λ+O(e−t) when t→ +∞.

c) Show that the result is also true if ||(x(0), y(0))||2 ≥ C−1/2.
d) Show that, when t→ +∞,

x(t) = e−
t
2 (λx cos(t) + λy sin(t)) +O

(
e−

3t
2

)
;

y(t) = e−
t
2 (−λx sin(t) + λy cos(t)) +O

(
e−

3t
2

)
.

8. Draw a plausible phase portrait.

6.4 Example: the pendulum

In this final section, we study the phase portrait, the equilibria, and the
stability of a particular differential equation, which models a pendulum.

6.4.1 Justification of the equation

Consider a pendulum, that is, a small mass, at the end of a rigid rod. The
rod is attached to an axis around which it can rotate to the left or right (not
forward or backward: the rod remains in a plane). For any t ∈ R, let θ(t)
denote the angle (positive or negative) between the rigid rod and the vertical
at time t. This system is depicted in Figure 6.4.

Imagine that the pendulum is subject to two forces only: the tension
of the rod (which ensures that the pendulum remains attached to the rod)
and gravity. This is very simplistic: in reality, there would necessarily be
frictional forces as well. Let m be the mass of the pendulum and R the
length of the rod. If we take the point of contact between the axis and the
rod as the origin, the coordinates of the pendulum in the plane where it
moves are, at any instant t ∈ R,

(R sin(θ(t)),−R cos(θ(t))).
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0

θ

Figure 6.4: Schematic representation of the pendulum.

The velocity is the derivative of the position,

v(t) def= (Rθ′(t) cos(θ(t)), Rθ′(t) sin(θ(t))), for all t ∈ R,

and the acceleration is the derivative of the velocity,

a(t) def= (−R(θ′(t))2 sin(θ(t)) +Rθ′′(t) cos(θ(t)),
R(θ′(t))2 cos(θ(t)) +Rθ′′(t) sin(θ(t))), for all t ∈ R.

The force due to gravity is represented by the vector

(0,−mg),

where g is the universal gravitational constant. The tension force does not
have a direct explicit formula, but we know that its direction is the direction
of the rod: for any t, there exists k(t) ∈ R such that this force is represented
by the vector

(−k(t) sin(θ(t)), k(t) cos(θ(t))).

The second law of Newton allows us to write, for any t,

(0,−mg) + (−k(t) sin(θ(t)), k(t) cos(θ(t))) = ma(t).

Thus,

−k(t) sin(θ(t)) = −R(θ′(t))2 sin(θ(t)) +Rθ′′(t) cos(θ(t));
−mg + k(t) cos(θ(t)) = R(θ′(t))2 cos(θ(t)) +Rθ′′(t) sin(θ(t)).
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We multiply the first line by cos(θ(t)), the second line by sin(θ(t)), and then
sum:

−mg sin(θ(t)) = Rθ′′(t).

To simplify notation, we assume mg = R, which leads to the following equa-
tion:

θ′′(t) = − sin(θ(t)).

This is a second-order equation. To arrive at an equation of the form
(Autonomous), we follow the remark before the Cauchy-Lipschitz theorem
(Theorem 4.1): we introduce the map u : t ∈ R → (θ(t), θ′(t)) ∈ R2. It
satisfies the equation

u′(t) = f(u(t)), (Pendulum)

with f : (u1, u2) ∈ R2 → (u2,− sin(u1)).
It can already be noticed that the maximal solutions of (Pendulum) are

defined on R, by virtue of the property stated in Example 4.9.4

6.4.2 Equilibria

The zeros of f (and thus the equilibria of the system (Pendulum)) are the
points in R2 of the form

(kπ, 0)

for all integers k ∈ Z. When k is even, this corresponds to the “bottom”
position of the pendulum; when k is odd, on the contrary, it corresponds to
the “top” position.

Physical intuition tells us that the bottom position (k even) is stable (if
the pendulum is at the bottom and is slightly moved, it will oscillate around
the equilibrium position, and not move away from it), while the top position
(k odd) is unstable (if the rod is vertical, with the pendulum above the axis, a
small disturbance will rather cause the pendulum to fall down than to return
to this equilibrium position).

4Indeed, for any (u1, u2), since | sin(u1)| ≤ |u1|, we have ||f(u1, u2)||2 ≤ ||(u1, u2)||2.
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To prove this, we can try to apply Theorem 6.11. For any k ∈ Z, the
Jacobian matrix of f at (kπ, 0) is

Jf(kπ, 0) =
(

0 1
(−1)k+1 0

)
.

We verify that the eigenvalues of this matrix are i and −i if k is even, 1 and
−1 if k is odd. Since Re(1) > 0, the equilibrium (kπ, 0) must be unstable for
all odd k.

However, if k is even, we cannot deduce anything from Theorem 6.11: the
real part of i and −i is zero.

6.4.3 First integral and phase portrait

The trajectories of Equation (Pendulum) do not have an explicit expression.
However, they can be studied relatively accurately, and also the stability of
the equilibria (kπ, 0) for even k, thanks to a very useful tool: a first integral.
This is a map which stays constant along the trajectories of the system, so
that the orbits are subsets of its level curves.

In our case, the most natural first integral is

F : (u1, u2) ∈ R2 → − cos(u1) + u2
2

2
.

This is indeed a first integral because, if u is a solution of equation (Pendulum),
then, for any t,

(F ◦ u)′(t) = u′1(t) sin(u1(t)) + u′2(t)u2(t)
= u2(t) sin(u1(t))− sin(u1(t))u2(t)
= 0,

meaning that F ◦ u is constant.
What do the level curves of F look like? They are depicted in Figure 6.5.

• If F0 < −1, {u, F (u) = F0} = ∅, since F (u1, u2) = − cos(u1) + u2
2

2 ≥
− cos(u1) ≥ −1 for all (u1, u2) ∈ R2.

• If F0 = −1, {u, F (u) = F0} = {(2kπ, 0), k ∈ Z} ; the level set is
discrete.
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• If −1 < F0 < 1, {u, F (u) = F0} is a union of closed curves, identical
to each other up to translation by a multiple of (2π, 0).

• If F0 = 1, {u, F (u) = F0} can be written as the union of two (regular)
curves that intersect at points (kπ, 0) for odd k.

• If F0 > 1, {u, F (u) = F0} = {(u1, u2), u2 = ±
√

2(F0 + cos(u1))}. This
set has two connected components, both unbounded; one is included in
the upper half-plane and the other one in the lower half-plane.

Knowing that the trajectories of Equation (Pendulum) are included in
the level curves of F allows us to prove the following theorem.

Theorem 6.12

The constant maximal solutions of Equation (Pendulum) are the maps
(t ∈ R→ (kπ, 0)) for all k ∈ Z.
Let u = (u1, u2) : R→ R2 be a non-constant maximal solution.
We set F0 = F (u(0)).

• If F0 < 1, u is periodic. Moreover, there exists k ∈ Z an in-
teger such that u1 alternately increases from 2kπ − arcos(−F0)
to 2kπ + arcos(−F0) and decreases from 2kπ + arcos(−F0) to
2kπ − arcos(−F0).

• If F0 > 1, u is not periodic and u1 diverges. However, there exists
T > 0 such that

u(t+ T ) = u(t) + (2π, 0), for all t ∈ R

or
u(t+ T ) = u(t)− (2π, 0), for all t ∈ R.

• If F0 = 1, there exists k ∈ Z an integer such that

u(t) t→−∞−→ ((2k − 1)π, 0) and u(t) t→+∞−→ ((2k + 1)π, 0)

or u(t) t→−∞−→ ((2k + 1)π, 0) and u(t) t→+∞−→ ((2k − 1)π, 0).

Before partly proving this theorem, let us discuss the physical mean-
ing of the trajectories. The case F0 < 1 corresponds to periodic oscilla-
tion movements around the “bottom” equilibrium position, between angles
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• • • • • • •

F = −1

F = 0

F = 1 F = 2

Figure 6.5: Level lines of F ; black dots represent equilibria (kπ, 0), k ∈ Z.

−arcos(−F0) and arcos(−F0). The case F0 > 1 corresponds to rotational
movements around the axis: starting (for example) from the bottom with a
sufficiently high speed, the pendulum reaches the “top” equilibrium position,
falls on the other side, and repeats.

The case F0 = 1 is quite special. These trajectories are “limits” between
the previous two regimes: if the pendulum is launched with exactly the right
impulse, it can theoretically go towards the “top” equilibrium position, with
a speed that goes to 0 in such a way that the pendulum does not reach this
top position in finite time but simply converges to it. These trajectories are
never observed in reality.

Partial proof of the theorem. The assertion about constant solutions is due
to the fact that the points (kπ, 0) for k ∈ Z are the only zeros of f .

For the rest, we will only prove the first point. The other ones follow
from somewhat similar arguments.

Let us assume that F0 < 1. In fact, F0 ∈]− 1; 1[: F does not take values
below −1, and we cannot have F0 = −1, otherwise u would be constant
(points reaching value −1 are equilibria).

Let u = (u1, u2). The function u2 is not constant (otherwise, sin(u1) =
−u′2 must be identically zero, so u1 is also constant, meaning u is constant).
Thus, there exists t0 ∈ R such that u2(t0) ̸= 0. Let’s fix such a point. Let us
for instance assume that u2(t0) > 0 (the same reasoning applies if u2(t0) < 0).

First, we notice that u is bounded. Indeed, for any t,

− cos(u1(t)) + u2(t)2

2
= F (u(t)) = F0,

so u2(t)2 ≤ 2(F0 + cos(u1)(t)) ≤ 2(F0 + 1). Moreover, u1(t) does not take
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any value of the form kπ with k ∈ Z odd (since, for any t, cos(u1(t)) =
−F0 + u2(t)2

2 ≥ −F0 > −1). By the intermediate value theorem, u1 thus
remains in an interval of the form ]kπ; (k + 2)π[ for some odd k ∈ Z.

Let’s first show that it is impossible that u2(t) > 0 for all t ≥ t0. By
contradiction, let’s assume that u2(t) > 0 for all t ≥ t0. Since u′1(t) = u2(t)
for all t, the function u1 is increasing on [t0; +∞[. We have seen that it is
bounded. Therefore, it has a limit θ+∞ as t tends to +∞.

If sin(θ+∞) > 0, then u′2(t) = − sin(u1(t)) < −1
2 sin(θ+∞) for all t large

enough. Consequently, u2 → −∞ as t → +∞, which contradicts the fact
that u is bounded. Similarly, if sin(θ+∞) < 0, we arrive at a contradiction.

Therefore, we must have sin(θ+∞) = 0, i.e., θ+∞ = kπ for some k ∈ Z.
It is impossible for k to be odd (otherwise, cos(u1(t))

t→+∞−→ −1, but we have
already seen that cos(u1(t)) ≥ −F0 > −1 for all t). Thus, k is even, and

cos(u1(t))
t→+∞−→ 1.

For all t ≥ t0, u2(t) =
√

2(F0 + cos(u1(t))); consequently,

u2(t)
t→+∞−→

√
2(F0 + 1).

In particular, u2(t) >
√
F0 + 1 for all t large enough, which implies that

u′1(t) = u2(t) >
√
F0 + 1, so u1

+∞−→ +∞, which is again a contradiction
(recall that we have said that u1 is bounded).

We have thus shown that it is impossible that u2(t) > 0 for all t ≥ t0.
Similarly, it is impossible that u2(t) > 0 for all t ≤ t0.

Let t−0 be the largest real number below t0 such that u2(t−0 ) = 0 and t+0
be the smallest real number above t0 such that u2(t+0 ) = 0. We must have

− cos(u1(t−0 )) = − cos(u1(t+0 )) = F0.

This means that u1(t−0 ) and u1(t+0 ) are of the form 2kπ − arcos(−F0) or
2kπ + arcos(−F0), for some k ∈ Z (which may not necessarily be the same
for t−0 and t+0 ).

For all t, cos(u1(t)) = u2(t)2

2 − F0 ≥ −F0. As u1 is strictly increasing to
the right of t−0 (since u′1 = u2), we cannot have u1(t−0 ) = 2kπ+arcos(−F0) for
some k ∈ Z (otherwise, as cos is strictly decreasing in the neighborhood of
2kπ + arcos(−F0), we would have cos(u1(t)) < −F0 for all t slightly greater
than t−0 ). Therefore, there exists k− such that

u1(t−0 ) = 2k−π − arcos(−F0).



170 CHAPTER 6. EQUILIBRIA OF AUTONOMOUS EQUATIONS

A similar reasoning shows that there exists k+ such that

u1(t+0 ) = 2k+π + arcos(−F0).

We must have k− ≤ k+ because u1(t−0 ) < u1(t+0 ). We cannot have k− < k+
otherwise, by the intermediate value theorem, there would exist t such that
u1(t) = (2k+ − 1)π, and then cos(u1(t)) = −1 < −F0. Thus, k− = k+. Let’s
denote this common value as k.

To conclude, we will show that, for all t ∈ R,

u1(t+ t+0 − t−0 ) = 4kπ − u1(t); (6.10)
u2(t+ t+0 − t−0 ) = −u2(t).

For now, let’s assume that these relations hold true and deduce the result.
For all t, we have

u1(t+ 2(t+0 − t−0 )) = 4kπ − u1(t+ t+0 − t−0 ) = u1(t);
u2(t+ 2(t+0 − t−0 )) = −u2(t+ t+0 − t−0 ) = u2(t).

This shows that u is 2(t+0 − t−0 )-periodic.
Additionally, we have seen that u1 increases from 2kπ − arcos(−F0) to

2kπ+arcos(−F0) on [t−0 ; t+0 ]. The relation u1(t+t+0 −t−0 ) = 4kπ−u1(t) shows
that it decreases from 2kπ+arcos(−F0) to 2kπ−arcos(−F0) on [t+0 ; 2t+0 −t−0 ].
Then, the 2(t+0 − t−0 )-periodicity shows that u1 again increases from 2kπ −
arcos(−F0) to 2kπ + arcos(−F0) on [2t+0 − t−0 ; 3t+0 − 2t−0 ], and so on.

All that remains to prove is Equation (6.10). To do this, we define

v : R → R2

t → (4kπ − u1(t),−u2(t)).

This is a solution of Equation (Pendulum): for all t,

v′1(t) = −u′1(t) = −u2(t) = v2(t)
v′2(t) = −u′2(t) = sin(u1(t)) = − sin(4kπ − u1(t)) = − sin(v1(t)).

The map t ∈ R→ u(t+ (t+0 − t−0 )) is also a solution (as all translations of u).
These two solutions are maximal, as they are defined on R. They coincide
at t−0 :

v(t−0 ) = (4kπ − u1(t−0 ),−u2(t−0 ))
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• • • • • • •

Figure 6.6: Phase portrait of Equation (Pendulum).

= (4kπ − (2kπ − arcos(−F0)), 0)
= (2kπ + arcos(−F0), 0)
= u(t+0 )
= u(t−0 + (t+0 − t−0 )).

By uniqueness of the maximal solution of a Cauchy problem under a locally
Lipschitz assumption, we must have v(t) = u(t+ t+0 − t−0 ) for all t ∈ R, which
proves Equation (6.10).

The phase portrait is depicted in Figure 6.6. In this figure, we can clearly
see the instability of the critical points (kπ, 0) for odd integers k ∈ Z (some
trajectories move away from them even though they started extremely close).
The figure also allows us to conjecture, in line with the physical intuition
discussed earlier, that the critical points (kπ, 0) for even integers k ∈ Z are
stable.

Theorem 6.13

For every even integer k ∈ Z, (kπ, 0) is a stable equilibrium of the
system.

Proof. Let us prove this for k = 0 (which simplifies the notation but does
not modify the argument).

Let V ⊂ R2 be a neighborhood of (0, 0). Choose η ∈]0; 2π[ such that
]− η; η[2⊂ V . Consider the following neighborhood of 0:

W =
{
u ∈ R2, F (u) < − cos(η)

}
∩]− η; η[2.
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For any solution of (Pendulum) with u(0) ∈ W , we have u(t) ∈ W ⊂ V for
all t ∈ R, and in particular for all t ≥ 0.

Indeed, since F ◦ u is constant, we have for any t ∈ R that F (u(t)) =
F (u(0)) < − cos(η). This implies that there exists no t ∈ R such that
u1(t) = ±η or u2(t) = ±η: if, for some t, u1(t) = ±η,

F (u(t)) ≥ − cos(u1(t)) = − cos(η)

and if u2(t) = ±η,

F (u(t)) ≥ −1 + u2(t)2

2
= −1 + η2

2
≥ − cos(η).

In both cases, this is impossible. Since u is continuous, we must have u(t) ∈
]− η; η[2 for all t ∈ R, which completes the proof that u(t) ∈ W .



Chapter 7

Solutions of some exercises

7.1 Exercise 1
1. Let i, j ∈ {1, . . . , n} be fixed. From the definition of the differential,

d(df)(x)(ei) = lim
t→0

df(x+ tei)− df(x)
t

(∈ L(Rn,R)).

Since the map (L ∈ L(Rn,R)→ L(ej) ∈ R) is continuous,

d(df)(x)(ei)(ej) =
(

lim
t→0

df(x+ tei)− df(x)
t

)
(ej)

= lim
t→0

((
df(x+ tei)− df(x)

t

)
(ej)
)

= lim
t→0

df(x+ tei)(ej)− df(x)(ej)
t

= lim
t→0

∂f
∂xj

(x+ tei)− ∂f
∂xj

(x)
t

= ∂

∂xi

∂f

∂xj
(x).

2. a) Let r > 0 be such that B(x, 2r) ⊂ U . For any t, u ∈] − r; r[, f(x +
tei + uej) is well-defined.
For any t ∈]− r; r[, the map

gt : ]− r; r[ → R
s → f(x+ tei + sej)

173
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is differentiable. For each s, g′t(s) = ∂f
∂xj

(x+ tei + sej). Therefore,

f(x+ tei + uej)− f(x+ tei) = gt(u)− gt(0)

=
∫ u

0
g′t(s)ds

=
∫ u

0

∂f

∂xj
(x+ tei + sej)ds.

The same reasoning, but replacing t with 0, shows that

f(x+ uej)− f(x) =
∫ u

0

∂f

∂xj
(x+ sej)ds.

If we substract this equality from the previous one, we obtain the
result.

b) The map ∂f
∂xj

is differentiable at x (since df is differentiable). There-
fore, for t, s going to 0,

∂f

∂xj
(x+ tei + sej) = d

(
∂f

∂xj

)
(x)(tei + sej) + o(|s|+ |t|)

and
∂f

∂xj
(x+ sej) = d

(
∂f

∂xj

)
(x)(sej) + o(s),

so that
∂f

∂xj
(x+ tei + sej)−

∂f

∂xj
(x+ sej)

= d

(
∂f

∂xj

)
(x)(tei + sej)− d

(
∂f

∂xj

)
(x)(sej) + o(|s|+ |t|)

= d

(
∂f

∂xj

)
(x)(tei) + o(|s|+ |t|)

(by linearity of the differential)

= t
∂

∂xi

∂f

∂xj
(x) + o(|s|+ |t|).

Consequently,∣∣∣∣ ∂f∂xj (x+ tei + sej)−
∂f

∂xj
(x+ sej)− t

∂

∂xi

∂f

∂xj
(x)
∣∣∣∣ = o(|s|+ |t|)

≤ ϵ(|t|+ |s|)
for all t, s close enough to zero.
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c) Let r > 0 be such that the inequality from the previous question
holds for all t, s ∈] − r; r[. We combine Questions a) and b): for all
t, u ∈]− r; r[,∣∣∣∣∣ϕ(t, u)−

∫ u

0
t
∂

∂xi

∂f

∂xj
(x)ds

∣∣∣∣∣
≤
∫

[0;u]

∣∣∣∣ ∂f∂xj (x+ tei + sej)−
∂f

∂xj
(x+ sej)− t

∂

∂xi

∂f

∂xj
(x)
∣∣∣∣ ds

(by triangular inequality)

≤
∫

[0;u]
ϵ(|t|+ |s|)ds

= ϵ

(
|t| |u|+ |u|

2

2

)
≤ ϵ

(
|t| |u|+ |u|2

)
.

We obtain the result by noting that∫ u

0
t
∂

∂xi

∂f

∂xj
(x)ds = tu

∂

∂xi

∂f

∂xj
(x).

d) The definition of ϕ is invariant to exchanging t with u and i with j,
so the same reasoning as before gives the same inequality as in the
previous question, with t replaced by u and i by j.

e) Using the triangular inequality and the previous two questions, we get
that, for all t, u close enough to 0,∣∣∣∣tu ∂

∂xi

∂f

∂xj
(x)− tu ∂

∂xj

∂f

∂xi
(x)
∣∣∣∣ ≤ ϵ(|u|2 + 2|t| |u|+ |t|2).

In particular, for all t close enough to zero, setting u = t and dividing
by |t|2, ∣∣∣∣ ∂∂xi ∂f∂xj (x)− ∂

∂xj

∂f

∂xi
(x)
∣∣∣∣ ≤ 4ϵ.

Since ϵ > 0 is arbitrary, this shows that∣∣∣∣ ∂∂xi ∂f∂xj (x)− ∂

∂xj

∂f

∂xi
(x)
∣∣∣∣ = 0,

hence ∂
∂xi

∂f
∂xj

(x) = ∂
∂xj

∂f
∂xi

(x).
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7.2 Exercise 2
We apply the mean value inequality to U = Rn and M = 1:

∀x, y ∈ Rn, ||f(x)− f(y)|| ≤ ||x− y||.
In particular, for y = 0:

∀x ∈ Rn, ||f(x)− f(0)|| ≤ ||x||.
Using the triangular value inequality, it holds for all x ∈ Rn that

||f(x)|| ≤ ||f(0)||+ ||f(x)− f(0)||
≤ ||f(0)||+ ||x||.

7.3 Exercise 3
Showing that f is well-defined consists in showing that f(x1, x2) indeed be-
longs to S1 for all (x1, x2) ∈ S1. Let us consider any (x1, x2) ∈ S1. It holds(

x2
1
)2 +

(
x2

√
1 + x2

1

)2

= x4
1 + x2

2(1 + x2
1)

= x2
1(x2

1 + x2
2) + x2

2

= x2
1 + x2

2

= 1.
Therefore, f(x1, x2) ∈ S1.

Let us now show that f is C∞. From Definition 2.27, we must show that

f̃ : S1 → R2

(x1, x2) → (x2
1, x2

√
1 + x2

1)
is C∞. From Example 2.26, we know that

π1 × π2 : S1 → R2

(x1, x2) → (x1, x2)

is C∞. As f̃ is the composition of π1 × π2 with the map

g : R2 → R2

(x1, x2) → (x2
1, x2

√
1 + x2

1),
which is C∞ (it is a composition of √. : R∗

+ → R, which is C∞ on this
domain, and polynomial functions). From Proposition 2.29, f̃ is C∞.
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7.4 Exercise 4
1. For any t ∈ I, γ′(t) = (γ′1(t), γ′2(t)). Since, for any t,

Tγ(t)M = Tγ1(t)M1 × Tγ2(t)M2,

it also holds (
Tγ(t)M

)⊥ =
(
Tγ1(t)M1

)⊥ × (Tγ2(t)M2
)⊥
,

and we have the following equivalences:

γ is a geodesic in M

⇐⇒ ∀t ∈ I, γ′(t) ∈
(
Tγ(t)M

)⊥
⇐⇒

(
∀t ∈ I, γ′1(t) ∈

(
Tγ1(t)M1

)⊥) and
(
∀t ∈ I, γ′2(t) ∈

(
Tγ2(t)M2

)⊥)
⇐⇒ γ1 is a geodesic in M1 and γ2 a geodesic in M2.

2. a) We assume that γ1 has constant speed c1 (i.e. ||γ′1(t)||2 = c1 for all
t ∈ I) and γ2 has constant speed c2. Then

ℓ(γ1) =
∫
I

||γ′1(t)||2dt = c1ℓ(I).

Similarly, ℓ(γ2) = c2ℓ(I). In addition,

ℓ(γ) =
∫
I

||γ′(t)||2dt

=
∫
I

√
||γ′1(t)||22 + ||γ′2(t)||22dt

=
∫
I

√
c2

1 + c2
2dt

=
√
c2

1 + c2
2 ℓ(I)

=
√

(c1ℓ(I))2 + (c2ℓ(I))2

=
√
ℓ(γ1)2 + ℓ(γ2)2.
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b) Let us assume that γ has constant speed and ℓ(γ) = distM(x, y).
Then, from Theorem 3.22, γ is a geodesic in M . From Question
1., its components γ1, γ2 are geodesics, respectively, in M1 and M2.
Therefore, from Proposition 3.29, they have constant speed.

c) From Theorem 3.21 (M is closed and connected, since M1,M2 are
closed and connected), there exists a path with minimal length con-
necting x and y. Let δ be such a path. Up to reparametrization, we
can assume that it has constant speed. Then, from Question b), its
components δ1 and δ2 have constant speed. Therefore,

distM(x, y) = ℓ(δ)
=
√
ℓ(δ1)2 + ℓ(δ2)2 from Question a)

≥
√

distM1(x1, y1)2 + distM2(x2, y2)2.

d) Let δ1 : I1 →M1 be a path of minimal length connecting x1 to y1, with
constant speed, and δ2 : I2 →M2 a path of minimal length connecting
x2 to y2, also with constant speed.
First case: I1 = I2.
We define δ = (δ1, δ2) : I1 →M . From Question a),√

distM1(x1, y1)2 + distM2(x2, y2)2 =
√
ℓ(δ1)2 + ℓ(δ2)2

= ℓ(δ)
≥ distM(x, y).

Combined with Question c), this inequality shows the desired equality.
Second case: I1 ̸= I2.
Let a1, b1, a2, b2 be such that I1 = [a1, b1], I2 = [a2, b2]. Let us define

δ̃2 : [a1, b1] → M2

t → δ2

(
(b1−t)a2+(t−a1)b2

b1−a1

)
.

It is a path from x2 to y2. Its speed is constant, because the speed
of δ2 is constant. One can check that its length is the same as δ2’s,
hence δ̃2 has minimal length. Its domain is the same as δ1, so we are
back in the first case.
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e) First, let γ be a path with minimal length and constant speed. From
Question b), γ1 and γ2 have constant speed. In addition, from the
previous questions,√

distM1(x1, y1)2 + distM2(x2, y2)2

= distM(x, y)
= ℓ(γ)
=
√
ℓ(γ1)2 + ℓ(γ2)2

≥
√

distM1(x1, y1)2 + distM2(x2, y2)2.

Since the left and right-handside parts of this inequality are equal, the
inequalities

ℓ(γ1) ≥ distM1(x1, y1) and ℓ(γ2) ≥ distM2(x2, y2)

must be equalities, meaning that γ1 and γ2 have minimal length.
Conversely, if γ1, γ2 are paths with minimal length and constant speed,
then γ has constant speed, and√

distM1(x1, y1)2 + distM2(x2, y2)2 =
√
ℓ(γ1)2 + ℓ(γ2)2

= ℓ(γ) from Question a)
≥ distM(x, y).

Since both sides of the inequality are equal, it must hold ℓ(γ) =
distM(x, y), hence γ has minimal length.

f) Let γ1, γ2 : [0; 1]→ [0; 1] be C2 maps, such that
• γ1, γ2 are increasing;
• γ1(0) = γ2(0) = 0 and γ1(1) = γ2(1) = 1;
• γ1 is not identical to γ2.

Then ℓ(γ1) =
∫ 1

0 |γ
′
1(t)|dt =

∫ 1
0 γ

′
1(t)dt = 1 = distR(0, 1), so γ1 has

minimal length. Similarly, γ2 has minimal length. However,

ℓ((γ1, γ2) =
∫ 1

0
||(γ′1(t), γ′2(t))||2dt

≥
∣∣∣∣∣∣∣∣∫ 1

0
(γ′1(t), γ′2(t))dt

∣∣∣∣∣∣∣∣
= ||(1, 1)− (0, 0)||2
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=
√

2.

The inequality is an equality if and only if all (γ′1(t), γ′2(t)), for all
t ∈ [0; 1], are positively colinear. This is not possible, because it
would imply that γ′1 is proportional to γ′2. Since γ1 and γ2 coincide in
0 and 1, this would actually imply that γ1 = γ2, which is not true.
Consequently, ℓ((γ1, γ2)) >

√
2, so that γ does not have minimal

length.

7.5 Exercise 7
We define

f̃ : R× (I × U) → Rn+1

(s, (t, u)) → (1, f(t, u)).
First, we consider u : J → U a solution of Problem (Cauchy) and show

that ũ is a solution to {
ũ′ = f̃(t, ũ),

ũ(t0) = (t0, u0).
(7.1)

The domain of ũ, which is J , is naturally a subset of R. The map ũ takes its
values in J × U ⊂ I × U . As u is differentiable, both components of ũ are
differentiable, so ũ is differentiable. It holds that t0 ∈ J and

ũ(t0) = (t0, u(t0)) = (t0, u0).

And for all t ∈ J ,

ũ′(t) = (1, u′(t)) = (1, f(t, u(t))) = f̃(t, ũ(t)).

Conversely, let us assume that ũ is a solution to Problem (7.1) and check
that it is a solution to Problem (Cauchy).

Since ũ takes its values in I×U , it holds for all t ∈ J that (t, u(t)) belongs
to I × U , hence t ∈ I. This proves that J ⊂ I. The map u is differentiable,
since it is the second component of ũ, which is differentiable. It holds that
t0 ∈ J and, since (t0, u(t0)) = ũ(t0) = (t0, u0), we must have

u(t0) = u0.

For all t ∈ J , since (1, u′(t)) = ũ′(t) = f̃(t, ũ(t)) = (1, f(t, u(t))), we must
have

u′(t) = f(t, u(t)),
so that u is indeed a solution to Problem (Cauchy).
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7.6 Exercise 8
1. As f is C1, it is locally Lipschitz. The Cauchy-Lipschitz theorem thus

implies that the corresponding Cauchy problem has a unique maximal
solution.

2. a) The zero map is a solution of the Cauchy problem. It is maximal, as
it is defined on R. Since the maximal solution is unique, the zero map
is this solution.

b) Since u is a solution to the original problem, it holds u′(t) = f(u(t))
for all t ∈ J . In addition, the new initial condition reads u(t1) = u(t1),
so it is obviously satisfied by u.

c) Let us assume that u(t1) = 0 for some t1 ∈ J . From Question 2.b), u
is a solution to the Cauchy problem{

u′(t) = f(u(t)),
u(t1) = 0.

From Question 2.a), the maximal solution of this problem is the zero
map. From Proposition 4.4, u coincides with the maximal solution on
its domain, meaning that u(t) = 0 for all t ∈ J . In particular, u0 = 0
so we are in the configuration of Question 2.a), which implies that
J = R and u ≡ 0.

3. a) As f(t) ≥ t2 ≥ 0 for all t ∈ R, u′ is nonnegative, hence u is nonde-
creasing. Therefore, for any t ∈]−∞; t0] ∩ J ,

u(t) ≤ u(t0) = u0.

In addition, u is not the zero map (otherwise we would have u0 =
u(t0) = 0). From Question 2., this means that u(t) ̸= 0 for all t ∈
J . As u is continuous, it must therefore have constant sign. Since
u(t0) > 0, it must hold u(t) > 0 for all t ∈ J . Summing up, it holds
for any t ∈]−∞; t0] ∩ J that

u(t) ∈]0;u0].

b) The previous question implies that, in the neighborhood of inf J , u
stays within the compact set [0;u0]. From the théorème des bouts,
this implies that inf J = −∞.
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c) We have seen that u is nondecreasing and lower bounded by 0 on the
interval ] − ∞; t0]. Consequently, it converges to some nonnegative
limit, which we denote u−∞, in −∞.
By contradiction, we assume that u−∞ > 0. Then, when t→ −∞, as
f is continuous,

u′(t) = f(u(t))→ f(u−∞).

Since f(u−∞) ≥ u2
−∞ > 0, the definition of the limit says that there

exists M ∈ J such that

∀t ∈]−∞;M ], u′(t) ≥ f(u−∞)
2

.

Let us fix such a number M . For all t ∈]−∞;M ],

u(M)− u(t) =
∫ M

t

u′(s)ds

≥
∫ M

t

f(u−∞)
2

ds

= (M − t)f(u−∞)
2

.

Equivalently,

u(t) ≤ u(M) + (t−M)f(u−∞)
2

.

As u(M) + (t −M)f(u−∞)
2 → −∞ when t → −∞, it must also hold

that u(t)→ −∞ when t→ −∞, which contradicts the fact that u is
nonnegative.
Therefore, u−∞ = 0.

4. a) We have seen in Question 3.a) that u(t) > 0 for all t ∈ J . Therefore,
− 1

u
is well-defined and negative over J .

b) By the theorem of composition of differentiable maps, − 1
u

is differen-
tiable over J and, for any t ∈ J ,(

−1
u

)′

(t) = u′(t)
u(t)2

= f(u(t))
u(t)2

≥ 1.
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As a consequence, for any t ∈ [t0; +∞[∩J ,

− 1
u(t)

= − 1
u(t0)

+
∫ t

t0

(
−1
u

)′

(s)ds

≥ − 1
u(t0)

+
∫ t

t0

1ds

= − 1
u(t0)

+ (t− t0).

c) By contradiction, if sup J = +∞, then, from the previous question,
− 1

u(t) → +∞ when t → +∞. This contradicts the fact that − 1
u

is
negative over J .

d) We have already seen that u is nondecreasing. Therefore, either it goes
to +∞ in sup J , or it stays bounded. It cannot stays bounded, other-
wise this would contradict the théorème des bouts. Consequently, it
goes to +∞.

7.7 Exercise 9
Let us define

f : u ∈ R∗
+ →

e−u2

2u
.

Let us find all maximal solutions of the equation u′ = f(u). Then, we will
see which one is equal to u0 at 0 (observe that f is C1, hence the Cauchy-
Lipschitz theorem says that there exists a unique maximal solution).

The map 1
f

is
(
u ∈ R∗

+ → 2ueu2
)
. One of its primitives is

Φ : R∗
+ → R
x → ex

2
.

It is a bijection between R∗
+ and ]1; +∞[, with reciprocal

Φ−1 : ]1; +∞[ → R∗
+

t →
√

log(t).

From the class, the maximal solutions are therefore the maps

t ∈]1 +D; +∞[→
√

log(t−D),
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for all values of D ∈ R. For any D, the value of this map at 0 is
√

log(−D)
(provided that D < −1, otherwise it is not defined). Therefore, the map is
u0 at 0 if and only if(√

log(−D) = u0

)
⇐⇒

(
D = −eu2

0

)
.

Consequently, the desired maximal solution is

t ∈]1− eu2
0 ; +∞[→

√
log(t+ eu

2
0).

7.8 Exercise 11
1. a) This problem is {

dR
dt

(t, 0) = A(t)R(t, 0),
R(0, 0) = Id2.

b) From the Cauchy-Lipschitz theorem, this problem has a unique max-
imal solution. If the map F : t →

(
1+t2 t3

−t 1−t2

)
is a solution, it is a

maximal solution (as its domain is R), and it is therefore the only
maximal solution.
Let us check that F is a solution. It satisfies the initial condition:
F (0) = Id2. Moreover, for all t,

dF

dt
(t) =

(
2t 3t2
−1 −2t

)
and

A(t)F (t) =
(

2t 3t2
−1 −2t

)
.

c) For all t ∈ R,

R(0, t) = R(t, 0)−1

=
(

1 + t2 t3

−t 1− t2
)−1

= 1
(1 + t2)(1− t2)− (−t)t3

(
1− t2 −t3
t 1 + t2

)
=
(

1− t2 −t3
t 1 + t2

)
.
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2. We use Duhamel’s formula: the maximal solutions are all maps of the
form

u : t ∈ R → R(t, 0)u0 +
∫ t

0
R(t, s)b(s)ds,

for some u0 ∈ R2.
Let us compute

∫ t

0 R(t, s)b(s)ds for all t ∈ R. For all t, s ∈ R,

R(t, s) = R(t, 0)R(0, s)b(s)

= R(t, 0)
(

1−s2 −s3

s 1+s2

)(
−2s4−3s2+3

2s3+s

)
= R(t, 0)

(
−6s2+3

4s

)
.

As a consequence, for all t ∈ R,∫ t

0
R(t, s)b(s)ds =

∫ t

0
R(t, 0)

(
−6s2+3

4s

)
ds

= R(t, 0)
∫ t

0

(
−6s2+3

4s

)
ds

= R(t, 0)
(
−2t3+3t

2t2
)

=
(

t3+3t
−t2

)
.

The maximal solutions of the differential equations are all maps of the
form

u : t ∈ R → R(t, 0)u0 +
(

t3+3t
−t2

)
,

for some u0 ∈ R2, which can equivalently be written as all maps of the
form

u : t ∈ R →
(
t3 + 3t
−t2

)
+ u1

(
1 + t2

−t

)
+ u2

(
t3

1− t2
)
,

for some u1, u2 ∈ R.
3. To solve the Cauchy problem, it suffices to find, among all maximal

solutions, which one satisfies the equality u(1) = ( 1
0 ). Let us compute

for which u1, u2 (using the notation of the previous question) the equality
holds.
The equality is equivalent to(

4
−1

)
+ u1

(
2
−1

)
+ u2

(
1
0

)
=
(

1
0

)
.
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This amounts to u1 = u2 = −1. The solution is therefore

u : t ∈ R →
(
−t2 + 3t− 1

t− 1

)
.

7.9 Exercise 12
1. a) Let t0 ∈ I be such that x(t0) = 0. Then x is a solution of the Cauchy

problem {
x′ = x(1− x)

x(t0) = 0
From the Cauchy-Lipschitz theorem (which applies because x→ x(1−
x) is C1 on R), this problem has a unique maximal solution, and all
solutions are restrictions of the maximal solution to a subinterval.
Since the zero map is a maximal solution, it is the only maximal
solution, and x is the restriction of this map to I, hence x is zero on
I. In particular, it must hold that x0 = 0.
For all t ∈ I, y′(t) = (1− 2x(t))y(t) = y(t). Therefore, y is a solution
of the Cauchy problem {

y′ = y
y(0) = y0

The maximal solution of this problem is (t ∈ R→ y0e
t). Therefore,

y(t) = y0e
t for all t ∈ I.

We have shown that, for all t ∈ I,

(x(t), y(t)) = (0, y0e
t).

Since (x, y) is a maximal solution, the interval I must be equal to R.
b) The same reasoning as in the previous question shows that, if x(t0) = 1

for some t0 ∈ I, then x ≡ 1 on I. In particular, x0 = 1.
The differential equation satisfied by y simplifies and we find that, for
all t ∈ I,

y(t) = y0e
−t.

Finally, using the maximality of (x, y), we obtain that I = R and, for
all t ∈ R,

(x(t), y(t)) = (1, y0e
−t).
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c) Since x is continuous on the interval I, the intermediate values theo-
rem implies that, since x(t) /∈ {0, 1} for all t, either

• x(t) < 0 for all t ∈ I;
• or 0 < x(t) < 1 for all t ∈ I;
• or 1 < x(t) for all t ∈ I.

In the first case, x′(t) = x(t)(1 − x(t)) < 0 for all t ∈ I, hence x is
decreasing. In the second case, x′(t) = x(t)(1−x(t)) > 0 for all t ∈ I,
hence x is increasing. In the last case, x′(t) = x(t)(1 − x(t)) < 0 for
all t ∈ I, hence x is decreasing.

d) Let us define F = y
x(1−x) . It is well-defined on I, since x(t) /∈ {0, 1}

for all t ∈ I. It is also differentiable, since y and x are differentiable,
and

F ′ = y′x(1− x)− yx′(1− 2x)
x2(1− x)2

= (1− 2x)yx(1− x)− yx(1− x)(1− 2x)
x2(1− x)2

= 0.

e) For any t ∈ I, y(t)
x(t)(1−x(t)) = y(0)

x(0)(1−x(0)) = y0
x0(1−x0) . Consequently,

y(t) = y0

1− x0
x(t)(1− x(t)).

f) Since x is decreasing over I, it must have limits at inf I and sup I. In
addition, since it takes its values in ]−∞; 0[,

• the limit at inf I is in ]−∞; 0];
• the limit at sup I is in {−∞}∪]−∞; 0[.

We must show that none of these two limits is in ]−∞; 0[.
By contradiction, let us assume that x converges to some ℓ ∈]−∞; 0[ at
inf I. Then y goes to y0

1−x0
ℓ(1− ℓ). Consequently, (x, y) is bounded in

the neighborhood of inf I. From the théorème des bouts, inf I = −∞.
Since x is decreasing, x(t) < ℓ for all t ∈ I. This implies, for all t ∈ I,
using the fact that 1− x(t) > 1, that

x′(t) = x(t)(1− x(t)) < ℓ(1− x(t)) < ℓ.
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In particular, for all t ∈ I,

x(t) = x(M)−
∫ M

t

x′(s)ds

≥ x(M)−
∫ M

t

ℓds

= x(M)− ℓ(M − t)
= ℓt+ x(M)− ℓM
t→−∞−→ +∞.

Therefore, x actually goes to +∞ at −∞, which is a contradiction.
We have shown that x converges to 0 at inf I.
By contradiction, let us assume that x converges to some ℓ ∈]−∞; 0[
at sup I. In the same way as before, it must then hold sup I = +∞.
There exists M ∈ I such that, for all t ∈ [M ; +∞[, x(t) < ℓ

2 . Then,
for all t ∈ [M ; +∞[,

x′(t) = x(t)(1− x(t)) < ℓ

2
.

As a consequence, for all t ∈ [M ; +∞[,

x(t) = x(M) +
∫ t

M

x′(s)ds

≤ x(M) + ℓ

2
(t−M)

t→+∞−→ −∞.

Therefore, x(t) t→+∞−→ −∞, which is a contradiction. This shows that
x converges to −∞ at sup I.

g) From Questions 1.a) and 1.b), if x0 = 0 or x0 = 1, the orbit is

O(x0,y0) = {x0} × R∗
+ if y0 > 0,

= {(x0, 0)} if y0 = 0,
= {x0} × R∗

− if y0 < 0.

From Question 1.e), if x0 /∈ {0, 1}, then the orbit is a subset of{(
x,

y0

1− x0
x(1− x)

)
, x ∈ R

}
.
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Figure 7.1: On the left, the vector field f(x, y) = (x(1 − x), (1 − 2x)y) (the
length of each arrow has been divided by 5 for a better readability); on the
right, the corresponding phase portrait.

From Question 1.f), the orbit is

O(x0,y0) =
{(
x, y0

1−x0
x(1− x)

)
, x ∈ R∗

−

}
if x0 < 0,

=
{(
x, y0

1−x0
x(1− x)

)
, x ∈]0; 1[

}
if 0 < x0 < 1,

=
{(
x, y0

1−x0
x(1− x)

)
, x ∈ R∗

+

}
if 1 < x0.

2. The phase portrait is drawn on Figure 7.1.

7.10 Exercise 14
1. The point (0, 0) is an equilibrium because it cancels the right-hand side

of the equation. Conversely, let (x0, y0) be an equilibrium. Then

−x0

2
+ y0 − x0(x2

0 + y2
0) = 0;

−x0 −
y0

2
− y0(x2

0 + y2
0) = 0,



190 CHAPTER 7. SOLUTIONS OF SOME EXERCISES

which implies (
y0
−x0

)
=
(

1
2

+ x2
0 + y2

0

)(
x0
y0

)
.

Therefore, (y0,−x0) is colinear to (x0, y0). These vectors are orthogonal
and have the same norm, hence this is only possible if x0 = y0 = 0.

2. For all (x, y) ∈ R2, we denote

f(x, y) =

(−x
2 +y−x(x2+y2)

1+x2+y2 ,
−x− y

2−y(x2+y2)
1+x2+y2

)
.

It holds, for all (x, y),

||f(x, y)||2 =
∣∣∣∣− (1

2 + x2 + y2) ( x
y ) + ( y

−x )
∣∣∣∣

2
1 + x2 + y2

≤
3
2 + x2 + y2

1 + x2 + y2 ||(
x
y )||2

≤ 3
2
||( x

y )||2 .

Example 4.9 concludes.
3. The map f is C∞. For (x, y) ∈ R2 close to zero,

f(x, y) =

(−x
2 +y+O(||(x,y)||3)
1+O(||(x,y)||2)

−x− y
2 +O(||(x,y)||3)

1+O(||(x,y)||2)

)

=
(
−1

2 1
−1 −1

2

)(
x
y

)
+O

(
||(x, y)||3

)
.

Therefore, the Jacobian at (0, 0) is

Jf(0, 0) =
(
−1

2 1
−1 −1

2

)
.

This matrix has two eigenvalues, −1
2 + i and −1

2 − i. Their real part
is strictly negative, so (0, 0) is asymptotically stable, in virtue of Theo-
rem 6.11.
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4. a) Let (x, y) be a solution. Let us define u = −y and v = x. It holds

u′ = −y′ =
x+ y

2 + y(x2 + y2)
1 + x2 + y2 =

−u
2 + v − u(u2 + v2)

1 + u2 + v2 ;

v′ = x′ =
−x

2 + y − x(x2 + y2)
1 + x2 + y2 =

−u− v
2 − v(u2 + v2)

1 + u2 + v2 ,

so that (u, v) = (−y, x) is also a solution of the equation. For the
same reason, if (−y, x) is a solution of the equation, then (x, y) is also
a solution.

b) The phase portrait is invariant under a rotation of angle π
2 .

5. a) For all t ∈ R,

N ′(t) = 2(x(t)x′(t) + y(t)y′(t))

= −2(x(t)2 + y(t)2)
1
2 + x(t)2 + y(t)2

1 + x(t)2 + y(t)2

= −(x(t)2 + y(t)2)1 + 2(x(t)2 + y(t)2)
1 + x(t)2 + y(t)2

≤ −N(t).

b) If (x, y) is the constant solution (i.e. stays at (0, 0)), then the result
is true. Otherwise, N never vanishes, so we can consider n def= ln(N).
It is a C∞ function and, for all t,

n′(t) = N ′(t)
N(t)

≤ −1.

Consequently, for all t ∈ R,

n(t) ≤ n(0)− t if t ≥ 0,
≥ n(0)− t if t ≤ 0.

This is equivalent to

N(t) ≤ N(0)e−t if t ≥ 0,
≥ N(0)e−t if t ≤ 0.

Therefore, by comparison, N goes to 0 at +∞ and to +∞ at −∞.
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6. a) For any maximal solution (x, y) and any t ∈ R,

S ′
(x,y)(t) =

(
et(x(t) + x′(t))
et(y(t) + y′(t))

)
= et

1 + x(t)2 + y(t)2

(
x
2 + y
−x+ y

2

)
.

Consequently,

||S ′
(x,y)(t)|| ≤

3
2

et

1 + x(t)2 + y(t)2 ||(x(t), y(t))||2

≤ 3
4
et.

The last inequality is due to Cauchy-Schwarz.
b) Let us assume that ||(x(0), y(0))||2 > C. It holds, for all t ≥ 0,

S(x,y)(t) = S(x,y)(0)−
∫ 0

t

S ′
(x,y)(s)ds.

Since
∫ 0
−∞ ||S

′
(x,y)(s)||2ds ≤

∫ 0
−∞Cesds = C < +∞, the integral is

convergent, meaning that it has a limit when t → −∞. Therefore,
S(x,y) also has a limit, which is

L
def= S(x,y)(0)−

∫ 0

−∞
S ′

(x,y)(s)ds.

As ||S(x,y)(0)||2 = ||(x(0), y(0))||2 > C and∣∣∣∣∣∣∣∣∫ 0

−∞
S ′

(x,y)(s)ds
∣∣∣∣∣∣∣∣

2
≤
∫ 0

−∞
||S ′

(x,y)(s)||2ds ≤ C,

the limit L must be non-zero.
For all t ≤ 0, ∣∣∣∣S(x,y)(t)− L

∣∣∣∣
2 =

∣∣∣∣∣∣∣∣∫ t

−∞
S ′

(x,y)(s)ds
∣∣∣∣∣∣∣∣

2

≤
∫ t

−∞
Cesds

= Cet.
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c) We assume that ||(x(0), y(0))||2 ≤ C. Let t0 < 0 be such that
||(x(t0), y(t0))||2 > C; such a t0 exist because, from Question 4.b),
||(x(t), y(t))||2 → +∞ when t→ +∞.
Let us define (x̃, ỹ) the maximal solution such that(

x̃(0)
ỹ(0)

)
=
(
x(t0)
y(t0)

)
.

Since the equation is autonomous, x = x̃(.− t0) and y = ỹ(.− t0). In
particular, for all t ∈ R,

et0S(x̃,ỹ)(t− t0) = S(x,y)(t). (7.2)

From the previous subquestion, there exists L ∈ R2 \ {(0, 0)} such
that S(x̃,ỹ)

−∞−→ L and, for all t ∈ R,

||S(x̃,ỹ)(t)− L||2 ≤ Cet.

Using Equation (7.2), we get that S(x,y) goes to Let0 at −∞ and, for
all t ∈ R,

||S(x,y)(t)− et0L||2 ≤ Cet.

d) When t→ −∞, (
x(t)
y(t)

)
= e−tSx,y(t)

= e−t
(
L+O(et)

)
= Le−t +O(1).

e) Recall from Question 6.a) that, for all t,

||S ′
(x,y)(t)||2 ≤

3
2

et

1 + x(t)2 + y(t)2 ||(x(t), y(t))||2

≤ 3
2

et

x(t)2 + y(t)2 ||(x(t), y(t))||2

= 3
2

et

||(x(t), y(t))||2
.

Moreover, from the previous subquestion, there exists a > 0 such that,
for all t small enough,

||(x(t), y(t))||2 ≥ ae−t.
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Then, for all t small enough,

||S ′
(x,y)(t)||2 ≤

3
2a
e2t.

f) For all t small enough,

||S(x,y)(t)− L||2 =
∣∣∣∣∣∣∣∣∫ t

−∞
S ′

(x,y)(s)ds
∣∣∣∣∣∣∣∣

2

≤
∫ t

−∞
Me2sds

= M

2
e2t.

This says that S(x,y)(t) = L+O(e2t). Consequently,(
x(t)
y(t)

)
= e−tSx,y(t)

= e−t
(
L+O(e2t)

)
= Le−t +O(et).

g) For any t, the distance of (x(t), y(t)) to the line RL is at most∣∣∣∣∣∣∣∣(x(t)
y(t)

)
− e−t

(
Lx

Ly

)∣∣∣∣∣∣∣∣
2
.

From Question 6.f), this is of order O(et), hence goes to 0.
7. a) Let (x, y) be a maximal solution. For any t ≥ 0,

V ′
(x,y)(t) = e

t
2

(
Rt

(
x′(t)
y′(t)

)
+ 1

2
Rt

(
x(t)
y(t)

)
+R′

t

(
x(t)
y(t)

))
= e

t
2

(
Rt

(
x′(t)
y′(t)

)
+ 1

2
Rt

(
x(t)
y(t)

)
+Rt

(
0 −1
1 0

)(
x(t)
y(t)

))
= e

t
2Rt

(
x′(t) + x(t)

2 − y(t)
y′(t) + y(t)

2 + x(t)

)

= e
t
2 (x(t)2 + y(t)2)

1 + x(t)2 + y(t)2Rt

(
−x(t)

2 − y(t)
x(t)− y(t)

2

)
.
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Therefore, for any t ≥ 0,

||V ′
(x,y)(t)||2 ≤

3
2
e

t
2 ||(x(t), y(t))||32

≤ 3
2
e−t||(x(0), y(0))||32.

b) Let us assume that ||(x(0), y(0))||2 < C−1/2. For all t ≥ 0,

V(x,y)(t) = V(x,y)(0) +
∫ t

0
V ′

(x,y)(s)ds.

The integral is convergent :∫ +∞

0
||V ′

(x,y)(s)||2 ≤ C||(x(0), y(0))||32
∫ +∞

0
e−sds

= C||(x(0), y(0))||32,

so this converges to

λ
def= V(x,y)(0) +

∫ +∞

0
V ′

(x,y)(s)ds.

This limit is non-zero because∣∣∣∣∣∣∣∣∫ +∞

0
V ′

(x,y)(s)ds
∣∣∣∣∣∣∣∣

2
≤ C||(x(0), y(0))||32

< ||(x(0), y(0))||2
= ||V(x,y)(0)||2.

For any t,

∣∣∣∣V(x,y)(t)− λ
∣∣∣∣

2 =
∣∣∣∣∣∣∣∣∫ +∞

t

V ′
(x,y)(s)ds

∣∣∣∣∣∣∣∣
2

≤ C||(x(0), y(0))||32
∫ +∞

t

e−sds

= C||(x(0), y(0))||32e−t,

so that V(x,y)(t) = λ+O(e−t).
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c) This is the same reasoning as in Question 6.c). Let t0 > 0 be such
that

||(x(t0), y(t0)||2 < C−1/2.

Let (x̃, ỹ) be the solution whose value is (x(t0), y(t0)) at time 0. From
the previous subquestion, V(x̃,ỹ) satisfies, for some non-zero λ ∈ R2,

V(x̃,ỹ)(t) = λ+O(e−t),

which implies

V(x,y)(t) = e
t0
2 Rt0V(x̃,ỹ)(t− t0) = e

t0
2 Rt0λ+O(e−t).

d) For all t ≥ 0,(
x(t)
y(t)

)
= e−

t
2R−tV(x,y)(t)

= e−
t
2

(
λx cos(t) + λy sin(t)
−λx sin(t) + λy cos(t)

)
+O

(
e−

3t
2

)
.

8. The phase portrait is drawn in Figure 7.2. Observe the following prop-
erties:

• the phase portrait is invariant under rotation by π
2 ;

• all non-zero trajectories are asymptotic to a line going through zero
at one end;

• all non-zero trajectories go to (0, 0) with a spiraling behavior (in
the indirect sense) at the other end.
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Figure 7.2: Phase portrait for the equation in Exercice 14.
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Appendix A

Connectedness

Definition A.1 : connectedness

Let M be a subset of Rn, for some n ∈ N∗. We say that M is connected
if there do not exist non-empty subsets U1, U2 ⊂ M satisfying all the
following properties:

• U1 and U2 are open sets in Ma;

• U1 ∩ U2 = ∅;

• U1 ∪ U2 = M .
ai.e., U1 = M ∩ V1 for some open set V1 in Rn, and similarly for U2

Proposition A.2 : alternative definition of connectedness

Let M be a subset of Rn, for some n ∈ N∗. The set M is connected if
and only if all subsets Ω of M that are simultaneously open and closed
in M satisfy the following property:

Ω = ∅ or Ω = M.

Proof. First, let M be connected. Let Ω ⊂ M be simultaneously open and
closed. We set U1 = Ω and U2 = M \Ω. These two sets are open (U1 because
Ω is open, and U2 because it is the complement of a closed set). They have
empty intersection and their union is M . Therefore, from the definition of
connectedness, U1 and U2 cannot be both non-empty: either U1 = ∅, in which

199
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case Ω = ∅, or U2 = ∅, in which case Ω = M .
Conversely, let us assume that ∅ and M are the only open and closed

subsets of M . Let us show that M is connected. Let U1, U2 be open sets in
M , such that U1 ∩ U2 = ∅ and U1 ∪ U2 = M . We must show that either U1
or U2 is empty.

Let us set Ω = U1. Then Ω is open. We observe that Ω = M \ U2
(U1 ⊂M \U1 because U1 ∩U2 = ∅, and M \U2 ⊂ U1 because U1 ∪U2 = M).
Hence, Omega is the complement of an open set: it is closed. Therefore,
either Ω = ∅, in which case U1 = ∅, or Ω = M , in which case U2 = ∅.

Example A.3

An interval in R is always connected.
The union of two disjoint non-empty open intervals is never connected.

Proof that an interval is always connected. Let I be an interval. Let us show
that I is connected. Let U1, U2 ⊂ I be two non-empty disjoint open sets. Let
us show that it is impossible that

U1 ∪ U2 = M.

Let u1 ∈ U1 and u2 ∈ U2 be fixed. If we exchange U1, U2, we can assume that
u1 < u2. Let us define

t0 = inf ([u1, u2] ∩ U2)
and show that t0 /∈ U1 ∪ U2.

By contradiction, if t0 ∈ U1, then [t0; t0 + ϵ[⊂ U1 for all ϵ > 0 small
enough. As a consequence, [t0; t0 + ϵ[∩U2 = ∅ for all ϵ > 0 small enough,
and [u1;u2] ∩ U2 contains no element of [t0; t0 + ϵ[, which contradicts the
characterization of the infimum.

Now, if t0 ∈ U2, then t0 ̸= u1 (otherwise we would have t0 ∈ U1∩U2 = ∅).
As a consequence, ]t0 − ϵ; t0] ⊂ [u1;u2] for all ϵ > 0 small enough. And U2 is
open, so ]t0− ϵ; t0] ⊂ U2 for all ϵ > 0 small enough. Therefore, for all such ϵ,

]t0 − ϵ; t0] ⊂ [u1;u2] ∩ U2,

which contradicts the fact that t0 is the infimum of [u1;u2] ∩ U2.

Proof that the union is never connected. Let I1, I2 be two disjoint non-empty
open intervals. We set U1 = I1 and U2 = I2. Then, U1 and U2 are non-empty
and open. They are disjoint and U1 ∪ U2 = I1 ∪ I2. From the definition of
connectedness, I1 ∪ I2 is not connected.
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Definition A.4 : connected component

Let M be a subset of Rn, for some n ∈ N∗. For any subset A of M , we
say that A is a connected component of M if it satisfies the following
two properties:

• A is connected;

• A is a maximal connected subset of M , i.e., for any connected
subset B ⊂M , if A ⊂ B, then A = B.

Example A.5

Let (Ik)k∈E be a (finite or infinite) collection of pairwise disjoint non-
empty open intervals in R. Let

M =
⋃
k∈E

Ik.

The connected components of M are the Ik.

Proposition A.6

Let M be a subset of Rn, for some n ∈ N∗.
The connected components of M are pairwise disjoint.
Moreover, M is the union of its connected components.

Proof. Let us first show that the connected components are disjoint. Let
M1,M2 be two different connected components of M . From Definition A.4,
M1 and M2 are connected, but M1 ∪M2 is not (otherwise M1 or M2 would
not be maximal).

Therefore, there exist U1, U2 as in the definition of connectedness: two
non-empty disjoint open sets of M1 ∪M2 such that

U1 ∪ U2 = M1 ∪M2.

The sets U1 ∩M1 and U2 ∩M1 are open in M1 and disjoint. It holds

(U1 ∩M1) ∪ (U2 ∩M1) = (U1 ∪ U2) ∩M1 = M1.
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Since M1 is connected, these two sets cannot be both non-empty: either
U1 ∩M1 = ∅ or U2 ∩M1 = ∅. Similarly, U1 ∩M2 = ∅ or U2 ∩M2 = ∅.

It is impossible that U1 ∩M1 = ∅ and U1 ∩M2 = ∅: since U1 ⊂M1 ∪M2,
it would mean that U1 is empty, which is not true. Similarly, it is impossible
that U2 ∩M1 = ∅ and U2 ∩M2 = ∅. Therefore, either

U1 ∩M1 = ∅ and U2 ∩M2 = ∅ (A.1)

or
U2 ∩M1 = ∅ and U1 ∩M2 = ∅.

Let us assume that we are in Situation (A.1) (the other one is identical).
Then

U2 = U2 ∩ (M1 ∪M2)
= (U2 ∩M1) ∪ (U2 ∩M2)
= U2 ∩M1

= (U1 ∩M1) ∪ (U2 ∩M1)
= (U1 ∪ U2) ∩M1

= M1.

And, in the same way, U1 = M2. Since U1, U2 are disjoint, M1 and M2 are
also disjoint.

Now, let us show that M is the union of its connected components. It
suffices to show that, for all x ∈M , there exists a connected component M1
of M such that x ∈M1. Let us fix x ∈M .

Let Cx be the set of all connected components of M which contain x. We
set

M1 =
⋃

E∈Cx

E.

This set contains x. Let us show that it is a connected component of M .
First, we show that M1 is connected. Let U1, U2 ⊂ M1 be two disjoint

open sets such that U1 ∪ U2 = M1. Let us show that either U1 or U2 is
non-empty. Since x ∈ M1 = U1 ∪ U2, either x ∈ U1 or x ∈ U2. Let us for
instance assume that x ∈ U1.

Then, for any E ∈ Cx, U1 ∩ E and U2 ∩ E are two disjoint open sets of
E whose union is E. Since E is connected, either U1 ∩ E or U2 ∩ E must
be empty. As U1 ∩ E contains x, U2 ∩ E is empty. For all y ∈ M1, there
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exists E ∈ Cx such that y ∈ E. As U2 ∩E is empty, y /∈ U2. This shows that
U2 contains no element of M1. Since U2 ⊂ M1, it must hold U2 = ∅. This
concludes the proof that M1 is connected.

Now, let us show that M1 is a maximal connected component of M . Let
B ⊂M be a connected set containing M1. We must show that M1 = B.

As x ∈ M1, we have x ∈ B. Therefore, B ∈ Cx so B ⊂ M1. Since
M1 ⊂ B, we have equality: M1 = B.

Proposition A.7 : homeomorphism of connected components

Let M1,M2 be two subsets, respectively, of Rn1 and Rn2 . Assume there
exists

ϕ : M1 →M2

a homeomorphism from M1 to M2.
For any A ⊂M1,

• A is connected if and only if ϕ(A) is connected;

• A and ϕ(A) have the same number of connected components.
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Appendix B

Smooth maps with specified
values

Lemma B.1

For any interval [a; b] ⊂ R, there exists a map f : R → R of class C∞

such that

• f(x) = 0 for all x ∈]−∞; a] ∪ [b; +∞[ ;

• f(x) > 0 for all x ∈]a; b[.

Proof. Let a, b be fixed, with a < b. Define

g : R → R
x → 0 if x ≤ 0,

e−
1
x if x > 0.

This is a C∞ map such that, for all x ∈ R,

g(x) = 0 if x ≤ 0,
g(x) > 0 if x > 0.

Define, for all x ∈ R,

f(x) = g(x− a)g(b− x).

This map is C∞. Moreover,
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• for all x ∈]−∞; a], x− a ≤ 0, so g(x− a) = 0 and f(x) = 0 ;

• for all x ∈ [b; +∞[, b− x ≤ 0, so g(b− x) = 0 and f(x) = 0 ;

• for all x ∈]a; b[, x−a > 0 and b−x > 0, so g(x−a) > 0 and g(b−x) > 0,
hence f(x) > 0.

Corollary B.2

For any interval [a; b] ⊂ R, there exists a map f : R → R of class C∞

such that

• f(x) = 0 for all x ∈]−∞; a] ;

• f(x) ∈ [0; 1] for all x ∈]a; b[;

• f(x) = 1 for all x ∈ [b; +∞[.

Proof. Let F : R→ R be as in Lemma B.1. Define

f : t ∈ R→
∫ t

−∞ F (s)ds∫ b

−∞ F (s)ds
.

This map is C∞. It is zero on ] − ∞; a] since F is zero on this interval,
constant on [b; +∞[ since F is zero on this interval, and its value is f(b) = 1.
Moreover, as F is nonnegative, f is nondecreasing; thus, f(x) ∈ [0; 1] for all
x ∈]a; b[.

Proposition B.3

Let c1 < c2 < · · · < cS and d1 < d2 < · · · < dS be arbitrary real
numbers, for S ≥ 2. There exists a C∞-diffeomorphism ψ : [c1; cS] →
[d1; dS] such that, for all k = 1, . . . , S,

ψ(ck) = dk.

The same result holds if d1 > d2 > · · · > dS.
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Proof. We will define ψ as the primitive of a well-chosen map p.
For each k = 1, . . . , S − 1, let fk : R → R be a C∞ map that is 0 on

] − ∞; ck] ∪ [ck+1; +∞[ and strictly positive on ]ck; ck+1[, (its existence is
guaranteed by Lemma B.1). If we multiply it by a suitably chosen positive
constant, we can assume that∫ ck+1

ck

fk(t)dt = 1.

Fix a real number ϵ > 0 such that, for all k = 1, . . . , S − 1,

ϵ <
dk+1 − dk
ck+1 − ck

.

Now define

p = ϵ+
S−1∑
k=1

(dk+1 − dk − ϵ(ck+1 − ck))fk,

ψ : x ∈ [c1; cS]→ d1 +
∫ x

d1

p(t)dt.

Both p and ψ are C∞. For all k = 1, . . . , S − 1, since fs = 0 on [ck; ck+1] for
all s ̸= k, it holds

ψ(ck+1)− ψ(ck) =
∫ ck+1

ck

[ϵ+ (dk+1 − dk − ϵ(ck+1 − ck))fk(t)] dt

= dk+1 − dk.
This allows us to prove by induction that, for all k = 1, . . . , S,

ψ(ck) = dk.

Moreover, the map ψ is strictly increasing (its derivative, p, is always
larger than ϵ). As it is continuous, it is a homeomorphism from [c1; cS] to
[ψ(c1);ψ(cS)] = [d1; dS]. Furthermore, since its derivative never vanishes, its
inverse is C∞. Thus, it is a C∞-diffeomorphism.

Finally, let’s show that the result remains true if we don’t have d1 < d2 <
· · · < dS but instead d1 > d2 > · · · > dS. The result we just proved ensures
the existence of a C∞-diffeomorphism ψ : [c1; cS]→ [−d1;−dS] such that, for
all k = 1, . . . , S,

ψ(ck) = −dk.
Then−ψ is a C∞ diffeomorphism from [c1; cS] to [d1; dS] satisfying the desired
equalities.
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Proposition B.4

Let [a1; a2] and [b1; b2] be two non-singleton segments of R. For any
k ∈ N and real numbers γ(1)

1 , . . . , γ
(k)
1 , γ

(1)
2 , . . . , γ

(k)
2 such that

γ
(1)
1 > 0 and γ

(1)
2 > 0,

there exists a C∞-diffeomorphism ψ from [a1; a2] to [b1; b2] such that,
for all k′ = 1, . . . , k,

ψ(k′)(a1) = γ
(k′)
1 and ψ(k′)(a2) = γ

(k′)
2 .

Proof. We will define ψ as the primitive of a well-chosen map p.
First, let q1, q2 : R→ R be C∞ maps such that, for all k′ = 0, . . . , k − 1,

q
(k′)
1 (a1) = γ

(k′+1)
1 and q

(k′)
2 (a2) = γ

(k′+1)
2 .

(Such maps exist. For instance, define q1 : x →
∑k−1

k′=0
γ

(k′+1)
1
k′! (x − a1)k

′ and

q2 : x→
∑k−1

k′=0
γ

(k′+1)
2
k′! (x− a2)k

′ .)
Choose ϵ > 0 such that

q1 > 0 on [a1; a1 + ϵ] and q2 > 0 on [a2 − ϵ; a2].

Such an ϵ exists because q1(a1) = γ
(1)
1 > 0 and q2(a2) = γ

(1)
2 > 0, and q1, q2

are continuous. Further, by reducing ϵ if necessary, we can ensure that∫ a1+ϵ

a1

q1(s)ds <
b2 − b1

2
,∫ b1

b1−ϵ

q2(s)ds <
b2 − b1

2
.

Let f1, f2 : R → R be C∞ maps (which exist, according to Corollary B.2)
such that

• f1 = 1 on
]
−∞; a1 + ϵ

2

]
, f1 = 0 on [a1 + ϵ; +∞[, and takes values in

[0; 1] on
]
a1 + ϵ

2 ; a1 + ϵ
[

;

• f2 = 0 on ] −∞; a2 − ϵ], f2 = 1 on
[
a2 − ϵ

2 ; +∞
[
, and takes values in

[0; 1] on
]
a2 − ϵ; a2 − ϵ

2

[
.
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Let g : R → R be a C∞ map that is 0 on
]
−∞; a1 + ϵ

2

]
∪
[
a2 − ϵ

2 ; +∞
[

and strictly positive on
]
a1 + ϵ

2 ; a2 − ϵ
2

[
(as in Lemma B.1). If we multiply g

by a suitably chosen constant, we can assume that∫ +∞

−∞
g(s)ds = 1.

Define
p = f1q1 + f2q2 + αg,

where

α = b2 − b1 −
∫ a2

a1

(f1q1 + f2q2)

= b2 − b1 −
∫ a1+ϵ

a1

f1(s)q1(s)ds−
∫ a2

a2−ϵ

f2(s)q2(s)ds

≥ b2 − b1 −
∫ a1+ϵ

a1

q1(s)ds−
∫ a2

a2−ϵ

q2(s)ds

> 0.

The map p is C∞. It coincides with q1 on
]
−∞; a1 + ϵ

2

]
(as f1 is 1 on this

interval, while f2 and g are 0). In particular,

p(k′)(a1) = γ
(k′+1)
1 ∀k′ = 0, . . . , k − 1. (B.1)

Similarly,
p(k′)(a2) = γ

(k′+1)
2 ∀k′ = 0, . . . , k − 1. (B.2)

Moreover, p is strictly positive on [a1; a2]: f1q1, f2q2 and g are nonnegative.
In addition, f1q1 is strictly positive on

[
a1; a1 + ϵ

2

]
, g is strictly positive on]

a1 + ϵ
2 ; a2 − ϵ

2

[
and f2q2 is strictly positive on

[
a2 − ϵ

2 ; a2
]
.

Finally, according to the definition of α,∫ a2

a1

p(s)ds = b2 − b1.

Define
ψ(x) = b1 +

∫ x

a1

p(s)ds.
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This is a C∞ map, such that ψ(a1) = b1 and ψ(a2) = b2. Its derivative
is strictly increasing, so it is a C∞-diffeomorphism from [a1; a2] to [b1; b2].
Moreover, it satisfies the equalities

ψ(k′)(a1) = γ
(k′)
1 and ψ(k′)(a2) = γ

(k′)
2 ∀k′ = 1, . . . , k

because its derivative, p, satisfies the equations (B.1) and (B.2).



Appendix C

Proofs for Section 3.2

C.1 Proof of Proposition 3.19
Let M be a connected submanifold of Rn, of class Ck and dimension d (for
some integers k ∈ N∗, d ∈ N). We must show that two points x1, x2 in M are
necessarily connected by a path.

Let x1, x2 ∈M be fixed. Define

A = {y ∈M, there exists a path connecting x1 and y}.

It is a non-empty set: since x1 is connected to itself by constant paths with
value x1, x1 belongs to A.

Let’s prove that A is open in M . Take any y ∈ A, and consider γ :
[0;A]→M , a path connecting x1 and y.

Let U be a neighborhood of y in Rn, V an open set in Rd, and f : V → Rn

a Ck map, which is a homeomorphism onto its image, such that

M ∩ U = f(V ).

(Such maps exist, according to the "immersion" definition of submanifolds.)
Let a be the preimage of y under f . If we restrict V a bit, we can assume
V = B(a, ϵ) for some ϵ > 0.

Let us show that M ∩ U ⊂ A. Take any y′ ∈ M ∩ U . Let a′ be its
preimage under f . Define

γ̃ : [0;A+ 1] → M
t → γ(t) if t ∈ [0;A]

f((A+ 1− t)a+ (t− A)a′) if t ∈ [A;A+ 1].
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This map is well-defined: since a′ ∈ V = B(a, ϵ), the segment connecting a to
a′ is included in B(a, ϵ), which implies that (A+ 1− t)a+ (t−A)a′ ∈ B(a, ϵ)
for all t ∈ [A;A+1]. It is piecewise C1, and takes its values in M . Moreover,
it is continuous: it is continuous on [0;A] and [A;A + 1], has a left limit at
A,

γ(A) = y,

and a right limit,
f(a) = y,

which coincide. Therefore, it is continuous at A. In conclusion, it is a path
between γ̃(0) = x1 and γ̃(A+ 1) = f(a′) = y′. Thus, y′ ∈ A.

Hence, the set A contains M ∩ U , which is a neighborhood of y. This
shows that A is open in M .

Next, let’s prove thatA is a closed set inM , with fairly similar arguments.
Take y ∈ M belonging to the closure of A (i.e., the limit of a sequence of
points in A). Show that y ∈ A.

Define U, V, f as in the previous part of the proof. Once again, let a ∈ V
be the preimage of y under f , and suppose that V = B(a, ϵ).

Since M ∩ U is a neighborhood of y and y is in the closure of A, there
exists an element y′ in M ∩U which also belongs to A. Fix it for the rest of
the proof. Let a′ ∈ V be its preimage under f , and γ : [0;A]→M be a path
between x1 and y′. Define

γ̃ : [0;A+ 1] → M
t → γ(t) if t ∈ [0;A]

f((A+ 1− t)a′ + (t− A)a) if t ∈ [A;A+ 1].
As before, it can be verified that γ̃ is a path, connecting x1 and y. Therefore,
y ∈ A.

Thus, we have shown that A is open and closed in M , and non-empty.
Since M is connected, we have A = M . In particular, A contains x2: there
exists a path between x1 and x2.

C.2 Proofs for Theorems 3.21 and 3.22

C.2.1 Proof of Proposition 3.23

Proof. We denote

distLipM (x1, x2) = inf{ℓ(γ), γ is a Lipschitz path connecting x1 and x2}
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and show that distLipM (x1, x2) = distM(x1, x2).
A path connecting x1 and x2 (for the initial definition) is always a Lips-

chitz path, since its derivative is continuous by parts, hence bounded. There-
fore,

distLipM (x1, x2) ≤ distM(x1, x2).

Conversely, let γ : [0;A] → M be any Lipschitz path connecting x1 and
x2. We are going to show that, for any ϵ > 0, there exists γ̃ : [0;A] → M a
path connecting x1 and x2 such that

ℓ(γ̃) ≤ ℓ(γ) + ϵ. (C.1)

Taking the infimum over all γ̃ implies that

distM(x1, x2) ≤ ℓ(γ).

Since this is true for any Lipschitz path γ, we must have

distM(x1, x2) ≤ distLipM (x1, x2),

which establishes the desired equality.
To finish the proof, we only have to show Equation (C.1). To simplify

the proof, we assume that there exists an open neighborhood U of γ([0;A])
in Rn, an open set V ⊂ Rd and a C2 map f : V → Rn such that f is a
homeomorphism between V and f(V ), and

M ∩ U = f(V ).

The proof remains essentially valid when this assumption does not hold: it
suffices to divide [0;A] into a finite number of pieces on which the assumption
holds (such pieces exist, by a compactness argument and from the “immer-
sion” definition of submanifolds), and apply the reasoning on each piece.
However, it makes notation and definitions more technical.

For any N ∈ N∗,

ℓ(γ) =
∫ A

0
||γ′(t)||2dt

=
N−1∑
k=0

∫ (k+1)A
N

Ak
N

||γ′(t)||2dt
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≥
N−1∑
k=0

∣∣∣∣∣
∣∣∣∣∣
∫ (k+1)A

N

kA
N

γ′(t)dt

∣∣∣∣∣
∣∣∣∣∣
2

=
N−1∑
k=0

∣∣∣∣∣∣∣∣γ ((k + 1)A
N

)
− γ

(
kA

N

)∣∣∣∣∣∣∣∣
2
. (C.2)

For any N , we define γ̃N : [0;A]→M as follows: for all t ∈ [0;A],

γ̃N(t) = f

((
k − tN

A
+ 1
)
f−1 ◦ γ

(
kA

N

)
+
(
tN

A
− k
)
f−1 ◦ γ

(
(k + 1)A

N

))
,

where k is an integer such that kA
N
≤ t ≤ (k+1)A

N
. This map is C1 on[

kA
N

; (k+1)A
N

]
for all k. It is continuous at each kA

N
(its left and right lim-

its are both γ
(
kA
N

)
), hence continuous on [0;A], and its values are in M . It

is a path.
For any N , any k ≤ N and any t ∈

[
kA
N

; (k+1)A
N

]
,

γ̃′N(t) = N

A
df

((
k − tN

A
+ 1
)
f−1 ◦ γ

(
kA

N

)
+
(
tN

A
− k
)
f−1 ◦ γ

(
(k + 1)A

N

))
[
f−1 ◦ γ

(
(k + 1)A

N

)
− f−1 ◦ γ

(
kA

N

)]
.

This implies that, from the mean value inequality, for any t′ ∈
[
kA
N

; (k+1)A
N

]
,

||γ̃′N(t)− γ̃′N(t′)||2 ≤
NM

A

∣∣∣∣∣∣∣∣f−1 ◦ γ
(

(k + 1)A
N

)
− f−1 ◦ γ

(
kA

N

)∣∣∣∣∣∣∣∣2
2

≤ AMC2
1C

2
2

N

where M is an upper bound for |||d2f ||| on f−1(γ([0;A])), C1 the Lipschitz
constant of γ, and C2 the Lipschitz constant of f−1 on γ([0;A]) (it can be
proved, by contradiction for instance, that f−1 is Lipschitz on any compact
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set). From the mean value equality, we deduce that, still for any N , any
k ≤ N and any t ∈

[
kA
N

; (k+1)A
N

]
,

∣∣∣∣∣∣∣∣γ̃′N(t)− N

A

(
γ

(
(k + 1)A

N

)
− γ

(
kA

N

))∣∣∣∣∣∣∣∣
2
≤ AMC2

1C
2
2

N
.

Consequently,

ℓ(γ̃N) =
N−1∑
k=0

∫ (k+1)A
N

kA
N

||γ̃′N(t)||2dt

≤
N−1∑
k=0

∫ (k+1)A
N

kA
N

[∣∣∣∣∣∣∣∣NA
(
γ

(
(k + 1)A

N

)
− γ

(
kA

N

))∣∣∣∣∣∣∣∣
2

+ AMC2
1C

2
2

N

]
dt

=

(
N−1∑
k=0

∣∣∣∣∣∣∣∣γ ((k + 1)A
N

)
− γ

(
kA

N

)∣∣∣∣∣∣∣∣
2

)
+ A2MC2

1C
2
2

N

≤ ℓ(γ) + A2MC2
1C

2
2

N
.

The last inequality is true from Equation (C.2). By letting N go to 0, we
obtain Equation (C.1).

C.2.2 Proof of Proposition 3.24

Proof. We consider a sequence (γk : [0;Ak]→M) of paths such that

ℓ(γk)
k→+∞−→ distM(x1, x2) = D.

If we reparametrize, we can assume that γk is 1-Lipschitz for any k. Note
that, for each k, Ak = ℓ(γk) ≥ D, so that each γk is well-defined over [0;D].

We will extract a uniformly converging subsequence of (γk|[0;D])k∈N using
Arzela-Ascoli’s theorem.
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Theorem C.1 : consequence of Arzela-Ascoli [Paulin, 2009,
Thm 5.31]

Let n1, n2 ∈ N∗ be fixed integers.
Let X ⊂ Rn1 be a compact set. Let A ⊂ C(X,Rn2) be a collection of
maps such that

• A is equicontinuous;a

• for any x ∈ X, {f(x), f ∈ A} is bounded.

From every sequence (fn)n∈N of elements inA, a subsequence (fϕ(n))n∈N
can be extracted, which converges uniformly towards some map g ∈
C(X,Rn2).

aA is equicontinuous if, for any x ∈ X, ϵ > 0, there exists η > 0 such that, for
any y ∈ X such that ||y − x||2 < η and any f ∈ A, it holds ||f(y)− f(x)||2 < ϵ.

The set {γk|[0;D], k ∈ N} is equicontinuous, because all its elements are 1-
Lipschitz, hence for any x ∈ [0;D], ϵ > 0, it holds that for any y ∈ [0;D] such
that |x− y| < ϵ and for any k ∈ N, ||γk|[0;D](y)−γn|[0;D](x)||2 ≤ ||y−x||2 < ϵ.

For any x ∈ [0;D], k ∈ N,

||γk|[0;D](x)||2 ≤ ||γk|[0;D](0)||2 + ||γk|[0;D](x)− γk|[0;D](0)||2
≤ ||x1||2 + |x|
≤ ||x1||2 +D.

Therefore, for any x ∈ [0;D], {γk|[0;D](x), k ∈ N} is bounded.
The assumptions of Arzela-Ascoli’s theorem hold true. Let ϕ : N→ N be

an extraction such that
(
γϕ(k)|[0;D](x)

)
k∈N converges uniformly towards some

continuous map, which we call γ∞ : [0;D]→ Rn.
The map γ∞ is 1-Lipschitz (all γϕ(k) are, and this property passes to the

limit). Its values are in M (this property also passes to the limit). It satisfies

γ∞(0) = lim
k→+∞

γϕ(k)(0) = x1

and, for any k,

||γ∞(D)− x2||2 ≤ ||γ∞ − γϕ(k)||∞ + ||γϕ(k)(D)− x2||2
= ||γ∞ − γϕ(k)||∞ + ||γϕ(k)(D)− γϕ(k)(Ak)||2
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≤ ||γ∞ − γϕ(k)||∞ + |Ak −D|.

Since the right-hand side goes to 0 and the left-hand side is nonnegative,
it must hold ||γ∞(D) − x2||2, i.e. γ∞(D) = x2. This shows that γ∞ is a
1-Lipschitz path from x1 to x2.

Finally,

D = distM(x1, x2)
= inf{ℓ(γ), γ is a Lipschitz path connecting x1 and x2}

from Proposition 3.23
≤ ℓ(γ∞)

=
∫ D

0
||γ′∞(t)||2dt

≤
∫ D

0
1dt

= D,

so ℓ(γ∞) = D.

C.2.3 Proof of Proposition 3.26

Let h be a map as in the statement of the proposition. For any integer N ,
h can be written as a sum of maps (hk)k=0,...,N satisfying the same three
properties as h and such that, in addition,

Supp(hk) ⊂
[

(k − 1)D
N

; (k + 1)D
N

]
,∀k ≤ n.

Therefore, it is enough to prove that
∫ D

0 ⟨γ
′(t), h′(t)⟩ dt = 0 for maps h such

that

Supp(h) ⊂
[

(k − 1)D
N

; (k + 1)D
N

]
for some k ∈ {0, . . . , n}. (C.3)

If N is large enough, Property 1 of Definition 2.1 (combined with a com-
pactness argument) says that, for any k, there exists an open set U containing
γ
([

(k−1)D
N

; (k+1)D
N

])
and a neighborhood V of 0 in Rn, and a diffeomorphism

Φ : U → V such that

Φ(M ∩ U) = V ∩ (Rd × {0}n−d).
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Let us fix N large enough. Consider a map Lipschitz map h such that
h(0) = h(D) = 0 and h(t) ∈ Tγ(t)M for all t ∈ [0;D] and whicy satisfies
Equation (C.3). Let us fix the corresponding k and define U, V,Φ as above.
We show that

∫ D

0 ⟨γ
′(t), h′(t)⟩ dt = 0.

Let us define

P : Rn → Rn

(x1, . . . , xn) → (x1, . . . , xd, 0, . . . , 0).

Observe that Φ−1 ◦ P (y) ∈M for any y ∈ V . For any ϵ ∈ R close enough to
0, we set

γϵ : [0;D] → M

t → Φ−1 ◦ P ◦ Φ(γ(t) + ϵh(t)) if t ∈
[

(k−1)D
N

; (k+1)D
N

]
γ(t) otherwise.

This map is well-defined, continuous (because h
(

(k−1)D
N

)
= h

(
(k+1)D

N

)
= 0),

and even Lipschitz. Indeed, it is Lipschitz outside
[

(k−1)D
N

; (k+1)D
N

]
, because γ

is Lipschitz. It is also Lipschitz inside the interval, because γ+ϵh is Lipschitz
(γ and h are Lipschitz) and Φ−1 ◦P ◦Φ is C1, hence has bounded derivative
over any compact set, and therefore preserves Lipschitzness.

Since ℓ(γ) = D = inf{ℓ(γ), γ is a Lipschitz path connecting x1 and x2},
it must hold, for any ϵ,

ℓ(γϵ) ≥ ℓ(γ). (C.4)

We compute a first-order expansion of ℓ(γϵ). For any t ∈
[

(k−1)D
N

; (k+1)D
N

]
such that γ and h are differentiable at t,

γ′ϵ(t) = d
[
Φ−1 ◦ P ◦ Φ

]
(γ(t) + ϵh(t))(γ′(t) + ϵh′(t))

= d
[
Φ−1 ◦ P ◦ Φ

]
(γ(t) + ϵh(t))(γ′(t))

+ ϵd
[
Φ−1 ◦ P ◦ Φ

]
(γ(t) + ϵh(t))(h′(t))

= d
[
Φ−1 ◦ P ◦ Φ

]
(γ(t))(γ′(t))

+ d2 [Φ−1 ◦ P ◦ Φ
]

(γ(t))(h(t), γ′(t))
+ ϵd

[
Φ−1 ◦ P ◦ Φ

]
(γ(t))(h′(t)) + o(ϵ).

(The last equality is true because Φ−1 ◦ P ◦ Φ is C2. Note that the “o(ϵ)” is
uniform in t.)
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From the definition of Φ, it holds, for all z ∈M ∩ U ,

Φ−1 ◦ P ◦ Φ(z) = z.

If we differentiate this equality, we get that, for any z ∈M ∩ U, z′ ∈ TzM ,

d
[
Φ−1 ◦ P ◦ Φ

]
(z)(z′) = z′.

If we differentiate again, we get that, for any z ∈M ∩ U, z′, z′′ ∈ TzM ,

d2 [Φ−1 ◦ P ◦ Φ
]

(z)(z′, z′′) = 0.

These last two equalities show that

γ′ϵ(t) = γ′(t) + ϵh′(t) + o(ϵ).

Observe that ||γ′(t)||2 = 1 for almost every t (because
∫ D

0 ||γ
′(t)||dt = ℓ(γ) =

D, and γ is 1-Lipschitz). From this, one can check that, for almost all
t ∈
[

(k−1)D
N

; (k+1)D
N

]
,

||γ′ϵ(t)||2 = ||γ′(t)||2 + ϵ ⟨h′(t), γ′(t)⟩+ o(ϵ).

It also holds for values of t outside
[

(k−1)D
N

; (k+1)D
N

]
, because h′ is zero.

Consequently,

ℓ(γϵ) =
∫ D

0
||γ′ϵ(t)||2dt = ℓ(γ) + ϵ

∫ D

0
⟨h′(t), γ′(t)⟩ dt+ o(ϵ),

which, combined with Equation (C.4), proves that
∫ D

0 ⟨h
′(t), γ′(t)⟩ dt = 0.

C.2.4 Proof of Proposition 3.27

Let t0 ∈ [0;D] be arbitrary. We show that γ is C2 in the neighborhood of t0.
Let U ⊂ Rn be an open neighborhood of γ(t0), V a neighborhood of 0 in

Rn, and Φ : U → V a diffeomorphism such that

Φ(M ∩ U) = V ∩ (Rd × {0}n−d).

We define

P ∗ : Rd → Rn

(x1, . . . , xd) → (x1, . . . , xd, 0, . . . , 0).
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Let ϵ > 0 be such that γ(t) ∈ U for any t ∈ [t−0 ; t+0 ] def= [0;D]∩[t0−ϵ; t0+ϵ].
We fix v ∈ Rd × {0}n−d. For any Lipschitz map

z : [t−0 ; t+0 ]→ R

such that z(t−0 ) = z(t+0 ) = 0, the map

h : [0;D] → Rn

t → d [Φ−1] (Φ ◦ γ(t))(v)× z(t) if t ∈ [t−0 ; t+0 ]
0 otherwise

satisfies all assumptions from Proposition 3.26, hence
∫ D

0 ⟨γ
′(t), h′(t)⟩ dt = 0.

This leads to

0 =
∫ t+0

t−0

〈
γ′(t),

(
d
[
Φ−1] (Φ ◦ γ(t))(v)× z(t)

)′ (t)〉 dt
=
∫ t+0

t−0

z(t)
〈
γ′(t), d2 [Φ−1] (dΦ ◦ γ(t)(γ′(t)), v)

〉
dt

+
∫ t+0

t−0

z′(t)
〈
γ′(t), d

[
Φ−1] (Φ ◦ γ(t))(v)

〉
dt.

Let us denote fv : t ∈ [t−0 ; t+0 ]→ ⟨γ′(t), d2 [Φ−1] (dΦ ◦ γ(t)(γ′(t)), v)⟩ ∈ R and
gv : t ∈ [t−0 ; t+0 ]→ ⟨γ′(t), d [Φ−1] (Φ ◦ γ(t))(v)⟩ ∈ R, and Fv : [t−0 ; t+0 ]→ R the
primitive of fv such that Fv(t−0 ) = 0. If we integrate by parts the previous
equality, we get that, for all z as above,

0 =
∫ t+0

t−0

z′(t) (Fv(t) + gv(t)) dt.

From this, we deduce the following result (treated as a separate proposi-
tion for ease of reading).

Proposition C.2

The map Fv + gv is constant.

Let us denote c ∈ R the constant such that Fv +gv = c. As fv is bounded,
the map Fv is Lipschitz. Therefore, gv = c − Fv is also Lipschitz. Observe
that gv can be rewritten as

∀t ∈ [t−0 ; t+0 ], gv(t) =
〈
d[Φ−1](Φ ◦ γ(t))∗γ′(t), v

〉
.
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The fact that this map is Lipschitz for any v ∈ Rd × {0}n−d is equivalent to
the fact that the map

t ∈ [t−0 ; t+0 ]→ P
(
d[Φ−1](Φ ◦ γ(t))∗γ′(t)

)
∈ Rd

is Lipschitz, where P is defined by

P : Rn → Rd

(x1, . . . , xn) → (x1, . . . , xd).

This is enough to guarantee that γ′ is Lipschitz, as stated in the following
proposition.

Proposition C.3

The map γ′ is Lipschitz.

In particular, γ′ is continuous. We can therefore redo the same reasoning
as we just did, with a higher regularity. Namely, we see that fv is continuous
(and not simply bounded, as before). Therefore, Fv is C1, so gv = c− Fv is
also C1. This implies that

t ∈ [t−0 ; t+0 ]→ P
(
d[Φ−1](Φ ◦ γ(t))∗γ′(t)

)
∈ Rd

is C1, from which the same proof as for Proposition C.3 shows that γ′ is C1,
i.e. γ is C2.

C.2.5 Proof of Proposition C.2

More grenerally, let h ∈ L∞([t−0 ; t+0 ]) be any map such that

0 =
∫ t+0

t−0

z′(t)h(t)dt

for any Lipschitz function z : [t−0 ; t+0 ] → R satisfying z(t−0 ) = z(t+0 ) = 0. We
show that h is constant.

C.2.6 Proof of Proposition C.3

Let us denote

h : : [t−0 ; t+0 ] → Rd

t → P (d[Φ−1](Φ ◦ γ(t))∗γ′(t))
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the map which we know to be Lipschitz. The principle of the proof is to
give an explicit expression of γ′ as a function of h, and deduce from this
expression and the Lipschitzness of h that γ′ is also Lipschitz.

We use the fact that, for any t, γ′(t) belongs to the tangent space Tγ(t)M ,
which is equivalent to

dΦ(γ(t))(γ′(t)) ∈ Rd × {0}n−d.

In particular, P ∗ ◦ P (dΦ(γ(t))(γ′(t))) = dΦ(γ(t))(γ′(t)), where P ∗ : Rd →
Rn is the adjoint of P (i.e. P ∗(x1, . . . , xd) = (x1, . . . , xd, 0, . . . , 0) for all
(x1, . . . , xd)), so that

γ′(t) = dΦ(γ(t))−1 [P ∗ ◦ P (dΦ(γ(t))(γ′(t)))]
= d[Φ−1](Φ ◦ γ(t)) [P ∗ ◦ P (dΦ(γ(t))(γ′(t)))] . (C.5)

Therefore, for any t ∈ [t−0 ; t+0 ],

h(t) = A(t)∗ ◦ A(t) (P (dΦ(γ(t))(γ′(t)))) ,

where A(t) = d[Φ−1](Φ◦γ(t))◦P ∗ : Rd → Rn. For any t, since A(t) is injective
(as it is the composition of two injective maps), A(t)∗ ◦ A(t) : Rd → Rd is
a bijective map. As t → A(t)∗ ◦ A(t) ∈ L(Rd,Rd) is Lipschitz (recall that
γ is Lipschitz), its composition with the inversion is also Lipschitz on every
compact set:

t ∈ [t−0 ; t+0 ]→ (A(t)∗ ◦ A(t))−1 ∈ L(Rd,Rd)

is Lipschitz. For any t,

P (dΦ(γ(t))(γ′(t))) = (A(t)∗ ◦ A(t))−1 (h(t)),

so that t→ [t−0 ; t+0 ]→ P (dΦ(γ(t))(γ′(t))) ∈ Rd is the product of two bounded
Lipschitz maps, hence Lipschitz and bounded as well. From Equation (C.5),
γ′ is the product of this map with the map t→ [t−0 ; t+0 ]→ d[Φ−1](Φ ◦ γ(t)) ◦
P ∗ ∈ L(Rd,Rn), which is Lipschitz and bounded as well. Therefore, γ′ is
Lipschitz.
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Complements for Chapter 4

D.1 Gronwall’s lemma

Lemma D.1 : Gronwall

Let t0 ≤ T ∈ R, a, c, u ∈ C0([t0;T ],R). Assume a ≥ 0 and, for all
t ∈ [t0;T ],

u(t) ≤ c(t) +
∫ t

t0

a(s)u(s)ds.

Then, for all t ∈ [t0;T ],

u(t) ≤ c(t) +
∫ t

t0

e
∫ t
s a(τ)dτa(s)c(s)ds.

The lemma also holds if T < t0, provided that we replace the interval
“[t0;T ]” with “ [T ; t0]” and exchange the bounds in each integral.

D.2 Proof of Lemma 4.11

Assume the theorem is true for all maps independent of t, and let’s prove it
for a general map f : (t, u) ∈ I ×U → f(t, u) ∈ Rn. The principle is to write
the maximal solutions of Problem (Cauchy u0) as the maximal solutions of
another problem defined by a map independent of t, to which we can apply
the theorem.

For all t1 ∈ I, u0 ∈ U , let’s define ũ(t1,u0) : J(t1,u0) → I×U as the maximal

223
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solution of the problem{
ũ(t1, u0)′ = g(ũ(t1, u0)),
ũ(t1,u0)(t0) = (t1, u0),

(D.1)

where g : I × U → Rn+1 is the map such that g(x) = (1, f(t, v)) for all
x = (t, v) ∈ I × U .

For any u0, we observe that ũ(t0,u0) is the map

Ju0 → I × U
t → (t, uu0(t)). (D.2)

Indeed, this map is a solution of Problem (D.1). Furthermore, it is maximal.
Indeed, let Tu0 : J(t0,u0) → I and u

(U)
u0 : J(t0,u0) → U be the two components

of ũ(t0,u0), that is, for all t ∈ J(t0,u0),

ũ(t0,u0)(t) = (Tu0(t), u(U)
u0 (t)).

The definition of Problem (D.1) implies that T ′
u0 ≡ 1; since Tu0(t0) = t0, it

holds for all t that Tu0(t) = t. In addition,

u(U)′
u0 (t) = f(Tu0(t), u(U)

u0 (t)) = f(t, u(U)
u0 (t)).

Thus, u(U)
u0 is a solution of the same Cauchy problem as uu0 . Since uu0 is

a maximal solution, J(t0,u0) ⊂ Ju0 . Therefore, the map defined in Equa-
tion (D.2) solves Problem (D.1) and contains the domain of its maximal
solution: it is the maximal solution itself.

The map g in Problem (D.1) has only one argument. Therefore, the
theorem holds for this problem. The set Ω̃ def= {((t1, u0), t), t1 ∈ I, u0 ∈ U, t ∈
J(t1,u0)} is thus open. The map

W : Ω̃ → I × U
((t1, u0), t) → ũ(t1,u0)(t)

is therefore C1.
Since Ω = {(u0, t) s.t. ((t0, u0), t) ∈ Ω̃}, this set is the preimage of Ω̃

under a continuous mapping: it is open. Moreover, for all (u0, t) ∈ Ω,

V (u0, t) = uu0(t) =
[
ũ(t0,u0)(t)

]
2:n+1 = [W ((t0, u0), t)]2:n+1 ,

where the notation “2 : n + 1” denotes the vector consisting of the second,
third, ..., (n+ 1)-th coordinates of an element in Rn+1. As W is C1, V is C1

as well.
Finally, knowing that V is C1, we obtain the Cauchy Problem (Cauchy dV

du0
)

by differentiating the Cauchy Problem (Cauchy u0).
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D.3 Proof of Lemma 4.12

Assume that Property (4.7) holds. Fix u0 ∈ U and show that, for all t ∈ Ju0 ,

Ω contains a neighborhood of (u0, t) on which V is C1 and
satisfies Equations (Cauchy dV

du0
). (D.3)

According to Assumption (4.7), t0 satisfies Property (D.3). Let J ′
u0 be the

set of points in Ju0 satisfying this property. We must show that J ′
u0 = Ju0 .

The set J ′
u0 is non-empty (it contains t0) and open: if t satisfies Prop-

erty (D.3), and H is a neighborhood of (u0, t) as in the property, then, for
any t′ sufficiently close to t, H is also a neighborhood of (u0, t

′) on which V
is C1 and satisfies Equations (Cauchy dV

du0
). Hence, t′ ∈ J ′

u0 .
Now, we show that J ′

u0 is closed in Ju0 . Since Ju0 is connected (it is an
interval), it is enough to complete the proof. Let t ∈ Ju0 belong to the closure
of J ′

u0 . We must show that t ∈ J ′
u0 .

We must show that V is well-defined and C1 in a neighborhood of (u0, t).
From Assumption (4.7), there exists ϵu, ϵt > 0 such that B(V (u0, t), ϵu)×]t0−
ϵt; t0 + ϵt[⊂ Ω (i.e. V is well-defined and C1 on this set).

Additionally, since t belongs to the closure of J ′
u0 , there exists t′ ∈ J ′

u0

arbitrarily close to t. Let us fix t′ ∈ J ′
u0 such that

B(u0, t
′) ∈ B(V (u0, t), ϵu) and t′ ∈]t− ϵt; t+ ϵt[.

Let ϵ′u > 0 be such that V is well-defined and C1 over B(u0, ϵ
′
u) × {t′}

and small enough so that

V (B(u0, ϵ
′
u)× {t′}) ⊂ B(V (u0, t), ϵu).

For all (v, s) ∈ B(u0, ϵ
′
u)×]t′ − ϵt; t′ + ϵt[, from the following proposition

(which is the only part of the proof where we use the assumption that f is
independent from t), (v, s) belongs to Ω and

V (v, s) = V (V (v, t′), t0 + (s− t′)).

As B(u0, ϵ
′
u)×]t′ − ϵt; t′ + ϵt[ contains (u0, t), it means that t satisfies Prop-

erty (D.3).
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Proposition D.2

For all v ∈ U , s, t′ ∈ R such that (v, t′) ∈ Ω and (V (v, t′), t0 +(s−t′)) ∈
Ω, we have that (v, s) belongs to Ω and

V (v, s) = V (V (v, t′), t0 + (s− t′)).

Proof of Proposition D.2. Let v ∈ U , s, t′ ∈ R such that (v, t′) ∈ Ω and
(V (v, t′), t0 + (s− t′)) ∈ Ω.

We verify that Jv = JV (v,t′)+t′−t0 and, for all τ ∈ Jv, uv(τ) = uV (v,t′)(t0+
τ − t′). Let’s define

ψ : τ ∈ JV (v,t′) + t′ − t0 → uV (v,t′)(t0 + τ − t′).

Both maps uv and ψ are solutions of the Cauchy problem{
u′ = f(u),

u(t′) = V (v, t′).

Moreover, they are maximal (since if we could extend them, uv and uV (v,t′)
would also have an extension that would be a solution to Problem (Cauchy u0)
and would therefore not be maximal). According to the Cauchy-Lipschitz
theorem, they are equal, as announced.

For τ = s, the equality between uv and ψ gives

V (v, s) = uv(s) = uV (v,t′)(t0 + s− t′) = V (V (v, t′), t0 + (s− t′)).

D.4 Proof of Proposition 4.13

The proof is quite similar to that of Proposition 4.8.
Let v ∈ B

(
u0,

ϵ
2

)
. First, we verify that, for all t ∈ Jv∩

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
,

uv(t) ∈ B(u0, ϵ). By contradiction, suppose that there exists t ∈ Jv ∩]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
such that ||uv(t) − u0||2 ≥ ϵ. By symmetry, we can as-

sume that there is one such t in the right half of the interval,
[
t0; t0 + ϵ

2M1

[
.

Let’s define t1 as the infimum of real numbers t satisfying this property.
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Due to the continuity of uv, we have ||uv(t1)− u0||2 ≥ ϵ. However, for all
t ∈ [t0; t1[, uv(t1) ∈ B(u0, ϵ), and thus

||u′v(t1)||2 = ||f(uv(t1))||2 ≤M1.

So uv is M1-Lipschitz on [t0; t1[ and

||uv(t1)− u0||2 ≤ ||uv(t1)− uv(t0)||2 + ||uv(t0)− u0||2
≤M1|t1 − t0|+ ||v − u0||2
< ϵ.

We have reached a contradiction.
The inclusion

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
⊂ Jv comes from the théorème des

bouts. Indeed, if sup Jv < t0 + ϵ
2M1

, the map uv must exit any compact set
in the neighborhood of sup Jv, which contradicts the fact that uv remains in
B(u0, ϵ) on Jv ∩

]
t0 − ϵ

2M1
; t0 + ϵ

2M1

[
. The same applies if inf Jv > t0 − ϵ

2M1
.
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