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1 Exercises

Exercise 1: linear inverse problems

Let d, m be positive integers, with d < m. Let A € R™*? be a matrix. For a
given y € R™, we consider the inverse problem

find 2 € R? such that Az = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
of orthogonal matrices U € R™*™ V € R%*? and nonnegative numbers
A > o> Mg € RT, such that

A=UDYV,

with

A 0O ... 0

0 X :

0

0 .0
This decomposition of A is called the singular value decomposition (SVD).
The numbers Ay, ..., \g are the singular values. They are uniquely de-
fined.
a) Let v; € R? be such that ||vi|] = 1 and

||Avi|lo = max  [|Av||s.
vER[|v]|2=1

Then, let vy, ..., vy be such that, for any k, v, € Vect{vy, ..., v},
|[vg|[2 = 1, and

[Avllz =~ max  [[Av]|2.
veVect{vy,...,u_1}+

[lo]l2=1

Show that this definition is valid (i.e. that the maximums exist) and
that (v1,...,vq) is an orthonormal basis of R,
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b) Show that, for any k, k" € {1,...,d} with k # k', (Avg, Avg) = 0.
[Hint: assume k < k’. Show that, from the definition of vy, it holds
for any 6 € R that ||A(cos(0)vy + sin(f)vy)|]2 < |[|Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to # must be 0 at 6 = 0.]

c) For any k = 1,...,d, let us set A\, = ||Avi||2. Show that the A\ are
nonnegative, and that Ay > Xy > -+ > A4

d) Show that there exists an orthonormal basis (u1, ..., u,) of R™ such
that

Vk S d, Avk = )\kuk

e) Let D be defined as in Equation (1), U be the matrix whose columns
are uq, . .., Un,, and V the matrix whose rows are vy, ..., vy. Show that
U,V are orthogonal matrices, and

A=UDV.

f) Show that the singular values are uniquely defined: if UV, M, ..\
is another SVD of A, then A\, = A\, for any k.

3. a) Show that, for any 1,2, € RY,
||z — xal|2 < ||Axy — Azalla < |21 — 222

b) Show that the inequalities are tight (that is, they are not true anymore
if \; is replaced with a smaller constant, or A\; with a larger one).
¢) Under which condition on A\; and A\, is Problem (Lin-inverse) stable?

Exercise 2: an example of linear inverse problem

Let d be a positive integer, and p a positive real number.
For a given y € R?, we consider the inverse problem

find z € R,
d

such that x; + u (Z xk> =y, Vie{l,...,d}.

k=1

1. Show that, for any y, the problem has exactly one solution.

2. For which values of y can we say that the problem is stable?



Exercise 3 (2024 exam) We consider the problem

recover (r1,1,) € R?

def
from y; = 1,

def i)
and y, = T 2
1

Is reconstruction unique? Stable?

Exercise 4: intersection of convex sets

Let d € N* be fixed. Let C},...,Cg C R? be closed convex non-empty sets.
We consider the problem

find z € R,
such that z € (5, Vs < S. (2)

For any s < S, we denote P, the projector onto Cj: for any z € R, Py(2) is
the point of C, which is at minimal distance from z:

[1P(2) — 2|2 = min [la — #[|2.

It is a classical result from convex analysis that P; is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets C; are sufficiently simple so that the corresponding projections can be
numerically computed.

The goal of the exercise is to present an algorithm to solve (2).

1. We consider any s € {1,...,5}.
a) Show that, for all z € R a € Cj,

{(a = Py(2),2 = Py(2)) <0
b) Show that, for all z, 2’ € R?,
(Py(2') — Py(2),2 — 2" — Py(2) + Ps(2")) <0
¢) Show that, for all z, 2’ € R?,
1P,(2) = Po()[5 + ||Ps(2) = Pol(2') — 2 + 2[5 < ||z — | 5.
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d) Deduce from the previous question that, for all z, 2’ € R?,
1Ps(2) = Po(2)]]2 < ||z = 2|2,

and that the inequality is strict, unless Py(2) — Ps(2') = z — 2.
The algorithm starts with an arbitrary initial point zy € R%. It then com-
putes iteratively a sequence of iterates (zy)reny defined by

VnEN,VSE {1,...75}, an+8:PS<an+(S—1)>'
We assume that Problem (2) has at least one solution:

CinCyn---NCy # 0.

2. a) Show that, for any z. € Ns<sCs, the sequence (||zx — Zu||2)ken is
non-increasing, hence that it converges. Let us call ¢(x,) € R the
limit.

b) Show that (z1s5)ren has a converging subsequence. We denote x,, € R?
the limit.

¢) Show that ., € Ng<gCs.
[Hint: show that P;(zs) is a limit point of (zxs11)ken, then that, for
any ., € Ns<gCs,

|00 = 2ull2 = || P1(200) = o = £(22).

Using Question 1.d), show that x., € C}. Iterate the reasoning to

show that z,, € Cs for any s < 5]

d) Show that xj i Too-

Exercise 5: real phase retrieval

This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex, as in class) coordinates.

A real phase retrieval problem is any problem of the form

find z € R?
such that | (x,vs) | = ys, Vs < m, (Real-PR)
where vy, ..., v, is a known family of vectors in R?, v, ..., y,, are given and

“I.|” denotes the absolute value.



Since multiplication by —1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by —1.

We say that a family of vectors (vy, ..., v,,) satisfies the complement property
if, for any S C {1,...,m},

Vect{vs}ses = R? or  Vect{v,}ses = R%

1. In this question, we show that (vy,...,v,,) satisfies the complement
property if and only if, for any w,...,ymn, the solution of Problem
(Real-PR) (when it exists) is unique.

a) Let us assume that (vq,...,v,,) satisfies the complement property.
Let y1,...,Ym be any numbers. Let x, 2" € R? be such that, for any
s <m,

| <CE,US> | =UYs = | <$lvvs> |

Show that x = 2/ or x = —2/.
[Hint: apply the complement property for S = {s, (z,vs) = (z/, vs) }.]
b) Let us assume that (vy, ..., v,,) does not satisfy the complement prop-

erty. Show the existence of z;, 2z, € R?\ {0} such that
Vs <m, (z1,v5) =0 or (z,vs) =0.

c¢) Define & = 21 + 29,2" = 21 — 25 and show that Problem (Real-PR)
may have a non-unique solution.

2. a) Show that, if (Real-PR) has a unique solution for any v, ..., ¥, then
m > 2d — 1.

b) Conversely, we assume that m > 2d — 1. Show that, for almost any
(v1,...,vm) € (RY)™, Problem (Real-PR) has a unique solution for
any yi, ..., Ym-

3. Provide an explicit example of a family (vi,vs,v3) € (R?)? and of a

family (v1,ve,vs,v4,v5) € (R3) for which Problem (Real-PR) has a

unique solution for any yi, ..., ym.

Exercise 6 Let us imagine that we want to solve the following system of

polynomial equations:

2423 = 2
(P)q 2t —a3 = 0;
2!E11’2 = 2.
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We define

R
(a3 + 23 = 2)" + (a3 — 23)" + (2122 — 2)°.

L R? —
(ZEh 172) —

1. Show that a pair (z1,z2) € R? is a solution of (P) if and only if it is a
global minimizer of L.

Therefore, to solve (P), it is enough to find

(21, x9) € argmin L(xy, z3).
(z1,2)ER?

[It is by far not the simplest way to solve (P), but let us pretend it is the
only one we can think of.]

2. Compute the gradient and Hessian of L.
3. Compute the first and second-order critical points.

4. We run gradient descent on L, with a small stepsize, starting from a
point Z;n; chosen at random, uniformly in the unit ball of R?. What
can you say about the limit behavior of the sequence of iterates?



Exercise 7: correctness guarantees for Basis Pursuit

Let d, m, k be positive integers. For some matrix A € R™*?, we consider the
problem

minimize ||z|[;
for z € R? (Basis Pursuit)
such that Ax = y.

We assume that the 4k-restricted isometry constant of A satisfies

1

54k < 4_1
Let z, be any vector with at most & non-zero coordinates. We consider
Problem (Basis Pursuit) for y = Az,. Let xgp be any solution. The goal of

the exercise is to show that, necessarily,

TBp = Ty.
1. We define
h=xpp — x4,
T, = {i,z. # 0}.
Show that

lhelly < [z [[1-

(For any vector z € R and E C {1,...,d}, zg is the vector obtained
from z by setting to 0 all coordinates corresponding to indices outside
2. Up to permuting the coordinates of z,,xgp and the columns of A, we

can assume that
T, ={1,2,...,Card(T})}

and the coordinates of h are non-increasing, in absolute value, outside
T,:
\hcara(ry+1] = |hcaramy+2| = - > |hal.

Let us partition {Card(T,) +1,...,d} into sets Ty, Ts, ..., Ty, of size 3k:

T, = {Card(T\) + 1,...,Card(T}) + 3k},
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Ty = {Card(T,) + 3k + 1,...,Card(T}) + 6k},

T, = {Card(Ty) +3(L — )k +1,...,d}.
a) Show that, for any [ € {2,..., L},

[
I < TR

1Az, 41l ]

[Hint: for each s € T}, show that |hy| < —

b) Show that

1

- i3
E hy|l, < 1L
l_zH T1H2— \/@

¢) Deduce from the last question that

L
[[h,|]2
[hglls < —=—.
lz:; : V3

. a) Show that Ah = 0.
b) Show that

L
1AR||2 > (1= Sa)l|hz.om |2 — (1 + 6ax) Y [1Bg; |2
=2

c¢) Conclude.



2 Answers

Answer of Exercise 1

1. Problem (Lin-inverse) has at least one solution if and only if y € Range(A).
This solution, which we denote x,, is unique if the set

{z € R? such that Az = Ax,} = {2, + h,h € Ker(A)}

is the singleton {z,}. This happens if and only if A is injective (that is
Ker(A) = {0}).
2. a) The application v € R* — ||Av||; € R is continuous. The unit sphere
of R? is compact. Therefore, the maximum
max  ||Avl|a
veER? ||v||2=1
exists (i.e. there is a vector v; at which the maximum is attained).
Similarly, for any k € {2,...,d}, the set

{v € Vect{vy,...,ve_1}",]l|v]]2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v € R? — ||Av||y € R is still continuous. Therefore,
the maximum in the definition of v, exists.
From the definition, the family (v1,...,v4) contains d vectors of RY,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k" € {1,...,d} be such that k # k’. We can assume that k < &'
Let us show that

(Avy, Avg) = 0.

From the definition of v,
Vg € VeCt{Ul, .. ,Uk/_l}L C \/Ye(jt{vk}L = <'Uk’7 Uk> = 0.

As a consequence, for any 6 € R,

|| cos(0)vy, + sin(@) vy ||z = \/COSQ(G)HUICH% + sinQ(Q)HUk/H% =1. (3)

In addition, vy is in Vect{vy, ..., vp_1 }* and vy is in Vect{vy, ..., vp_1}+ C
Vect{v,...,vp_1}F, 50
cos(0) vy + sin(0)vp € Vect{v, ..., vp_1}". (4)
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Equations (3) and (4), together with the definition of vy, imply:
|| A (cos(8)vg + sin(Q)vi) |2 < ||Avk]|2, VO € R.
We raise this inequality to the square: for all § € R,
|| A (cos(0)vy + sin(0)vw) |5
= cos?(0)|| Avi||3 + 2sin(0) cos(8) (Avy, Avy) + sin?(0)||Avi | |3
< || Avk]3-
This means that the map 8 — cos?(0)|| Avy|[3+2 sin(6) cos(0) (Avy,, Avy )+

sin?(0)|| Avy| |2 reaches its maximum at § = 0. In particular, its deriva-
tive at 0 must be 0:

0 = —2cos(0) sin(0) || Avg| |3 + 2(cos*(0) — sin?(0)) (Avy, Avy)
+ 25in(0) cos(0) || Avy| |3
=2 <A'Uk, Avk/> .
Therefore, (Avy, Avg) = 0.

c) The Ay are nonnegative because a norm is always nonnegative. To

show that (A, ..., A\g) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k" € {1,...,d}
with k < k', we have seen that v, belongs to Vect{v,...,vp_1}*+, and
||ok||2 = 1. Hence, from the definition of vy,

Mo = [[Avg|l > [[Avp||a = Aw.

d) Let D be the smallest index such that A\p = 0 (it is possible that

Ar # 0 for all £ < d, in which case we set D =d + 1).
Forany k=1,...,D — 1, we set

_ Ave | Ay
T A T A
This is an orthonormal family of R™: for any k < D, ||ug|| = 1, and
for any k, k' < D with k # k', it holds
(i i) = —<A2;“k’ f,i,”’“’> _
from Question 2.b). We define up, ..., u,, so that (ui,...,u,) is an

orthonormal basis of R™.

For any k < D, we have Avy = A\yug by construction. And for any
k= D,....d, since \, = ||Avg|| = 0, it also holds Avy, = 0 = A\puy.
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e) The matrices U,V are orthogonal because their columns (resp. rows,
for V') form an orthonormal basis of R™ (resp. R?).
The equation
vk S d, Avk = )\kuk

reads, in matricial form,

A0 0
0 Ao
A(v1 vd):(ul um) - BV E
0
b b

which is equivalent to
AVT =UD,

which is in turn equivalent, since V'V = VVT =1d, to
A=UDV.

f) Let U,V , A1, ..., \a be another SVD of A. Let us denote

A 0 ... 0
0 Ao
D= ) N
Ad
0
0 ... .. 0

From the definition of the SVD,

A=UDV =UDV
= ATA=VTDTDV =VTDTDV.

The matrix DT D is diagonal, with coefficients on the diagonal A2, ... \2.
The matrices V and V7 are inverse one from each other, since V is an
orthogonal matrix. As a consequence, VT (DT D)V is the eigenvector
decomposition of ATA and A}, ...\ are the eigenvalues of AT A.

For the same reason, 5\%, cee :\3 are the eigenvalues of AT A. Since the
eigenvalues of a matrix are uniquely defined and A2, ..., \3 as well as
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A2 ..., A% are ordered (they are non-increasing sequences), we must

have B B
N2 2=

which implies, since the A, and )\, are nonnegative,

A1:5\17 tey )\d:xda

3. a) We consider the SVD of A, as in Question 2. Let z;,75 € R? be
arbitrary.
As U is an orthogonal matrix, it preserves the norm:

[Azy — Azs[; = |[[UDV (21 — 22)|[2 = |[DV (21 — 32)][2.
As a consequence,

|Azy — Azs|3 = ||[D(Vay — V)3

=> [DV(z; — m)]}
k=1
d
=> N (V(z1—2));
k=1
d
< N (Viw —x);,
k=1
= M|V (21 — 2)|3
= )\%Hi’fl — 2[5

For the last equality, we have used again the fact that orthogonal
matrices preserve the norm. This yields

[[Azy — Ax|[z < Mif|z1 — 222

The reasoning which leads to || Az, — Axa||s > Ag||x1—22||2 is identical,
except that we must use the inequalities “A\7 > A\%” instead of “\2 <
A2,

b) Let us consider x; = 0 and zy = Ve, where ¢, is the first vector in
the canonical basis of R%. Then

Axy =0, Axy=UDe; = \Ué,
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where é; is the first vector in the canonical basis of R™. Therefore,
[Azy — Azo[|o = M[|Ué1]]2 = Ml|ér]|2 = As,

and
|21 = wof[2 = [[VTer|lo = [leal2 = 1.

This implies that ||Az; — Axs||a = \i||z1 — 22]]2, and ||z1 — xa|]2 # 0,

so that the inequality “||Ax; — Axal|o < Cl|xy — 22||2” cannot be true

for a constant C' < \;.

The resoning is identical for showing that the left inequality is tight,

except that e; and é; must respectively be replaced with e; and ég4,

the d-th vectors in the canonical bases of (respectively) R? and R™.
c¢) The inverse problem is stable if i—; is of order 1 (say < 10).

Answer of Exercise 2

1. We are exactly in the same setting as the previous exercise, with

1w ... p
1
A=|"
W |

According to Question 1 of the previous exercise, we must show that A
is injective and surjective. Given that A is square, it is enough to show
that A is injective.

To show that A is injective, we consider z € Ker(A) and show that,
necessarily, z = 0. From the definition of the kernel,

d
Zi4 p (sz> —=0,Vie{l,...,d}

k=1

Therefore, all coordinates of z are equal:

d
ZI_Z2_"'_Zd__/~’L<ZZk>

k=1
We plug this into the first equation:
(1+du)z = 0.
Since > 0, we must have z; = 0, and therefore zo = --- = z; = 0, that

1s z =0.
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2. Following the previous exercise, we compute the singular value decom-
position of A. As A is a symmetric matrix, its singular values are the
absolute values of its eigenvalues. Let us compute the eigenvalues.

Let for the moment A € R be any eigenvalue, and let z be an associated
eigenvector. From the definition of A,

d
z,»—i—,u(sz) =Nz, Vi e{l,...,d}.

k=1
Therefore, if X\ # 1, it holds

d
zlzzgz--~:zd:%<zzk)’

which means that z is a constant vector.

Conversely, if z is a constant vector, we see that it is an eigenvector,
with eigenvalue 1 + du.

Since the set of constant vectors has dimension 1, we conclude that
there is exactly one eigenvalue different from 1, which is 1 + du and has
multiplicity 1.

Since A are d eigenvalues (when counted with multiplicity), the only
other eigenvalue is 1, with multiplicity d — 1.

The eigenvalues are nonnegative, so they are the same as the singular
values.

From the previous exercise, the inverse problem is stable if the ratio
between that largest and smallest singular values is of order 1, that is if
1+ dp is of order 1. In other words, reconstruction is stable when p is
at most of order é.

Answer of Exercise 3
[Caution: this is a non-linear inverse problem. Therefore, it cannot be ana-

lyzed using the results on linear inverse problems.|

Reconstruction is unique: for any (x1,z5) € R? and associated measurements
(y1,92), it holds (z1,22) = (y1,(1 + y3)ya). Therefore, the measurements
(y1, y2) uniquely determine (xq,x3).

Reconstruction is not stable. Indeed, for any € > 0, there exist pairs (x1, z5)
and (z), 2), with associated measurements (y1,y2), (v}, y4) such that

1(y1,92) — (W1, w5)ll2 < ell(w1, 2) — (27, 25)] |2
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To show it, we can consider the pairs (z1,22) = (¢,t) and (2}, z)) = (¢,0),

for some ¢t > 0 to be defined later. Then

(21, 22) — (2, 25)[]2 = ¢

while

t
142

(Y1, v2) — (Y1, vo)||2 =

Consequently, if ¢ > ,/% — 1, it holds

[|(1, ) = (&, 25) |
14 t2

1(y1,92) — (W1, a)ll2 = < €ll(w1, 2) = (2, 23)| ]2

Answer of Exercise 4
1. a) Let 2 € RY,a € C; be fixed. For any € € [0;1], the vector

(1 —€)Ps(2) +€a

belongs to Cf, since Ps(z) and a belong to Cy and Cj is convex. There-

fore, from the definition of the projection,

1Ps(2) = 2[5 < [|(1 = ) Py(2) + €ea — 2|
= |IP(2) — 2| — € {a — Pi(2), 2 — Pu(2))
+€*lla — Po(2)|l2-

Therefore, for any € €]0; 1],
(a = Py(2), 2 = Py(2)) < ella — Py(2)][3-

If we let € go to 0, we get that (a — Ps(z), 2z — Ps(2)) < 0.

b) Let z, 2’ € R? be fixed. We apply the previous question to a = P,(2'),

then to a = Py(2):

(Ps(2') = Pu(2), 2 = Ps(2))
(Pi(2) — Ps(2), 2 — Ps( )

We sum the two inequalities and get the desired result.

0,
0.

IA A
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c) Let z, 2" € R? be fixed.

1Ps(2) = Po(2)l; + [|1Po(2) = Pul2) — 2 + 2|3
= |lz = Z|Iz + 21| Ps(2) — Po(2)|z +2(Ps(2) = Po(¢'), 2" — 2)
= |lz = #|lz + 2(P(2) = Pi(2), 2 — 2’ — Pu(2) + Pu(&))

<Ilz=#llz-

The last inequality is a consequence of Question 1.b).
d) For all z, 2’ € R?, from the previous question, since ||P,(z) — P(z") —
z+2'||3 > 0, we must have

1P:(2) = Pu(2I[5 < [z = Z/ll,

hence ||Ps(2) — Ps(2')|l2 < ||z — #||2- In addition, if the inequality
is not strict, it must hold ||Ps(2) — Py(2') — z + Z||3 = 0, so that
Py(z) — Ps(2') — 2+ 2/ = 0, hence Py(z) — Ps(?') = z — 2.

2. a) Let k € N be fixed. Let n € N,s € {1,...,S} be such that k =
nS + (s —1). Then z441 = 515 = Ps(zx). In addition, z, = Py(z.
because x, is in C§, so

l2h1 = 2l = [[Ps(n) = Po(@a)lla < flex — 24|z

The last inequality is true from Question 1.d). The sequence is there-
fore nonincreasing. It has a limit as any nonnegative nonincreasing
sequence of real numbers has a limit.

b) The sequence (zys)ren is bounded: for any k,

|zrslla < [lzu]l2 + lJoes — 2.2

< ullz + [lzo = 2.ll2-

From Bolzano-Weierstrass theorem, it has a converging subsequence.
c¢) As P is continuous (from Question 1.d), it is even 1-Lipschitz) and z,
is a limit point of (zxs)ken, P1(Too) is a limit point of (P (2ks))keny =

(Ths+1) ken-
Since ||xgs — 4|2 jmare l(x,) and ||Trss1 — Til|2 jmary ((x,), we must
have

|00 = 2ull2 = £(2),
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1P1(200) = Prl@a)ll2 = [[P1(wo0) = 2|2 = ().

This implies that ||z. — Z«||2 = || P1(200) — Pi(x4)]|]2. From Question
1.d), we must have

Too — Tu = Pi(2o) — Pr(@s) = Pi(2s0) — 2,

so that ., = Pi(x4), which is equivalent to x, € C}.
We can reapply iteratively the same reasoning: as oo, = P(Zs) i8
a limit point of (Zgsi1)ken, P2(Zoo) is a limit point of (Tggio)ken,
which allows to show that ||z — Z4||2 = || P2(Ze) — Pa(4)]|2, hence
Too = P2(Zs), so that zo, € Cy. And so on.

d) As x4 belongs to Ns<sCs, Question 2.a) tells us that (||zx — Tsol|2)ken
is nonincreasing. This sequence has a subsequence which goes to 0
(since x4 is a limit point of (z)ken). Therefore, the whole sequence

. k
goes to 0, which means that x; e Too-
Answer of Exercise 5

1. a) We set S = {s < m,(x,vs) = (2/,v5)}. From the complement prop-
erty, either Vect{vs}seg = R? or Vect{v,}s¢s = R%
First case: Vect{v;}scs = R?. For any s € S,

(x — 2’ vs) = (x,vs) — (2/,05) = 0.

Consequently, © — 2’ € Vect{v,},o; = {0}, meaning that = = .

Second case: Vect{vs}s¢s = R% Forany s, | (z,vs) | = | (2, vs) |, hence
(z,v5) = £ (2, v5). For any s & S, (x,vs) # (2',vs), so that (x,vs) =
— (7', vs), and

(x + 12! v5) = 0.

/

Consequently, x + 2’ € Vect{vs}ﬁ¢§ = {0}, meaning that r = —x'.
b) Let S C {1,...,m} be such that

Vect{vs}ses # R? and Vect{v,}y¢5 # R%.

Then
Vect{ v, SL€§ # {0} and Vect{v 5L¢§ # {0}.

Let 21 € Vect{v,},g and 2, € Vect{vs}slgé§ be two non-zero vectors.
For each s < m,
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o if s € 5, then (z1,v,) =0,

o if s ¢S, then (z9,v5) = 0.
c) For all s < m, |(x,vs)| = |{(2/,vs)|. Indeed, either (z1,vs) = 0, in
which case
<CL’,U$> = <Z27US> = <ZE,,US> )

or (z2,vs) = 0, in which case

(r,vs) = (21,05) = (2, vg) .

Therefore, x and 2’ are two solutions of Problem (Real-PR) for y =
(| (x,vs) |)ses. But z # ', since 2o # 0, and x # —a’, since z; # 0.

2. a) Let us assume m < 2d — 2. Let S C {1,...,m} have cardinality
min(d — 1,m). It must hold Vect{v,}scs # RY, since Vect{vs}.cs has
dimension at most Card(S) < d — 1.

On the other hand, {1,...,m} \ S has cardinality m — Card(S) =
max(0,m —d+1) < d—1. It must therefore also hold Vect{v;}s¢g #
R<.
This shows that the complement property does not hold. From Ques-
tion 1., Problem (Real-PR) has a non-unique solution for some values
of y1,..., Ym.

b) For each n, let \,, denote the Lebesgue measure over R™.
For any A C {1,...,m} with cardinality at most d — 1 and each
ae{l,...,m}\ A, we define

gAﬂ = {(Ul, R ,Um) S (Rd)m,va S VeCt{Us}seA} .

Observe that, for each A, a,

19



Answer of Exercise 6

1. We first observe that (P) has at least one solution: z; = x5 = 1. This
shows that mingege L(z) = 0. Indeed, L(x) > 0 for any z € R? (a sum
of squares is always nonnegative), and L(1,1) = 0 + 02 4+ 0% = 0.
Consequently, a pair (z1,23) is a global minimizer of L if and only if

L(ZL‘l, ZEQ) = 0,
which happens if and only if each square in the definition of L is zero,
that is
i+ ri—2=0;
r] — 15 =0;
21’1%2 —2= O,

which is equivalent to (xy, z5) being a solution of (P).

2. For any x = (71, 15) € R?,

oL
87(:c) = 2(21) (22 + 22 — 2) 4+ 2(221) (2?7 — 22) + 2(222) (22125 — 2)
1
= 8z (23 + 23) — 8(zy + 22);
oL

a—mQ(I) = 2(2m9) (27 + 25 — 2) 4+ 2(—2xy) (2] — 23) + 2(271) (22175 — 2)

= 8wy (2? + 23) — 8(z1 + o).

Hence, setting e = (1),

As to the Hessian, it is

9’L 9L
Hess L(z) = | %3 (z) G (z)
Ox10x2 (:L‘) 22 (515)
:8(3x?+$§—1 207y — 1 >

2rimy — 1 2?4322 -1
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3. We start with the first-order critical points. Let z = (z1,22) be an
element of R2. It is a first-order critical point if and only if

12"z — (z,e) e = 0.

This equality is true if z = 0. If  # 0, it is equivalent to = being colinear
to e (x = Ae for some X\ € R), with the colinearity factor A satisfying

[[Ae||*Ae — (e, €) e = 0;
= (2A* =2\)e = 0;
<— A=-1,0o0r 1.

In other words, x is a first-order critical point of L if and only if z =
0,r=—eorzxz=e.

Let us now compute the second-order critical points. A second-order
critical point is a first-order critical point at which the Hessian of L is
positive semidefinite. Let us thus compute the Hessian at 0, —e, e.
First,

Hess L(0) = —8 G 1) .

In particular, for any h € R2,
hT Hess L(0)h = —8 (e, h)* .

For instance, e’ Hess L(0)e = —8||e||* < 0, hence Hess L(0) # 0 and 0 is
not a second-order critical point.
Second,

Hess L(—e) — Hess L(e) — 8 (i’ ;)) .

For any h,
h" Hess L(—e)h = h" Hess L(e)h = 8 ({e, h)* + 2||n[?) > 0.

Therefore, Hess L(%e) = 0 : the second-order critical points of L are e
and —e.

4. With probability 1, the sequence of iterates converges to e or —e, that
is towards a solution of (P) (one can check that L(—e) = L(e) = 0).
This is a consequence of Theorem 2.13 from the lecture notes (and, more
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specifically, from the remark after it: VL is not Lipschitz). Observe that
L has only three first-order critical points, hence the set of first-order
critical points is discrete and one of the two possible assumptions in the
theorem is verified.

Answer of Exercise 7

1. The vector z, is feasible for the problem (Basis Pursuit): Az, = y.
Therefore, its /!-norm is at least as large as the optimal value of the
problem:

|lz:llv = l[zsp[l = |lzs + i1

As a consequence,

Sl = ol

1€Ty
2 |[z. + hllx

= DIz + h)
= i+ hil + D |l

1€y 1¢T,
= Z(|$*z| — [hil) + Z |hil
i€T. i¢T.
= (Z ’m*i|> — [Pl + [lhze ]2
=
This implies ||hr, |1 > [|hre||1-

2. a) For any s € T;,8' € T;_1, because the coordinates of h are non-
increasing outside 7},
|h5’| > |h8|'

This implies that, for any s € T;,

1hri ol =) byl = (Card(Tioy)|h| = 3k|s].

s'€Ty 1

From this, we deduce that

1hg,|l3 = Aol

seT;
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Z ||th 1||1

seT;

_ WLTHH%
= W(Cafd(Tz))

_ b
- 3k

L
Z |hg |2 < \/_ Z |hz;||1  from the previous question

1
S\/——ZHthHl
_ |l

*Q

Q

|7z, [ |1

< from the first question.

5

¢) By Cauchy-Schwarz,
‘h’T*

< /Card(T)||hr, ||z < VE| ||

Combined with the previous question, it yields

L
|7, |]2
[hglls < —=—
lz:; : V3

a) As xpp is a feasible point of Problem (Basis Pursuit), we have Azgp =
y = Az, = A(xpp — h) = Axgp — Ah. Consequently, Ah = 0.
b) As h = hT*UTl + hT2 + -+ hTL’ we have

L
|1 Ahll2 = ||Abz,ury + Abgy +- - -+ Aby |2 > || Abg,un |2 = Y || Ak |2
1=2
The vector hr,ur, has at most Card(7,) 4+ Card(Ty) < k + 3k = 4k
non-zero coordinates. From the definition of the restricted isometry

constant,
[Ahr.on 2 = (1 = da)||hrom [2-
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Similarly, for any [ € {2,..., L},
|Ahg;[|2 < (14 dar) ||z |2-

This gives the desired inequality:

L
1ARl2 > (1= da)l|Promlls = (1 +6u) D 1l
=2

c¢) Together, the previous two subquestions imply

L
(1= ) [|hrum ||z < (1+6a) Y |lhg I3
=2

Using also Question 2.c,

(1 = 0ar)|| .

2 < (1= 04)||hrum |2
||,

V3

< (14 0g) 2

Since 045 < 1/4, this implies

, < ?HhT* 2 3v/3

:> [N
=1 N3 5
Since %3 > 1, this implies ||h7, ||z = 0: the coordinates of h with

indices in T, are zero. From the first question, the coordinates of h
with indices in T are therefore also zero, so h = 0 and

3
—||~
i

Azl < [lhz[]2-

rpp = Tx.
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