Chapter 1

Reminder on differential calculus

What you should know or be able to do after this chapter

1.1

Know the definition of the differential, and be able to use it.
Be able to compute the differential or partial derivatives of a function, when given an explicit expression.

Be able to convert between the different expressions of the differential (linear map <« Jacobian matrix <«
partial derivatives).

Know that a differentiable map has partial derivatives, but be able to give an example of a map which has
partial derivatives, and no differential.

Prove the classical result on the differentiability of a composition of differentiable functions.

Be able to apply this result to an explicit example (with no error on the point at which each differential
must be computed!).

Know the definition of the gradient and Hessian.
Know the definitions of homeomorphism and diffeomorphism.

When you want to prove that a function is locally invertible, think to the local inversion theorem, and be
able to apply it correctly.

When you want to parametrize a set defined by an equation, think to the implicit function theorem, and
be able to apply it correctly.

Propose examples which show that the assumption “0, f(zo,yo) is bijective” is necessary.

Know the definition of an immersion and a submersion.

Be able to apply the normal form theorems on explicit examples.

When you want to upper bound the values of a differentiable function, or the difference between its values,

think to the mean value inequality, and be able to apply it.

Definition of differentiability

Let (E,||.||g), (F,||.||F), and (G, ||.||c) be normed vector spaces. We denote the set of continuous linear mappings
from E to F by L(E, F) L.

'Recall that when E is of finite dimension, all linear mappings from E to F are continuous. This is no longer true if E is of
infinite dimension.
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Definition 1.1 : differentiability at a point

Let U C E be an open set, and f : U — F be a function.
If x is a point in U, we say that f is differentiable at x if there exists L € L(E, F') such that

f(z +h) = f(z) = L(A)||F
[Ihll&

(or, equivalently, f(z + h) = f(x) + L(h) + o(||h||E)).
We then call L the differential of f at x and denote it df (x).

If (E,]|.llg) = (R,[.]), then the differential, when it exists, takes the form

— 0 as||hllg — 0,

heR — hzcF,

for a certain element z; in F. In this case, we write

/ /(f) = Zg-
We then recover the well-known formula:

f(x+h)= f(z)+ f(x)h+o(h) ash— 0.

Definition 1.2: functions of class C"

Let U C E be an open set, and f: U — F a function.

The function f is said to be differentiable on U if it is differentiable at every point of U.

It is of class C if it is differentiable and df : U — L(E, F) is a continuous mapping.

More generally, for any n > 1, it is of class C™ if it is differentiable and df is of class C™~ 1.
It is of class C*° if it is of class C™ for every n > 1.

J

We won’t revisit the basic properties related to differentiability (e.g., the sum of differentiable functions is
differentiable, etc.), except for the one on functions defined by composition.

Theorem 1.3 : composition of differentiable functions

Let U C E,V C F beopen sets. Let f:U — V and g : V — G be two functions. Let z € U.
If f is differentiable at x and g is differentiable at f(z), then

e go f is differentiable at z;

o d(go f)(z) = dg(f(z)) o df (x).

1.2 Partial derivatives

In differential geometry, it is common to perform explicit calculations involving differentials of functions from
R™ to R™. For this purpose, it is useful to represent differentials as matrices of size m x n (or vectors if m = 1)
whose coordinates can be computed. The concept of partial derivatives allows us to achieve this.

Definition 1.4 : partial derivative

Let n € N*. Let U be an open subset of R™ and f: U — R a function.




J

1.2. PARTIAL DERIVATIVES

Let « = (x1,...,2,) € U. For any i = 1,...,n, we say that f is differentiable with respect to its i-th
variable at x if the function
Yy — f(xla"wxi—lvyaxi-f-l?'")

is differentiable at z;. We then denote the derivative as 0; f(x), 0y, f(x), or g—ai(x)

Remark

If f is differentiable at x, then it is also differentiable at x with respect to each of its variables. The
converse is not necessarily true.

Remark

More generally, if Fy,..., E,, F are normed vector spaces, U is an open subset of £y x --- X E,, and
f U — Fis a function, we can define, for all x = (z1,...,2,) € U and i = 1,...,n, the partial derivative
of f with respect to x;,

O, f(x) € L(E;, F).

J

Now let n,m € N* be integers, U an open subset of R", and f : U — R™ a differentiable function. For any
x, df (x) is a linear mapping from R"™ — R™; we denote J f(z) its matrix representation in the canonical bases.
If we identify R™ (respectively R™) with the set of column vectors of size n (respectively m), then

Vu e R",  df(z)(u) = Jf(z) X u.

The matrix Jf(x) is called the Jacobian matriz of f at the point x.

Proposition 1.5

Let fi,..., fm : U — R be the components of f. Then, for any =z,
) ) L )
T (@) = SL(z) SL(z) ... SL(a)
Yrw) Yo .. Yo
Proof. Fix © = (z1,...,2,) € U. Let v € 1,...,n. Denote e, as the v-th vector of the canonical basis of R”

(i.e., the vector whose coordinates are all 0 except the v-th one, which is 1).
According to the definition of the differential,

f1, . 1,y Ty, ) = fz+ (y —x0)en)
= f(z) + (y — z)df (z)(er) + o(y — 7)
asy — T,.

For any p € 1,...,m, we have

f,u(xly s Ty—1,Y, Ty, - - ) = fu(x) + (y - $y)(df($)(€1/))u =+ O(y - xl/)
as y — T,.

Thus, according to the definition of the partial derivative,

Jul@i, o 1,9, Tug1, .- ) — fu(@)
Y—Ty Yy—Ty
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By the definition of the Jacobian matrix, (Jf(x)).., = (df (x)(ev))u, so

(Jf(l‘))u,u = &Jf,u(l')'
O

Example 1.6

Let f:R? — R? be such that, for every (z1,z2) € R?
f(z1,22) = (w122, 71 + 72).

It is differentiable. Its Jacobian matrix is

Y(z1,72) € R?,  Jf(21,22) = <$12 3611>

and its differential is

V(Cﬂl, 562), (hl, hz) S R2, df(l‘l, .Tg)(hl, hg) = (hlIQ + hQIl, hi + hg)

In the particular case where m = 1, the Jacobian matrix has a single row:

Ve e U, Jf(x)z(a‘%(:n) a‘%(m) %(m))

Its transpose is then called the gradient:
VeeU, Vf(x)= 8932.

For all z € U,h = (h1,...,h,) € R™,

h1 n
df (z)(h) = J f (x) ( : ) -y (@)hi = (Vf(z),h),

T
hn i=1 O

where the notation “(.,.)” denotes the usual scalar product in R"™.
Still assuming m = 1, let us consider the case where f is twice differentiable. Its second differential can also
be represented by a matrix. Indeed, for any x, d?f(z) = d(df)(z) belongs to L(R™, L(R™,R)). The map

(R, 1) € R xR™  — d*f(x)(h)(1) (1.1)

is therefore bilinear. As stated in the following property, it is even a quadratic form (i.e., it is symmetric), and
the matrix associated with it in the canonical basis has a simple expression in terms of the partial derivatives of

fl

Proposition 1.7: Hessian matrix

Let x € U. The map defined in (1.1) is a symmetric bilinear form. The matrix representing it in the
canonical basis is

92f 2% f 0% f
871-%('1:) 0x101T2 ((L.) et 0x10Tn (CL‘)
o°f a%f o7
H(f)(I) _ 8%‘26%1 (l’) Bac%(:v) e 695283'% (:C) (12)

82 ' 82 . 82 )
aznafxl (33‘) angxg (l‘) ce 7%('7")
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It is called the Hessian matriz of f at point x.

Exercise 1: Proof of Proposition 1.7

1. Prove Equation (1.2).

In the rest of the exercise, we show that H(f)(z) is symmetric. For this, we fix i, 5 € {1,...,n} such that
1 # 7 and show

0 0f .\ _20f
6mi (9.723' N 6.1']' 8:61
We denote e;, e; the i-th and j-th vectors of the canonical basis. For any ¢, u € R such that z+te;+ue; € U,
we define

().

(t,u) = f(z +te; + uej) — f(x + te;) — f(x + uej) + f(x).

2. a) Show that, for all ¢, u close enough to 0,

o(t,u) = /Ou [%(x +te; + se;j) — aa—f(x + sej)} ds.

Lj

b) Let € > 0 be any positive number. Show that, for all ¢, s close enough to 0,

o ey 2 y_4 9 9f
oz; (x + te; + sej) oz; (x + sej) tam oz (z)

< e([t]+s]) -

c¢) Deduce from the previous question that, for all ¢,u close enough to 0,

0 o
afL’i 8:Ej

'¢<t, u) — tu <x>\ < e[t ful + uf?).

d) Show that, for all ¢,u close enough to 0,

‘ﬁb(tau) . tui—xi@)\ < €|t/ ful + 412).

e) Conclude.

1.3 Local inversion

Definition 1.8 : homeomorphism

Let U,V be two topological spaces®. A map ¢ : U — V is a homeomorphism from U to V if it satisfies
the following three properties:

1. ¢ is a bijection from U to V;
2. ¢ is continuous on U,

3. ¢~ !is continuous on V.

“Readers not familiar with the concept of "topological space" can limit themselves to the case where U and V' are two
metric spaces, or even to the case where U and V' are subsets, respectively, of R"! and R"? for ni,ne € N.
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Definition 1.9: diffeomorphism

Let n € N* be an integer, U,V C R” be two open sets. A map ¢ : U — V is a diffeomorphism if it
satisfies the following three properties:

1. ¢ is a bijection from U to V;
2. ¢is C! on U;
3. ¢ lisClon V.

If, moreover, ¢ and ¢! are C* for an integer k € N*, we say that ¢ is a C*-diffeomorphism.

Theorem 1.10: local inversion

Let n, k € N* be integers, U,V C R" be two open sets, and zg € U. Let ¢ : U — V be a C*¥ map.
If dg(wo) € L(R",R™) is bijective, then there exist Uy, C U an open neighborhood of zo and Vy,,) C V

an open neighborhood of ¢(zg) such that ¢ is a C*-diffeomorphism from Uy 0 Vi(a)-

For the proof of this result, one can refer to [Paulin, 2009, p. 250].
An important consequence of the local inversion theorem is the implicit functions theorem, which allows to
parameterize the set of solutions of an equation.

Theorem 1.11 : implicit functions

Let n,m € N*. Let U C R™ x R™ be an open set, f : U = R™ be a C* map for an integer k € N*, and
(0,y0) be a point in U such that

f(®o,y0) = 0.
If 9, f(x0,y0) € L(R™,R™) is bijective, then there exist

e an open neighborhood Uy, .y C U of (z0,%0),
e an open neighborhood V,, C R" of g,
e amap g: Vg — R™ of class C*

such that, for all (z,y) € R® x R™,

((:v,y) € Ulzp,yo) and flz,y) = 0) — (xe€Vy andy=g(z)).

To get an intuitive feeling on this theorem, the condition " f(x,y) = 0" should be interpreted as an equation
depending on a parameter z, whose unknown is . The theorem states that, in the neighborhood of (xg,yo), the
equation has, for each value of the parameter x, a unique solution (which is g(x)) and that this solution is Ck
relatively to x.

Example 1.12

There exists an open neighborhood Uy 1/9) C R? of (1,1/2) and an open neighborhood U; C R of 1 such
that the solutions of the equation

4
cos(mz) — cos(my) + 3z%y? + % =0

for (z,y) € U(1,1/2) are exactly the points of the set {(z,g(z))} for a certain function g : U3 — R of class
C.
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0.5 1

0.5+

Figure 1.1: In blue, {(z,y) € R?, cos(mz) — cos(my) + 3z2y? + %4 = 0}. This set is not the graph of a function.
However, the part of the set inside Uy 1/9) coincides with the graph of a function g : V4 — R.

This is proven by applying the implicit functions theorem to

4
f:(z,y) eRxR — cos(mz) — cos(my) + 3z%y? + xz cR.

The bijectivity assumption of d, f(1,1/2) is indeed satisfied:
8,f(1,1/2) = m +3 #0.

The set of solutions to the equation is represented in Figure 1.1.

Proof of the implicit function theorem. Let us define

¢ : U — R'xR™
(z,y) — (z,f(z,y)).

This is a C* function, and for all (h,1) € R" x R™,

do(xo,yo)(h, 1) = (h, df (zo,y0)(h,1))
= (h, 0x.f (0, y0)(h) + Oy f (z0,90) (1))

The map d¢(xo,yo) is injective. Indeed, for all (h,1) € R™ x R™ such that d¢(zo,yo)(h,l) =0,
h =0 and 0y f(zo,v0)(l) = 0.

Since 9y f(xo, yo) is bijective, this implies I = 0. Thus, d¢(xo, yo) is an injective map from R™ x R™ to R™ x R™.
Therefore, it is bijective (its domain and codomain have the same dimension).

We apply the local inversion theorem at (xo,0). There exists an open neighborhood U, 4, of (z0,%0), an
open neighborhood V' of ¢(zg, y0) = (20,0) such that ¢ is a C*-diffomorphism from Ulzoyo) to V. Let

z0,Y0

YV = Ulgg,yo)

be its inverse.
For all (z,y) € V, we write ¢(x,y) = (¢1(z,y), Y2(x,y)) € R™ x R™. For all (z,y) € V,

(CE,y) = ¢07!}(33,?J)
= ¢(¢1($»?/)a¢2($»?/))
= Wﬂ%?/)a (¢1($,y),¢2($,y))).
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Therefore,

¢1 (.CL', y) =T
We set

Vay ={z € R", (2,0) € V};
g:x € Vg — Pa(z,0) € R™.

As required, Vj, is an open neighborhood of xg and g is C*. For all (z,y) € R® x R™,

((2,9) € Utagyy) and f(z,y) =0)

Y) € Ulag g0y and ¢(z,y) = (2,0))

x,y) € Ulzo,y0) and (x,0) e Vet (z,y) = ¢(w,0))
(2,0) € V and (z,y) = ¢(,0) = (z,¢2(,0)))

Vi and y = g(x)) .

111

O

1.4 Immersions and submersions

We now introduce two particular categories of differentiable functions: immersions and submersions. These
functions will have an important role in the remainder of the course because they represent two of the main
ways of showing that a given set is a submanifold.

Let n,m € N* be integers. Let f : U C R® — R™ be a C* map (for some k > 1), with U an open set.

Definition 1.13: immersions and submersions

For any point « € U, we say that f is an immersion at x if df (z) : R™ — R™ is injective. We say that f
is an immersion if it is an immersion at every point x € U.

For any point « € U, we say that f is a submersion at z if df (z) : R™ — R™ is surjective. We say that f
is a submersion if it is a submersion at every point x € U.

Remark

The function f can only be an immersion if n < m and a submersion if n > m.

If f is an immersion at a point z, it is injective in a neighborhood of = (a consequence of Theorem 1.14).
However, being an immersion is a significantly stronger property than local injectivity. Similarly, a submersion
is locally surjective, but not all locally surjective functions are submersions.

When n < m, the simplest immersion from R" to R™ is the function

(1,...,2p) €ER"  —  (21,...,2,0,...,0) € R™.

The following theorem asserts that, in the neighborhood of every point, up to a change of coordinates in the
codomain (i.e., a transformation of the codomain by a diffeomorphism), all immersions are equal to this one.

Theorem 1.14: normal form of immersions

Suppose that Ogn € U and f(Ogn) = Ogm.
If f is an immersion at Ogn, there exists a neighborhood U’ of Og» and a C*-diffeomorphism 1 from a
neighborhood of Ogm to a neighborhood of Ogm such that

V(z1,...,20) €U, o f(x1,...,24) = (T1,...,%p,0,...,0).
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Proof. Suppose that f is an immersion at Ogn.
Let eq,..., e, be the vectors of the canonical basis of R", and €1,..., ¢, be those of the canonical basis of
R"™. Let us first prove the result under the assumption that

Vre{l,...,n}, df(Orn)(e,) = €.

Define
o R™ = R™
(X1, yxm) = f(x1,.o o xn) + (0,00, Tpg1y v oy ).

We have ¢(0) = 0. Moreover, ¢ is a C* map, and for any h = (hy,...,hy) € R™,
¢(0Rm)(h) = df(O]Rn)(h,l, RN hn) + (0, v 05 hpga, ey hm)

From this formula, it can be verified that d¢(0)(e,) = €, for all » = 1,...,m, meaning that d¢(0) = Idgm. In
particular, d¢(0) is bijective.
According to the inverse function theorem, there exist open neighborhoods Vi, Vo of Ogrm such that ¢ is a

C*-diffeomorphism between them. Let v : V5 — Vj be its inverse. For any = = (z1,...,2,) € U’ = (W),

f(z1,...,2n) = &(z1,...,20,0,...,0),

S10)
Yo f(xy,...,xn) = (x1,...,20,0,...,0).

This completes the proof of the theorem under the assumption that df(0)(e,) =€, for all r =1,...,n.

Now, let’s drop this assumption. For any r € {1,...,n}, denote v, = df (Orn)(e;). As df(Orn) is injective,
the family (vi,...,v,) is linearly independent; it can be completed to a basis of R™, denoted by (v1,...,vm).
Let L € L(R™,R™) be such that

Vre{l,....,m}, L(v,)=e.

It is a bijection since it sends a basis to a basis.
Let f = Lo f. We have f(Ogn) = Ogm and df(Ogn) = L o df (Og»). In particular, f(Ogn) is an immersion at
0. For any r € {1,...,n}, )
df (Orn)(er) = L(df (Orn)(er)) = L(v;) = €.

Thus, the function f satisfies our previous assumption. Consequently, there exist U’ an open neighborhood of
Ogn and ¢ a diffeomorphism between two neighborhoods of Ogm such that, for all (z1,...,2,) € U’,

Yo f(xr,...,xp) = (x1,...,20,0,...,0),
meaning (¢ o L) o f(x1,...,2,) = (21,...,2n,0,...,0).

We set 1) = ¢ o L to conclude. O

A similar result holds for submersions and has a similar proof. When n > m, the simplest submersion from
R™ to R™ is the projection onto the first m coordinates:

(x1,...,2n) €ER"  —  (21,...,2m) € R™.

Subject to a change of coordinates in the domain, all submersions are locally equal to this one.

Theorem 1.15: normal form of submersions

Suppose that Ogn € U and f(Ogn) = Ogm.
If f is a submersion at Ogn, there exist U, Us open neighborhoods of Og» and a C* diffeomorphism
¢ : Uy — Uy such that

V(x1,...,2n) €U, fod(x1,...,2n) = (T1,...,Tm).
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1.5 Mean value inequality

Let’s conclude this chapter with a useful inequality, the mean value inequality.
Let (E,||.||g) and (F,||.||r) be normed vector spaces. We equip L(F, F') with the uniform norm: for any
ue L(EF),

_ |[u(z)||F
l[ullg(g,py = sup .
cepNfo} ||7llE

Theorem 1.16 : mean value inequality

Let U C E be a convex open set, and f: U — F a differentiable function.
Suppose there exists M € R such that

Ve eU, |ldf(@)|leer <M.

Then,

Ve,y €U, ||f(z) = fW)llr < M|z —ylle.

For the proof of this result, one can refer to [Paulin, 2009, p. 237|.

Remark

Be careful not to forget the convexity assumption. The theorem may be false if it is not satisfied.
For example, the function f: R\ {0} — R defined by f(x) = —1 for all z < 0 and f(z) =1 for all z > 0

satisfies
|f ()] <0 forall z€ R\ {0}

(as its derivative is zero).
However, it is not true that |f(x) — f(y)| =0 for all z,y € R\ {0}.

H \

Exercise 2: classical application of the mean value inequality
Let n,m € N* be integers. Let f : R™ — R" be a differentiable function such that, for any = € R™,
|ldf ()| cmn gy < 1.

Show that, for any x € R",

@I < NLF O] + [lI]-




Chapter 2

Submanifolds of R"

What you should know or be able to do after this chapter

Have an intuition of what is a submanifold of R™. In particular, from a drawing of a subset of R? or R3,
be able to guess with confidence whether it represents a submanifold or not.

Know the four definitions of a submanifold of R".

When given the explicit expression of a set, be able to prove that it is a submanifold of R”, choosing the
most appropriate of the four definitions.

Know the definition of S*1.
Be able to prove that a set is a submanifold using the fact that it is a product of submanifolds.

Understand the proof that O, (R) is a submanifold (i.e. be able to do it again alone, given only the
definition of §).

Be able to use the submersion definition of submanifolds to prove that sets are not submanifolds.
Propose a definition of the tangent space to a submanifold, then remember the “true” one.

Given a picture of a submanifold of R? or R3, be able to draw (a plausible version of) the tangent space
at any point.

Given the explicit expression of a submanifold, be able to compute its tangent space, choosing the most
appropriate of the four formulas.

Know the tangent space to the sphere.
Know that the tangent space of a product submanifold is the product of the tangent spaces.
Be able to use the tangent space to prove that sets are not submanifolds (when possible).

Be able to show that a map between submanifolds is C”, using the facts that compositions of C™ maps are
C" and that, on a C*-submanifold, projections onto a coordinate are C*.

In the whole chapter, let k,n € N* be fixed integers.

2.1

Definition

The simplest example of a submanifold of R™ is

R% x {0}""4 = {(x1,...,24,0,...,0)|z1,..., 24 € R},

where d is any integer between 0 and n. The concept of a submanifold of R™ generalizes this example: a set is
a submanifold if it is locally the image of R? x {0}~ under a diffeomorphism from R™ to R™. Let’s formalize
this definition and provide other equivalent definitions.

15
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Figure 2.1: Illustration of property 1 in definition 2.1: there exists a local diffeomorphism from R? to R? that

maps the set M onto R x {0}.
Definition 2.1: submanifolds

Let d € {0,1...,n}.

Let M C R™. We say that the set M is a submanifold of R™ of dimension d and class C* if it satisfies

one of the following properties.

1. (Definition by diffeomorphism)
For every x € M, there exists a neighborhood U C R" of z, a neighborhood V C R" of 0, and a

C*k-diffeomorphism ¢ : U — V such that
p(MNU) = (R x {0} HNnV.

2. (Definition by immersion)
For every x € M, there exists a neighborhood U C R™ of z, an open set V in R% a C* function

f:V — R™ such that f is a homeomorphism between V and f(V),
MnU=f(V)

and, denoting a as the unique pre-image of x under f, f is an immersion at a.

3. (Definition by submersion)
For every x € M, there exists a neighborhood U C R” of x, a C* function ¢ : U — R™ ¢ that is a

submersion at x such that
MNU =g'({0})
4. (Definition by graph)
For every x € M, there exists a neighborhood U C R™ of z, an open set V in R% a C* function
h:V — R % and a coordinate system® in which

M N U = graph(h)
de,
Y (.’L‘l,...,:I,‘d,h(.’L‘l,...

,Z4)), (T1,...,2q) € V}.

., Tn) denotes

®A coordinate system is the specification of a basis (e1,...,e,) for R™. In this system, the notation (z1,

the point x1e1 + - -+ + Tnen.
Theorem 2.2

The four properties in Definition 2.1 are equivalent.

Among the four equivalent definitions in the theorem, the definition by diffeomorphism (property 1, illustrated
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in figure 2.1) is the one that most clearly reveals the connection between a general submanifold and the "model"
submanifold R¢ x {O}"*d. However, it is not the most convenient to manipulate: when proving that a given set
is a submanifold, the definitions by immersion, submersion, or graph are generally more convenient, as we will
see in Section 2.2.

Pay attention to the fact that, in the definition by submersion (property 3), the function g maps into
R"=4 and not into R<.

In a very informal way, in this definition, a submanifold is defined as the set of points in R™ that satisfy
a set of scalar equations

g(x)1 =0,g(x)2 =0,...

Intuitively, we expect the set of solutions to have n — e "degrees of freedom", where e is the number of
equations. For the submanifold defined in this way to be of dimension d, we need to have e = n — d,
meaning that g maps into R?~.

We advise the reader to study the examples in Section 2.2 before reading the proof of Theorem 2.2.

2.2 Examples and counterexamples
As seen in the previous section, for any d € 0,...,n,
Rd % {O}n—d

is a submanifold of R™ (of class C*° and of dimension d).
Open sets provide another simple example of submanifolds: any non-empty open set in R” is a submanifold
of dimension n of R™.

2.2.1 Sphere

Definition 2.3

The unit sphere in R™ is the set

S*l = {(z1,...,2,) ER"|22 4+ -+ 22 =1},

n

Proposition 2.4

The set S~ ! is a submanifold of R”, of class C*°, and of dimension n — 1%

Tt is precisely denoted S"~! instead of S™ because its dimension is n — 1.

Proof. We will use the definition by submersion (Property 3 of Definition 2.1).

Let x € S*" L. Consider g : (t1,...,t,) € R® = 3 + ... +t2 —1 € R. This is a C* function. It is a
submersion at z. Indeed, dg(x) is a linear map from R™ to R, so it is either the zero map or a surjective map.
Now,

Vit = (tl, e ,tn) S Rn, dg(.I)(tl, ce ,tn) = 2($1t1 + -+ .Intn).

Since 22 + -+ + 22 = 1, x is not the zero vector, so dg(z) is not the zero map; it is surjective.

Moreover, the definition of g implies that

s* =g~ ({0}).

Property 3 of Definition 2.1 is therefore satisfied (with U = R").

O
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2.2.2 Product of submanifolds

Proposition 2.5

Let ni,n2 € N*,d; € {0,...,n1},d2 € {0,...,n2}. If M is a submanifold of R™ of class C* and
dimension di, and M5 is a submanifold of R™2 of class C* and dimension do, then

M1 X M2 déf {(331,.’)32),.%1 S Ml,.'EQ (S MQ}

is a submanifold of R™*72 of dimension d; + ds.

Proof. We use the definition by immersion (Property 2 of Definition 2.1). Let = (x1,x2) € M.
As M, is a submanifold, there exists a neighborhood Uy of x1, an open set Vi in R%, and f; : Vi — R™ of
class C*, which is a homeomorphism onto its image, such that

MinU = f1(\1)

and f; is immersive at f; " (21).

Define similarly Us, Vo, and fo : Vo — R™2.

The function f : (t1,t2) € Vi x Vo — (f1(t1), fa(ta)) € R™M*72 is of class C*. Tt is a homeomorphism onto
its image. Indeed, it is continuous (as each of its components is continuous, since f; and fo are continuous). It
is surjective onto its image (from the definition of the image), and also injective (this can be checked from the
injectivity of fi and fs). Therefore, it is a bijection. Denoting f; L and fa ! the respective inverses of f; and
f2), the inverse of f is

ffl : f(Vl X Vg) — Vi x Vy
(21’22) - (ffl(zl)7f;1(z2))v

which is continuous because f;° L and fo L are continuous.
Furthermore,

(M1 X Mz) N (U1 X UQ) = (Ml N Ul) X (MQ N UQ)

= [1(V1) X f2(V2)
= f(V1 x Va).

Finally, f is immersive at f~!(x) = (ffl(fﬁl)» f{1($2)) Indeed, for any t = (t1,t3) € R™+n2

df (f (1), (@) (b1, t2) = (df1(f (1)) (t), dfa(f5 ' (22)) (E2)),

which equals 0 only if t; = 0 and t5 = 0, since df; (f; (1)) and dfa(f; *(22)) are injective.
Thus, the set M1 x Ms satisfies Property 2 of Definition 2.1. O

Example 2.6 : torus

The set T? = S' x S! is a submanifold of R?*, of dimension 2. It is called a torus of dimension 2.

2.2.3  O,(R)

Let R™*"™ denote the set of n x n matrices with real coefficients. If we reindex the coordinates, this set can
. 2 . .

also be viewed as R™ . Several important subsets of R"*™ have a submanifold structure. Here, we focus on the

orthogonal group.

Definition 2.7 : orthogonal group

The orthogonal group is defined as

On(R) = {A € R™", [, = tAA}.
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Proposition 2.8

The set O, (R) is a submanifold of R™*™, of class C*° and of dimension n(nQ—l)'

Proof. We will use the definition by submersion. Let G € O, (R). We must express O, (R) as g~1({0}), where
g is a C'*° function, submersive at G.
A first idea is to define
g: AR 5 TAA — [, € R,
The definition of the orthogonal group implies that O, (R) = g=1({0}). However, this function is not a submersion
at GG. Indeed,
VA € R™"  dg(G)(A) ='GA+'AG,
so dg(G)(R™ ™) is contained in Sym,,, the set of symmetric matrices of size n x n. We even have dg(G)(R"™) =
Sym,, because, for any S € Sym,,,

S.

GS\ 'GGS+'SIGG  S+'S
d9(C) (2): 2 T2 T

In particular, dg(G)(R"*"™) # R™*"™.
Therefore, we define instead
_ . “n n(nt1)
g=Triog: R"™" R 2 |
where Tri is the function that extracts the upper triangular part of an n X n matrix:

n(n+1)

VA e Ran’ Tri(A) = (Aij)igj eR
The function g is C*°. It is a submersion at G:
dg(G)(R™") = (Trio dg(G)) (R™*")
= Tri(dg(G)(R™*"))
= Tri(Sym,,)

n(n+1)
= 2

Furthermore, for any matrix A € R"¥", tAA = I, if and only if ‘AA — I, = 0, which is equivalent to
Tri(*AA — I,,) = 0, since AA — I,, is a symmetric matrix. Thus,

On(R) = g ({0}),
s0 Oy, (R) indeed satisfies Property 3, with U = R™*™ and d = n — n(n;l) = "(n;l). O

2.2.4 Equation solutions and images of maps

Proposition 2.9

Let d € {0,...,n}. Let U be an open subset of R", and
g:U >R

a C* function. Assume that g is a submersion over g~!({0}) (meaning that g is a submersion at x for all

z € g7 ({0})).
Then g~1({0}) is a submanifold of R", of class C* and dimension d.

Proof. This is a direct application of Definition 2.1, "submersion" version. O

We have already seen two examples of submanifolds defined as in Proposition 2.9:

e the sphere S"~! is equal to g~!({0}) for the function g : # € R" — ||z||? — 1 € R;

n(n+1)
2

e the orthogonal group O, (R) is equal to g~!({0}) for the function g : A € R™" — Tri(*AA—1I,) € R



20 CHAPTER 2. SUBMANIFOLDS OF R"

Figure 2.2: Image of the map f defined in Example 2.11

Proposition 2.10

Let d € {0,...,n}. Let U be an open subset of R?, and f : U — R" be C*. Assume that f is an
immersion, and is a homeomorphism from U to f(U).
Then f(U) is a submanifold of R™, of class C* and dimension d.

Proof. This is a direct application of Definition 2.1, "immersion" version. O

Example 2.11 : spiral

Let’s define
f: R — R?
0 — (e’cos(2m), e’ sin(2m0)) .

Its image f(R) is a submanifold. It is represented in Figure 2.2.
Indeed, for any 6 € R,

£(8) = € ((cos(278), sin(270)) + 27 (— sin(270), cos(276))) ,

which never vanishes (we observe, for example, that (f'(), (cos(270),sin(276))) = ¢’ # 0 for any § € R).
Thus, the map f is an immersion. Moreover, it is a homeomorphism from R to f(R). Indeed, it is
continuous, injective® and therefore bijective onto f(R). For any 6 € R,

0
e = |lF @)1,
so 0 = %log (|| f (9)||2) As a consequence, the inverse of f is given by the following explicit expression:

R
% log(z2 + 32).

7t f(R)

—
%

From this expression, we see that f~! is the restriction to f(R) of a continuous function on R?\ (0, 0), so
f~1is continuous.

“For any 01,02, if f(61) = f(62), then e** = ||£(61)||* = ||£(62)[|> = €°*, s0 1 = 62.
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2.2.5 Submanifolds of dimension 0 and n

Proposition 2.12

Let M be any subset of R™. The following properties are equivalent:
1. M is a C*-submanifold of R” with dimension n ;

2. M is an open subset of R".

Proof. : We assume that M is a C*-submanifold with dimension n, and show that it is an open set.
Let  be any point of M. We use the “diffeomorphism” definition of submanifolds: let U C R"™ be a
neighborhood of z, V' C R™ a neighborhood of 0, and ¢ : U — V a C*-diffeomorphism such that

H(MNU) = (R"x {0}"™) NV =V.

Since ¢ is a bijection from U to V, this equality implies that M N U = U. Therefore, M contains U, a
neighborhood of x. Since this property is true at any point z, M is an open set.

: We assume that M is an open set, and show that it is a submanifold with dimension n.

Let = be a point in M. We show that M satisfies the “diffeomorphism” definition of submanifolds. We set
U = B(x,r), for r > 0 small enough so that U C M. We also set V.= B(0,r) and ¢ : y € U - y —x € V. This
map is a diffeomorphism (with reciprocal (y € V. — y +x € U)). It holds

S(MNU) = $(U) =V = (R x {0} ™) N V.
O]

Proposition 2.13

Let M be any subset of R™. The following properties are equivalent:
1. M is a C*-submanifold of R™ with dimension 0 ;

2. M is a discrete set.?

“The set M is discrete if, for any x € M, there exists U C R™ a neighborhood of x such that M NU = {z}.

Proof. : We assume that M is a C*-submanifold with dimension 0, and show that it is a discrete set.
Let x be any point of M. Let us show that there exists U a neighborhood of x such that M NU = {x}.
We use the “diffeomorphism” definition of submanifolds: let U C R™ be a neighborhood of x, V C R" a

neighborhood of (0,...,0) and ¢ : U — V a C*-diffeomorphism such that

(M NU) =R x {0}")nV ={(0,...,0)}.

As ¢ is injective and ¢(M N U) contains only one point, M N U itself must be a singleton. Since it contains z,
MNU = {z}.

: We assume that M is a discrete set, and show that it is a submanifold of R™, of dimension O.

Let x be any point in M. We show that M satisfies the “diffeomorphism” definition of submanifolds in the
neighborhood of x.

Let U C R™ be a neighborhood of = such that M NU = {z}. Let us set V. = {u—x,u € U} (the translation
of Uby —z) and ¢ : y € U - y —x € V. This is a C*°-diffeomorphism (with reciprocal (y € V — y+x € U)).
It holds

(M NU) = ¢({z}) = {¢(=)} = {(0,...,0)} = (R" x {0}") N V.
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Figure 2.3: The graph of the absolute value is not a submanifold of R2.
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Figure 2.4: The "eight" is not a submanifold of R2.

2.2.6 Two counterexamples

The graph of the absolute value (Figure 2.3) is not a submanifold of R?. Intuitively, the reason is that this graph
has a “non-regular” point at (0, 0).

To prove this rigorously, the simplest way is to proceed by contradiction. Assume that it is a submanifold
and denote its dimension by d. Then, according to the "submersion" definition of submanifolds (Property 3
of Definition 2.1), there exists U C R? a neighborhood of (0,0) and g : U — R?*~% a function, at least C?,
submersive at (0,0), such that

{(.[t]),t e R}NU = g~ ({0}). (2.1)

Such a map g must satisfy, for all ¢ close enough to 0,

ift <0, 0=g(t|t]) =g(t,—1),
ift>0, 0=g(tt]) =g(tt).

Differentiating these two equalities, we get:

019(0,0) — 929(0,0) = 0;
019(0,0) + 029(0,0) = 0.

This implies that 01¢(0,0) = 02¢9(0,0) = 0, i.e., dg(0,0) = 0. As dg(0,0) is surjective, this is impossible, unless
R2~4 = {0}, i.e., d = 2. But if d = 2, then ¢g7'({0}) = U, so Equality (2.1) implies that the graph of the
absolute value contalns a neighborhood of (0, 0) in R?, which is not true. Thus, we reach a contradiction.

The "eight" (Figure 2.4) is also not a submanifold of R, Here, the reason is that the eight is a regular curve
but with a point of "self-intersection" at zero. This can be rigorously demonstrated using the same method as
before.
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w

Remark

This example highlights the importance of the property " f is a homeomorphism onto its image" in the
"immersion" definition of submanifolds (Property 2 of Definition 2.1), as well as in Proposition 2.10.
Indeed, the eight is equal to f(] — m;7[), where f is the map

f o ]-mn — R?
0 —  (sin(#) cos(0), sin(h)),

which is an immersion, and a bijection between | — m; 7| and f(] — 7;7[), but not a homeomorphism (its
inverse is not continuous).

2.3 Tangent spaces

2.3.1 Definition

Intuitively, the tangent space to a submanifold M at a point x is the set of directions an ant could take while
moving on the surface of M starting from the point . More formally, the definition is as follows.

Definition 2.14: tangent space

Let M be a submanifold of R", and x a point on M.
The tangent space to M at x, denoted T, M, is the set of vectors v € R™ such that there exists an open
interval I containing 0 and ¢ : I — R™ a C! function satisfying

o ¢(t) e M for all t € I;

Proposition 2.15

e o
A o
= =
8 &
N—

I 1
< B

Keeping the notation from the previous definition, the set T, M is a vector subspace of R”, with the same
dimension as M.

J

Proof. This is a consequence of the following theorem. O

The four equivalent definitions of submanifolds (Definition 2.1) each provide a way to explicitly compute the
tangent space.

Theorem 2.16: computing the tangent space

Let M be a submanifold of R™, and = a point on M. Let d be the dimension of M.

1. (Computation by diffeomorphism)
If U and V are neighborhoods of z and 0 in R”, respectively, and ¢ : U — V is a C*-diffeomorphism
such that ¢(z) = 0 and ¢(M NU) = (R% x {0}"~9) NV, then

T, M = do(z) LR x {0}779).

2. (Computation by immersion)

If U is a neighborhood of z in R, V an open set in R%, and f : V — R™ a C* map, which
is a homeomorphism between V' and f(V), such that M NU = f(V) and f is an immersion at

20 = ~1(x), then

T M = df (20)(R?)(= Im(df (20)))
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3. (Computation by submersion)

If U is a neighborhood of z and ¢ : U — R"~% a C* map surjective at = such that MNU = g~ ({0}),
then
T, M = Ker(dg(x)).

4. (Computation by graph)

If U is a neighborhood of x, V an open set in R%, and h : V — R" % is a C* map such that, in a
well-chosen coordinate system, M N U = graph(h), then

T.M = {(tl,. . .,td,dh(flfl,. c .,xd)(tl,.. c ,td)),tl,...,td S R}

. J

Proof. Let’s begin with Property 1. Let U, V', and ¢ be as stated in the property.

First, let’s prove the inclusion T, M C dé(x)~ (R? x {0}"~9). Let v be an arbitrary element in T}, M; we will
show that it belongs to dé(x)~1(R? x {0}"~9).

Let ¢ be as in the definition of the tangent space, i.e. a C' map from an open interval I containing 0 to R”,
with images in M, such that ¢(0) =z and ¢/(0) = v.

For any t¢ close enough to 0, c(t) belongs to U, so ¢(c(t)) is well-defined. Moreover, since ¢(M NU) C
R? x {0}, we must have

0= $(e(t)ass =+ = H(c(t)n.

Differentiating these equalities at ¢t = 0 gives:

0= dg(c(0))(c'(0))ar+1 = do(2)(v)a+1,

0=do(z)(v)n.

Therefore, dé(x)(v) € R? x {0}"7% ie., v € dp(x) L (R? x {0}"%).
Now, let’s prove the other inclusion: dg(x) ™1 (R? x {0}"~%) € T, M. Let v € do(x) " (R? x {0}"~9); we will
show that v € T, M.

Denote
w = do(z)(v) € R? x {0}~

We must find a function ¢ as in the definition of the tangent space. We will define it as the preimage by ¢ of a
function v with images in R™ such that v(0) = 0 and +/(0) = w.
Choose an open interval I containing 0 small enough, and define

v I — R
t — tw.

This is a C*° function satisfying
¥(0) =0 and ~(0)=w.

If I is small enough, v(I) C V. Thus, we can define
c=¢ ltony: I —R"

This is a C* function. It takes values in M because y(t) € R x {0}"~¢ for all t € I (since w € R% x {0}"~%).
Therefore,

c(t) € o1 ((Rd X {0}”‘d> N V) =MnNU.

Moreover,

and
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Therefore,

the map c satisfies the properties required in the definition of the tangent space. Therefore,
ve T, M.
This completes the proof of the equality
T, M = dp(z) L (R? x {0}*~9).

Before proving the remaining three properties of the theorem, let’s observe that the equality we have just
obtained already shows that T, M is a vector subspace of R" of dimension d. Indeed, it is the image of a vector
subspace of dimension d of R” (R% x {0}"~¢) under a linear isomorphism (d¢(z)™!).

This observation simplifies the proof of properties 2, 3, and 4. Indeed, the sets

df (20)(R7), Ker(dg(z))
and {(tl, o tg, dh($1, . ,xd)(tl, ce ,td)),tl, ot € R},

which appear in these properties, are vector subspaces of R™ of dimension d (the first is the image of R? by
an injective linear map, the second is the kernel of a surjective linear map from R to R”~%, and the third is
generated by the following free family of d elements:

(1,0,...,0,dh(z1,. .., 24)(1,0,...,0)),

ey

0,...,0,1,dh(z1,...,24)(0,...,0,1))).
To show that they are equal to T, M, it is therefore sufficient to prove either
e that they contain T, M,
e or that they are included in T, M.

Let’s prove Property 2. Let U, V, and f be as in the statement of the property. We will show that
df (20)(RY) € Ty M. (2.2)

Let v € df (20)(R?) be arbitrary; let’s show that v € T, M. Let a € R? be such that df(zp)(a) = v. Choose
an interval I C R containing 0, small enough, and define

c I — R"™
t —  f(z0+ta).

the map c is well-defined if I is small enough, as zg +ta € V for all t € I. Tt is a C*¥ (thus C') function. For all
tel, c(t)e f(V)C M. Moreover,

c(0) = f(z0) ==
and
d(0) = df (20)(a) = v.
This shows that v € T, M. Thus, Equation (2.2) is true.
Now let’s prove Property 3. Let U and g be as in the statement of the property. We will show that

T, M C Ker(dg(x)).
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Let v € T, M be arbitrary. Let us show that v is in Ker(dg(z)). Let I be an interval in R containing 0, and
¢ : I — R™ as in the definition of the tangent space.
For any ¢ close enough to 0, c(t) is an element of U; it is also an element of M. Since M NU = ¢g~({0}),

0= g(e(t)).
Differentiating this equality at 0,
0 = dg(c(0))(c'(0)) = dg(z)(v).
Therefore, v € Ker(dg(z)).
Finally, let’s prove Property 4. Let U, V, and h be as in the statement of this property. Let

E = {(tl,...,td,dh(l‘l,...,$d)(t1,...,td>),t1,...,td GR}

We show that
EcCT,M.

Let (t,dh(z1,...,24)(t)) € E, with t € R%. Let us show that this is an element of T}, M.
Choose an interval I in R containing 0 small enough, and define

c I — R™
s = ((x1,...,2q) + st,h((x1,...,24) + st)).

This function is well-defined if I is small enough, as (x1,...,x4) + st belongs to V for all s € I (since V' contains
(x1,...,2q) and is open). It is of class C* (thus C'). It is in the graph of h, and therefore in M. Moreover,

c(0) = (x1,...,zq,h(x1,...,24)) = x
and
d(0) = (t,dh(xq,...,24)(t)).

This shows that (¢,dh(z1,...,z4)(t)) € TxM.
O

To finish with the definitions, let’s introduce the affine tangent space, which is simply the tangent space,
translated so that it goes through the point z. This is not a notion that we will particularly use in the rest of the
course, except in the figures: it is much more natural to draw tangent spaces that really touch! the submanifold
they are associated with than tangent spaces which all contain 0.

Definition 2.17

If M is a submanifold of R™ and x € M, the affine tangent space to M at x is the set

x+T.M.

2.3.2 Examples

In this paragraph, we go back to the examples of submanifolds from Section 2.2 and compute their tangent
spaces.

Proposition 2.18: tangent space of the sphere

For any = € S* 1,
T,S" 1 = {z}* = {t e R", (t, ) = 0}.

!The word "tangent" comes from the Latin verb tangere, which means "to touch".
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Figure 2.5: The sphere S? and its affine tangent space at a few points.

Proof. Let’s define, as in Subsection 2.2.1,
g R"” — R
(t1y.oty) — 4+ 12— 1.

It satisfies S*~! = g~1({0}) and is a submersion at z. According to Property 3 of Theorem 2.16,
T,S" ! = Ker(dg(z)).
Now, for any ¢t € R", dg(z)(t) = 2 (x,t). Therefore,
T,8" ! = {z}+.

Proposition 2.19: tangent space of a product submanifold

Let ni,ny € N*. Assume M; is a submanifold of R™ and Ms is a submanifold of R"2. For any z =
(Il,ﬁg) € Ml X MQ,

Tx(Ml X MQ) = Tlel X Tm2M2
=5 {(tl,tg),tl S Tlel,tQ S TmMQ}.

Proof. Let x = (x1,22) € My X Mos.

We will use the expression for the tangent space associated with the "immersion" definition of submanifolds
(Property 2 of Theorem 2.16).

Let d; be the dimension of M;. Assume U, is a neighborhood of z; in R™, V; a neighborhood of 0 in R%
and f1 : V1 — R™ a map which is a homeomorphism onto its image, such that

My nU = f1(\1)

and f; is immersive at z; = f~1(z1).
Define similarly ds, Us, Va, fo : Vo — R™ and z».
According to Property 2 of Theorem 2.16, we have

T, My = df1(z1)(RY)  and Ty, My = dfa(z2)(R%).

Moreover, as shown in the proof of Proposition 2.5, the map f : (t1,t2) € Vi x Vo — (f1(t1), fa(t2)) € RMT72
is a homeomorphism onto its image, satisfies

f(Vi x Vo) = (M1 x Ma) N (Uy x Us)
and is immersive at (21, 22) = f~*(z). From Property 2 of Theorem 2.16, we have
To(My x My) = df (21, z2) (RT %)
= {df (21, 22)(t1,t2),t1 € Rty € R%2}
= {(df1(21)(t1), dfa(22)(t2)), t1 € RY 5 € R%2}

= dfi(21)(R™) x dfa(22)(R?)
= Tlel X TQ;QMQ.
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Example 2.20: tangent space of the torus

For any (x1,z2) € T2 = S! x S,

Tar o) T? = Ty St x Ty, S' = {1} x {22}t

z1,%2)

If we fix 61, 6, such that x1 = (cos(61),sin(0;)), z2 = (cos(62),sin(f2)), we have

{z1} = (sin(6;), — cos(h1))R
= {(tl sin(@l), —11 COS(@l)), t1 € R}

and similarly for zo. This allows us to write the previous expression for the tangent to the torus in a
slightly more explicit way:

T(xl,:cg)T2 = {(tl Sin(01), —1 COS(91), to sin(02), —to COS(92)), t1,t0 € R}.

Proposition 2.21 : tangent space of the orthogonal group

For any G € O,(R),

TcOn(R) = {GR, R € R™" is antisymmetric}.

Proof. Let G € O,(R).
As shown in the proof of Proposition 2.8, O, (R) is equal to §~*({0}), where § is defined as

g : RTLXTL % w
A = Tr(tAA-I,).

The map g is a submersion at G, with differential

n(n+1)

dj(G) : Ac R™"™ - Tri({GA+'AG) e R 2 .
According to Property 3 of Theorem 2.16,
TcOn(R) = Ker(dg(G)) = {A € R Tri('\GA + "AG) = 0} .
Now, for any A,

Tri('GA +'AG) =0 <= '‘GA+'AG =0
(because ‘GA +AG is symmetric)
— ('GA)+'(!GA) =0
<= 'GA = R for some antisymmetric R
<= A = GR for some antisymmetric R
(because G'G = I,,).

Therefore,
TcOn(R) = {GR, R € R™" is antisymmetric}.

Proposition 2.22

Let d € {0,...,n}. Let U be an open set in R", and g : U — R"~% be a C* function. Assume that g is a
submersion on g~*({0}).
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Figure 2.6: The spiral from Example 2.24 and its affine tangent space at a few points.

For any z € g~1({0}),
Ta(97({0})) = Ker(dg(x)).

Proof. This is a direct application of Property 3 of Theorem 2.16. O
Proposition 2.23
Let d € {0,...,n}. Let U be an open set in R? and f : U — R” be an immersion, which is a homeomor-
phism from U to f(U).
For any z € f(U),
T f(U) = df ()R,
where z is the element of U such that z = f(z).
Proof. This is a direct application of Property 2 of Theorem 2.16. [

Example 2.24 : tangent space of the spiral
Consider the map from Example 2.11:

f: R — R2
0 — (e?cos(2m), e’ sin(270)) .

Let (z,y) € f(R). Denote 6 € R the real number such that (z,y) = f(6). According to Proposition 2.23:

= €’((cos(270), sin(270)) + 27 (— sin(276), cos(276)))R
= (z — 27y, y + 27x)R
= {((z — 2my)t, (y + 2mx)t),t € R}.

An illustration is shown on Figure 2.6.

2.3.3 Application: proof that a set is not a submanifold

Let us go back to the second set considered in Subsection 2.2.6, the “eight”, represented on Figure 2.4. This set
is

MY (16),0 €] - w57}
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where f is defined as
f o ]-ma - R?
0 —  (sin(0) cos(0), sin(h)).

Here, we prove that M is not a submanifold of R? using a different technique from Subsection 2.2.6.
By contradiction, let us assume that it is a submanifold. We compute its tangent space at (0,0).
First, we define

e = f] —m7[— R

It holds ¢ (t) € M for all t €] — 7; 7[, ¢1(0) = (0,0) and ¢; is C'. Therefore,
(1,1) = ¢1(0) € Tip,0)M. (2.3)

Second, we define
co  |—mmn[ — R?
0 —  (sin(@) cos(f), —sin(f)).

It holds c(t) € M for all ¢t €] — m; 7. Indeed, for any t €] — m;0[, c2(t) = f(t +7) € M; c2(0) = f(0) € M and,
for any t €]0; 7, c2(t) = f(t — m) € M. In addition, c2(0) = (0,0) and ¢y is C'. Therefore,
(1,-1) = &(0) € To,0)M. (2.4)
As To0)M is a vector subspace of R?, Equations (2.3) and (2.4) together imply that
To0M =R?.

In particular, since the dimension of the tangent space is the same as the dimension of the submanifold, dim M =
2. In virtue of Proposition 2.12, M must thus be an open set of R?. As this is not true (because, for instance,
M contains no element of the form (¢,0), except (0, 0) itself, so it does not contain a neighborhood of (0,0)), we
have reached a contradiction.

2.4 Maps between submanifolds

2.4.1 Definition of C' maps

In this section, we consider functions between two submanifolds M C R™ and N C R™2:
f:M — N.

If M =R% x {0}m~% and N = R?% x {0}"27% f is essentially a function from R% to R92. The notions of
"differentiability" and "differential" are then well-defined for f, in accordance with Chapter 1.

However, if M is not a vector subspace of R™ , this is no longer the case: Definition 1.1 involves linear maps
between the domain and codomain, which do not exist if the sets are not vector spaces.

To give a meaning to the notion of “differentiability” for f, one can use the fact that M and N are identifiable
with open sets in R and R% through diffeomorphisms. We say that f is differentiable if, when composed with
these diffeomorphisms, it is a differentiable map from an open set in R% to R%. This is, in a slightly different
form, the content of the following definition.

Definition 2.25: C' map from a submanifold to R™

Let m € N.
Consider M a C* submanifold of R™, and a function

f: M —R™.

We say that f is of class C! if, for any integer s € N*, any open set V in R®, and any C' function
¢V — R" such that ¢(V)) C M, the map

fod:V - R™
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is of class C1.

| \

Remark

Similarly, one can define the notion of function of class C™ from M to R™, for any r = 1,...,k. Simply
replace “C" with “C" in the above definition.
It can be shown that a function of class C is necessarily of class C" for any 7/ < r.

H \

Example 2.26: projection onto a coordinate
Let M C R™ be a C*-submanifold. For any r = 1,...,n, we define the projection onto the r-th coordinate

T M - R
(T1y.eoyn) — Ty

This is a C* map.

Proof. Let r € {1,...,n}. Let us fix s € N*, V an open set in R®, and ¢ : V — R" of class C* such that
#(V) C M. For any = € R®, denote ¢(z) = (¢1(x),...,¢n(x)). The components ¢y, ..., ¢, are C*. Hence,
T 0¢ = ¢ is CF. ]

Definition 2.27: C' function between two submanifolds
Let M, N be two C* submanifolds, respectively of R™ and R™2. Consider a function
f: M — N.

Since N C R™, we can view f as a map from M to R™ rather than from M to N. We say that f is of
class C* (more generally, C", for r € {1,...,k}) between M and N if it is of class C! (more generally,
C") when viewed as a map from M to R"2.

| \

Example 2.28: projection on a product submanifold

Let A, B be two C*-submanifolds, respectively of R* and R?. Recall that A x B is a submanifold of R%*?
(Proposition 2.5).
We define the projection onto A as

T4 : AXxDB — A
(xa,zB) — TA.

This is a C* function.
Similarly, the projection onto B is C*.

J

Proof. Consider 74 as a function from A x B to R* and show that this function is C*. Take s € N*, V an open
set in R®, and ¢ : V — R*** a C*¥ map such that ¢(V) C A x B.

For any z € R®, denote ¢(x) = (¢1(), ..., darp(z)). The functions ¢y, ..., dq1p are CF. The function 740 ¢
is given by

Ve e R*, myo¢(x) =ma(d1(x),..., 00(x), bat1(T), ..., Parp(T))

/ /

element of A element of B

= (le(x)’ ERE ¢a($))

O

Thus, 74 0 ¢ is equal to (¢1,...,¢a), which is C¥, and consequently, w4 o ¢ is CF.
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Definitions 2.25 and 2.27 are more abstract than the definition of differentiability for a function from R" to
R™. However, one must not be intimidated. In practice, one rarely needs to resort to these definitions to show
that a map is C' (or, more generally, C"). Indeed, as is the case for maps from R™ — R™, basic operations
preserve differentiability. For instance, if M is a submanifold and m an integer, the sum of two C” functions
from M to R™ is also C". Similarly, the product of two C" functions from M to R is C". We will not state each
of these properties here, only the one related to composition.

Proposition 2.29 : composition of C'! functions

Let M, N, P be three C* submanifolds of, respectively, R"*, R™  and R"?. Consider two functions
fi:M— N and fo: N — P.
If f1 and fy are of class C", for some r € {1,...,k}, then
faofi: M — P

is also of class C".

J

Proof. We view fyo fi as a function from M to R™P and show that this function is C". Let s € N* be an integer,
V an open set in R® and ¢ : V — R™™ a C" function such that ¢(V') C M. We must show that fs o f; o ¢ is of
class C" on V.

Since f1 : M — N is of class C", it is also C" when viewed as a function from M to R™V. From Definition 2.25,
fiogp : V. — R™ is C". Moreover, (fio¢)(V) C fi(M) C N. As fo : N — P C R" is C", the function
fao(fiog)is C", also from Definition 2.25.

Since fo 0 fi 0 ¢ = fa o (f1 0 ¢), this proves that foo fio¢is C". O

Show that the map

(ﬁ%"r? V 1+ 33%)

(z1,Z2)

is well-defined and C*°.

Definition 2.30: diffeomorphism between manifolds

Let M, N be two C* submanifolds of R™ and R"2, respectively. Consider a map

¢: M — N.

For any r € {1,...,k}, we say that ¢ is a C"-diffeomorphism between M and N if it satisfies the following
three properties:

1. ¢ is a bijection from M to N;
2. ¢ is of class C" on M;

3. ¢~ !is of class C" on N.

2.4.2 [More advanced] Differentials

Note that, contrarily to what we did for maps from R"™ to R™, we have defined the notion of differentiable
function between manifolds without introducing the notion of differential. Nevertheless, one can still define this
notion; this is the aim of the following definition.
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Definition 2.31: differential on manifolds

Let M, N be two C* submanifolds of, respectively, R™ and R™2. Let
f:M—N

be a C" function, where r € {1,...,k}.

Let € M. For any v € T, M, fix I, an open interval in R containing 0 and ¢, : I — R™ as in the
definition of the tangent space (2.14), i.e., a C! function with values in M such that ¢,(0) = = and
/

c,(0) =v.

The differential of f at x, denoted df (z), is the following map:

df(:C) oM — Tf(m)N
v = (foe)(0).

The map df (x) is well-defined: foc, : I, — R is a C'! function, with values in N, such that foc,(0) = f(z),
so (f o¢y)'(0) is indeed an element of Ty, N.

If M is an open subset of R™, then f, viewed as a function from this open subset of R™ to R™2, is
differentiable in the usual sense, and the differentials defined in Definitions 1.1 and 2.31 coincide, as in
that case, denoting df (z) the usual differential,

(f ©c0)'(0) = df (cv(0))(c;,(0)) = df (z)(v).

We keep the notation from Definition 2.31.
The map df (z) does not depend on the choice of intervals I, and functions c,.
Moreover, it is linear.

Proof. Let v € T, M. Show that df (z)(v) = (f o ¢,)(0) does not depend on the choice of I,, and ¢,. To do this,
we will give an alternative expression for df (z)(v) that does not involve I, or ¢,.

Let di and dy be the dimensions of M and N. We use the “diffeomorphism” definition of submanifolds
(Property 1 of Definition 2.1). Let Uz, V3 C R™ be neighborhoods of x and 0, respectively, and ¢pr : Upr — Vi
be a C*-diffeomorphism such that ¢,s(z) = 0 and

dar(M N Uyp) = (RE x {0}~ 4) N V.
Denote ‘ﬁﬁ,o the restriction of ¢3; to (R% x {0}™~%) N V). We have
df (x)(v) = (f © ¢)'(0)

— (f o 630 0 61 0 (0)
— (o é3ty) © dar 0 ¢,)'(0).

The map f o (]5]74170 is defined on an open subset of R% (actually, on (R% x {0} =%) N Vyy, but this is exactly

an open set of R if one ignores the (n; — dy) zeros). It is of class C™ on this subset, since it is the composition
of two C" maps. Thus, the maps f o ¢]T/[10, ¢nm and ¢, are defined on open subsets of R™ (for different values of
n) and differentiable in the usual sense. The usual theorem on the composition of differentials then gives

df (x)(v) = (d(f © Pro) ($ar © €5(0)) 0 dnr(cs(0)))(€,(0))
= d(f © $10)(0) 0 dar () (v).

As announced, this expression does not depend on ¢, or I, which completes the first part of the proof.
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The linearity of df (x) follows from the same argument. Indeed, our reasoning shows that
df (x) = d(f © ¢1)(0) 0 dpni (),
i.e., df (z) is the composition of two linear maps. Therefore, it is linear. O

As the notion of differentiability, the notion of differential for maps between manifolds is governed by almost
the same rules as for maps between R and R”. Let’s state, for example, the rule of composition of differentials.

Proposition 2.33

Let M, N, P be three C* submanifolds of R™, R™~ and R™?, respectively. Consider two C'' maps,
fi:M—N and fo:N — P.

For any x € M,
d(f2 o f1)(z) = df2(f1(x)) o df1 ().

Proof. Let v € T, M. Show that
d(fz2 0 f1)(2)(v) = df2(f1(x)) o df1(z)(v).

Let I, be an open interval in R containing 0, and let ¢, : I, — R™ be a C' function such that ev(ly) € M,
¢y(0) = z, and ¢,,(0) = v. The definition of the differential gives

d(f2 0 f1)(x)(v) = (fa o f1 o) (0).

Let w = (f1 0 ¢,)'(0) = dfi(z)(v) € R™. The function f; oc, : I, — R™ is C' and fi oc,(I,) C N. It
satisfies f10¢,(0) = fi(x) and, by definition of w, (f1 0¢,)’(0) = w. The definition of the differential for fo then
gives

dfa(f1(2))(w) = (f20 f10¢,)'(0).
Thus,

d(f2 0 f1)(2)(v) = df2(f1(x))(w)
= dfa2(f1(x))(df1(z)(v))
= [df2(f1(z)) o df1(2)] (v).

O

To give one more example of a standard result from differential calculus which straightforwardly generalizes
to differential calculus on submanifolds, let us state the submanifold version of the local inversion theorem.

Theorem 2.34 : local inversion on submanifolds

Let M, N be two C* submanifolds of R™ and R"2, respectively. Let g € M. For r € {1,...,k}, consider
a C" map,
f:M — N.

If df (o) : TiwyM — T(5,) N is bijective, then there exist Uy, an open neighborhood of zg in M and V(4
an open neighborhood of f(xg) in N such that f is a C"-diffeomorphism from Uy, to Vy

x0)*

\

Proof. Let d be the dimension of M. Note that N has the same dimension as M: df(zp) is a bijective linear
map between Ty, M and T't(,,) IV, so

dim Ty ()N = dim T, M = d.

Let Uy, Var € R™ be open neighborhoods of g and 0, respectively, and ¢y : Upr — Var a CF-diffeomorphism
such that
o (M NUy) = (RY x {0}~ N Vay,
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and ¢pr(xo) = 0.
Similarly, let Uy, Viy C R™ be open neighborhoods of f(xg) and 0, and ¢ : Uy — Vi a C*-diffeomorphism
such that
on(N NUxN) = (R x {0} N Vy,

and ¢y (f(x0)) = 0.
The idea of the proof is to go back to the case where f is defined on an open subset of R? and then apply

the classical local inversion theorem. To do this, we "transfer" f to a map from R? x {0}~ to R? x {0}"2—¢
by composing it with the diffeomorphisms ¢ and ¢p.

More precisely, let ¢/, be the restriction of ¢,; to (R? x {0}™7¢) N V). Define

g™ snofo drto : R x {0}~ NV — (R x {0379 N V.

This definition is valid if we reduce Uy, Vs so that f(Up) C Uy. The map g is C" and its differential at 0
is injective: it is the composition of dén(f(20)), df (o), and d¢,; (0), all of which are injective. Since it goes
from R? to RY, it is bijective.

According to the classical local inversion theorem (Theorem 1.10), there exist Fy;, En open neighborhoods of
0 in RY such that g is a C"-diffeomorphism from Ej; x {0}"1~% to Ex x {0}"27¢. Then f is a C"-diffeomorphism
from Uy, = oyt (Bar x {039 to V(o) = N (En x {0}727%): on these sets,

f=0¢y ogodum.

Since ¢y is a diffeomorphism (of class C* hence also of class C7) from Uy, to Ep x {0}"~¢ g is a C'-
diffeomorphism from Ej; x {0}7¢ to Ey x {0}"27¢, and ¢ is a diffeomorphism (C* hence also C") from
En x {0} to Vi(ao), the map f is a composition of C"-diffeomorphisms, hence a C"-diffeomorphism. O

2We can see ¢y o f o ¢’J_v11,0 as a map between two open subsets of R%.
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Chapter 3

Riemannian geometry

What you should know or be able to do after this chapter
e Know the definition of curves and parametrized curves.
e Given a curve, introduce a convenient parametrization of it,

— either a local one as in Proposition 3.4,

— or a global one, as in Corollary 3.7.
e Know that a connected curve is diffeomorphic to either S' or R.
e Be able to manipulate the length of a curve (e.g. compute it, when possible, or upper bound it otherwise).

e In general dimension, propose a definition of distance intrinsic to a manifold, and remember the “standard”
one.

e Understand (i.e. be able to reexplain) the intuition of why minimizing paths satisfy the geodesic equation.
e Know the explicit description of geodesics on the sphere.

e Know the relation between minimizing paths and geodesics (a minimizing path is a geodesic, and a geodesic
is locally a minimizing path).

Let k,n € N* be fixed.

In the previous chapter, we introduced the concept of differentiability for maps between submanifolds. This
concept allows one to study the topological properties of submanifolds: one may wonder which submanifolds are
diffeomorphic to each other and what properties characterize whether or not they are diffeomorphic. Informally
speaking, one can ask questions like: "Is a donut diffeomorphic to a balloon?"*

In this chapter, we delve into finer properties of submanifolds, specifically metric properties involving notions
of length, angle, etc. We will introduce a notion of isometry, which is more restrictive than that of diffeomorphism
(in the sense that two isometric manifolds are necessarily diffeomorphic, whereas the converse is not true).

As the formal definitions of these properties are subtle, and since the objective here is only to provide
an overview rather than a complete description, we will mainly focus on the simplest case, one-dimensional
submanifolds. Submanifolds of general dimension will be discussed only towards the end of the chapter.

3.1 Submanifolds of dimension 1

Definition 3.1: curve

A curve is a submanifold of R™ of dimension 1.

! Answer: no.

37
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Figure 3.1: The image of the parametrized curve v : t € R — (¢(t+1)2,#3(t+1)) (left figure) is not a submanifold
of R? because (0,0) is a multiple point. However, (] — €;¢[) is a submanifold of R? for any sufficiently small e
(right figure).

3.1.1 Parametrized curves

Curves, in comparison to higher-dimensional manifolds, have the particularity that they admit a simple parametriza-
tion. In essence, they can be seen as the image of an open set of R through a C' function. This parametrization
allows for a convenient definition of metric quantities, as we will see later in this section.

Definition 3.2 : parametrized curve

A parametrized curve of class C* is a pair (I,7), where I is an interval in R and v : I — R" is a C¥
function.

The image of a parametrized curve is not necessarily a submanifold of R", especially because the curve can
intersect itself (we say that it has a multiple point). However, the following proposition shows that the image
of a parametrized curve (I,7) locally defines a submanifold, in the vicinity of points where 4 does not vanish.
This result is illustrated in Figure 3.1.

Proposition 3.3

Let (I,7) be a parametrized curve. For ¢ € I and 2 = v(t), we say that z is a regular point if v/ (t) # 0.
In this case, there exists € > 0 such that |t — ¢;t + €[C I, and the set

CE (-t +e)

is a curve. Moreover,

T.C = RY/ ().

Proof. Assume zx is regular, i.e., v is an immersion at ¢. If we can show that, for ¢ > 0 sufficiently small,
induces a homeomorphism from |t —e¢; t+ €[ to its image, the theorem is proved. Indeed, we can then choose € > 0
small enough so that 7' does not vanish (i.e., v is immersive) over the entire interval |t —e; t+¢€[. Proposition 2.10

then ensures that 4
CE (-t +e)

is a submanifold of R" of dimension 1, i.e., a curve, and Property 2 of Theorem 2.16 tells us that
T,C = TIm(dv(t)) = Ry (¢).

To show that 7 induces a homeomorphism from |t — €;t + €[ to its image if € > 0 is sufficiently small, we use
the normal form theorem for immersions (Theorem 1.14). Let ¢ be a diffeomorphism from a neighborhood of z
to a neighborhood of Ogr» and € > 0 be such that

Vi’ €lt — et +el, Yorn(t)=(t,0,...,0).
Defining m; : R™ — R as the projection onto the first coordinate, we have

V' €lt —et+e, movoy(t=t.
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Consequently, v is injective on |t — €;t + €[. It is therefore a bijection from |t — €;t + €] to its image. It is
continuous. From the previous equation, its reciprocal is 71 o 9, which is continuous, so v is a homeomorphism
between |t — ¢;t + €[ and (]t — €;t + €]). O

Conversely, any curve is locally the image of a parametrized curve.

Proposition 3.4

Let C C R” be a C* curve. For any z € C, there exists a neighborhood V of z in R™ and a parametrized
curve (I,7) of class C* such that
CNV =~().

Proof. Let x be in C'. From the “immersion” definition of submanifolds, there exists a neighborhood V of x, an
open set U C R and a C* map f: U — R”, which is a homeomorphism onto its image, such that

cnv = fU). (3.1)

Let to € U be the preimage of z by f (that is, f(tp) = x). The set U may not be an interval but, if we replace
V with a smaller set, we can replace U with the connected component of tg, while keeping Equality (3.1) true.
We can then set I = U and v = f. O

Actually, any connected curve? is the image of a parametrized curve (globally, not locally as in the previous
proposition). This is a consequence of the following theorems.

Theorem 3.5: compact curves

Let M C R™ be a compact and connected curve of class C*. It is C'*-diffeomorphic to the circle S'.

.
\.

Theorem 3.6 : non-compact curves

Let M C R™ be a connected non-compact curve of class C*. It is C*-diffeomorphic to R.

\. J

The proof of these theorems is difficult. We will limit ourselves to the proof of the first one, which will be
given in subsection 3.1.2. The proof of the second one uses partly the same strategy but requires additional
ideas.

Corollary 3.7 : global parametrization of connected curves

Let M C R™ be a connected curve of class C¥.
e If M is non-compact, there exists a parametrized curve (I,v) of class C* such that

— [ is an open interval;
- () =M;

— 7 is a diffeomorphism between I and M.

o If M is compact, then, for any a,b € R such that a < b, there exists a parametrized curve ([a;b[,~)
of class C* such that

= (la; b)) = M;
— v is a diffeomorphism between |a; b and M \ {7(a)} and a bijection between [a;b] and M;
— limy v = 4" (a) for any r € {0,...,k}.

In both cases, we call such parametrized curve a global parametrization of M.

2Some reminders on connectedness can be found in Appendix A.
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Proof. First, if M is non-compact, from Theorem 3.6, there exists ¢ : R — M a C*-diffeomorphism. We can set
I =R and v = ¢.
Let us now assume that M is compact. Let ¢ : S' — M be a C*-diffeomorphism as in Theorem 3.5. We

define
o: |a;b] — St

t — (cos (27rg:—g) ,sin (QW%)) .

and set v = ¢ oo : [a;b[— M. It defines a parametrized curve of class C¥. Since o is a bijection between
[a;b] and S!, and ¢ a bijection between S' and M, v is a bijection between [a;b] and M. And since o is a
diffeomorphism between Ja; b and S\ {o(a)}, and ¢ a diffeomorphism between S'\ {o(a)} and M \ {poc(a)},
«v is a diffeomorphism between |a;b] and M \ {7(a)}. In addition, as o (hence also ) is the restriction to [a;b]
of a (b — a)-periodic C* function, it holds, for all r € {0, ...k},

A0 () 23 40 (a).



3.1. SUBMANIFOLDS OF DIMENSION 1 79

3.1.3 Length and arc length parametrization

We will now define the length of a curve. Intuitively, what is it? Let (I,+) be a global parameterization of the
curve, and imagine an ant walking along the curve: at time ¢, it is at point (¢). The length of the arc is the
total distance covered by the ant over time. As, at time ¢, its absolute velocity is ||7/(t)||2, the length should be
defined as the integral over I of [|Y/]]2.

Definition 3.14: length of a curve

Let M be a connected curve. Let (I,v) be a global parameterization of M. The length of M is defined as

= [ I @ladt.
I
Proposition 3.15

The length is well-defined: if (I,~) and (J, d) are two global parameterizations of M, then

J 1 @lkdt = [ 15 @)act.

Proof. Let’s consider the case where M is non-compact. Then v and ¢ are diffeomorphisms from (respectively)
I and J to M. Let

f=~"tod:J—1I

It is a diffeomorphism from J to I, and we have § = 7y o . Then

Awwmbﬁ—/ﬂWowwmﬂu

=/wwnmwMth
J

=/Wﬂﬂmﬁ.
I

The last equality is obtained by the change of variable formula applied to the function ||7||, with change of
variable given by 6.

We omit the case where M is compact. The principle is the same, with a subtlety related to the fact that v
and § are not exactly diffeomorphisms from their domain to M .3 O

Definition 3.16: arc length

A global parametrization (I,~) of a connected curve M is called an arc length parametrization if

Y ()|l =1, Vtel.

It is worth noting that if (7,) is an arc length parametrization of M, then the length of M is equal to the
length of I:

(M) :/Ildt:supl—infl.

3For particularly curious readers, here’s how to resolve this difficulty. Let a,b,c,d be real numbers such that I = [a; b] and
J = [e;d[. Let a € [0;d — ¢[ be such that v(a) = d(c + a). By replacing (J,8) with (J,4), where J = [c + a;d + o[ and § = & on
[c4 o;d[ and § = 6(. — (d — ¢)) elsewhere (which does not change the integral of ||§'||), we can assume that v(a) = d(c). Then
and ¢ are diffeomorphisms from Ja; b and ]c; d[ to M — {v(a)}. We can define, as in the non-compact case,

0 =~""06":]c;d[—]a; b

and proceed in the same way as before.
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Theorem 3.17 : existence of an arc length parametrization

For every connected curve M, there exists an arc length parametrization.

The concept of arc length parametrization allows for the straightforward definition of several quantities that
describe the "local shape" of curves. We do not have time to present them in detail in this course, but for
general culture, here are some examples. If (I,7) is an arc length parametrization, the vector

(1)
is called the unit tangent vector at the point (t). If «y is of class C?, the vector

V(1)
" (@®)]l2

is called the principal unit normal vector at (t) (which is well-defined only if 4" (¢) # 0), and

17 (®)]]2

is the curvature at y(t) (which can be assigned a sign, positive or negative, when the curve is a submanifold of
R?). Informally, curvature characterizes how quickly the curve "turns" in the vicinity of y(t).

3.2 Submanifolds of any dimension

In this section, several proofs are deferred to the appendix to make reading easier.

3.2.1 Distance and geodesics

We will now use the notion of length introduced in Definition 3.14 to define a distance on any connected
submanifold M of R": the distance between two points x1, x2 is the infimum of the lengths of paths connecting
these points.

In this section, we call a path connecting two points z1 and x2 any function v : [0; A] — M, for some A € R,
such that

e 1 is continuous;
e ~ is piecewise C;
e 7(0) =x; and y(A) = 2.
We can extend Definition 3.14 from curves to paths: the length of a path v is

A
o) = /0 ! (8) |t

Definition 3.18: distance on a submanifold

Let M be a connected submanifold of R”. We define a distance on M as follows: for all x1,x5 € M,

distpr(x1, z2) = inf{f(vy),7 is a path connecting x; and zs}.

Proposition 3.19

The map disty, is well-defined: for all z1, z2,

{l(7),~ is a path connecting 1 and z3}

is a non-empty subset of RT, hence it admits an infimum.

O

Proof. See section C.1.
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Proposition 3.20

The function dist;; is indeed a distance.

Proof.
e Symmetry: let x1,x9 € M. Consider a sequence (v,)nen of paths connecting x; to o such that
(V) mare distps (z1, z2).
For each n, let [0; A,,] be the domain of ~,, and define

on: [0;A,] — M
t — (A4, —t).

This is a path connecting xo to 1. Moreover, for every n,

An An
0 = [ 1= =l = [ Ol = o),

so that distps(x2, 1) < €(6,) = £(Vn). By taking the limit as n — 400, we deduce

distas(z2, z1) < distps(x1, x2).
The reasoning remains true if we exchange =1 and xo. Therefore,

distas(z1, z2) < distps(xg, 1),
hence, distys(z1, ze) = distas(z2, z1).

e Triangle inequality: let z1, 292,23 € M. Let’s prove that
distps(z1, z3) < distps(x1, x2) + distys (w2, z3).

Consider (v, : [0; Ay] = M)pen and (05, : [0; By] — M),en two sequences of paths connecting, respectively,
1 to x9 and x5 to x3, such that

£(vn) iy distas (21, 22);
0(8,) "2 distag (w0, 3).

For each n, define
Gt [0;A,+ B, — M
t — ) ift< A,
on(t —Ay,) if A, <t.

For each n, we have (,,(0) = z1 and (,(A, + B,) = x3. As 7, and ¢, are continuous, (, is continuous on
[0; A, [ and on |A,; A, + By]. It is also continuous at A, since it has left and right limits at this point,

which are identical:
t—A, t— AL

Cu(t) —" m(An) = 22 = 6,(0) <« (u(t).
Therefore, the function ¢, is continuous. Moreover, it is piecewise C'! since 7, and §,, are piecewise C', so
it is a path. Its length is

G = /0 ¢4 (8) ot
An An+Bn,
- / [ (0) adt + / 164t = A)|lodt
0 An

An By

= [ I llde+ [ 0l
= {(yn) + £(dn).

Thus, for every n, distys(z1,23) < €(yn) + ¢(0y), implying, in the limit,

diStM(l‘l, xg) < diStM(thwg) + diStM(xz, 1‘3).
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e Separation: for any = € M, disty/(z,2) = 0: by choosing a constant path « with value z, we have
distps(z, z) < £(y) = 0.

Let’s prove the converse. For all 1,22 € M and any path ~ connecting x1 to x2,

A
o) = /0 ()t

/0 ! v (t)dt

= |||,

= ||z2 — x1]|2.

> ‘ (by triangle inequality)

2

Consequently,
diStM(l‘hxg) Z H:L’Q — $1||2.

In particular, if distys(z1, z2) = 0, then ||xg — x1||2 = 0, implying 1 = x3.

O

Theorem 3.21 : existence of minimizing paths

Let M be, again, a connected submanifold of R”, of class C*. Additionally, suppose that
o k>2;
e M is closed in R".

Then, for all z1, 29 € M, the infimum in Definition 3.18 is a minimum: there exists a path v connecting
1 to x9 such that

U(ry) = distpr (21, z2).

\ J

. o ) ' ' L,
If v is a minimizing path, as in the previous theorem, there exists a reparametrization ¥ & ~ 0 ¢ of constant
speed: for some c,
[ (t)||2 = ¢ for all t.

(The argument is the same as for Theorem 3.17; one can even impose ¢ = 1 if desired.)
These minimizing paths traversed with constant speed are characterized by a simple differential equation,
given in a new theorem.

Theorem 3.22: geodesic equation

Keep the same notation and assumptions as in the previous theorem. Let v : [0; A] — M be a path
connecting z1 to x2, with constant speed, such that £(v) = distys(z1, 22). Then, v is C2, and

Y'(t) € (T,pyM)*:, Vte[0;A (3.10)

Theorem 3.21, which guarantees the existence of a path with minimal length between arbitrary points,

may no longer be true if the considered submanifold is not closed. For example, in the submanifold

MY R? \ {(0,0)}, there is no minimizing path between (—1,0) and (1,0).

However, even when the submanifold M is not closed, it can be shown (and the proof is very similar to
the previous one) that any point 1 € M has a neighborhood V' such that, for any zo € V, there exists a
path of minimal length between x1 and xs.

Theorem 3.22, on the other hand, remains true if the considered submanifold is not closed.
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a path of minimal length,

desi .
& geoaesic parametrized at constant speed

is locally

Figure 3.5: Relations between geodesics and a path of minimal length

Curves satisfying Equation (3.10), whether or not they are paths of minimal length between two points, are
called geodesics.

Definition 3.23: geodesics

Let M be a submanifold of R” of class C* with k > 2. We call a geodesic any map v : I — M (for I a
non-empty interval of R) of class C2 such that, for all ¢ € I,

¥'(t) € (Ty M) .

Proposition 3.24

A geodesic v always has constant speed: ||7/(¢)||2 is independent of ¢.

Proof. Let ~v: I — M be a geodesic in some submanifold M. Define
N:tel—| )3

This map is differentiable and, for all ¢,

N'(t) =2y (t),7"(1))-

Now, for all ¢, 7/(t) € T, M, and since v is a geodesic, v"(t) € (T.

W(t)M)L. So, for all t,

which means that N, and thus also ||7||2, is constant. O

As summarized on Figure 3.5, a path of minimal length, parametrized at constant speed, is always a geodesic
(from Theorem 3.22). The converse may not be true (an example will be provided in Subsection 3.2.2). However,
it is locally true, as stated in the following proposition.

Proposition 3.25: geodesics are locally minimizing

Let M be a submanifold of R”, of class C* with k > 2. Let I be a non-empty interval and v : I — M a
geodesic.
For all t € I, there exists € > 0 such that, for all ¢’ € [t — €;t + €],

Y|+ 18 @ path of minimal length between ~(t) and ~(t').

Unfortunately, the proof of this proposition requires tools from differential equations, which will only be
introduced in the next chapter, so it will not be presented here.

Exercise 4: geodesics on product submanifolds

Let ni,no € N* be integers. Let M; C R™ and My C R™ be connected submanifolds of class C2. We
define M = M7 x M.

Let I C R be a bounded non-empty interval and v : I — M; x Ms = M be a map. We denote
vy : I — My, : I — My its components.
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1. Show that « is a geodesic in M if and only if v; is a geodesic in M and 2 is a geodesic in Mo.

2. In this question, we assume that M;, My are closed. We also assume that v is a path, joining two
points x = (z1,22) and y = (y1,y2) in M.
a) Show that, if 47 and 7, have constant speed, then

£(y) = V)% 4 £(72)%

b) Show that, if v has constant speed and ¢(y) = distas(x,y), then 1 and 2 have constant speed.
[Hint: use Theorem 3.22, Question 1. and Proposition 3.24.]
¢) Deduce from the previous question that

distpr(z,y) > \/ distaz, (x1,91)? + distaz, (22, y2)%

d) Show that

distpr(z,y) = \/dis.tM1 (21, y1)? + dist s, (22, y2)2.

e) Show that v is a path with minimal length connecting = to y, with constant speed, if and only if
~1 is a path with minimal length connecting x; to y;, with constant speed, and ~» is a path with
minimal length connecting zs to yo, with constant speed.

f) For ny = ny = 1 and M; = My = R, give an example of paths 71,72 connecting 0 to 1, with

minimal length (but non-constant speed) such that ~ i (71,72) is not a path with minimal length
connecting (0,0) to (1,1).

3.2.2 Examples: the model submanifold and the sphere

Exercise 5: model submanifold

For any n € N* and d € {1,...,n}, we define M 9 Rd « {0}"=4. Give a simple description of the
geodesics in M.
(The solution is provided in Example 3.26, but do not read it before spending some time on the exercise!)

Example 3.26 : model submanifold

Let n € N* and d € {1,...,n}. The geodesics of the "model" submanifold M = R? x {0}"~% are the
maps 7 : I — R” of class C? such that

1. Yg41(t) = -+~ =vn(t) =0 for all t € I (since v(t) € M);

2. y{(t) =---=~4(t) =0 for all t € I (since v"(t) € (T,;yM)* = {0} x R"~%).
These are the maps whose last n —d components are zero, and the first d components are affine. Geodesics
are therefore exactly the maps of the form

vy:tel— xg+to,

for any zo,v € R% x {0}~
More geometrically, we can say that geodesics are maps which parametrize lines in R? x {0} at constant
speed.
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Exercise 6: geodesics on S"~!

Let n € N* be fixed. We want to compute the geodesics of S
1. Let us consider a geodesic 7, defined over an interval I. We know that it has constant speed. Let
¢ € R be this speed.
a) Show that, for all ¢ € I, (y(t),7/(¢)) = 0.
b) Differentiate the previous equality, and show that, for all t € I,
(v(®),7"(t)) +¢* = 0.
c) Show that, for all t € I, 7"(t) = —cy(t).

d) Deduce from the previous equation that there exist ej, ea € R™ such that

~(t) = cos(ct)ey + sin(ct)eq, Vt € 1.

e) Show that (e, e2) = 0 and ||e1]]2 = ||e2]|2 = 1.
2. Read and prove Proposition 3.27 (without looking at the proof, of course!).

Proposition 3.27 : geodesics on S" !

Let n > 2.
The geodesics on S"~! are all maps of the form

vy: I — Sn—t
t — cos(ct)e; + sin(ct)es,

for any non-empty interval I, any real number ¢ > 0, and any vectors e1, ea € R™ such that
lleall2 = lle2ll2 =1 and  (e1,e2) = 0.

This means that the geodesics on the sphere are parametrizations with constant speed of a "great circle"

{cos(s)e1 + sin(s)ea, s € R},

or an arc of it.

J

Proof of Proposition 3.27. First, let v be a map of the specified form. Let’s check that it is a geodesic. For any
t

(08" = ((OF) = Veer{y(0).

Now, for any t € I,

v (t) = ¢ (—sin(ct)e; + cos(ct)es) ;
7"(t) = —c? (cos(ct)ey + sin(ct)es) = —c2y(t) € Vect{(t)}.

Therefore, the geodesic equation is satisfied.

Conversely, let v be a geodesic defined on an interval I. Let ¢ be its speed (i.e., the positive real number
such that [|7/(¢)||2 = ¢ for all ¢; recall that v has constant speed according to Proposition 3.24). If ¢ = 0, 7 is
constant, so vy is of the desired form (with e; = y(to) and any es). Let us now assume ¢ > 0.

For any t € I, ¥/(t) € To,»yS"* = {7(t)}*, so

0= (y(t),7(®))-
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We differentiate this equality: for any ¢,

0= (v(®),7"()) + (¥(),7' (1))
= (v(),7"(8)) + .

Thus, (y(t),7"(t)) = —c*. As 7"(t) € (T,;)S™ )= = Vect{y(t)} and ~(¢) is a unit vector, we must have
' (t) = —*A(1).
We know that any solution to this differential equation is of the form
v:t €l — cos(ct)er + sin(ct)es.

Fix e, eg so that v has this expression. It remains to check that ||e1]|2 = ||e2|]2 = 1 and (e, e2) = 0.
For this, fix any tg € I. Let
7' (to)
s

vy = (tg) and ve =
These are two unit vectors orthogonal to each other. We can express e, es in terms of vy, vo:

vy = y(to) = cos(ctp)er + sin(ctp)es;
7 (to)

vy = ———= = —sin(cty)e; + cos(ctp)es.
C

We deduce
e1 = cos(cto)vy — sin(ctg)vy and ey = sin(ctg)vy + cos(cto)va.

So, ||el||% = cos2(ct0)||v1||§ — 2 cos(ctp) sin(ctp) (v1, v2) —|—sin2(ct0)||vg||% = 1 and, similarly, ||62||% =1, (e, e2)

o
Ol

Remark

The example of the sphere shows that geodesics are not always paths with minimal length between their
endpoints. Indeed, for any eq, es, the geodesic

v :t € [0;27] — cos(t)ey + sin(t)es

joins ey to itself. However, the length of « is non-zero.

Remark

The example of the sphere also shows that there can be multiple paths v between two points 1 and x»
such that
() = distps(z1, z2)

which are different even after reparameterization.

For instance, for any vectors e, es with norm 1 and orthogonal to each other, the geodesics
1 :t € [0; 7] — cos(t)e; + sin(t)es,
Y2 : t € [0;7] — cos(t)e; — sin(t)es

are paths of minimal length between e; and —ej, but they are not equal even after reparameterization.
However, it can be shown that paths of minimal length are “locally unique”.

Corollary 3.28: distance on S"!

H .

Let n > 2. Let 21,29 € S* . Then

distgn-1 = arccos((z1,x2)).
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Proof. According to Theorems 3.21 and 3.22, there exists at least one path v connecting z1 and z9 such that
() = distgn-1 (21, 22)

and such a path, if reparameterized at constant speed, is a geodesic.
Hence,

distgn—1(x1, x2) = min{l(y),y geodesic connecting x; and x5 }.

Let us compute this minimum.
Let v be any geodesic connecting x1 to x2. We determine the possible values for its length. We can be
assume that it is defined on an interval of the form [0; A]. Let ¢, e, e2 be such that, for all ¢ € [0; A],

~(t) = cos(ct)ey + sin(ct)es.
It must hold that z; = v(0) = e; and
x9 = y(A) = cos(cA)ey + sin(cA)es.
In particular, (z1,z2) = (e1,x2) = cos(cA), so

cA = arccos({x1,x2)) + 2k
or cA = (27 — arccos((x1,x2))) + 2k,

for some k € Z (in fact, k € N since cA > 0). As {(vy) = cA, it follows that the length of + is at least
min (arccos({x1, x2)), 2m — arccos((z1, x2))) = arccos((z1, x2)).
Thus,
distgn—1(x1, x2) > arccos((z1, z2)).

zo—(x1,22)T1
2’

To show that the inequality is an equality, we observe that, if e = the geodesic

1—(z1,22

v [0;arccos({x1,z2))] — S
—  cos(t)x1 + sin(t)es

connects z1 to z2 and has length arccos({x1, z2)).
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Chapter 4

Differential equations: existence and
uniqueness

What you should know or be able to do after this chapter
e Identify a Cauchy problem.

e Know the Cauchy-Lipschitz theorem; be able to apply it to particular situations.

e In the Cauchy-Lipschitz theorem, understand why the local Lipschitz continuity assumption is necessary.
When possible, use the fact that the function is C' to show that this hypothesis is verified.

e Know what a maximal solution is.
e When true, show that the maximal solution exists and is unique, using Proposition 4.4.

e When an upper bound on the norm of the maximal solution is available, combine it with the théoréme des
bouts to show that the maximal solution is global (as in Example 4.9).

e From an inequality on the derivative of a map, apply Gronwall’s lemma to deduce an upper bound on the
norm of the map itself (see corresponding exercise with Anna Florio, and the homework on the proof of
Cauchy-Lipschitz).

e Know that, when the map f in the Cauchy problem is C?, the maximal solution is differentiable with
respect to ty and ug.

e Compute the Cauchy problem to which the derivative of the maximal solution with respect to ug is solution
(Theorem 4.10).

4.1 Cauchy-Lipschitz theorem

A Cauchy problem is a differential equation where the unknown is a function of one variable (often denoted as
t), together with an initial condition. It is thus a problem of the following form:

{ U= f(t7 u)7
u(ty) = ug. (Cauchy)

Here,

e f:IxU — R"is a fixed function, with I an open interval of R and U an open set of R™ (for some n € N*);
e g is an element of I and ug an element of U;

e 1 is the unknown function, which must be defined on an interval J such that tg € J C I, take values in U
and be differentiable.

The equality "u’ = f(t,u)" is a shortened notation for "u'(t) = f(¢,u(t))": wis indeed a function, which depends
on a variable, here called t.

89
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In Problem (Cauchy), we impose the differential equation to be of order 1 (meaning it contains only one
derivative). This is not a restriction. Indeed, a Cauchy problem containing a differential equation of any
order N > 1 can be reformulated as a Cauchy problem of order 1. Precisely, consider a problem of the

form
u®) = g (t,u,u',...,u(N_l))
u(to) = uo,0, u'(to) =Ul, ..., V-1 (to) = uo,N—1-
If we denote vy = u, v =/, ..., on_1 = uN "D it is equivalent to
vy = v

/
UN—2 = UN-1
/
UN—1 = g(t’U07U17 s 7UN—1)

vo(to) = w00, wvi(to) =wo1, ..., vn—1(to) = uo,N-1,

vo
which is a first-order problem on the unknown function < : ) .

UN-1

Exercise 7

Show that a map w : J — U is a solution to Problem (Cauchy) if and only if the map

a: J — JxU
t = (tul?)

is a solution to another Cauchy problem, where the initial condition wug is replaced with (to,up) and f is
replaced with a map f : R x (I x U) — R""! whose definition you will provide, which does not depend
on its first argument.

J

The starting point of the theory of differential equations is the Cauchy-Lipschitz theorem, which, under
regularity assumptions on f, guarantees that Problem (Cauchy) has a unique solution in the vicinity of t.

Theorem 4.1 : Cauchy-Lipschitz

Assume f is continuous and there exists a neighborhood H C I x U of (ty,up) where it is Lipschitz
continuous in its second variable:

Vt,u,v such that (¢, u), (t,v) € H,
1f(t,w) = f@E,0)ll2 < Cllu —vll2, (4.1)

for some constant C' > 0 (which should not depend on t).
Then we have the following conclusions:

o (Existence)
There exists an interval J C I whose interior contains tg and a function u : J — U of class C* which
is a solution to Problem (Cauchy).

e (Local Uniqueness)
If u1,up are two C' maps solving Problem (Cauchy), defined on intervals .J;, Jo containing to (in
their interior or on the boundary), then

up =ug on Jy NJaNtg — € to + €]
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[ for any sufficiently small € > 0. ]

The most classical proof of this theorem uses (implicitly or explicitly) the Picard fized-point theorem. Inter-
ested readers can find it, for example, in [Benzoni-Gavage, 2010, p. 142].

The Lipschitz continuity condition around (g, ug) (Equation (4.1)) is automatically satisfied whenever f is
C'. Indeed, in this case, we can take H = B((to,uq),€), for any e > 0 sufficiently small. Equation (4.1) then
follows from the mean value inequality (Theorem 1.16), with

C = max Idf (¢, w)l| £(wnt1 -
(t,u)eB((to,uo),€)

The "existence" part of the theorem holds even without the Lipschitz condition (it suffices for f to be
continuous; this is the Peano theorem). However, the "uniqueness" part may be false without this condition.
To provide an example of possible non-uniqueness, consider the Cauchy problem

v =V,

u(0) = 0.
It can be verified that the maps
Uul R —- R
t = L ift>0,
0 ift<0,
ug R — R
t — 0,

are both solutions to this problem. However, they are not identical.
Let’s conclude this section with a simple but useful property about the regularity of solutions to a Cauchy
problem.

Proposition 4.2

If f is of class C" for some r € N, any solution u of Problem (Cauchy) is of class C"*1.
In particular, if f is C*°, every solution is C'*°.

Proof. We prove the result by induction on r. For r = 0, it is true: if u is a solution, it is differentiable by
definition. In particular, it is continuous. Its derivative is

u = f(t,u).

Since f and u are continuous, v’ is also continuous, meaning u is C'.
Let us assume that the result holds for some r € N and prove it for r 4+ 1. Assume f is of class C"*! and let
u be a solution. Since f is also of class C”, the induction hypothesis tells us u is C™+!. Therefore,

u' = f(t )

is a composition of C™t! maps. Thus, it is C"*!, meaning u is C"2. O

Remark : extension to Banach spaces

Here, we limit ourselves to differential equations in finite dimension, meaning that the function u of
Problem (Cauchy) takes values in R™. More generally, one can consider equations where the unknown
function takes values in a Banach space?, and everything said in this section remains true, except for
Peano’s theorem.

“that is, a complete normed vector space

4.2 Maximal solutions
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Definition 4.3 : maximal solutions

Let w : J — U be a solution to a problem of the form (Cauchy). We say that it is a mazimal solution

of the problem if it cannot be extended to a larger interval: for any other solution @ : J — U such that
J C J and 4); = u, we have

Proposition 4.4 : existence of a unique maximal solution

If the map f of Problem (Cauchy) is continuous, and Lipschitz continuous in its second variable around
every point, then the problem has a unique maximal solution.
Moreover, if we denote by w : J — U this maximal solution, the set of solutions of Problem (Cauchy) is

{UIJ J — U with J interval such that ty € J C J} (4.2)

Proof. We start with a proposition (whose proof follows this one) which establishes a uniqueness result for
solutions of Problem (Cauchy). This result is very similar to the one from the Cauchy-Lipschitz theorem, but it
is global, while the Cauchy-Lipschitz theorem provides local guarantees only (uniqueness holds in a neighborhood
of ty). Here, we have a global uniqueness guarantee because f is Lipschitz in its second variable around every
point, not just around (to, up).

Proposition 4.5

If u; : J1 = U and ug : Jo — U are two solutions of Problem (Cauchy), then
up =uy on JyNJs.

Moreover, the function w : J; U Jo — U which coincides with u; on J; and ug on Js is a solution to
Problem (Cauchy).

From this proposition, we can already deduce that the maximal solution, if it exists, is unique and that the
set of solutions of Problem (Cauchy) is indeed the one given in Equation (4.2).

Indeed, suppose there exists a maximal solution u, defined on an interval J. For any interval J such that
to€J CJ, |z is a solution to Problem (Cauchy). Conversely, if v : J — U is a solution to the problem,

there exists (from the previous propomtlon) a solution defined on J U J, equal to u on J and v on J. Since u is
maximal, we must have JUJ = J, i.e., J C J, and v = w on J N J = J. Therefore,

vV = U|j.

This proves Equation (4.2).
Equation (4.2), in turn, implies that the maximal solution is unique: every solution is of the form u y for

some J C J. Therefore, every solution u 5 can be extended to the larger interval J, except u itself.
To conclude, let’s show existence. Let us define

J ={t € R, Problem (Cauchy) has a solution defined on [to;?]} .

For any t € J, let v; be a solution to Problem (Cauchy) defined on [to;¢]' and define

This defines a function w : J — U.

First, let’s show that u is a solution to Problem (Cauchy). Its domain J is an interval: for any ¢,¢' € J and
any t” € [t;t'], we have that either [to;t] or [to; '] contains [to;¢”]. Thus, the restriction of vy or vy to [to;t”] is
well-defined and it is a solution to (Cauchy). Therefore, ¢ € I.

'"We denote the interval “[to; t]” for simplicity, but of course, if ¢ < to, we actually consider the interval “[t; £o]”.
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The function w satisfies the initial condition: wu(tg) = vy, (o), and since vy, is a solution to the problem, we
have vy, (to) = up, hence

u(to) = uo.

We then show that for any ¢ € J, u is differentiable at ¢ and satisfies the equation

u'(t) = f(t,u(t)). (4.3)

Let’s fix any ¢t € J arbitrarily. To simplify notation, let’s assume t > ¢y (we can do the exact same reasoning if
t < tp and a very similar one if t = ¢y) and distinguish two cases.

e First case: ¢t < supJ. In this case, let t' €]t;sup J[. The function u coincides with vy on [to;t]. Indeed,
for any t” € [to;t'], according to Proposition 4.5,

vpy =v on [N [t = [t 1)

So u(t”) = vt//(t”) = Uy (t”).

Since vy is differentiable and a solution to the Cauchy problem, the equality u = vy on [tg; ] implies that
u is also differentiable on |to; /[, in particular, differentiable at ¢, and satisfies Equation (4.3).

e Second case: t =supJ. In this case, J is of the form [a;¢] or |a;t], for some o € [—00; tp].

Following the same reasoning as in the first case, we see that u coincides with vy on [tg;¢]. This implies
that w is differentiable on |¢p;t], which is a neighborhood of ¢ in J, and that Equation (4.3) is satisfied.

This ends the proof that u is a solution of Problem (Cauchy).
Finally, let’s show that this solution is maximal. Let @ : J — U be a solution extending u (i.e., J C J and
@iy = u). For any t € J, 44, is a solution to Problem (Cauchy), so ¢ belongs to J. Hence, J C J. Therefore,

J=J and 4 = u. O
Proof of Proposition 4.5. Let uy : J1 — U and ug : Jo» — U be two solutions of Problem (Cauchy). Let
H = {t € J1 N Jy such that ul(t) = UQ(t)}.

The set H is non-empty (it contains ¢) and closed in J; N Jy (because u; and ug are continuous). If we manage
to show that it is open in Jy N Jy, then H = Jy N Jy (as J; N Jy is an intersection of intervals, hence a connected
set) and therefore

uy =ugon H=JNJ,.

Let’s show that it is open. Take any ¢; € H. Consider the modified Cauchy problem.

u = f(t7 u)’
{ u(ty) =wui(ty). (Cauchy t1)

Both w; and wug are solutions of this problem since they are solutions of (Cauchy) and u;(t;) = ua(t1) according
to the definition of H.

We can apply the Cauchy-Lipschitz theorem to (Cauchy t1): f is continuous and Lipschitz with respect to
its second variable in a neighborhood of (¢1,u1(t1)). According to the local uniqueness result of this theorem,
there exists € > 0 such that

up =wug on JyNJyN[ty — €ty + €.

This implies that J; N Jo N [t1 — €;t1 + €] C H and thus that H contains a neighborhood of ¢; in J; N Jo. This
shows that H is open in Ji N Js.

To conclude, let u : J; U Jo — U be the function which coincides with u; on Ji and usg on J. Let’s verify
that it is a solution to Problem (Cauchy).

It satisfies the condition u(ty) = ug (because u; and ug satisfy it). Let’s show that it is differentiable and
satisfies the equation

u = f(t,u). (4.4)
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Using basic properties of intervals, we can check that (J; U J2) N [tg; +0oo[ is included in J; or Jo. Therefore, u
is differentiable on this interval (it coincides with wu; or ug, which is differentiable) and satisfies Equation (4.4)
(because uj and ug satisfy it). The same holds on (J; U J2)N] — 0o; tp]. This implies that w is differentiable and
satisfies (4.4) on (J1 U J2) \ {to}. Moreover, it has left and right derivatives at ¢y, which also satisfy (4.4). Due
to this equality, the left and right derivatives coincide (they are equal to f(tp,up)) so u is differentiable at ¢y

and satisfies (4.4) at this point as well.
O

4.3 Maximal solutions leave compact sets

In this section, we consider a Cauchy problem and assume that f is continuous and Lipschitz with respect to
its second variable in the vicinity of every point. This allows us to apply the results from the previous section:
there exists a unique maximal solution u : J — U.

Proposition 4.6

The definition set J of the maximal solution u is an open interval in R.

Proof. We know that J is an interval. We must show that it is open.
Let T € J be arbitrary. According to the Cauchy-Lipschitz theorem, the Cauchy problem

v = f(tv ’U),
v(T) =u(T)

has a solution v defined on an interval whose interior contains T'. Let H be this interval.

According to Proposition 4.5, since both v and u are solutions to this Cauchy problem, the function w :
J UH — U which coincides with « on J and v on H is also a solution. This function w is also a solution to the
original problem (Cauchy) (since w(ty) = u(ty) = up).

Since u is a maximal solution, we must have JUH C J, which means H C J. Thus, J contains a neighborhood
of T.

This is true for any 1" € J, so J is open. ]

An important question regarding the maximal solution is to determine its domain. In particular, is the
maximal solution global, i.e., is it defined on the same interval I as the function f? The following theorem
provides a criterion which, in some cases, answers this question.?

Theorem 4.7 : théoréme des bouts

We still assume that f : I x U — R" is continuous and Lipschitz with respect to its second variable in
the neighborhood of every point. We still denote w : J — U the maximal solution to Problem (Cauchy).
One of the following two properties is necessarily true.

1. supJ =sup/ ;

2. u “leaves any compact set of U” in the neighborhood of sup J: for any compact K C U, there exists
n < sup J such that, for any t €]n;sup J|,

u(t) e U\ K.

A similar result holds for inf J.

\

Proof. Let’s proceed by contradiction and assume that both properties are false. In particular, sup J < sup I,
sosupJ € I. Let K C U be a compact set which u does not leave: for any 7 < sup J, there exists ¢ €]n;sup J|
such that u(t) € K.

2As it does not seem to have a well-established name in English, we will stick to the French terminology, « théoréme des bouts ».
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Then, there exists (and we fix one for the rest of the proof) a sequence (ty,)nen of elements of J such that

tn "2 sup J; u(t,) € K, VneN.
Since K is compact, we can assume, replacing ¢t with a subsequence if necessary, that (u(t,))nen converges to
some Ujiy € K.
The proof will be in two steps:

1. we show that u(t) — uym, as t — sup J;

2. we deduce that u can be extended to a solution to Problem (Cauchy) defined on J U {sup J}, which
contradicts the maximality of u.

First step: since f is continuous, it is bounded in a neighborhood of (uyyy,,sup J). So, let M € R and € > 0
be such that
Y(t,v) €]sup J — €;sup J + €[x B(ujm, €), ||f(t,v)|]2 < M.

Intuitively, this inequality implies that if, for some n, t, is close to supJ and wu(t,) is close to wujy,, then
u' = f(t,u) is bounded by M close to t,; in particular, ||u(t) — u(ty)||2 < M|t — t,| for any ¢ in a neighborhood
of t,, whose size we can estimate. This is formalized by the following proposition (the proof of which is given at
the end of the theorem’s proof).

Proposition 4.8

Let n be any integer such that

€ €
|tn, —sup J| < 5 and ||u(ty) — um||2 < 5 (4.5)

For any t € |t — ssorayi tn + 2max€(M,1) nJ,

lu(t) = u(tn)llz < M|t — tn].

Since (ty, u(ty)) e (sup J, ujim ), we have for any n large enough

€ €
and ||u(ty) — wunml|2 < =.

tn — J < ——F———
bn = sup |<2maX(M,1) 2

For such values of n, the hypothesis (4.5) is satisfied, thus

€ €
) —u(ty)|le < M|t —tn|, VteE |t, — 1 nJ.
[[u(t) = ultn)ll2 < M| | < 2max(M,1) + 2max(M,1)

Since t, + m > sup J, this implies that, for any ¢ € [t,,;sup J|,

ut) = wimll2 < [|u(t) — ultn)ll2 + [[u(tn) — tiim||2
< Mt —to| + [[u(tn) — tiim||2
< Mty —sup J| + ||u(tn) — wiml||2
— 0 as n — +o0.

So u(t) — ujim as t — sup J.
Second step: let’s extend u continuously to J U {sup J}, that is, let’s define

uw: JUsupdJ — U
t — u(t) ift<supJ
Um  otherwise.

This is a continuous function. It is differentiable on J and

u'(t) = f(t,u(t))

t—sup J

f(sup J7 ulim)v
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which shows that w is also differentiable at sup J, with derivative f(sup J, tjimy)-
Therefore, the function w is a solution to Problem (Cauchy), extending u but not equal to u. This contradicts
the maximality of u. O

The following example shows how the théoréme des bouts allows to prove that a maximal solution to a
differential equation is global.

Example 4.9

Consider the problem (Cauchy), for a function f : R x R” — R"™. Assume that f is continuous, Lipschitz
with respect to its second variable in the neighborhood of every point, and satisfies the inequality

17 (& wll2 < [lull2,  V(tu) € R xR™ (4.6)

Its maximal solution is global (i.e. defined on R).

J

Proof. Let u : J — R™ be this maximal solution. We show that J = R. We only prove that supJ = +o0; a
similar reasoning shows that inf J = —occ.

Let’s proceed by contradiction and assume that sup J < 400. According to the théoréme des bouts, u leaves
any compact set in the neighborhood of supJ. We will obtain a contradiction by showing that u is actually
bounded in the neighborhood of sup J.

Consider the map N : t € J — [|u(t)||3 € R. It is differentiable and, for all ¢ € J:

IN'(1)] = |2 (u(t), '(t))]
= 2|(u(t), £(t, u(®)))|
< 2fu()[2|]f (¢, u())]]2
< 2lu(®)/f3
= 2N (t).

From this point on, it is possible to show that N (hence u) is bounded by using Gronwall’s lemma (Lemma D.1
in the appendix). In the next lines, we propose an argument which does not explicitely invoke this lemma, but

reaches the same conclusion.
We define Ny : t € J — N(t)e 2!, For all ¢,

Nj(t) = (N'(1) — 2N (£))e 2 <0,
thus Ny is non-increasing and, for all ¢ €]to;sup J[, Na(t) < Na(tg) = ||uo||3e¢~2%, which implies
N(t) < (Jluoll2¢' )"
Consequently, for all t €]tg;sup J|,
lu(®)]]2 < [[uoll2e"™™ < [Jug||2e* 7.

If we set M = ||ug||2¢5"P /%, we obtain that u does not leave the compact set B(0, M). We have reached a
contradiction. O

The result stated in the example remains valid if we replace the bound (4.6) by a more general linear upper
bound
L u)lle < Chllullz + Ca,  V(t,u) € R xR",

for constants C1,Cy > 0.
However, it is no longer valid if we replace the bound “||u||2” with “||u||§” for a power a > 1. To convince
ourselves of this, we can consider the following Cauchy problem:

ul — ’u|0{’

u(0) = 1.
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We can check that its maximal solution is

U ]—oo;ﬁ[ — R
- —L
(1—(a—1)t)a—T

which is not defined on R as a whole.

Exercise 8

Let f: R — R be a C' map such that

f(0) =0
ft) >t VteR.

For fixed ty, ug € R, we consider the Cauchy problem

{ u'(t) = f(u(®),

u(ty) = ug.

1. Show that this problem has a unique maximal solution.
Let J be the domain of this maximal solution, and u be the solution.
2. a) Show that, if up = 0, then J = R and u(t) = 0,Vt € R.
b) Show that, for any ¢; € J, u is a solution to the Cauchy problem, where the initial condition
(to,up) is replaced with (t1,u(t1)).
c¢) Deduce that, if u(¢;) = 0 for some ¢; € J, then J = R and u(t) = 0,Vt € R.
Let us now assume that ug > 0.
3. a) Show that, for all ¢ €] — oo;to] N J, u(t) €]0; uo).
b) Deduce from the previous question that | — co; tg] C J.
¢) Show that u(t) — 0 when t — —ooc.
4. a) Show that —% is well-defined and negative over J.
b) Show that, for all ¢ € [tg; +00[NJ,

¢) Show that sup J < +oo.
d) Show that u(t) — 400 when t — sup J.

4.4 Regularity in the initial condition

In this section, we look at the pair (o, uo), which is the initial condition of Problem (Cauchy), and let it vary.
This defines a family of solutions to the differential equation “u’ = f(¢,u)”. When f is C?, this family of solutions
is differentiable with respect to (to,ug). Furthermore, its partial derivatives can be described as solutions to
another Cauchy problem.

To simplify notation, we first state this result in the case where ty is fixed and only wug varies. The general
case is given afterwards.

Theorem 4.10: regularity in the initial condition

Let I be a non-empty open interval of R, U an open set in R”, and f : I x U — R™ be a C? map.
Let us fix tg € I. For every ug € U, let uy, : Ju, — U be the maximal solution to the Cauchy problem

{ ’U’;Lo = f(t,qu),

(o) = 1. (Cauchy )
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The set Q@ = {(uo,t),up € U,t € Jy,} is an open subset of U x I and the map

V. Q — U
(up,t) — Uy (t)

is O
Moreover, for every ug, %(uo, ) Juy — L(R™,R™) is a solution to the following Cauchy problem:
4 () = &1,V (uo,1)) 0 & (uo, 1) w
av o 0 (Cauchy Z-)
dug (UO, to) = Ian

\.

It is not necessary to memorize by heart Problem (Cauchy %). It suffices to remember that V is C1.

Then, (Cauchy C%/O) can be obtained by differentiating (Cauchy wug). Indeed, (Cauchy ug) can be rewritten

in terms of V as o
W(Uo,t) = f(t,V(’LLO,t)),
V(ug,t) = up.

Differentiating with respect to ug both sides of each of the two equalities yields exactly (Cauchy C‘liTVO).

Proof of Theorem 4.10. To simplify a bit, let’s assume that f does not depend on ¢t. We can make this assumption
thanks to the lemma that follows (the proof of which is in Appendix D.2). We thus denote “ f(u)” instead of
“f(t,u)”, and use interchangeably the notation “%” or “df” for the differential.

If the theorem holds for all maps f independent of ¢, it holds for all maps f.

The following lemma further simplifies the problem by showing that it suffices to establish the regularity of
V in a neighborhood of each wg, for times t close to tg. It is proven in Appendix D.3.

Lemma 4.12

Assume that

for each ug € U,  contains a neighborhood of (ug, o), on which V is C! and satisfies

the equations (Cauchy [‘i%). (4.7)

Then Q is open, V is C! on Q and satisfies the equations (Cauchy gTVO).

It remains to show that Property (4.7) is true. Let ug € U.
First step: V is defined in a neighborhood of (ug, to).
Let My, e > 0 be such that B(up,e¢) C U and

Vv € B(uo,€), ||f(v)]]2 < M.

The following proposition, proven in Appendix D.4, shows that 2 contains B (uo, g) X }to — ﬁ; to + ﬁ .

Proposition 4.13

For every v € B (uo, §),
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Furthermore, for every ¢t € ]to — a0 e [’

uy(t) € Blug,€).

Second step: V is Lipschitz on this neighborhood.
For all (v,) € B (uo. ) x ] fo = giito + 5 |-

uy(t) = fun(t)) = [Juy(t)]]2 < M.

Therefore, for all v € B (uo, %), Uy is Mi-Lipschitz on }to — ﬁ;to + ﬁ , meaning that V is M;-Lipschitz
with respect to its second variable.
Let Ms > 0 be such that
Vo € B(uo,€), |ldf (v)] ggn gy < Mo

(Recall that f is C2. In particular, its differential is continuous on U, hence bounded on B(ug, €).)
The function f is Ma-Lipschitz on B(ug, €) by the mean value inequality. Thus, for all vy, v2 € B(uo, 5),t €

:|t0_ 2]6\41;t0+ 2]\641 ’

[, (1) = i, ()12 = || (wu, () — f(uoy (1))]]2
< M2Huv1 (t) - uvz(t)HQ‘

We integrate and use the triangular inequality: for all ¢ € [to; to + ﬁ [,

[ty (8) = v (B)[]2 = | |ty (F0) — a, (t0) +/t (i, (5) — wq, (5)) ds

2

t
smmm—%mm+[wa@—%@mw
0

t
< o, (to) — ws (to)[|2 + [ Ma|ltiw, (8) — tuy (5)|[2ds.
to

Thus, according to Gronwall’s lemma (Lemma D.1 in the appendix), for all ¢ € [to; to + ﬁ [,

[[eto, (#) =t (D)||2 < [ty (f) — e (f0)||26™2 1)

= [Jv1 — va||aeM2(t=t0)

My
< |1 — val|2e®M1.

eM:

&2
Symmetrically, the inequality is also valid for t & }to — 271\6/[1;15()}, which shows that V is e2?M:1-Lipschitz with

respect to its first variable on B (uo, %) X }to — ﬁ;to + ﬁ { Hence, V is globally Lipschitz (and therefore

continuous) on this open set.
Third step: differentiability of V' with respect to t.
According to its definition, V is differentiable with respect to its second variable, and for all v, t,

av )
o 0 t) = u(t) = f(V(v,1)).

. . . . . € € . € . dv .
Since f is continuous on U and V is continuous on B (uo, 5) X }to — sirs o+ s [, the function ;- is also

continuous on this latter set.

Fourth step: differentiability of V' with respect to ug

Let’s show that V has a partial derivative with respect to its first variable, which is continuous and satisfies
the Problem (Cauchy ;%) We will proceed “backwards”™ we consider the solution to Problem (Cauchy ;%)
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and show that it is continuous and is the partial derivative of V' with respect to ug. For any v € B (uo, %), let

wy 2 I, C }to — ﬁ; to + ﬁ [ — L(R™,R™) be the maximal solution to the problem

w(6) = LV (0,0) 0wt

Wy (t[)) = Id]Rn
The maximal solution exists and is unique because, for any v, the map

a
du

€ €

i b
17 O+2M]_

oYY (V(v,t))ox

(t,z) € ]to — [ x L(R",R") —
is Mo-Lipschitz with respect to z, hence Cauchy-Lipschitz theorem applies.

The same reasoning as we did for u, in the second step shows that there exists a constant M3 > M; such
that, for any v € B (uo, %), the domain of w, contains

to— ——ito+ —
Y VARV VA

and the map (v, t) — wy(t) is Lipschitz and therefore continuous on B (ug, §) X ]to — ittt o [ (this is the
point of the proof that uses the hypothesis that f is C?).
Finally, let’s show that V is differentiable with respect to its first variable, and, for all v,t € B (uo, 5) X
}to — ot + 35 |
dv
—(v,t) = wy(t).
duo( ) ) ”U( )

To do this, we will perform a kind of first-order Taylor expansion of Problem (Cauchy wug) in .
Let v, h € R™ be such that v,v + h € B (uo, ;) Consider the map

€ €
27]\43’ tO + Tng — qu—h(t) - uv(t) - wv(t)(h)'

A:te :|t0 —
‘We have
A(tg) = (v+ h) —v —Idgn(h) = 0.

Moreover, for any t,

A'(t) =ty 4, () — () — w, (£)(h)
df

= f(uy+n(t)) — fluu(t)) — @(uv(t)) o wy(t)(h)
= %(Uv(t))(uv—l—h(t) —uy(t)) — %(uv(t)) owy(t)(h) + E(t)
df

= 5, (W) (AQR)) + E()
with E(t) = f(upsn(t)) — f(uy(t)) — %(uv(t))(uwrh(t) — uy(t)) and thus, by one of the Taylor inequalities,

d*f
— (0

1
|rE<t>||2s2< sup ||

BEB(ug,€)

) llo4n(t) — uu(t)][3-

L(R™,L(R™,R"))

Let C1 = §sup;e B(uoye) and C3 be the Lipschitz constant of V' with respect to its first

)]

—5 (0

du2( ) ﬁ(R",L(R",R"))
variable (whose existence we proved a few paragraphs ago). With these notations, for any ¢,

IE(#)|]2 < C10s]|h|]3
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and thus
|20 - L] <ciclm

Denoting C3 = supge j( , we deduce

uQ,€)

df [
du (U)‘ ’E(R",R")
A" (1)]], < CLCal [R5 + C3||A(#)]]2-

Therefore, for any t € [to; to + ﬁ [,
t
1AWl = HA(to) - [ A(s)ds
to
_ ‘ 2
< [ 186l ds
to

t
t
< /t (C1Callnl3 + Cs [|AG)]l,) ds

0

2

t
A'(s)ds

to

t
:clcz||h||§<t—to>+/ Cs || A(s)]] ds.
to

From Gronwall’s lemma, for any t € [to; to + ﬁ [,

t
1A@)]]2 < CLCal[R[5(t — to) + 010203||h||§/ P79 (s — tg)ds
to

_C1C'2 2 ( ,Cs(t—to)
= = IRl (0 —1).

Symmetrically, the inequality is also valid if ¢ € ]to — ﬁ;to}, provided that we replace “e3(t=t0)" with
“eCslt=tol” op the right-hand side.

Cge
If we set Cy = Cé—? (€2M3 — 1>, we have thus shown that, for any v, h such that v,v +h € B (uo, %) and

for any t € to—ﬁéto"‘ﬁ[’

V(0 + hyt) = V(0,8) = wo(t) (W) = ||A®)]]2 < Cal ][5
Therefore, V is differentiable with respect to its first variable, and for any v, ¢ in the considered open set,

dv
— (v, 1) = wy(?).
T ost) = w0
Conclusion.
We have seen that V is continuous on B (uo, g) X ]to — ﬁ; to + ﬁ [, has partial derivatives with respect
to each of its two variables on this open set, and that these partial derivatives are continuous. Therefore, V'
is C! on this open set. In the fourth step, we have also shown that the partial derivative C‘Z—X) is a solution to

Problem (Cauchy 6%/0)' Hence, Property (4.7) is true.
O

Theorem 4.14 : regularity, general case

We keep the notation from the previous theorem; f is still C2.
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For any pair (tg,uo) € I x U, let wg g : Jtg,uo — U be the maximal solution of the Cauchy problem

ugO uo = f(t7 uto,uo), C
7 auchy (tg, u
{ Uty uo (f0) = Uo. ( y (to,u0))

The set Q = {(to, uo,t),t0 € L,up € U,t € Jyyuo} C I x U x I is open and the map

V. Q — U
(t(): uo, t) - utOy'U«O (t)

is of class C'.
Moreover, the partial derivatives of V' are solutions of the following Cauchy problems:

d (dV df av
it (r) = gV oy usE)) 0 S io, v, ),
dv

duo( 0, U0, o) R

d (dV\ df %
7 (d_to> = %(tav(t()?u()?t)) (d—m(tmuo,t)) )
av
E(to,u())to) = _f(t()uuo)'

0

This theorem can be derived from the previous one as in the proof of Lemma 4.11.

An even more general theorem holds: we can assume that f is a function of three variables instead of
two, yielding a Cauchy problem of the form
u/ = f(t7 u? a’)?

u(to) = ug.

If f is C2, the maximal solutions of this problem are C'! in (g, ug, a).




Chapter 5

Explicit solutions 1in particular situations

What you should know or be able to do after this chapter
e Solve an autonomous scalar equation.
e Solve a linear scalar equation.
e Identify a linear equation.
e Know that the solution of a linear differential equation is global.

e If you admit that the resolvent of a linear equation is C', write the Cauchy problem to which it is a
solution.

e Use this Cauchy problem to show that a given map is the resolvent of a Cauchy problem.
e Remember that, for all tq, to, t3, R(tg, tQ)R(tQ, t1) = R(tg, tl) and that, for all ¢, to, R(tQ, tl)_l = R(tl, tg).

e Write the solution(s) of a linear equation in terms of the resolvent (with or without source term, with or
without an initial condition).

e Recall (= be able to find it again by yourself) the explicit expression of the resolvent when the equation
has constant coefficients.

e Compute the exponential of a diagonalizable matrix when the diagonalization is provided.

5.1 Autonomous scalar equations

In this section, we consider a scalar equation (the images of u are in U C R and not in R™ for some n > 1) and
autonomous (the map f does not depend on time). Thus, we have an equality of the form

u = f(u), (5.1)

for some f : U — R, with U a non-empty open subset of R. Throughout this section, we assume that f
is locally Lipschitz, so that the Cauchy-Lipschitz theorem applies. We will describe the maximal solutions of
Equation (5.1).

Let’s start with the simplest solutions: the constants.

Proposition 5.1

We assume that f is locally Lipschitz.
For any ug € U, the constant function v : t € R — ug is a maximal solution of the differential equation (5.1)
if and only if f(up) = 0.
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Proof. Let ug € U. Let u : t € R — wug. Its derivative is zero. Thus, it is a solution of the differential
equation (5.1) if and only if
0= f(uo).

When it is, it is a maximal solution as it is defined on R and can thus not be extended. O

Now, let’s describe the non-constant solutions, using the primitives of % Consider v : J — R a maximal
solution whose derivative is not identically zero. Let t9 € J be such that u'(tg) # 0. For simplicity, assume
f(u(to)) = v (tg) > 0; a very similar reasoning is possible if f(u(tg)) < 0.

Let ]Ja; B[ be the maximal interval containing u(tg) on which f is strictly positive (with possibly o = —o0
and § = +00).

Proposition 5.2

For any t € J, u(t) €]a; A].

Proof. Let’s argue by contradiction and assume it is not true. Since u(tg) €]a; S[, the continuity of u and the
intermediate value theorem imply that there exists t; € J such that u(t;) = « or u(t1) = . Let us for instance
assume u(t;) = a.

Then u is a solution of the following Cauchy problem:

{ u(t?), —

The constant function @ : ¢t € R — « is a maximal solution of this problem (indeed, f(«) = 0, because |a; (] is
a maximal interval on which f is strictly positive). Since the maximal solution of the problem is unique, as f is
locally Lipschitz, v = @, which means u is constant. This is a contradiction. ]

Let @ :]a; S[— R be a primitive of %: for any arbitrary constant C', we define

v 1
O(v)=C+ /u(to) Eds, Yo €]a; 8.

This is a continuous function with strictly positive derivative. Hence, it induces a diffeomorphism onto its image,
which is an open interval, denoted |v; d].
We observe that, for any ¢ € J,

Thus, for any ¢ € J,
<I>ou(t):<I>ou(t0)+(t—t0):t—t0+0.

Therefore, for any t € J, u(t) = ®~1(t — tg + C).

Proposition 5.3

The interval J is equal to |y +to — C;0 4+ to — C|.

Proof. For any t € J, since ¢pou(t) =t —ty+ C, we must have t —tg+ C €]vy; [, thus t €]y +to—C;0+to—C|.
This shows that J Cly +tg — C;0 + 1ty — C1.

As u is a maximal solution, it is defined on the whole |y +ty — C; +to — C[. Indeed, if it were not the case,
the map @ : t €]y +tg— C;0 +tg — C[— @7t —tp + C) € U would be a solution of Equation (5.1) that strictly
extends it. O

This leads to the following theorem.
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Theorem 5.4

The non-constant maximal solutions of Equation (5.1) are all maps of the form
tely+D;6+D] — & (t-D),

where @ is a primitive of %, defined on a maximal interval where f does not vanish, |vy; [ is the image of
®, and D € R is an arbitrary constant.

Proof. The reasoning we just did shows that all non-constant maximal solutions have this form (where D
corresponds to the previous tg — C'). Conversely, any map of this form is a solution of Equation (5.1), since, for
all ¢,

' 1
D)= 5@ )
=f(e7'(t-D)).

It is maximal because, when ¢t — v + D, ®~1(t — D) — « or 3, hence &’ (<I>_1(t — D)) — 0, which means

that (@_1)/ (t — D) diverges, hence ®(. — D) cannot be extended into a differentiable map in v 4+ D. The same
reasoning holds for § + D. O

Example 5.5

Let’s find all maximal solutions of the differential equation

/
u = —US.

The map x — —23 is locally Lipschitz (it is C1). It vanishes only at 0. Thus, the only constant solution
isu=0.

Now let’s search for non-constant solutions. The maximal intervals where z — —z* does not vanish are
] — 00;0[ and ]0; +o00[. On these intervals, primitives of # — —3 are

1 1
Q) :z €] — 00;0[— 77 Oy : z €]0; +o00[— 257

The first one is a bijection between | — oo; 0[ and |0; +oo[, with inverse

1
&1 : 2 €]0; +00[— ——— €] — 00; 0]

V2z

and the second one is a bijection between ]0; +-o00[ and ]0; +-o00[, with inverse

&5 : x €]0; +oo[—> 10; 4+-o00.

1
— ¢
V2or

Thus, maximal solutions are all maps of the form

1
w:t€]lD;+oo[— ———e
2(z — D)
and wu:t €]D;+o00[» ——
2(x — D)

for any real number D.
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Exercise 9

Let up € R be fixed. Compute the maximal solution of the following Cauchy problem:

e—u(t)?
{ W(t) =S

u(0) = up.

5.2 Scalar linear equations
A scalar linear differential equation is an equation of the form
u'(t) = a(t)u(t) + b(t), (5.2)

where a, b are continuous maps on an interval I C R. The function b is sometimes called the “source term”.
Let’s first solve this equation in the case where b is zero.

Proposition 5.6 : with no source term

Let a : I — R be a continuous map, for some open interval I. Let A : I — R be a primitive of a. The
maximal solutions of the differential equation

are all maps of the form w : t € I — CeA®) where C' is an arbitrary real number.

J

Proof. A map of the form t — Ce”(®) is necessarily a solution of the equation. It is maximal because it is defined
on [.

Conversely, if v : J — R is a maximal solution, we define v : t € J — u(t)e 4" e R. This map is
differentiable and, for any t € J,

o' (t) = (' (t) — A'(t)u(t))e ™ = (' (t) — a(t)u(t)e O = 0.

This means that v is constant. Let us denote C its value. For any t € J, u(t) = CeA®"). Since u is maximal, we
must have J = I; hence, the map is of the desired form. O

Now let’s consider the general equation (5.2), without assuming that b is zero. To solve it, we use the method
called wvariation of constants'. Let’s again denote A : I — R a primitive of a. For a differentiable map u : J — R
with J a subinterval of I, we write u as

(by setting v(t) = u(t)e=2® for all t).
The map u is a solution of the equation if and only if, for all ¢ € J,

(W'(8) + a(t)o(t) eV = /(1)

which is equivalent to, for all ¢,

We denote B an arbitrary primitive of ¢ — b(t)e_A(t). The previous equation holds if and only if there exists a
real number C such that
v=C+ B.

Lvariation de la constante” in French
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This is equivalent to the existence of C' € R such that, for all t € J,
u(t) = Ce 1 B(t)eA®,

From this reasoning, we can deduce the following theorem.

Theorem 5.7 : solution of scalar linear equations

For any wug, the maximal solution of the Cauchy problem

{ w(t) = a(t)u(t) +b(t),
u(to) = uo,
where a,b are continuous maps on an open interval I and ug is a real number, is given by
t
u:tel — uoeftto a(s)ds +/ b(s)ef; a(r)dr g,

to

\. J

5.3 Linear equations in general dimension
In this section, we consider a linear differential equation of dimension n € N*, that is, an equation of the form
u'(t) = A(t)u(t) + b(t), (5.3)

where A € CO(I,R™") and b € C(I,R"), with I an interval of R.

Proposition 5.8

The maximal solutions of Equation (5.3) are global (i.e., defined on the entire interval I).

Proof. The proof relies on the théoréme des bouts (Theorem 4.7); it is very similar to that of Example 4.9.
Let u : J — R™ be a maximal solution. Let’s argue by contradiction and assume that J ## [. For example,
we assume that sup J < sup . Let € > 0 be such that [sup J — ¢;sup J + €] C I. We set tg = sup J — e.
First step: we establish an inequality relating ||u||2 and its primitive.
Let C' > 0 be such that, for all ¢ € [sup J — ¢;sup J + €],

A@D)|| rn rry < C and [[b(2)]]2 < C.

Such a constant exists because A and b are continuous.
We deduce that, for all ¢ sufficiently close to sup J,

' (®)]l2 < C(lu(®)]]2 + 1).

For all t € [to;sup J|,

[lu(®)]2 =

u(to) + /t u'(s)ds

to

2

< llu(to)l|» + / 4 (s) |ads

< [[ulto)]]2 + / C(|[u(s)|[2 + 1)ds

— [[u(to) |2 + C(t — to) +/t Cllu(s)]2ds.

Second step: we upper bound ||u||s using Gronwall’s lemma.
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Gronwall’s lemma (Lemma D.1 in the appendix) then implies that, for all ¢ € [to; sup J|,
lu®)ll2 < ([Ju(to)ll2 + 1) e“H0) =1 < (JJu(to)[[2 + 1) e — 1.

Conclusion: w is bounded in the neighborhood of sup J, meaning that it stays within a compact subset of
R™. This contradicts the théoréme des bouts.
O

5.3.1 Without source term

Let’s first consider the equation without a source term:
u'(t) = A(t)u(t), (5.4)

with A € CO(I, Rm<m),

Since the equation is linear in u, a linear combination of solutions is also a solution: if uy,us : I — R”
are two solutions and A, u are arbitrary real numbers, Au; + pug is also a solution.

Let us fix any top € I. We denote u,, the maximal solution of the following Cauchy problem:

{ u'(t) = At)u(t),

u(ty) = up,

For any ¢ € I, from the previous remark, ug € R™ — wu,,(t) € R™ is a linear map. It can therefore be represented
by some matrix R(t,tp) € R™*™: for all ug,

Uy, (t) = R(t, to)up. (5.5)

We call R the resolvent of Equation (5.4).

If we can compute the resolvent, then we have access (according to Equation (5.5)) to all maximal solutions
of our differential equation (5.4). Unfortunately, in general, we cannot compute an explicit expression of R.
However, we can characterize R as the solution to a certain Cauchy problem.

Theorem 5.9

For any tg € I, R(.,tg) : I — R™ " is the maximal solution of the Cauchy problem

{%(t,to) = A(t)R(t, to),
R(to,to) = Id,.

Proof. Let tg € I be fixed. Let M : I — R™ "™ be the maximal solution of the Cauchy problem:

M'(t) = A@)M(1),
{M(to) ~ 1d,.

It is defined on the entire interval I according to Proposition 5.8. Let’s show that, for all ¢t € I, M(t) = R(t, o).
According to the definition of R (Equation (5.5)), we must show that, for all ug € R™ and all ¢ € I,
Uy (t) = M (t)up. Let us fix up € R™ and define v : ¢t € I — M (t)up. This is a differentiable map, solution of
the Cauchy problem
{ V() = M'(tyug = A{t)M(t)ug = A(t)v(t),
’U(to) = M(to)UO = Uup.

Therefore, v = wu,, and we indeed have, for all ¢, u,,(t) = v(t) = M (t)ug. O



5.3. LINEAR EQUATIONS IN GENERAL DIMENSION 109

Let us assume that n = 1 (that is, A is real-valued). Given an explicit expression for the resolvent of
Equation (5.4).
(The solution is given in a remark of the following subsection.)

Remark

| \

It is tempting to say, by analogy with the scalar case, that the solution to the problem

M(t) = A@)M(),
{M(to) =1d,

is the map t € I — exp ( fti) A(s)ds). Unfortunately, this is not true (unless the matrices A(s) pairwise
commute), because, in general, for X, H € R™*", dexp(X)(H) # H exp(X).

Before moving on to linear equations with a source term, here is a classical property of the resolvent.

Proposition 5.10

For all t,to,t3 € I, R(tg,tQ)R(tQ,tl) = R(tg,tl).

Proof. Let t1,to,t3 € I be fixed. We fix any u; € R", and show that
R(ts, ta)R(ta,t1)ur = R(ts,t1)uy.
Let uy, : I — R™ be the maximal solution of the Cauchy problem
{ Uy, (1) = A(t)uu, (B),
Uy, (1) = ug.

According to the definition of R, R(ts,t1)u; = wuy, (t3) and R(ta,t1)ur = uy, (t2).
Let ug = R(tg,t1)u; = uy, (t2) and u,, : I — R™ be the maximal solution of the Cauchy problem

{ Uy, (1) = At)uu, (2),

Uy, (t2) = ug.

According to the definition of R, R(t3,t2)R(t2,t1)u; = R(ts,t2)us = wy,(t3).
Now, u,, is a solution of the Cauchy problem that defines u,,. Indeed, u,, (t2) = uz. Therefore, u,, = y,,
and
R(tg, tQ)R(tQ,tl)Ul = Uy, (t3) = Uy, (t3) = R(t3, tl)ul.

Corollary 5.11

For all t1,ty € I, R(t1,t2)R(te, t1) = R(t1,t1) = Id,, hence R(t2,t1) is invertible, with inverse R(t1,t2).

5.3.2 With a source term
We now return to the general equation (5.3) with a source term:
u'(t) = A(t)u(t) + b(t). (5.3)

As in the scalar case, the method of variation of constants allows us to compute its solutions. Let u : I — R"”
be any map. Let tg € I and v : I — R"™ be such that, for all t,

u(t) = R(t, to)u(t)
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(i.e., we set v(t) = R(to,t)u(t)). The map u is a solution of Equation (5.3) if and only if, for all ¢,

At)R(t, to)v(t) + R(t, to)v' (t) = —(t, to)v(t) + R(t, o)V (¢)

= A(t)u(t) + b(t)
= A()R(t, to)v(t) + b(t).

This is equivalent to stating that, for all ¢, R(t, to)v'(t) = b(t), i.e., v is a primitive of t — R(tg, t)b(t). Therefore,
u is a solution if and only if there exists vg € R™ such that, for all t € I,

t
v(t) = v +/ R(to, s)b(s)ds,

to

which is equivalent to

t
u(t) = R(t, to)vo + t R(t,to)R(to, s)b(s)ds

= R(t, to)vo + [ R(t,s)b(s)ds.

to

This leads us to the following theorem.

Theorem 5.12: Duhamel’s formula

Let I be an open interval, A € CO(I,R™ "), b € C°(I,R™).
The maximal solutions of Equation (5.3) are all maps of the form

t
u:tel — R(tto)vo +/ R(t, s)b(s)ds,

to

for some vy € R"™.

Corollary 5.13

~
\.

Let I be an open interval, A € C°(I,R™*"),b € C°(I,R"), and ug € R".
The maximal solution of the Cauchy problem

{ u'(t) = At)u(t) + b(t),
u(to) = wuo
u:tel — Rt to)uo+ /t R(t,s)b(s)ds.

to

Remark

7~
\.

If n = 1, the resolvent has an explicit expression. Indeed, for any to, R(.,%o) is the maximal solution of
the Cauchy problem
{ %(t tU) = A(t)R(ta tO)a
R(to,to) =1d; =1.

(Note that if n =1, A is a real-valued map.) Therefore, for any t,

t

R(t, to) = exp ( A(s)ds) .

to

If we replace R by its value in Duhamel’s formula, we recover, as expected, Theorem 5.7.
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We consider the following differential equation:

u'(t) = A(t)u(t) + b(t),

3+ 2t 4+ 3t2 —2t4 — 312+ 3
Al) = <—t2 S —pogy) M= Ty )

Let us denote R its resolvent.

1. a) Write the Cauchy problem to which R(.,0) is a solution.
b) Show that, for all ¢ € R,
1+ 3 )

B 0 = ( —t  1-—¢2

with

c) For all t € R, compute R(0,1).
2. Find all maximal solutions of the differential equation.

3. What is the maximal solution of the following Cauchy problem?

{u’(t) = A(t)u(t) + b(t),
u(l) =(3).

\

5.3.3 Constant coefficients

Matrix exponential When A is a constant map, the resolvent has an explicit expression. To provide it, it
is necessary to recall the definition and main properties of the matrix exponential. The exponential is defined
identically for matrices with real or complex coefficients. Here, we state the definition and properties in the
general case of complex coefficients.

Definition 5.14 : matrix exponential

For any matrix A € C™"*™ we define

+00 4k
A
exp(4) =) — eC™".

k!
k=0

This definition is correct, in the sense that the series Z;:B ‘2—, converges in C™*".

Proposition 5.15

1. For any matrix A € C™*" if the coefficients of A are real, then the coefficients of exp(A) are also
real.

2. For all A, B € C"*",if A and B commute (i.e., AB = BA), then
exp(A + B) = exp(A) exp(B) = exp(B) exp(A4).
3. For all A,G € C™*"™ such that G is invertible,
exp(GAG™!) = Gexp(A)G™.

4. For any A € C™*" the map h:t € R — exp(tA) is differentiable and
h'(t) = Aexp(tA) = exp(tA)A, VteR.
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Corollary 5.16 : exponential of a diagonalizable matrix

Let A € C™*™. We assume that there exist G € GL(n,C) and Ay, ..., A, € C such that
A0 ... 0
0 A
A=a| .7, Exl
0 " An
Then
et 0 o 0
2!
exp(4) =G (,) - Gt
6 . ern

This corollary allows to compute the exponential of any diagonalizable matrix. For matrices that are not
diagonalizable, the exponential can be computed using the Dunford decomposition. Let’s briefly outline the main
steps of the computation.

Let A € C™*™ be any matrix. The starting point of the method is to write A in the following form:

A=GD+N)G,
where G, D, N € C"*"™ are matrices such that
e (G is invertible;
e D is diagonal;
e N is nilpotent (i.e., there exists K € N* such that N¥ = 0);
e N and D commute.

This form is called the Dunford decomposition. The matrices G, D, N can be explicitely computed from the
characteristic subspaces of A, but this is beyond the scope of this course.
Assuming we have found G, D, N, Property 5.15 allows us to write

exp(A) = Gexp(D + N)G™! = Gexp(D) exp(N)G™L.

The exponential of D is given by Corollary 5.16. To compute exp(/N), we directly use the definition: since N is
nilpotent, the infinite sum in the definition is actually finite. Denoting K the smallest integer such that N¥ =0,

we have
K-1 N'IC

+oo NF
k=0 k=0

Constant coefficients Consider the following Cauchy problem, with constant coefficients:

u'(t) = Au(t) +0,
{ u(to) = Uup. (56)

where A € R™*"™ b, ug € R™.

Proposition 5.17

For any ¢y € R, the resolvent of Equation (5.6) satisfies

R(t, o) = exp((t — to)A), VteR.

This expression for the resolvent, combined with Duhamel’s formula, provides an explicit value for the
solution of the Cauchy problem (5.6).
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Corollary 5.18

The maximal solution of the problem (5.6) is

t
u:teR — ey, 4+ / e(5t0)Ap s,

to

When A is invertible, this simplifies to

u:teR — e(t_tO)Auo + (e(t_tO)A — Idn) A1,
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Chapter 6

Equilibria of autonomous equations

What you should know or be able to do after this chapter

e Know the definition of the flow (¢;);cr of an autonomous equation (including the correct domain of each

t)-
e Be able to express the maximal solution of a Cauchy problem in terms of the flow.
e Draw the phase portrait of a two-dimensional differential equation in the following three situations:

— when it is possible to explicitely compute the solutions,
— when you know a first integral of the differential equation and the form of its level lines,

— approximately, once you have studied the qualitative behavior of the solutions.
e Know the definition of stable and asymptotically stable equilibria.

e Draw the vector field associated to a two-dimensional equation (don’t forget that it must be tangent to
the orbits!).

e Be able to prove that, if A is diagonal with (real) eigenvalues A1, ..., \,, an equilibrium of ' = Au + b is

— stable if and only if A\, <0 for all k € {1,...,n};
— asymptotically stable if and only if A\, < 0 for all k£ € {1,...,n}.

e Know that an equilibrium ug of an equation v’ = f(u) is

— asymptotically stable if (but not only if) Re(A\x) < 0 for all k € {1,...,n};
— unstable if (but not only if) there exists k such that Re(A\x) > 0,

where A1,..., A\, are the (complex) eigenvalues of J f(ug).

6.1 Definitions

The notion of “equilibrium” is mainly meaningful for autonomous problems, i.e., for problems of the form (Cauchy)
where f does not depend on ¢. Therefore, in this chapter, we consider a map f : U — R”, and, for any ug € U,
the associated Cauchy problem

W = fw)
{U(to) = ug. (Autonomous)

We assume that f is locally Lipschitz, so that the Cauchy-Lipschitz theorem applies.

115
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6.1.1 Flow

Definition 6.1: Flow of Equation (Autonomous)

For any ug € U, let uy, : I, — U be the maximal solution of Problem (Autonomous) with ¢y = 0. For
any t € I, we define
¢t(0) = Uuo (1)-

We call (¢1)ier the flow of the differential equation.

The domain of ¢; depends on t. For any ¢, it is given by

{up € U,t € I, }.

The most intuitive way to understand the flow is as follows. Let’s imagine that u represents some physical
quantity (such as the position or orientation of an object, for example), and the differential equation v’ = f(u)
describes its evolution. For any ¢t € R, ¢; represents the action of the evolution on the physical quantity w for ¢
units of time: in our example, if an object is at position ugy at a reference time 0, it will be at position ¢.(ug) at
time t.

When f is of class C2, the map ¢ is, for any ¢, defined on an open set and of class C!. It is a consequence
of the results from Section 4.4 (where the notation was different: the flow was essentially the map V).

Let us remark that, since we consider autonomous equations only, defining the flow using tg = 0 as the
reference point is not a limitation: as the following proposition shows, the solution of Problem (Autonomous)

can be expressed in terms of (¢¢)icr even when ty # 0.

Proposition 6.2
For all ty € R,ug € U, the maximal solution of Problem (Autonomous) is

Ly,+to — U
t — (Zst—to (UO) = Uy, (t = to)

6.1.2 Phase portrait

Definition 6.3 : orbits

The set
(uo),t € Iy}

is called the orbit of a point ug € U by the flow (¢¢):cr of Equation (Autonomous).

The set of orbits forms a “partition” of U, meaning that every point belongs to an orbit (as every point
belongs at least to its own orbit), and any two orbits are either disjoint (having no common points) or identical.
This partition is called the phase portrait of Equation (Autonomous).

Example 6.4

Consider the function
f: R2 -  R?

(z,y) — (Ly)

ndeed, if for two points uo,u; € U, Ouy N Oy, # 0, it means that there exist to € Iu,,t1 € I, such that ¢u,(uo) = ¢r, (u1).
With the same reasoning as in the proof of Proposition 6.2, we see that I,, +t1 —to = I, and, for all t € L, ¢¢(uo) = Py, —t, (u1),
which implies Oy, = Oy, -
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Figure 6.1: On the left, the vector field f(x,y) = (1,y); for each (z,y) € R?, the arrow with starting point at

(x7

y) represents the vector f(z,y). On the right, the phase portrait (that is, a few representative orbits).

and the associated autonomous equation:

For any xg,yo € R, the maximal solution is

Ulmoyo) + R —
t — (zo+t,y0eh),

which means that the orbit is
O(ﬂﬂo,yo) = {(IO + ta yoet)a t e R}

In order to draw the orbits, a useful observation is that this latter set is the graph of a simple map: for
any xo, Yo € Ra

(z,y0e" ™),z € R}
(z, (yoe™*)e), x € R}

Since (0, 0) € R? = ype %0 € R is a surjective map, the orbits are all sets of the form
{(z,ce”),x € R},

for some constant ¢ € R, i.e. they are the graphs of all multiples of the exponential map.

The phase portrait is drawn on Figure 6.1. Observe that the vector field f is tangent to the orbits. Indeed,
each orbit is the image of a map u such that ' = f(u). Therefore, for each ¢ such that f(u(t)) # 0,
the orbit is a 1-dimensional submanifold in the neighborhood of u(t), with tangent space Vect{u'(t)} =
Vect{ f(u(t))}, from Theorem 2.16.
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Consider the map
f: R = R?
(z,9) — (¢(1—-=),(1—-22)y).

The goal is the exercise is to draw the phase portrait of the corresponding autonomous equation
u' = f(u). (6.1)

Describing the orbits of an arbitrary equation may not be an easy task. However, in this case, as in the
previous example, it is possible to explicitely compute them. This is the goal of the first question.

1. Let us fix any (x9,%0) € R?. We consider the Cauchy problem

' =z(1l—ux),
y =01-2z)y,
(2(0),9(0)) = (0, y0)-

Let (x,y) : I — R? be the maximal solution of this problem.
a) Let us assume that there exists ¢ € I such that z(t) = 0. Compute (z,y) and I.
b) Let us assume that there exists t € I such that x(¢) = 1. Compute (x,y) and I.
¢) In this subquestion, and up to 1.f), we assume that z(t) ¢ {0,1} for all ¢ € I. Tt is possible to
explicitely compute (z,y) and I, and deduce the orbits from their expression. However, we will
follow a different strategy.
Show that
o if zg < 0, x is a decreasing map, with values in | — 0o; 0[;
e if 0 < zyp < 1, z is an increasing map, with values in ]0; 1];
o if v > 1, x is a decreasing map, with values in ]1; 4o0].
d) Show that ﬁ is constant on I.
e) Compute the value of y on I, in terms of z, xg, yo.
f) Show that, if zp < 0, then 2z — 0 at inf I and x — —o0 at sup I.
[Hint: use the monotonicity of = to show the existence of limits. Then, proceed by contradiction
to show that the limits cannot belong to | — oo; 0[]
With a similar reasoning, it is possible to show that
eif 0<zg< 1,z —0atinf/ and x — 1 at sup I;
eif 1 <xzg,z — +oo at infl and x — 1 at sup 1.
g) Find an explicit expression for the orbit of (z, yo).

2. Draw the phase portrait of Equation (6.1).

6.1.3 Equilibria

Definition 6.5 : equilibrium

A point ug € U is an equilibrium of the differential equation (Autonomous) if f(ug) = 0 (in other words,
if the constant function with value wug is a solution of (Autonomous)).

In this chapter, we will try to describe the behavior near equilibria of solutions to Equation (Autonomous).
Informally, we will say that an equilibrium is stable if every solution starting close enough to the equilibrium
remains close to it, and asymptotically stable if every trajectory starting close enough to the equilibrium converges
to it
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v\/
P N \,
(a) Stable (b) Asymptotically (c) Unstable

stable

Figure 6.2: Trajectories of Equation (Autonomous), for three different maps f : R? — R? such that (0,0) is an
equilibrium.

Definition 6.6 : stability

If up € U is an equilibrium of Equation (Autonomous), we say that ug is stable if, for every neighborhood
Vo of ug, there exists a neighborhood Vi C U of ug such that

o for every uy € Vi, ¢¢(uy) is defined for every ¢t € RT (meaning R is a subset of I, );
e for every uy € V; and t € RT, ¢4(uq) € Vp.
We say that ug is asymptotically stable if it is stable and, furthermore, there exists a neighborhood Vo C U

of ug such that, for every us € V3,

t—+
gbt(ul) _>—>OO (P

If ug is not stable, we say it is unstable.

An illustration of these concepts can be found in Figure 6.2.

6.2 Linear equations

In this section, we study the stability of an equilibrium for a linear differential equation with constant coefficients:
u' = Au+ b, (6.2)

where A € R™™™ and b € R™.

Let us assume that this equation has an equilibrium zy. By translation, we can assume zy = 0 and thus
0 = Azyp + b =b. The equation is then simply

u = Au. (6.3)
Recall that, according to Corollary 5.18, the flow of any ug € R™ is
di(up) = exp(tA)ug, VteR.

Thus, it is necessary to study exp(tA).

2In more detail: we can consider the differential equation v’ = Av 4+ b+ Az instead of (6.2). Its solutions are the maps u — zo,
for all solutions u to (6.2). The point 0 is an equilibrium of the translated equation.
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6.2.1 Diagonalizable Case

First, consider the case where A is diagonalizable over C: there exist complex numbers Ay,..., A\, and an
invertible matrix G € R™*" such that

A0 0
0 Ao L
A=G ) G~
0 0 A
For any t € R, according to Corollary 5.16,
e 0 0
0 et)\z
exp(tA) =G| . . _ G~
0 0 ethn
Let us fix a vector ug € R™. Denote
g1
G_luo =
In
For all ¢,
gret™
¢i(ug) = exp(tA)ug = G : . (6.4)
gnew\n

Theorem 6.7

The point 0 is a stable equilibrium of the equation (6.3) if and only if
Re(Ax) <0, VEe{l,...,n}.
It is an asymptotically stable equilibrium if and only if

Re(Ap) <0, Vke{l,...,n}.

\ 7

Proof. Let us first assume that
Re(A;) <0, Vke{l,...,n}

and show that 0 is a stable equilibrium.

For all t > 0,
’et/\k’ _ etRe()\k)’eitIm(/\k)’ _ etRe(/\k) <1, Vke {1, o ,TL}.

From Equation (6.4), we then have, for any ug and all ¢ > 0,

gret™
[|6e(uo)ll2 < [[|G7H]]
Gnen )
< NG V19112 + - - + lgnl?
= lGHIH1Guol |2
< G=HIHNG uoll2- (6.5)

This proves that 0 is stable. Indeed, consider an arbitrary neighborhood V C R™ of 0. Let R > 0 be such that

B(0,R) C Vp. Define
=)
Vi=B|0,——— ).
' ( NG G|



6.2. LINEAR EQUATIONS 121

From Equation (6.5), for any ug € V1, ¢¢(ug) € B(0, R) C Vp for all ¢ > 0, which establishes stability.
Let us now assume that

Re(A\;) <0, Vke{l,...,n}

and show that 0 is an asymptotically stable equilibrium. We have already shown that it is stable; let us show
that there exists a neighborhood of 0 where all trajectories of the flow converge to 0. The reasoning is as before:
for each k, since Re(\g) < 0,

t)\k| — etRe()\k)|eiﬂm()\k)| — etRe()\k) t—=+p0

2 — 0,

(2 t_i?o

thus e 0. Consequently, for any uy,

gre™e fase 0, Vke{l,...,n}.

Equation (6.4) therefore shows that ¢;(ug) 25200 for any initial point ug. The equilibrium is asymptotically
stable.

Now let’s assume that there exists k € {1,...,n} such that
Re()\k) >0

and let us show that 0 is an unstable equilibrium. For this, we will prove that every neighborhood of 0 contains
a point ug such that ||¢¢(ug)|| — +o0 as t — +oo. Let thus V' be any neighborhood of 0.

We fix k € {1,...,n} such that Re(\y) > 0. Let ugp € R™ be such that gp # 0. Such a vector ug exists:
if not all coordinates of the k-th row of G~! (denoted (G_ )k) are pure imaginary numbers, we can take

ug = Re ((G™1)j,;) (because then Re((G~tug)y) = HRe( )H # 0, hence g # 0). If, on the contrary,
all coordinates are pure imaginary numbers, we can set ug = Im ((G™Y)k,:) (because then Im((G~tug)i) =
||Im (G~ k)H # 0, hence gi # 0).

If we multiply ug by a sufficiently small constant, we can assume that ug € V. According to Equation (6.4),
|G ¢ (up) |2 — +00 as t — +oo. Indeed, the k-th coordinate of this vector is gpe**, and

|~ 25
Now, for any ¢, ||¢¢(uo)|l2 > HG‘HgE(“'ﬁ)”?. So [|¢¢(up)]|]2 = +o0 as t — 400, which concludes the proof of

instability.
Similarly, let’s assume that there exists k € {1,...,n} such that

Re(Ag) >0

and let’s show that 0 is not asymptotically stable. Let’s consider again an arbitrary neighborhood V' of 0 and a
point ug € V such that g; # 0. Then

el = |gplet®eOR) 40 as t — 400,

‘gke

thus ||¢e(uo)|l2 # 0 as t — 400, so there exists at least one point in V' whose trajectory by the flow of
Equation (6.3) does not go towards 0.

O]

Rewrite the previous proof, and simplify it as much as possible, in the case where A is a real diagonal
matrix.
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6.2.2 Non-diagonalizable case

By lack of time, the content of this subsection will not be covered in class. It is provided for curious readers only.

In this subsection, we extend the previous results to the case where A is not diagonalizable over C. A classical
result from linear algebra asserts that A is triangularizable and, more precisely, that A can be written in the
form

B, 0 ... 0
0 B
A=cl| . 7 e
0 ... 0 Bg
where, for every k € {1,..., K}, By is a square matrix, of the form
A * ... %
Bk = 0 )\k )

STl T %
0 ... 0 X

for some A\, € C. We denote nyg X ny the dimension of By, and N, € C™*™ the strictly upper triangular part
of By, so that By, = \;Id,, + Ni.
For any vector ug € R”, we write

g1
G_luo = ,
9K
where, this time, g1, . .., gk are vectors of lengths ny, no, ..., nkx. Analogously to Equation (6.4), Proposition 5.15
implies that, for any ¢ > 0,
exp(tB1)g1
oe(ug) = exp(tA)ug = G : (6.6)
exp(tBri)gx

We need to compute exp(tB1), ..., exp(tBk). For any k, By, = A\iId,, + Ni and, as A\gId,, and N, commute,
exp(tBy) = exp(tAild,, ) exp(tNy,) = e exp(tNy).

Since Nj, is nilpotent, t — exp(tNy) is a polynomial map, which is constant (equal to Id,, ) if N is zero and
non-constant otherwise.
We can now state and prove the following stability result.

Theorem 6.8

The point 0 is a stable equilibrium of Equation (6.3) if and only if, for every k,
(Re(Ag) <0) or (Re(Ag) =0and Ny =0).
It is an asymptotically stable equilibrium if and only if, for every k,

Re(\s) < 0.

\

Proof. Assume that, for every k=1,..., K,
(Re(Ag) <0) or (Re(Ax) =0and Ny =0).

Let’s show that 0 is a stable equilibrium. As in the proof of Theorem 6.7, it suffices to show the existence of a
constant C' > 0 such that, for every ug € R™ and every ¢t > 0,

¢t (uo)ll2 < Clluol|- (6.7)
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For every k and every t, since exp(tBy,) = ¢! exp(tNy),
Il exp(tBy)[[] = |6 [[| exp(tNg)[]] = eFO)| [ exp(t N

For every k, if Re(A\;) < 0,
eReO)| || exp(¢N)||| 72557 0.

Indeed, the exponential term ef¢(%) goes to 0 while || exp(tNy)|| is bounded by a polynomial in ¢ (and recall
that the product of a polynomial and an exponential goes to 0 at +oo if the exponential goes to 0). Since
t — eReR)||| exp(tNy,)||] is continuous, its convergence to 0 at +oo implies that it is bounded over Rt. Let M
be an upper bound.

For every k, if Re(\;) = 0 and Ny = 0, then for every t,

| exp(tBy)ll| = |e"| = 1.

In this case, we set My = 1.
Finally, we define M = max(Mjy, ..., Mg). From Equation (6.6), for every uy € R™ and every ¢ > 0,

¢t (uo)ll2 < MHIGIII\/HmII% + gk |?
= MIIIG|[ |G~ uol|2
< MI|IGII NG I Tuoll2.

This proves Equation (6.7), and thus establishes stability.
The reasoning is similar, but simpler, to show asymptotic stability. Assume that, for every k € 1,..., K,

Re()\k) < 0.
We have just shown that in this case, the equilibrium is stable. We have also seen that, for every k,
t—+
Il exp(tBy)l|] == 0.

Thus, for every ug € R", according to Equation (6.6),

|4 (uo) |2 5% 0.

This shows asymptotic stability.
Now, suppose that it is not true that, for every k € 1,..., K,

(Re(Ag) <0) or (Re(Ax) =0 and Ny =0)
and let’s show that 0 is unstable. This assumption implies that, for some k,
(Re(Ag) >0) or (Re(Ag) =0and Ni #0).

Let’s fix such a k. Let V' C R"™ be any neighborhood of 0.
Let’s start by assuming that Re(Ag) > 0. Let ug € R™ be such that g # 0. If we multiply it with a small
enough scalar number, we can assume that ug € V. For every sufficiently large ¢,

|| exp(tNg)grll2 > ||gk]|2-

Indeed, t — exp(tNg)gx is a polynomial function. Either it is non-constant, and then || exp(tNg)gg|l2 — +oco as
t — 400, or it is constant, and then for every t, || exp(tN)gx|l2 = || exp(ONg)gk|l2 = ||gx||2-
Thus,
t
| exp(tBr)gell> = e[| exp(tNy)gills = +oo.

According to Equation (6.6), ||¢:(uo)l|2 210 150, s0 (¢t(up))ier+ does not remain in any neighborhood of 0:
the equilibrium is unstable.
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Now, let us assume that Re(Ag) = 0 and Ny # 0. Let ug € V' be such that Nigr # 0 (such ug exists, by a
similar argument as in the proof of Theorem 6.7). Then ¢ — exp(tN)gx is a non-constant polynomial function
(its derivative at 0 is Nigi # 0), so

t
| exp(tNg)grll2 "2 +oo.

Consequently, || exp(tBg)gk||l2 = || exp(tNk)gk||2 2% 400, which leads to | (uo)|]2 2% 400 and completes
the proof of instability.

Finally, we assume that there exists k € {1,..., K} such that Re(\x) > 0. Let us show that the equilibrium
is not asymptotically stable. If Re(A;) > 0 or Re(A\x) = 0 and Ni # 0, then the equilibrium is not stable, as
we have just shown. The only remaining case we must consider is Re(\;) = 0 and Ny = 0. Let V' C R"™ be any
neighborhood of 0.

Let up € V' be such that g # 0. Then, for every ¢ > 0,

P gill2 = [lgkl]2-

|| exp(¢Br)gll2 = lle
Thus, according to Equation (6.6), ||¢(uo)||2 # 0 as t — +00. The equilibrium is not asymptotically stable. [

In the case where the equilibrium is not stable, we can refine the previous reasoning to determine which
trajectories of the flow tend toward 0. The resulting statement (which we will not prove) is most simply
formulated when A is hyperbolic, as defined below.

Definition 6.9 : Hyperbolicity

We say that A is hyperbolic if all its complex eigenvalues have non-zero real parts:

Re(A;) #0, forall ke {l,...,K}.

Theorem 6.10: Stable and unstable spaces

Let A be a hyperbolic matrix. Let us define

E?® = {up € R" such that g; = 0 for all £ such that Re(\y) > 0};
E* = {up € R" such that g = 0 for all k£ such that Re(\;) < 0}.

(These sets are called the stable and unstable subspaces of A.)
Then

E?® = {up € R" such that ¢;(up) et 0},

t——o00

E" = {up € R" such that ¢;(ug) — 0}.

Moreover, these spaces are complementary: R" = E* ¢ E“.

\.

6.2.3 Graphical representation in dimension 2

In this subsection, we draw trajectories for several hyperbolic 2 x 2 matrices A. We distinguish three cases as
follows:

1. If A is diagonalizable with real eigenvalues, we can, after a change of basis (which may not necessarily be
orthogonal and can therefore slightly distort the figure, without altering its main properties), assume that

(M0
=5 )

where A\; < \g are the eigenvalues. The eigenvalues are non 0 because A is hyperbolic. The flow of a point
uo = (x0,yo) is given by
di(uo) = (woe™M, yoe™"), VteR.
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To draw the phase portrait, note that the orbit of ug is included in the graph of the map

Yo

_ IO A2/
E e/ € R.

reR—

(Observe that A2/A; can be positive or negative, depending on whether A\; and Ay have the same sign; this
significantly affects the shape of the graph.)

(a) 0 <A1 < )\g: see Figure 6.3a. All trajectories diverge (except the one that remains at 0).

(b) A1 <0 < Az : see Figure 6.3b. The stable space E® is the z-axis and the unstable space E" is the
y-axis.

(¢) A1 < A2 <0 : see Figure 6.3c. This is an asymptotically stable case: all trajectories converge to 0.

2. If A is diagonalizable with non-real eigenvalues, let A € C be one of the eigenvalues. The other one is .
We can show that, after a suitable change of basis,

1= (St R

We can check that, for any ¢,

_ {Re cos(tIm(A))  sin(tIm(A))
exp(tA) = M <— sin(tIm())) cos(tIm()\))) ’

which is the composition of a rotation with angle t{Im(\) and a homothety with ratio exp(tRe()\)).

(a) Re(A) > 0 : see figure 6.3d. All trajectories diverge (except the one that remains at 0).
(b) Re(\) < 0 : see figure 6.3e. This is an asymptotically stable case: all trajectories converge to 0.

3. If A is not diagonalizable. In this case, A has only one eigenvalue (for any n, a matrix of size n x n with n
distinct eigenvalues is diagonalizable). This eigenvalue is thus real (non-real eigenvalues can only appear
in a pair, with their conjugate). Therefore, A is triangularizable over R. In fact, after a suitable change of

basis, we can assume that
Al
=0 3)
where A is the eigenvalue. Then, for any ¢,
01 M teM
exp(tA) = exp(tAlds) exp (t <O 0)) = < 0 e>‘t> .
The flow of a point ug = (xg,yo) is

di(uo) = (o + tyo)e™, yoe), Vt € R.

(a) A >0 : see Figure 6.3f. All trajectories diverge (except the one that remains at 0).

(b) A < 0: see Figure 6.3g. This is an asymptotically stable case: all trajectories converge to 0.

6.3 Non-linear equations

In this section, we return to Equation (Autonomous) in full generality, without assuming that f is linear. We
state and partially prove a theorem that generalizes some of the results we have seen in the linear case.
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B
~

(d) A=1+i (&) A=—1+i (f) A=1

Figure 6.3: Flow of Equation (6.3) for various hyperbolic matrices.



6.3. NON-LINEAR EQUATIONS 127

Theorem 6.11

Assume that the map f in Equation (Autonomous) is C'. Let ug € U be an equilibrium.

If all eigenvalues (over C) of the Jacobian matrix Jf(up) have a strictly negative real part, then ug is
asymptotically stable.

If one eigenvalue of the Jacobian matrix J f(ug) has a strictly positive real part, then ug is unstable.

Partial Proof. We will only prove that, if all eigenvalues have a strictly negative real part, ug is asymptotically
stable.

Without loss of generality, we can assume ug = 0. We assume that all eigenvalues of Jf(0) have a strictly
negative real part.

The principle of the proof is to exhibit what is called a Lyapunov function of the system, i.e., a map from U
to R that decreases along the trajectories of Equation (Autonomous). This decrease ensures that the sublevel
sets of the Lyapunov function are stable under the flow of the differential equation. If these sublevel sets form
a “basis”® of neighborhoods of 0 (which will be the case), then the equilibrium is stable. By studying more
precisely the decay rate of the Lyapunov function, we can even show asymptotic stability.

Our Lyapunov function will be quadratic, and it will be defined in terms of Jf(0). Since Jf(0) is triangu-
larizable over C, we can fix G € GL(n,C) such that

Jf(0)=G(D+ N)G™,

with D a diagonal matrix (whose diagonal entries are the eigenvalues of Jf(0)) and N an upper triangular
matrix.

Let us set p = maxy=;, g Re(Dy ) < 0.

First, we show that we can assume ||| V||| < % Let us define, for € small enough (we will specify later how

small € should be),

Then
Jf(0)=GHH'DH+ H'NH)H'G™'=GH(D + H 'NH)(GH)™!

and, for all 4,5 € {1,...,n},

Hjj

n

so that (H"'NH);; =0if i > j (i.e., H"'NH is strictly upper triangular) and, if i > 7,

(H'NH);; = Nij,

|(H'NH)ij| < €|Nijl.

Thus, for € close enough to 0, H~'NH can be arbitrarily close to 0. As a consequence, if we replace G with GH
and N with H~'NH, we can assume that
|l

N —.
i <

We will use as Lyapunov function the map (u € U — [[G™'u||3). Along a trajectory (¢¢(uo)), following a
computation which will be detailed later, its derivative at a point ¢ is 2Re <G_1(bt(u0), G f (¢t(u0))>. To show
that the map is really a Lyapunov function, we must therefore be able to upper bound Re <G_1u, G 'f (u)), for
u € U, with a negative quantity. For any u,

Re (<G_1u, G_lf(u)>)
= Re ((G~'u, G (£(0) + J£(0) () + o(|[ul]))))
— Re ((6~'u, G71G(D + N)G™u)) + o (|lul]?)

3that is, if any neighborhood of 0 contains a sublevel set
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= Re (<G_1u, (D + N)G_1u>) +o (||u]|2)
K
= Z Re(Dyi)|[(G'u)i|* + Re ({(Gru, NG ) + o (||u]?)
k=1

< ul|G™ Ml 3+ [IINIHIG™ ul 13 + o ([full?)
Py e
<5lG tul[3 + o (Jful|?)

= (§ +om) o ull3.

Hence, there exists 7 > 0 such that, for all u € B(0,n),
_ _ 1% _
Re ((G7'u, G f(u))) < s Lul[3. (6.8)

(Recall that p is negative, so both terms in the inequality are negative.)

We can now prove asymptotic stability. Let’s start with stability. Let V' C U be any neighborhood of 0.
We show that there exists W C U a neighborhood of 0 such that, for any u; € W, ¢¢(u1) is well-defined and
belongs to V for all t € RT.

Let W = {u € R™ such that ||G~'u||z < ¢}, with ¢ > 0 a number small enough so that W C V N B(0,n)
(the set W is called a sublevel set of (u € U — ||G~'ul|3)). It is an open neighborhood of 0. Let u; € W be
arbitrary. Then, for all t > 0,

Sl6 ot = 2me ({6 0n(w), 4 (6 outun)] )
= 2Re ((G'¢¢(u1), G f (¢e(w1)))) -

According to Equation (6.8), for all + > 0 such that G~1¢;(u1) € W,
d~1 2 Hy -1 2
G e(u)llz < SIIGT dr(w)llz < 0 (6.9)

(that is, (u € U — ||G~'ul|3) is a Lyapunov function on W).

Let tg € RT U {+oo} be the largest real number (possibly infinite) such that, for all ¢ € [0;to[, ¢¢(u1) is
well-defined and belongs to W. Since W is bounded, ¢;(u1) does not leave any compact set in the vicinity of
to. Therefore, if tg < +00, ¢y, (u1) is well-defined (by the théoréme des bouts). As we have just seen, our map
(t = |G ¢¢(u1)|[3) is decreasing on ]0;to|. It is also continuous, so, if ty < +oo, we must have

1G™ ¢t (wr)ll2 < IG™ Po(ur)]2 < ¢

Thus, G~ 1¢y,(u1) € W. Since W is open and the maximal solutions of (Autonomous) are defined on open sets,
there exists ¢; > to such that, for all t € [0;¢1], ¢¢(u1) is well-defined and belongs to W. This contradicts the
definition of ¢y. Therefore, it is impossible ¢y < +0c0. Hence ty = +o0o and, for all t € R*, ¢;(uq1) is well-defined
and belongs to W (as well as to V, since W C V). This completes the proof of stability.

Asymptotic stability follows the same arguments. Let us define W as before (for an arbitrary neighborhood
V C U of 0) and consider again any arbitrary u; € W. According to what we have just seen, the inequality
(6.9) is true for all ¢ > 0. Therefore, for all ¢ > 0,

d _
(I eu(w)3) < 5,

which implies that, for all ¢ > 0,
By

1G™ e (ur)ll3 < (|G do(ur)|f3e2".

Thus [|G™L¢¢(u1)|]2 "2%8° 0 and, as a consequence, ||t (u1)]|2 "2%9° 0. This concludes the proof of asymptotic

stability.
O
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We consider the following autonomous equation:

L = —atymeEy?)
- T+a2+y2 ?

I —x—%—y(ﬂﬁ%ﬂﬁ)
¥y =T

1. Show that (0,0) is the only equilibrium of this system.
[Hint: show that any equilibrium (z,yo) is colinear to (yo, —x0).|

2. Show that maximal solutions are global.
[Hint: remember Example 4.9.]

3. Show that (0,0) is an asymptotically stable equilibrium.

W

. a) Show that (z,y) is a solution if and only if (—y, z) is a solution.
b) Which graphical property of the phase portrait can you deduce from the previous question?

e

Let (z,y) be a maximal solution. For any t € R, we define
N(t) =z(t)* + y(t)*
a) Show that, for all t € R, N'(¢t) < —N(t).
b) Show that, for all ¢,
< N0 tift >0
> N(0)e™ " otherwise.

t—4o00

In particular, N(¢) == 0 and, if N(0) # 0, N(t) P20 4 o

6. For any maximal solution (z,y), we define

Say * R — <R2>
PN etz(t)

e'y(t)
a) Show that there exists a constant C' such that, for any maximal solution (z,y) and any ¢ € R,
150, ) Bl < Cét.

b) Let us now consider a fixed non-constant maximal solution (z, y). Show that, if ||(z(0),y(0))||2 > C,
then S(, ) converges to a non-zero limit at —oo and, if we denote this limit L = (Lg, Ly), it holds

ISy () — Lll2 < Ce', VteR™.

c¢) Show that the result is also true if ||(x(0), y(0))|]2 < C.
[Hint: consider any (z,y) such that ||(xz(0),y(0))|l2 < C. Show that there exists tp < 0 such that
|[(2(to), y(to))|l2 > C. Denote x¢, = x(. +to), ys, = y(. +to). Compute S(, ) in terms of S
and apply the previous question to S(zt07yt0).]

d) Show that, when ¢t — —o0,

Ttg 7yt0)

z(t) = Lye™t + O(1);
y(t) = Lye " + O(1).

e) Show that there exists M > 0 and T < 0 such that, for all t < T,
180, ) (B)ll2 < Me*.
f) Show that S, ) (t) = L + O(e*) when t — —o0, and deduce that, when ¢ — —oo,

z(t) = Lye " + O(eh);
y(t) = Lye " + O(eh).
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Figure 6.4: Schematic representation of the pendulum.

g) Show that the orbit O, ) has the line RL as an asymptote.
7. For any maximal solution (z,y), we define
Viey @ R —R?
t — €%Rt (m(t) ) 9

y(t)

where R; = (C.Os(t) —10) )

sin(t) cos(t)
a) Show that there exists a constant C' > 0 such that, for any maximal solution (x,y) and any ¢ > 0,

1V @ll2 < ClI(z(0), y(0))|[3e™".

[Hint: recall that, from Question 5., it holds for all ¢ > 0 that ||(z(t), y(t))||2 < e_%Ha:(O), y(0)]|2.]
b) For any (z,), show that, if ||(x(0),y(0))|]2 < C~'/2, then Viz,y) converges to a non-zero limit at
+o00 and, if we denote A = (A;, Ay) this limit,

View) () =A+0(e™") when t — +oc.

¢) Show that the result is also true if ||(z(0),5(0))||2 > C~/2.
d) Show that, when ¢ — +o0,

z(t) = e (Az cos(t) + Ay sin(t ( 37)
3t
bl

y(t) —e2 (—Azsin(t) + A, cos(t ))+O( - )

8. Draw a plausible phase portrait.

6.4 Example: the pendulum

In this final section, we study the phase portrait, the equilibria, and the stability of a particular differential
equation, which models a pendulum.

6.4.1 Justification of the equation

Consider a pendulum, that is, a small mass, at the end of a rigid rod. The rod is attached to an axis around
which it can rotate to the left or right (not forward or backward: the rod remains in a plane). For any ¢ € R,
let (t) denote the angle (positive or negative) between the rigid rod and the vertical at time ¢. This system is
depicted in Figure 6.4.

Imagine that the pendulum is subject to two forces only: the tension of the rod (which ensures that the
pendulum remains attached to the rod) and gravity. This is very simplistic: in reality, there would necessarily
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be frictional forces as well. Let m be the mass of the pendulum and R the length of the rod. If we take the
point of contact between the axis and the rod as the origin, the coordinates of the pendulum in the plane where
it moves are, at any instant t € R,

(Rsin(6(t)), —Rcos(6(t))).
The velocity is the derivative of the position,
o(t) (RO (1) cos(0(t)), RO'(t) sin(0(t))), for all t € R,

and the acceleration is the derivative of the velocity,

a(t) @ (RO (1)) sin(0(t)) + RO"(t) cos(6(t)),
R(0'(t))? cos(A(t)) + RO"(t)sin(6(t))), for all t € R.
The force due to gravity is represented by the vector
(0, —myg),
where g is the universal gravitational constant. The tension force does not have a direct explicit formula, but

we know that its direction is the direction of the rod: for any ¢, there exists k(t) € R such that this force is
represented by the vector

(—k(t)sin(0(t)), k(t) cos(6(t))).
The second law of Newton allows us to write, for any t,
(0, —mg) + (—k(t) sin(0(t)), k(t) cos(0(t))) = ma(t).
Thus,

—k(t)sin(0(t)) = —R(0'(t))?*sin(6(t)) + RO"(t) cos(0(t));
—mg + k(t) cos(8(t)) = R(6'(t))? cos(A(t)) + RE"(t) sin(6(t)).

We multiply the first line by cos(6(¢)), the second line by sin(#(t)), and then sum:
—mgsin(0(t)) = RO (t).

To simplify notation, we assume mg = R, which leads to the following equation:
0" (t) = —sin(6(t)).

This is a second-order equation. To arrive at an equation of the form (Autonomous), we follow the remark
before the Cauchy-Lipschitz theorem (Theorem 4.1): we introduce the map u : t € R — (0(t),0'(t)) € R It
satisfies the equation

w'(t) = flu(t)), (Pendulum)

with f: (u1,us) € R? = (ug, —sin(uy)).
It can already be noticed that the maximal solutions of (Pendulum) are defined on R, by virtue of the
property stated in Example 4.9.4

*Indeed, for any (u1,us), since |sin(u1)| < |u1|, we have ||f(u1, u2)||2 < ||(u1, u2)]||2.
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6.4.2 Equilibria

The zeros of f (and thus the equilibria of the system (Pendulum)) are the points in R? of the form
(k,0)

for all integers k € Z. When k is even, this corresponds to the “bottom” position of the pendulum; when k is
odd, on the contrary, it corresponds to the “top” position.

Physical intuition tells us that the bottom position (k even) is stable (if the pendulum is at the bottom and
is slightly moved, it will oscillate around the equilibrium position, and not move away from it), while the top
position (k odd) is unstable (if the rod is vertical, with the pendulum above the axis, a small disturbance will
rather cause the pendulum to fall down than to return to this equilibrium position).

To prove this, we can try to apply Theorem 6.11. For any k € Z, the Jacobian matrix of f at (km,0) is

Jf(km,0) = <(_1O)k+1 (1)) :

We verify that the eigenvalues of this matrix are ¢ and —i if k is even, 1 and —1 if k is odd. Since Re(1) > 0,
the equilibrium (km,0) must be unstable for all odd k.
However, if k is even, we cannot deduce anything from Theorem 6.11: the real part of ¢ and —¢ is zero.

6.4.3 First integral and phase portrait

The trajectories of Equation (Pendulum) do not have an explicit expression. However, they can be studied
relatively accurately, and also the stability of the equilibria (k7,0) for even k, thanks to a very useful tool: a
first integral. This is a map which stays constant along the trajectories of the system, so that the orbits are
subsets of its level curves.

In our case, the most natural first integral is

2

F: (uy,ug) € R* = —cos(uy) + %

This is indeed a first integral because, if u is a solution of equation (Pendulum), then, for any ¢,

(Fou)'(t) =y (t) sin(us (t)) + uh(t)ua(t)
ua(t) sin(uq (t)) — sin(uy (¢))ua(t)
0

)

meaning that F' o u is constant.
What do the level curves of F' look like? They are depicted in Figure 6.5.

o If Fy < —1, {u, F(u) = Fo} =0, since F'(u1,us) = — cos(ui) + 1;—% > —cos(uy) > —1 for all (ug,us) € R

If Fy =—1, {u, F(u) = Fo} = {(2k7,0),k € Z} ; the level set is discrete.

If -1 < Fy <1, {u, F(u) = Fy} is a union of closed curves, identical to each other up to translation by a
multiple of (27,0).

If Fo =1, {u, F(u) = Fy} can be written as the union of two (regular) curves that intersect at points
(km,0) for odd k.

If Fy > 1, {u, F(u) = Fy} = {(u1,u2),us = £1/2(Fy + cos(uq))}. This set has two connected components,
both unbounded; one is included in the upper half-plane and the other one in the lower half-plane.

Knowing that the trajectories of Equation (Pendulum) are included in the level curves of F' allows us to
prove the following theorem.
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Figure 6.6: Phase portrait of Equation (Pendulum).

Theorem 6.12

The constant maximal solutions of Equation (Pendulum) are the maps (¢t € R — (k7,0)) for all k € Z.
Let u = (u1,u2) : R — R? be a non-constant maximal solution.
We set Fy = F(u(0)).

e If [y < 1, u is periodic. Moreover, there exists k € Z an integer such that u; alternately increases
from 2km—arcos(—Fp) to 2km+arcos(—Fp) and decreases from 2km+arcos(—Fp) to 2km—arcos(—Fp).

e If Fy > 1, u is not periodic and u; diverges. However, there exists T' > 0 such that
u(t+T)=u(t)+ (2m,0), forallteR

or
u(t+7T) =u(t) — (27,0), forallteR.
e If Fy =1, there exists k € Z an integer such that

t—+00

u(t) 252 ((2k — 1), 0) and u(t) =5° ((2k + 1), 0)
or u(t) "Z=° ((2k + 1), 0) and u(t) "25° ((2k — 1), 0).

Before partly proving this theorem, let us discuss the physical meaning of the trajectories. The case Fj <
1 corresponds to periodic oscillation movements around the “bottom” equilibrium position, between angles
—arcos(—Fp) and arcos(—Fp). The case Fy > 1 corresponds to rotational movements around the axis: starting
(for example) from the bottom with a sufficiently high speed, the pendulum reaches the “top” equilibrium
position, falls on the other side, and repeats.

The case Fy = 1 is quite special. These trajectories are “limits” between the previous two regimes: if the
pendulum is launched with exactly the right impulse, it can theoretically go towards the “top” equilibrium
position, with a speed that goes to 0 in such a way that the pendulum does not reach this top position in finite
time but simply converges to it. These trajectories are never observed in reality.

The phase portrait is depicted in Figure 6.6. In this figure, we can clearly see the instability of the critical
points (k7, 0) for odd integers k € Z (some trajectories move away from them even though they started extremely
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close). The figure also allows us to conjecture, in line with the physical intuition discussed earlier, that the critical
points (k7,0) for even integers k € Z are stable.

Theorem 6.13

For every even integer k € Z, (km,0) is a stable equilibrium of the system.

Proof. Let us prove this for k = 0 (which simplifies the notation but does not modify the argument).
Let V C R? be a neighborhood of (0,0). Choose 7 €]0; 27| such that | — n;n[2C V. Consider the following
neighborhood of 0:
W={ue R?, F(u) < — cos(n)} N — n; .

For any solution of (Pendulum) with «(0) € W, we have u(t) € W C V for all ¢t € R, and in particular for all
t>0.

Indeed, since F' o u is constant, we have for any ¢ € R that F(u(t)) = F(u(0)) < —cos(n). This implies that
there exists no t € R such that uy(t) = £n or ua(t) = £n: if, for some t, ui(t) = +£n,

F(u(t)) > —cos(ui(t)) = —cos(n)
and if ug(t) = £, o ,
U2

5 = -1+ % > —cos(n).

In both cases, this is impossible. Since u is continuous, we must have u(t) €] — n;n[? for all t+ € R, which
completes the proof that u(t) € W. O

F(u(t)) > -1+



Chapter 7

Solutions of some exercises

7.1 Exercise 1
1. Leti,j € {1,...,n} be fixed. From the definition of the differential,

d(df) () (ex) = lim L EHte0) = ()

lim : (€ L(R™,R)).

Since the map (L € L(R™,R) — L(e;) € R) is continuous,

da)oeiey) = (fig TEELIZAE) (o)
L df (z + te;) — df (x)
(1) )
— lim df (x + te;)(ej) — df (x)(e;)

t—0 t
. (2 + te;) — 5L (2)
t—0 t
o of
8561 8%( 7).

a) Let r > 0 be such that B(x,2r) C U. For any t,u €] — r;r[, f(x + te; + uej) is well-defined.
For any ¢ €] — r;r[, the map

g J—mr[ — R
s —  f(x+te; + sej)

is differentiable. For each s, gj(s) = %(1‘ + te; + se;). Therefore,
J

o
)

f(x + te; +uej) — f(x + te;) 9+(0)

8—f (x + te; + sej)ds.

The same reasoning, but replacing ¢ with 0, shows that

T+ ue; (z + sej)ds.
f( J / ax] J
If we substract this equality from the previous one, we obtain the result.

135
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b) The map 8 - is differentiable at x (since df is differentiable). Therefore, for ¢, s going to 0,

of of

oz, ——(x +te; +se5) =d <8ajj> (x)(te; + sej) + o(]s| + [t])
of of

and 87:]-(96 +sej) =d <&E]) (z)(se;) + o(s),

so that
of f
oz ——(x +te; + sej) — oz, ——(x + sej)
_a(9f sey—al 2L |
= (35 ) @httes )= (5L @)ses) + ol + 1)
of
= d (2 ) @)te + ofll + 1)
(by linearity of the differential)
o of
=t @) + ol + ).
Consequently,
af ysen 9 0 9f | _
ot tec ) = 5% (@ sey) — 15728 @) = ofls|+ )

< e(ft]+sl)

for all ¢, s close enough to zero.

c¢) Let 7 > 0 be such that the inequality from the previous question holds for all ¢, s €] — r;r[. We combine
Questions a) and b): for all t,u €] — r; 7],

v o9 of
‘aﬁ(t,U)— o s
of 0 o of
< .
/[Ou] oz, ——(z + te; + se;) — axj(x—i-se]) t(‘):c, axj( x)|ds

(by triangular inequality)

< [ el +lshds
[054]

CIE=S

< e (ltlful + [ul?) .
We obtain the result by noting that

", 0 0f
81‘@- 8.1?]'

8$i 8xj '

(x)ds = tu

d) The definition of ¢ is invariant to exchanging ¢ with u and ¢ with j, so the same reasoning as before gives
the same inequality as in the previous question, with ¢ replaced by w and 7 by j.
e) Using the triangular inequality and the previous two questions, we get that, for all ¢, u close enough to 0,

't(‘)af o of

_ < 2 ) 2
5 By ) ~ 5 gy )| < ellul® + 20t ful + %)

In particular, for all ¢ close enough to zero, setting u = ¢ and dividing by |¢|?,

0 ﬁ o of
Ox; Ox; o 8.%'] ox;

(z )‘ < de.
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Since € > ( is arbitrary, this shows that

o of o of |

oz 025 ") ™ 0y 0w, )| =V

o 0 d 9
hence 87%%(37) = 9a; L (z).

L

Q|

7.2 Exercise 2
We apply the mean value inequality to U = R™ and M = 1:

v,y e R, [f(z) = fW)ll < lz —yll.

In particular, for y = 0:

Ve eR" ||f(z) = FO)I < ||

Using the triangular value inequality, it holds for all x € R™ that

F @) < FO)+ (1 () = FO)]
<[ O) + [l]-

7.3 Exercise 3

Showing that f is well-defined consists in showing that f(z1,22) indeed belongs to S! for all (x1,z2) € S!. Let
us consider any (z1,22) € S'. It holds

2
(a:%)2 + <x2\/1 +x%> = xil +$§(1 —i—a:%)

= x%(m% + azg) + x%

:x%—&-x%
=1.

Therefore, f(x1,12) € St
Let us now show that f is C*°. From Definition 2.27, we must show that

f: St — R2
(x1,22) — (x%,xgx/l—i-x%)

is C*°. From Example 2.26, we know that

T X T St — R?
(r1,22) — (21,72)
is C°°. As f is the composition of 71 x m with the map
g: R? R?

%
(r1,22) — (x%,:rzx/l —1—:13%),

which is C*° (it is a composition of V- RY — R, which is C°° on this domain, and polynomial functions). From
Proposition 2.29, f is C'*°.
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7.4 Exercise 4
1. For any t € I, v/(t) = (74 (t),74(t)). Since, for any ¢,
Ty M = Toy ) My X Ty 1) Mo,

it also holds N . .
(T M)~ = (T M)~ X Ty Me) ™
and we have the following equivalences:

v is a geodesic in M
= Vtel,y(t) e (TyyM)"
— (Vt S I,’yi(t) S (T,yl(t)Ml)L> and (Vt S I,")/é(t) S (Tny(t)MQ)L)

<= 71 is a geodesic in M; and -5 a geodesic in Ms.

2. a) We assume that 7; has constant speed ¢; (i.e. ||v{(¢)||2 = ¢1 for all ¢ € I) and -, has constant speed cj.
Then

tn) = /I 4 ()] ot = e16(D).

Similarly, £(y2) = c2¢(I). In addition,
() = [ 1@l
= [ Vi1 + Il
:/\/c%—kc%dt
I
=/ + 2 (I)

= J(el(D)? + (eat(1))?
= Vl(71)? + (7).

b) Let us assume that v has constant speed and ¢() = distas(z,y). Then, from Theorem 3.22, v is a geodesic
in M. From Question 1., its components 71,2 are geodesics, respectively, in M; and Ms. Therefore,
from Proposition 3.24, they have constant speed.

c¢) From Theorem 3.21 (M is closed and connected, since My, My are closed and connected), there exists
a path with minimal length connecting z and y. Let § be such a path. Up to reparametrization, we
can assume that it has constant speed. Then, from Question b), its components §; and d2 have constant
speed. Therefore,

= /£(81)2 + £(52)? from Question a)

> \/diStMl (931, y1)2 + diStMg ($2a ?/2)2'

d) Let 01 : I1 — M; be a path of minimal length connecting x; to y;, with constant speed, and dy : Is — M,
a path of minimal length connecting o to yo, also with constant speed.
First case: I} = I.
We define § = (01, d2) : [1 — M. From Question a),

\/diStMl (1‘1, y1)2 + diSt]w2 (xg, y2)2 = 6(51)2 + 6(52)2
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=/(0)
> distys(x, y).
Combined with Question ¢), this inequality shows the desired equality.

Second case: I # Is.
Let a1,b1, ag, bs be such that Iy = [a1,b1], I2 = [ag, be]. Let us define

52 : [al,bl] — M2
L by (st

It is a path from x2 to yo. Its speed is constant, because the speed of do is constant. One can check that
its length is the same as d2’s, hence 9 has minimal length. Its domain is the same as d;, so we are back
in the first case.

e) First, let v be a path with minimal length and constant speed. From Question b), 71 and 2 have constant
speed. In addition, from the previous questions,

\/distM1 (21, y1)2 + distar, (22, Y2)?

= distys(x,y)
={(7)
= Vlm)? +U(2)?

> \/distM1 (w1,y1)% + distag, (22, y2)2.

Since the left and right-handside parts of this inequality are equal, the inequalities

£(y1) > distpr, (z1,y1) and £(vy2) > distag, (22, y2)

must be equalities, meaning that +; and 2 have minimal length.
Conversely, if 1,2 are paths with minimal length and constant speed, then + has constant speed, and

\/distM1 (w1, 91)? + distag, (22, 2)* = VA(71)* + £(72)?
= {(7y) from Question a)
> distas(x,y).

Since both sides of the inequality are equal, it must hold ¢(vy) = distps(x, y), hence v has minimal length.

f) Let 1,72 : [0;1] — [0;1] be C? maps, such that
® 1,72 are increasing;
® 71(0) =72(0) =0 and 71 (1) =2(1) = 1;
e 7y is not identical to ~s.
Then #(v) = fol |v;(t)|dt = fol yi(t)dt = 1 = distg(0,1), so 71 has minimal length. Similarly, 72 has
minimal length. However,

1
Wy, 72) /0 (4 (8), 7 (8) |l

-/ 1<fyi<t>,v5<t>>dtH
~ (L1~ 0.0

=2

The inequality is an equality if and only if all (71 (¢),~5(t)), for all ¢ € [0;1], are positively colinear. This
is not possible, because it would imply that ~] is proportional to 5. Since 1 and 72 coincide in 0 and 1,
this would actually imply that v; = 79, which is not true.

Consequently, £((v1,72)) > v/2, so that v does not have minimal length.
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7.5 Exercise 7

We define ~
f @ Rx(IxU) — R7HL

(s,(tu)) = (L f(Eu).

First, we consider u : J — U a solution of Problem (Cauchy) and show that @ is a solution to

o :Jf(t7a)7
{a< oy (1)

to) to,up)-

The domain of @, which is J, is naturally a subset of R. The map @ takes its valuesin J x U C I x U. As u is
differentiable, both components of @ are differentiable, so @ is differentiable. It holds that tg € J and

(to) = (to,u(to)) = (to,u0)-

And for all t € J, ~
w'(t) = (Lu'(t) = (L, f(t, ut) = f(t,a(t)).
Conversely, let us assume that @ is a solution to Problem (7.1) and check that it is a solution to Prob-
lem (Cauchy).
Since 4 takes its values in I x U, it holds for all ¢ € J that (¢,u(t)) belongs to I x U, hence t € I. This
proves that J C I. The map u is differentiable, since it is the second component of @, which is differentiable. It
holds that ¢y € J and, since (to,u(to)) = a(to) = (to, up), we must have

U(to) = Ug.
For all t € J, since (1,4/(t)) = @/ (t) = f(t,a(t)) = (1, f(t,u(t))), we must have

u'(t) = f(t, u(t)),

so that u is indeed a solution to Problem (Cauchy).

7.6 Exercise 8

1. As fis C', it is locally Lipschitz. The Cauchy-Lipschitz theorem thus implies that the corresponding
Cauchy problem has a unique maximal solution.

2. a) The zero map is a solution of the Cauchy problem. It is maximal, as it is defined on R. Since the maximal
solution is unique, the zero map is this solution.
b) Since u is a solution to the original problem, it holds u/(t) = f(u(t)) for all ¢ € J. In addition, the new
initial condition reads u(t;) = u(t1), so it is obviously satisfied by w.
c¢) Let us assume that u(t;) = 0 for some ¢; € J. From Question 2.b), u is a solution to the Cauchy problem

{ u'(t) = f(u(t)),
u(tl) =0.

From Question 2.a), the maximal solution of this problem is the zero map. From Proposition 4.4, u
coincides with the maximal solution on its domain, meaning that w(t) = 0 for all ¢ € J. In particular,
ug = 0 so we are in the configuration of Question 2.a), which implies that J = R and u = 0.

3.a) As f(t) > t2 > 0 for all t € R, v/ is nonnegative, hence u is nondecreasing. Therefore, for any ¢ €
] — OQ; tO] N Ja
u(t) < ulto) = up.
In addition, w is not the zero map (otherwise we would have uy = u(tp) = 0). From Question 2., this

means that u(t) # 0 for all ¢ € J. As wu is continuous, it must therefore have constant sign. Since
u(tp) > 0, it must hold u(¢) > 0 for all ¢ € J. Summing up, it holds for any ¢t €] — oo;tg] N J that

u(t) €]0;up].
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b) The previous question implies that, in the neighborhood of inf J, u stays within the compact set [0; ug).
From the théoréme des bouts, this implies that inf J = —oo0.

¢) We have seen that u is nondecreasing and lower bounded by 0 on the interval | — oo; tg]. Consequently,
it converges to some nonnegative limit, which we denote u_o, in —oo.
By contradiction, we assume that u_s, > 0. Then, when ¢t — —o0, as f is continuous,

u'(t) = flu(t)) = flu—co).

Since f(u_o0) > u?_, > 0, the definition of the limit says that there exists M € .J such that

Vt €] — ooy M1, u/(t) > f(u2_°o)

Let us fix such a number M. For all ¢t €] — oo; M],

M
w(M) — u(t) = /t o (s)ds

M f(u—oo)
d
> /t 5 s
i)
Equivalently,
flu—co)

u(t) <u(M)+(t—M) 5

As u(M) + (t — M)w — —oo when ¢t — —oo, it must also hold that u(t) - —oo when t — —o0,
which contradicts the fact that u is nonnegative.
Therefore, u_o, = 0.

4. a) We have seen in Question 3.a) that u(t) > 0 for all ¢t € J. Therefore, —1 is well-defined and negative
over J.

b) By the theorem of composition of differentiable maps, —% is differentiable over J and, for any t € J,

As a consequence, for any ¢ € [to; +o00[NJ,

G = +/ (‘D,“)ds

1 t
> —— +/ 1lds
u(to) to

: + (t —to)
—_ — —10)-
u(to)
¢) By contradiction, if sup.J = 400, then, from the previous question, ——~ — 400 when ¢ — +o0o. This

u(t)
contradicts the fact that —% is negative over J.
d) We have already seen that u is nondecreasing. Therefore, either it goes to +o0o0 in supJ, or it stays

bounded. It cannot stays bounded, otherwise this would contradict the théoréme des bouts. Consequently,
it goes to 4-o00.
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7.7 Exercise 9

Let us define

e’
cu e RY —
/ * 2u
Let us find all maximal solutions of the equation «' = f(u). Then, we will see which one is equal to ug at 0
(observe that f is C!, hence the Cauchy-Lipschitz theorem says that there exists a unique maximal solution).

The map % is (u eRY — 2ue“2>. One of its primitives is

® : RY — R

T = e

It is a bijection between R* and |1;+oo[, with reciprocal
ot 11,400 — R%

t — log(t).
From the class, the maximal solutions are therefore the maps

t €]1 + D;+oo[— +/log(t — D),
for all values of D € R. For any D, the value of this map at 0 is

log(—D) (provided that D < —1, otherwise
it is not defined). Therefore, the map is ug at 0 if and only if

( log(—D) = u0> = (D = —e“3> .

Consequently, the desired maximal solution is

te|l— e +o00[— \/log(t + €43).

7.8 Exercise 11
1. a) This problem is

{Cgf(tvo) = A(t)R(t,0),

R(0,0) =Ida.
b) From the Cauchy-Lipschitz theorem, this problem has a unique maximal solution. If the map F : ¢t —
1+ 2 ) s a solution, it | imal soluti its domain is R), and it is therefore the onl imal
T, | ;2 ) isasolution, it is a mazimal solution (as its domain is R), and it is therefore the only maxima
solution.

Let us check that F' is a solution. It satisfies the initial condition: F'(0) = Ide. Moreover, for all ¢,

dF 2t 3t?
= (—1 —2t>
and )
2t 3t
A(t)F(t) = (_1 —2t) .
c) For all t € R,

R(0,t) = R(t,0)~!
1462 8\
- < —t 1—t2>
1 11— ¢
T A+ )1 -2) - (-3 < t >

1+ 2
(1= =
- t 1+¢2)°
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2. We use Duhamel’s formula: the maximal solutions are all maps of the form
t
witeR R0 +/ R(t, 5)b(s)ds,
0

for some ug € R2.
Let us compute fot R(t,s)b(s)ds for all t € R. For all t,s € R,

R(t,s) = R(t,0)R(0, s)b(s)

2 .3 9492
== R(tg O) (1 SS 1+852) ( 28253?:3 +3>
R(t,0) (
As a consequence, for all t € R,

t ¢
/ R(t, s)b(s)ds :/ R(t,0) (*632+3)d5
0 0
t 2
~ R(1,0) /0 (~0543) ds

_ —2t3+3t
- R(t’ 0) ( 2¢2 )
_ <t3+3t>
= ().
The maximal solutions of the differential equations are all maps of the form
u:teR —  R(t,0)up+ (tg_tgt> )

for some ug € R?, which can equivalently be written as all maps of the form
3+ 3t 1+¢2 3
u:teR — <—t23>+u1<jt>+u2(l—t2>’

3. To solve the Cauchy problem, it suffices to find, among all maximal solutions, which one satisfies the equality
u(1) = (}). Let us compute for which uy, up (using the notation of the previous question) the equality holds.

The equality is equivalent to
4 n 2 n 1y (1
—1) "M \21) T N0) T o)

This amounts to u; = ug = —1. The solution is therefore

for some uq,us € R.

—t?+3t—1
u:téeR — < f_q >

7.9 Exercise 12
1. a) Let tg € I be such that x(tp) = 0. Then z is a solution of the Cauchy problem

{ oy Zoo=e)

From the Cauchy-Lipschitz theorem (which applies because x — x(1 — z) is C! on R), this problem has
a unique maximal solution, and all solutions are restrictions of the maximal solution to a subinterval.
Since the zero map is a maximal solution, it is the only maximal solution, and z is the restriction of this
map to I, hence x is zero on I. In particular, it must hold that zg = 0.
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For all t € I, y/(t) = (1 — 2x(t))y(t) = y(t). Therefore, y is a solution of the Cauchy problem

{ y =y

y(0) =wo

The maximal solution of this problem is (t ER— yget). Therefore, y(t) = yoe! for all t € I.
We have shown that, for all ¢t € I,

(Jl(t), y(t)) = (07 yUet)‘
Since (z,y) is a maximal solution, the interval I must be equal to R.
b) The same reasoning as in the previous question shows that, if z(tg) = 1 for some ¢y € I, then x = 1 on
I. In particular, x¢g = 1.
The differential equation satisfied by y simplifies and we find that, for all ¢t € I,

y(t) = yoe .

Finally, using the maximality of (z,y), we obtain that I = R and, for all ¢t € R,

(@(t), (1)) = (1, y0e™).

c) Since z is continuous on the interval I, the intermediate values theorem implies that, since z(t) ¢ {0,1}
for all ¢, either

z(t) <0 forallt e I;
eor 0 <z(t)<1forall t el
eorl<ux(t)foralltel.
In the first case, 2/(t) = z(t)(1 — 2(t)) < 0 for all t € I, hence x is decreasing. In the second case,
2/ (t) = x(t)(1 — z(t)) > 0 for all t € I, hence z is increasing. In the last case, 2/(t) = x(¢)(1 — z(¢t)) <0
for all t € I, hence z is decreasing.

d) Let us define F' = It is well-defined on I, since x(t) ¢ {0,1} for all ¢ € I. It is also differentiable,
since y and x are dl%ferentlable and

y'r(l—x)—yx'(1—2x)

B = 22(1 —x)?
_ (1 —22)yz(l —z) —yx(l —x)(1 — 2x)
z2(1 —x)?

=0.

e) For any t € I, m(t)a@x(t)) = Z(O)EJI(EL(O)) = (1 2oy Consequently,

y(t) = —L—a(t)(1 - 2(t)).

1—x
f) Since x is decreasing over I, it must have limits at inf I and sup I. In addition, since it takes its values

in ] —o00; 0],

e the limit at inf I is in | — 00; 0];

e the limit at sup [ is in {—o0}U] — o0; 0].
We must show that none of these two limits is in | — co; 0].
By contradiction, let us assume that x converges to some ¢ €] —oo; 0[ at inf I. Then y goes to {*2-£(1—¢).
Consequently, (x,y) is bounded in the neighborhood of inf I. From the théoréme des bouts, inf I = —oo.

Since x is decreasing, z(t) < ¢ for all t € I. This implies, for all ¢ € I, using the fact that 1 — z(t) > 1,
that

() =x2()(1 —z(t) < (1 —z(t)) < L.
In particular, for all ¢t € I,
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> z(M) —/tMms

=x(M)— (M —t)
=0t +x(M)— LM
2580 4 oo

Therefore, z actually goes to +00 at —oo, which is a contradiction. We have shown that x converges to

0 at inf I.
By contradiction, let us assume that 2 converges to some ¢ €] —oo; 0[ at sup I. In the same way as before,

it must then hold sup I = 4o0.
There exists M € I such that, for all t € [M; 4o00[, x(t) < %. Then, for all t € [M;+oo],

14
() =z(@)(1—2(t) < 3
As a consequence, for all t € [M; +o0],

x(t) = x(M) —l—/ 2'(s)ds

< a(M) + (1 — M)

t——+o00
— —OQ.

Therefore, x(t) juanyy —00, which is a contradiction. This shows that x converges to —oo at sup I.
g) From Questions 1.a) and 1.b), if 29 = 0 or ¢y = 1, the orbit is

O(xo,yo) = {0} x Rj— %f yo > 0,
= {<$070)} if Yo = 07
={xo} x R* if yo <O0.

From Question 1.e), if zg ¢ {0, 1}, then the orbit is a subset of

{<a: - foxoxu - x)) € ]R} .

From Question 1.f), the orbit is

Owoyo) = |2 12(;0517(1 —x)),x € Ri} if zg <0,
=1z 2l —2)), z €]0; 1[} if0 <z <1,

=1 (2 2 2(l —2) ,xERi} if 1 < xo.

—T

2. The phase portrait is drawn on Figure 7.1.

7.10 Exercise 14

1. The point (0,0) is an equilibrium because it cancels the right-hand side of the equation. Conversely, let
(0, Yo) be an equilibrium. Then

xo
5 tw- zo(xd +y2) = 0;

Yo
—rp = 5 — yo(zd +v3) = 0,

Yo\ _ (1, 2, 2\ (%0
(%)= (Gretei) ()

Therefore, (yo, —xo) is colinear to (zg,y0). These vectors are orthogonal and have the same norm, hence
this is only possible if g = yg = 0.

which implies
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Figure 7.1: On the left, the vector field f(x,y) = (z(1 —=x), (1 —2x)y) (the length of each arrow has been divided
by 5 for a better readability); on the right, the corresponding phase portrait.

— 2 4y—a(e?+y?)
2 )
f(x7 y) = _z_lj__y—é—yZ_’_y )

1+x2+y

TR
— « %

S\~
SN R st

S NN

2. For all (z,y) € R?, we denote

It holds, for all (x,y),

= G+22+9) () + ()]l

| f (=, y)HQ_ 1ot y2
T l4a24y? YR
3
<215,

Example 4.9 concludes.
3. The map f is C*°. For (z,y) € R? close to zero,

£y 0( )]
_ [ T Houewm
F@9) = | _aZgro(ilayi®)

1+O (I1@y)I1?)

B <:% —§> <y> +0 (Il »)IF) -

J£(0,0) = <:% _11> .

2

—_

Therefore, the Jacobian at (0,0) is

This matrix has two eigenvalues, —% + ¢ and —% — 4. Their real part is strictly negative, so (0,0) is
asymptotically stable, in virtue of Theorem 6.11.
4. a) Let (z,y) be a solution. Let us define u = —y and v = z. It holds

, ;o e+ d+y@t+y?) %4 v—u(u +0?)
u = — = = M

y 1+ 22 +y? 14+ u? + 02 ’

ol —sty—a@+y?)  —u—3 v +0?)

1+ 22 + 92 1+ w2+ 02

Y
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so that (u,v) = (—y,x) is also a solution of the equation. For the same reason, if (—y, z) is a solution of
the equation, then (x,y) is also a solution.
b) The phase portrait is invariant under a rotation of angle 7.

5. a) For all t € R,

N'(t) = 2(x()2'(t) + y(t)y '(t))

+a(t)? + y(t)?
= —2(x(t)® +y(t) )2 ()2 + y(1)?
B 14+ 2(x(t)? +y(t)?)
= —(z(t)* + y(t)?) 1+ 2(6)2 + y(t)?

b) If (x,y) is the constant solution (i.e. stays at (0,0)), then the result is true. Otherwise, N never vanishes,

so we can consider n % In(N). It is a C* function and, for all ¢,

Consequently, for all ¢ € R,

This is equivalent to

N(t) < N(0)e tif t >0,
> N(0)e tif t <0.

Therefore, by comparison, N goes to 0 at +o00 and to 400 at —oco

6. a) For any maximal solution (z,y) and any t € R,

’ et (x(t
Stn® = (2

Consequently,

w0
&
=

IA

AN
W N w
-

The last inequality is due to Cauchy-Schwarz.
b) Let us assume that ||(z(0),y(0))||2 > C. It holds, for all ¢ > 0,

0
Say)(t) = Sy (0) — /t Sy (5)ds

Since fEOO 15(,.4)(8)ll2ds < ono Ce®ds = C' < +o0, the integral is convergent, meaning that it has a
limit when ¢ — —oo. Therefore, S(, ) also has a limit, which is

def 0 ’
L= S, (0)— . Sz (8)ds.
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A [1S(a) ()2 = [[(2(0), y(0))[[2 > € and

0
| L et

the limit L must be non-zero.
For all ¢t <0,

0
< / 180, () l2ds < C,
2 —00

t
S =Llly = || [ Stptoras]|
t

< / Ce’ds

= Cé.

¢) We assume that ||(z(0),y(0))||l2 < C. Let tp < 0 be such that ||(z(to),y(to))|l2 > C; such a ty exist
because, from Question 4.b), ||(x(t),y(t))||2 — +00 when ¢t — 4o0.
Let us define (#, ) the maximal solution such that

(5:(0)) _ <w(to)>
4(0) y(to)
Since the equation is autonomous, z = Z(. — tp) and y = §(. — o). In particular, for all ¢ € R,
€t05(3~67g) (t — to) = S(;t,y) (t) (7.2)
From the previous subquestion, there exists L € R?\ {(0,0)} such that S(z ;) —» L and, for all ¢ € R,
1.9)(8) = Llla < Cel.
Using Equation (7.2), we get that S, ) goes to Le' at —oo and, for all ¢ € R,
1S ) (1) — € Ll|2 < Ce".

d) When ¢t — —o0,

() _
=e ' (L+0(e))
=Le " +0(1).
e) Recall from Question 6.a) that, for all ¢,

et

1+ 2(t)2 +y(t)

5112 (@), y()l]2

1504y (Dll2 < 511(2(), y(@))]]2

e

z(t)? + y(t)

et

~2([((0), y(O)]”

Moreover, from the previous subquestion, there exists a > 0 such that, for all £ small enough,

<

W N W N W

1(z(8), y()ll2 > ae™.

Then, for all ¢t small enough,

3
HSEz,y) (t)HQ < %6%'
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f) For all ¢ small enough,

t
1S (@) (1) = Lll2 = H/ Slpy(5)ds

t
< / Me?$ds
—00

M?t
—76.

2

This says that S(,,(t) = L + O(e*"). Consequently,

g) For any ¢, the distance of (z(t),y(t)) to the line RL is at most

1Gio) ()

From Question 6.f), this is of order O(e'), hence goes to 0.

2

7. a) Let (x,y) be a maximal solution. For any ¢ > 0,

Vi ® =< (8 (3] + 32 (1)) + 2 (1))
= (m () 5 () <2 (0 2) )
R (xm + 20— y1)
y(0) + 5+ ()

Therefore, for any t > 0,

Vi @)ll2 < Se2|l((t), )13

b) Let us assume that ||(z(0),y(0))|]2 < C~1/2. For all t > 0,

t
Viwy) () = Viz)(0) +/0 ‘/(;7y)(s)ds.

The integral is convergent :

[ Wl < Gl [ eras
0 (z,y) = ’ 2/
= Cll(a(0), yO)) .

so this converges to

149
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|

This limit is non-zero because

+o00 ,
/0 Y/’(%y)(s)ds

= Ol (2(0), 5(0)]13

< [[(2(0),3(0))]]2
= |Viay) (0)]l2-

For any t,

+oo
W@ =My = || [ Vi (o)

2
+oo
< C)(2(0), y(0))]3 / e~*ds
t
— C((0), y(0))] 3,

so that Vi, ,)(t) = X+ O(e™).
c¢) This is the same reasoning as in Question 6.c). Let ¢y > 0 be such that

[1(2(t0), y(to)ll2 < C1/2.

Let (7,7) be the solution whose value is (z(to),y(t0)) at time 0. From the previous subquestion, V{3 5
satisfies, for some non-zero A € R?,
Vi (t) = A+ 0(e™),

which implies
Ve (t) = 6703150‘/(5,@) (t—to) = 670Rt0)\ +0(e™).

d) For all t > 0,

<x(t)> — ¢ 3R V(1)

__t [ Agcos(t) + Aysin(t) ( ,ﬁ)
—e <—/\I sin(t) + Ay cos(t) +Ole?).
8. The phase portrait is drawn in Figure 7.2. Observe the following properties:
e the phase portrait is invariant under rotation by 7;
e all non-zero trajectories are asymptotic to a line going through zero at one end;

e all non-zero trajectories go to (0,0) with a spiraling behavior (in the indirect sense) at the other end.
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Figure 7.2: Phase portrait for the equation in Exercice 14.
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