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1 Exercises

Exercise 1: linear inverse problems
Let d,m be positive integers, with d ≤ m. Let A ∈ Rm×d be a matrix. For a
given y ∈ Rm, we consider the inverse problem

find x ∈ Rd such that Ax = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
of orthogonal matrices U ∈ Rm×m, V ∈ Rd×d, and nonnegative numbers
λ1 ≥ · · · ≥ λd ∈ R+, such that

A = UDV,

with

D =


λ1 0 ... 0

0 λ2
...

... ... ...
λd

... 0
...

...
0 ... ... 0

 . (1)

This decomposition of A is called the singular value decomposition (SVD).
The numbers λ1, . . . , λd are the singular values. They are uniquely de-
fined.
a) Let v1 ∈ Rd be such that ||v1||2 = 1 and

||Av1||2 = max
v∈Rd,||v||2=1

||Av||2.

Then, let v2, . . . , vd be such that, for any k, vk ∈ Vect{v1, . . . , vk−1}⊥,
||vk||2 = 1, and

||Avk||2 = max
v∈Vect{v1,...,vk−1}⊥

||v||2=1

||Av||2.

Show that this definition is valid (i.e. that the maximums exist) and
that (v1, . . . , vd) is an orthonormal basis of Rd.
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b) Show that, for any k, k′ ∈ {1, . . . , d} with k ̸= k′, ⟨Avk, Avk′⟩ = 0.
[Hint: assume k < k′. Show that, from the definition of vk, it holds
for any θ ∈ R that ||A(cos(θ)vk + sin(θ)vk′)||2 ≤ ||Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to θ must be 0 at θ = 0.]

c) For any k = 1, . . . , d, let us set λk = ||Avk||2. Show that the λk are
nonnegative, and that λ1 ≥ λ2 ≥ · · · ≥ λd.

d) Show that there exists an orthonormal basis (u1, . . . , um) of Rm such
that

∀k ≤ d, Avk = λkuk.

e) Let D be defined as in Equation (1), U be the matrix whose columns
are u1, . . . , um, and V the matrix whose rows are v1, . . . , vd. Show that
U, V are orthogonal matrices, and

A = UDV.

f) Show that the singular values are uniquely defined: if Ũ , Ṽ , λ̃1, . . . , λ̃d

is another SVD of A, then λ̃k = λk for any k.
3. a) Show that, for any x1, x2 ∈ Rd,

λd||x1 − x2||2 ≤ ||Ax1 − Ax2||2 ≤ λ1||x1 − x2||2

b) Show that the inequalities are tight (that is, they are not true anymore
if λ1 is replaced with a smaller constant, or λd with a larger one).

c) Under which condition on λ1 and λd is Problem (Lin-inverse) stable?

Exercise 2: an example of linear inverse problem
Let d be a positive integer, and µ a positive real number.
For a given y ∈ Rd, we consider the inverse problem

find x ∈ Rd,

such that xi + µ

(
d∑

k=1

xk

)
= yi,∀i ∈ {1, . . . , d}.

1. Show that, for any y, the problem has exactly one solution.
2. For which values of µ can we say that the problem is stable?
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Exercise 3 (2024 exam) We consider the problem

recover (x1, x2) ∈ R2

from y1
def= x1

and y2
def= x2

1 + x2
1
.

Is reconstruction unique? Stable?

Exercise 4: intersection of convex sets
Let d ∈ N∗ be fixed. Let C1, . . . , CS ⊂ Rd be closed convex non-empty sets.
We consider the problem

find x ∈ Rd,

such that x ∈ Cs,∀s ≤ S. (2)

For any s ≤ S, we denote Ps the projector onto Cs: for any z ∈ Rd, Ps(z) is
the point of Cs which is at minimal distance from z:

||Ps(z) − z||2 = min
a∈Cs

||a− z||2.

It is a classical result from convex analysis that Ps is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets Cs are sufficiently simple so that the corresponding projections can be
numerically computed.
The goal of the exercise is to present an algorithm to solve (2).
1. We consider any s ∈ {1, . . . , S}.

a) Show that, for all z ∈ Rd, a ∈ Cs,

⟨a− Ps(z), z − Ps(z)⟩ ≤ 0

b) Show that, for all z, z′ ∈ Rd,

⟨Ps(z′) − Ps(z), z − z′ − Ps(z) + Ps(z′)⟩ ≤ 0

c) Show that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z′)||22 + ||Ps(z) − Ps(z′) − z + z′||22 ≤ ||z − z′||22.
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d) Deduce from the previous question that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z′)||2 ≤ ||z − z′||2,

and that the inequality is strict, unless Ps(z) − Ps(z′) = z − z′.
The algorithm starts with an arbitrary initial point x0 ∈ Rd. It then com-
putes iteratively a sequence of iterates (xk)k∈N defined by

∀n ∈ N,∀s ∈ {1, . . . , S}, xnS+s = Ps(xnS+(s−1)).

We assume that Problem (2) has at least one solution:

C1 ∩ C2 ∩ · · · ∩ CS ̸= ∅.

2. a) Show that, for any x∗ ∈ ∩s≤SCs, the sequence (||xk − x∗||2)k∈N is
non-increasing, hence that it converges. Let us call ℓ(x∗) ∈ R the
limit.

b) Show that (xkS)k∈N has a converging subsequence. We denote x∞ ∈ Rd

the limit.
c) Show that x∞ ∈ ∩s≤SCs.

[Hint: show that P1(x∞) is a limit point of (xkS+1)k∈N, then that, for
any x∗ ∈ ∩s≤SCs,

||x∞ − x∗||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

Using Question 1.d), show that x∞ ∈ C1. Iterate the reasoning to
show that x∞ ∈ Cs for any s ≤ S.]

d) Show that xk
k→+∞−→ x∞.

Exercise 5: real phase retrieval
This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex, as in class) coordinates.
A real phase retrieval problem is any problem of the form

find x ∈ Rd

such that | ⟨x, vs⟩ | = ys,∀s ≤ m, (Real-PR)

where v1, . . . , vm is a known family of vectors in Rd, y1, . . . , ym are given and
“|.|” denotes the absolute value.
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Since multiplication by −1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by −1.
We say that a family of vectors (v1, . . . , vm) satisfies the complement property
if, for any S ⊂ {1, . . . ,m},

Vect{vs}s∈S = Rd or Vect{vs}s/∈S = Rd.

1. In this question, we show that (v1, . . . , vm) satisfies the complement
property if and only if, for any y1, . . . , ym, the solution of Problem
(Real-PR) (when it exists) is unique.
a) Let us assume that (v1, . . . , vm) satisfies the complement property.

Let y1, . . . , ym be any numbers. Let x, x′ ∈ Rd be such that, for any
s ≤ m,

| ⟨x, vs⟩ | = ys = | ⟨x′, vs⟩ |.
Show that x = x′ or x = −x′.
[Hint: apply the complement property for S = {s, ⟨x, vs⟩ = ⟨x′, vs⟩}.]

b) Let us assume that (v1, . . . , vm) does not satisfy the complement prop-
erty. Show the existence of z1, z2 ∈ Rd \ {0} such that

∀s ≤ m, ⟨z1, vs⟩ = 0 or ⟨z2, vs⟩ = 0.

c) Define x = z1 + z2, x
′ = z1 − z2 and show that Problem (Real-PR)

may have a non-unique solution.
2. a) Show that, if (Real-PR) has a unique solution for any y1, . . . , ym, then

m ≥ 2d− 1.
b) Conversely, we assume that m ≥ 2d − 1. Show that, for almost any

(v1, . . . , vm) ∈ (Rd)m, Problem (Real-PR) has a unique solution for
any y1, . . . , ym.

3. Provide an explicit example of a family (v1, v2, v3) ∈ (R2)3 and of a
family (v1, v2, v3, v4, v5) ∈ (R3)5 for which Problem (Real-PR) has a
unique solution for any y1, . . . , ym.

Exercise 6 Let us imagine that we want to solve the following system of

polynomial equations:

(P )


x2

1 + x2
2 = 2;

x2
1 − x2

2 = 0;
2x1x2 = 2.

6



We define

L : R2 → R
(x1, x2) → (x2

1 + x2
2 − 2)2 + (x2

1 − x2
2)

2 + (2x1x2 − 2)2 .

1. Show that a pair (x1, x2) ∈ R2 is a solution of (P ) if and only if it is a
global minimizer of L.

Therefore, to solve (P ), it is enough to find

(x1, x2) ∈ argmin
(x1,x2)∈R2

L(x1, x2).

[It is by far not the simplest way to solve (P ), but let us pretend it is the
only one we can think of.]
2. Compute the gradient and Hessian of L.
3. Compute the first and second-order critical points.
4. We run gradient descent on L, with a small stepsize, starting from a

point xinit chosen at random, uniformly in the unit ball of R2. What
can you say about the limit behavior of the sequence of iterates?
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Exercise 7: correctness guarantees for Basis Pursuit
Let d,m, k be positive integers. For some matrix A ∈ Rm×d, we consider the
problem

minimize ||x||1
for x ∈ Rd (Basis Pursuit)

such that Ax = y.

We assume that the 4k-restricted isometry constant of A satisfies

δ4k <
1
4
.

Let x∗ be any vector with at most k non-zero coordinates. We consider
Problem (Basis Pursuit) for y = Ax∗. Let xBP be any solution. The goal of
the exercise is to show that, necessarily,

xBP = x∗.

1. We define

h = xBP − x∗,

T∗ = {i, x∗i ̸= 0}.

Show that
||hT c

∗ ||1 ≤ ||hT∗ ||1.

(For any vector z ∈ Rd and E ⊂ {1, . . . , d}, zE is the vector obtained
from z by setting to 0 all coordinates corresponding to indices outside
E.)

2. Up to permuting the coordinates of x∗, xBP and the columns of A, we
can assume that

T∗ = {1, 2, . . . ,Card(T∗)}

and the coordinates of h are non-increasing, in absolute value, outside
T∗:

|hCard(T∗)+1| ≥ |hCard(T∗)+2| ≥ ... ≥ |hd|.

Let us partition {Card(T∗) + 1, . . . , d} into sets T1, T2, . . . , TL of size 3k:

T1 = {Card(T∗) + 1, . . . ,Card(T∗) + 3k},
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T2 = {Card(T∗) + 3k + 1, . . . ,Card(T∗) + 6k},
. . .

TL = {Card(T∗) + 3(L− 1)k + 1, . . . , d}.

a) Show that, for any l ∈ {2, . . . , L},

||hTl
||22 ≤

||hTl−1||21
3k

.

[Hint: for each s ∈ Tl, show that |hs| ≤
||hTl−1 ||1

3k .]
b) Show that

L∑
l=2

||hTl
||2 ≤ ||hT∗||1√

3k
.

c) Deduce from the last question that

L∑
l=2

||hTl
||2 ≤ ||hT∗||2√

3
.

3. a) Show that Ah = 0.
b) Show that

||Ah||2 ≥ (1 − δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑
l=2

||hTl
||2.

c) Conclude.
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2 Answers

Answer of Exercise 1
1. Problem (Lin-inverse) has at least one solution if and only if y ∈ Range(A).

This solution, which we denote x∗, is unique if the set

{x ∈ Rd such that Ax = Ax∗} = {x∗ + h, h ∈ Ker(A)}

is the singleton {x∗}. This happens if and only if A is injective (that is
Ker(A) = {0}).

2. a) The application v ∈ Rd → ||Av||2 ∈ R is continuous. The unit sphere
of Rd is compact. Therefore, the maximum

max
v∈Rd,||v||2=1

||Av||2

exists (i.e. there is a vector v1 at which the maximum is attained).
Similarly, for any k ∈ {2, . . . , d}, the set

{v ∈ Vect{v1, . . . , vk−1}⊥, |||v||2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v ∈ Rd → ||Av||2 ∈ R is still continuous. Therefore,
the maximum in the definition of vk exists.
From the definition, the family (v1, . . . , vd) contains d vectors of Rd,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k′ ∈ {1, . . . , d} be such that k ̸= k′. We can assume that k < k′.
Let us show that

⟨Avk, Avk′⟩ = 0.
From the definition of vk′ ,

vk′ ∈ Vect{v1, . . . , vk′−1}⊥ ⊂ Vect{vk}⊥ ⇒ ⟨vk′ , vk⟩ = 0.

As a consequence, for any θ ∈ R,

|| cos(θ)vk + sin(θ)vk′||2 =
√

cos2(θ)||vk||22 + sin2(θ)||vk′ ||22 = 1. (3)

In addition, vk is in Vect{v1, . . . , vk−1}⊥ and vk′ is in Vect{v1, . . . , vk′−1}⊥ ⊂
Vect{v1, . . . , vk−1}⊥, so

cos(θ)vk + sin(θ)vk′ ∈ Vect{v1, . . . , vk−1}⊥. (4)
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Equations (3) and (4), together with the definition of vk, imply:

||A (cos(θ)vk + sin(θ)vk′) ||2 ≤ ||Avk||2, ∀θ ∈ R.

We raise this inequality to the square: for all θ ∈ R,

||A (cos(θ)vk + sin(θ)vk′) ||22
= cos2(θ)||Avk||22 + 2 sin(θ) cos(θ) ⟨Avk, Avk′⟩ + sin2(θ)||Avk′||22
≤ ||Avk||22.

This means that the map θ → cos2(θ)||Avk||22+2 sin(θ) cos(θ) ⟨Avk, Avk′⟩+
sin2(θ)||Avk′||22 reaches its maximum at θ = 0. In particular, its deriva-
tive at 0 must be 0:

0 = −2 cos(0) sin(0)||Avk||22 + 2(cos2(0) − sin2(0)) ⟨Avk, Avk′⟩
+ 2 sin(0) cos(0)||Avk′ ||22

= 2 ⟨Avk, Avk′⟩ .

Therefore, ⟨Avk, Avk′⟩ = 0.
c) The λk are nonnegative because a norm is always nonnegative. To

show that (λ1, . . . , λd) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k′ ∈ {1, . . . , d}
with k < k′, we have seen that vk′ belongs to Vect{v1, . . . , vk−1}⊥, and
||vk′||2 = 1. Hence, from the definition of vk,

λk = ||Avk||2 ≥ ||Avk′||2 = λk′ .

d) Let D be the smallest index such that λD = 0 (it is possible that
λk ̸= 0 for all k ≤ d, in which case we set D = d + 1).
For any k = 1, . . . , D − 1, we set

uk = Avk
||Avk||

= Avk
λk

.

This is an orthonormal family of Rm: for any k < D, ||uk|| = 1, and
for any k, k′ < D with k ̸= k′, it holds

⟨uk, uk′⟩ = ⟨Avk, Avk′⟩
λkλk′

= 0

from Question 2.b). We define uD, . . . , um so that (u1, . . . , um) is an
orthonormal basis of Rm.
For any k < D, we have Avk = λkuk by construction. And for any
k = D, ..., d, since λk = ||Avk|| = 0, it also holds Avk = 0 = λkuk.
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e) The matrices U, V are orthogonal because their columns (resp. rows,
for V ) form an orthonormal basis of Rm (resp. Rd).
The equation

∀k ≤ d, Avk = λkuk

reads, in matricial form,

A
(
v1 . . . vd

)
=
(
u1 . . . um

)


λ1 0 ... 0

0 λ2
...

... ... ...
λd

... 0
...

...
0 ... ... 0

 ,

which is equivalent to
AV T = UD,

which is in turn equivalent, since V TV = V V T = Id, to

A = UDV.

f) Let Ũ , Ṽ , λ̃1, . . . , λ̃d be another SVD of A. Let us denote

D̃ =



λ̃1 0 ... 0

0 λ̃2
...

... ... ...
λ̃d

... 0
...

...
0 ... ... 0

 .

From the definition of the SVD,

A = UDV = ŨD̃Ṽ

⇒ ATA = V TDTDV = Ṽ T D̃T D̃Ṽ .

The matrix DTD is diagonal, with coefficients on the diagonal λ2
1, . . . , λ

2
d.

The matrices V and V T are inverse one from each other, since V is an
orthogonal matrix. As a consequence, V T (DTD)V is the eigenvector
decomposition of ATA and λ2

1, . . . , λ
2
d are the eigenvalues of ATA.

For the same reason, λ̃2
1, . . . , λ̃

2
d are the eigenvalues of ATA. Since the

eigenvalues of a matrix are uniquely defined and λ2
1, . . . , λ

2
d as well as
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λ̃2
1, . . . , λ̃

2
d are ordered (they are non-increasing sequences), we must

have
λ2

1 = λ̃2
1, . . . , λ2

d = λ̃2
d,

which implies, since the λk and λ̃k are nonnegative,

λ1 = λ̃1, . . . , λd = λ̃d,

3. a) We consider the SVD of A, as in Question 2. Let x1, x2 ∈ Rd be
arbitrary.
As U is an orthogonal matrix, it preserves the norm:

||Ax1 − Ax2||2 = ||UDV (x1 − x2)||2 = ||DV (x1 − x2)||2.

As a consequence,

||Ax1 − Ax2||22 = ||D(V x1 − V x2)||22

=
m∑
k=1

[DV (x1 − x2)]2k

=
d∑

k=1

λ2
k (V (x1 − x2))2

k

≤
d∑

k=1

λ2
1 (V (x1 − x2))2

k

= λ2
1||V (x1 − x2)||22

= λ2
1||x1 − x2||22.

For the last equality, we have used again the fact that orthogonal
matrices preserve the norm. This yields

||Ax1 − Ax2||2 ≤ λ1||x1 − x2||2.

The reasoning which leads to ||Ax1−Ax2||2 ≥ λd||x1−x2||2 is identical,
except that we must use the inequalities “λ2

k ≥ λ2
d” instead of “λ2

k ≤
λ2

1”.
b) Let us consider x1 = 0 and x2 = V −1e1, where e1 is the first vector in

the canonical basis of Rd. Then

Ax1 = 0, Ax2 = UDe1 = λ1Uẽ1,
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where ẽ1 is the first vector in the canonical basis of Rm. Therefore,

||Ax1 − Ax2||2 = λ1||Uẽ1||2 = λ1||ẽ1||2 = λ1,

and
||x1 − x2||2 = ||V −1e1||2 = ||e1||2 = 1.

This implies that ||Ax1 −Ax2||2 = λ1||x1 − x2||2, and ||x1 − x2||2 ̸= 0,
so that the inequality “||Ax1 −Ax2||2 ≤ C||x1 − x2||2” cannot be true
for a constant C < λ1.
The resoning is identical for showing that the left inequality is tight,
except that e1 and ẽ1 must respectively be replaced with ed and ẽd,
the d-th vectors in the canonical bases of (respectively) Rd and Rm.

c) The inverse problem is stable if λ1
λd

is of order 1 (say ≤ 10).

Answer of Exercise 2
1. We are exactly in the same setting as the previous exercise, with

A =


1 µ . . . µ
µ 1 . . .
... . . . ...
µ . . . 1

 .

According to Question 1 of the previous exercise, we must show that A
is injective and surjective. Given that A is square, it is enough to show
that A is injective.
To show that A is injective, we consider z ∈ Ker(A) and show that,
necessarily, z = 0. From the definition of the kernel,

zi + µ

(
d∑

k=1

zk

)
= 0,∀i ∈ {1, . . . , d}.

Therefore, all coordinates of z are equal:

z1 = z2 = · · · = zd = −µ

(
d∑

k=1

zk

)
.

We plug this into the first equation:

(1 + dµ)z1 = 0.

Since µ > 0, we must have z1 = 0, and therefore z2 = · · · = zd = 0, that
is z = 0.

14



2. Following the previous exercise, we compute the singular value decom-
position of A. As A is a symmetric matrix, its singular values are the
absolute values of its eigenvalues. Let us compute the eigenvalues.
Let for the moment λ ∈ R be any eigenvalue, and let z be an associated
eigenvector. From the definition of A,

zi + µ

(
d∑

k=1

zk

)
= λzi,∀i ∈ {1, . . . , d}.

Therefore, if λ ̸= 1, it holds

z1 = z2 = · · · = zd = µ

λ− 1

(
d∑

k=1

zk

)
,

which means that z is a constant vector.
Conversely, if z is a constant vector, we see that it is an eigenvector,
with eigenvalue 1 + dµ.
Since the set of constant vectors has dimension 1, we conclude that
there is exactly one eigenvalue different from 1, which is 1 + dµ and has
multiplicity 1.
Since A are d eigenvalues (when counted with multiplicity), the only
other eigenvalue is 1, with multiplicity d− 1.
The eigenvalues are nonnegative, so they are the same as the singular
values.
From the previous exercise, the inverse problem is stable if the ratio
between that largest and smallest singular values is of order 1, that is if
1 + dµ is of order 1. In other words, reconstruction is stable when µ is
at most of order 1

d
.

Answer of Exercise 3
[Caution: this is a non-linear inverse problem. Therefore, it cannot be ana-
lyzed using the results on linear inverse problems.]

Reconstruction is unique: for any (x1, x2) ∈ R2 and associated measurements
(y1, y2), it holds (x1, x2) = (y1, (1 + y2

1)y2). Therefore, the measurements
(y1, y2) uniquely determine (x1, x2).
Reconstruction is not stable. Indeed, for any ϵ > 0, there exist pairs (x1, x2)
and (x′

1, x
′
2), with associated measurements (y1, y2), (y′1, y′2) such that

||(y1, y2) − (y′1, y′2)||2 < ϵ||(x1, x2) − (x′
1, x

′
2)||2.
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To show it, we can consider the pairs (x1, x2) = (t, t) and (x′
1, x

′
2) = (t, 0),

for some t > 0 to be defined later. Then

||(x1, x2) − (x′
1, x

′
2)||2 = t

while

||(y1, y2) − (y′1, y′2)||2 = t

1 + t2
.

Consequently, if t >
√

1
ϵ
− 1, it holds

||(y1, y2) − (y′1, y′2)||2 = ||(x1, x2) − (x′
1, x

′
2)||2

1 + t2
< ϵ||(x1, x2) − (x′

1, x
′
2)||2.

Answer of Exercise 4
1. a) Let z ∈ Rd, a ∈ Cs be fixed. For any ϵ ∈ [0; 1], the vector

(1 − ϵ)Ps(z) + ϵa

belongs to Cs, since Ps(z) and a belong to Cs and Cs is convex. There-
fore, from the definition of the projection,

||Ps(z) − z||22 ≤ ||(1 − ϵ)Ps(z) + ϵa− z||2

= ||Ps(z) − z||2 − ϵ ⟨a− Ps(z), z − Ps(z)⟩
+ ϵ2||a− Ps(z)||22.

Therefore, for any ϵ ∈]0; 1],

⟨a− Ps(z), z − Ps(z)⟩ ≤ ϵ||a− Ps(z)||22.

If we let ϵ go to 0, we get that ⟨a− Ps(z), z − Ps(z)⟩ ≤ 0.
b) Let z, z′ ∈ Rd be fixed. We apply the previous question to a = Ps(z′),

then to a = Ps(z):

⟨Ps(z′) − Ps(z), z − Ps(z)⟩ ≤ 0,
⟨Ps(z) − Ps(z′), z′ − Ps(z′)⟩ ≤ 0.

We sum the two inequalities and get the desired result.
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c) Let z, z′ ∈ Rd be fixed.

||Ps(z) − Ps(z′)||22 + ||Ps(z) − Ps(z′) − z + z′||22
= ||z − z′||22 + 2||Ps(z) − Ps(z′)||22 + 2 ⟨Ps(z) − Ps(z′), z′ − z⟩
= ||z − z′||22 + 2 ⟨Ps(z′) − Ps(z), z − z′ − Ps(z) + Ps(z′)⟩
≤ ||z − z′||22.

The last inequality is a consequence of Question 1.b).
d) For all z, z′ ∈ Rd, from the previous question, since ||Ps(z) − Ps(z′) −

z + z′||22 ≥ 0, we must have

||Ps(z) − Ps(z′)||22 ≤ ||z − z′||22,

hence ||Ps(z) − Ps(z′)||2 ≤ ||z − z′||2. In addition, if the inequality
is not strict, it must hold ||Ps(z) − Ps(z′) − z + z′||22 = 0, so that
Ps(z) − Ps(z′) − z + z′ = 0, hence Ps(z) − Ps(z′) = z − z′.

2. a) Let k ∈ N be fixed. Let n ∈ N, s ∈ {1, . . . , S} be such that k =
nS + (s− 1). Then xk+1 = xnS+s = Ps(xk). In addition, x∗ = Ps(x∗)
because x∗ is in Cs, so

||xk+1 − x∗||2 = ||Ps(xk) − Ps(x∗)||2 ≤ ||xk − x∗||2.

The last inequality is true from Question 1.d). The sequence is there-
fore nonincreasing. It has a limit as any nonnegative nonincreasing
sequence of real numbers has a limit.

b) The sequence (xkS)k∈N is bounded: for any k,

||xkS||2 ≤ ||x∗||2 + ||xkS − x∗||2
≤ ||x∗||2 + ||x0 − x∗||2.

From Bolzano-Weierstrass theorem, it has a converging subsequence.
c) As P1 is continuous (from Question 1.d), it is even 1-Lipschitz) and x∞

is a limit point of (xkS)k∈N, P1(x∞) is a limit point of (P1(xkS))k∈N =
(xkS+1)k∈N.
Since ||xkS−x∗||2

k→+∞−→ ℓ(x∗) and ||xkS+1−x∗||2
k→+∞−→ ℓ(x∗), we must

have

||x∞ − x∗||2 = ℓ(x∗),
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||P1(x∞) − P1(x∗)||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

This implies that ||x∞ − x∗||2 = ||P1(x∞) − P1(x∗)||2. From Question
1.d), we must have

x∞ − x∗ = P1(x∞) − P1(x∗) = P1(x∞) − x∗,

so that x∞ = P1(x∞), which is equivalent to x∞ ∈ C1.
We can reapply iteratively the same reasoning: as x∞ = P1(x∞) is
a limit point of (xkS+1)k∈N, P2(x∞) is a limit point of (xkS+2)k∈N,
which allows to show that ||x∞ − x∗||2 = ||P2(x∞) − P2(x∗)||2, hence
x∞ = P2(x∞), so that x∞ ∈ C2. And so on.

d) As x∞ belongs to ∩s≤SCs, Question 2.a) tells us that (||xk−x∞||2)k∈N
is nonincreasing. This sequence has a subsequence which goes to 0
(since x∞ is a limit point of (xk)k∈N). Therefore, the whole sequence
goes to 0, which means that xk

k→+∞−→ x∞.

Answer of Exercise 5
1. a) We set S = {s ≤ m, ⟨x, vs⟩ = ⟨x′, vs⟩}. From the complement prop-

erty, either Vect{vs}s∈§ = Rd or Vect{vs}s/∈S = Rd.
First case: Vect{vs}s∈§ = Rd. For any s ∈ S,

⟨x− x′, vs⟩ = ⟨x, vs⟩ − ⟨x′, vs⟩ = 0.

Consequently, x− x′ ∈ Vect{vs}⊥s∈§ = {0}, meaning that x = x′.
Second case: Vect{vs}s/∈§ = Rd. For any s, | ⟨x, vs⟩ | = | ⟨x′, vs⟩ |, hence
⟨x, vs⟩ = ±⟨x′, vs⟩. For any s /∈ S, ⟨x, vs⟩ ≠ ⟨x′, vs⟩, so that ⟨x, vs⟩ =
−⟨x′, vs⟩, and

⟨x + x′, vs⟩ = 0.

Consequently, x + x′ ∈ Vect{vs}⊥s/∈§ = {0}, meaning that x = −x′.
b) Let S ⊂ {1, . . . ,m} be such that

Vect{vs}s∈§ ̸= Rd and Vect{vs}s/∈§ ̸= Rd.

Then
Vect{vs}⊥s∈§ ̸= {0} and Vect{vs}⊥s/∈§ ̸= {0}.

Let z1 ∈ Vect{vs}⊥s∈§ and z2 ∈ Vect{vs}⊥s/∈§ be two non-zero vectors.
For each s ≤ m,
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• if s ∈ S, then ⟨z1, vs⟩ = 0,

• if s /∈ S, then ⟨z2, vs⟩ = 0.
c) For all s ≤ m, | ⟨x, vs⟩ | = | ⟨x′, vs⟩ |. Indeed, either ⟨z1, vs⟩ = 0, in

which case
⟨x, vs⟩ = ⟨z2, vs⟩ = −⟨x′, vs⟩ ,

or ⟨z2, vs⟩ = 0, in which case

⟨x, vs⟩ = ⟨z1, vs⟩ = ⟨x′, vs⟩ .

Therefore, x and x′ are two solutions of Problem (Real-PR) for y =
(| ⟨x, vs⟩ |)s∈S. But x ̸= x′, since z2 ̸= 0, and x ̸= −x′, since z1 ̸= 0.

2. a) Let us assume m ≤ 2d − 2. Let S ⊂ {1, . . . ,m} have cardinality
min(d− 1,m). It must hold Vect{vs}s∈S ̸= Rd, since Vect{vs}s∈S has
dimension at most Card(S) ≤ d− 1.
On the other hand, {1, . . . ,m} \ S has cardinality m − Card(S) =
max(0,m− d+ 1) ≤ d− 1. It must therefore also hold Vect{vs}s/∈S ̸=
Rd.
This shows that the complement property does not hold. From Ques-
tion 1., Problem (Real-PR) has a non-unique solution for some values
of y1, . . . , ym.

b) For each n, let λn denote the Lebesgue measure over Rn.
For any A ⊂ {1, . . . ,m} with cardinality at most d − 1 and each
a ∈ {1, . . . ,m} \ A, we define

EA,a =
{

(v1, . . . , vm) ∈ (Rd)m, va ∈ Vect{vs}s∈A
}
.

Observe that, for each A, a,
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Answer of Exercise 6
1. We first observe that (P ) has at least one solution: x1 = x2 = 1. This

shows that minx∈R2 L(x) = 0. Indeed, L(x) ≥ 0 for any x ∈ R2 (a sum
of squares is always nonnegative), and L(1, 1) = 02 + 02 + 02 = 0.
Consequently, a pair (x1, x2) is a global minimizer of L if and only if

L(x1, x2) = 0,

which happens if and only if each square in the definition of L is zero,
that is

x2
1 + x2

2 − 2 = 0;
x2

1 − x2
2 = 0;

2x1x2 − 2 = 0,

which is equivalent to (x1, x2) being a solution of (P ).
2. For any x = (x1, x2) ∈ R2,

∂L

∂x1
(x) = 2(2x1)(x2

1 + x2
2 − 2) + 2(2x1)(x2

1 − x2
2) + 2(2x2)(2x1x2 − 2)

= 8x1(x2
1 + x2

2) − 8(x1 + x2);
∂L

∂x2
(x) = 2(2x2)(x2

1 + x2
2 − 2) + 2(−2x2)(x2

1 − x2
2) + 2(2x1)(2x1x2 − 2)

= 8x2(x2
1 + x2

2) − 8(x1 + x2).

Hence, setting e = ( 1
1 ),

∇L(x) =
( ∂L

∂x1
(x)

∂L
∂x2

(x)

)
= 8(x2

1 + x2
2)
(
x1
x2

)
− 8(x1 + x2)

(
1
1

)
= 8(||x||2x− ⟨x, e⟩ e).

As to the Hessian, it is

HessL(x) =

(
∂2L
∂2x1

(x) ∂2L
∂x1∂x2

(x)
∂2L

∂x1∂x2
(x) ∂2L

∂2x2
(x)

)

= 8
(

3x2
1 + x2

2 − 1 2x1x2 − 1
2x1x2 − 1 x2

1 + 3x2
2 − 1

)
.
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3. We start with the first-order critical points. Let x = (x1, x2) be an
element of R2. It is a first-order critical point if and only if

||x||2x− ⟨x, e⟩ e = 0.

This equality is true if x = 0. If x ̸= 0, it is equivalent to x being colinear
to e (x = λe for some λ ∈ R), with the colinearity factor λ satisfying

||λe||2λe− ⟨λe, e⟩ e = 0;
⇐⇒ (2λ3 − 2λ)e = 0;
⇐⇒ λ = −1, 0 or 1.

In other words, x is a first-order critical point of L if and only if x =
0, x = −e or x = e.
Let us now compute the second-order critical points. A second-order
critical point is a first-order critical point at which the Hessian of L is
positive semidefinite. Let us thus compute the Hessian at 0,−e, e.
First,

HessL(0) = −8
(

1 1
1 1

)
.

In particular, for any h ∈ R2,

hT HessL(0)h = −8 ⟨e, h⟩2 .

For instance, eT HessL(0)e = −8||e||4 < 0, hence HessL(0) ̸⪰ 0 and 0 is
not a second-order critical point.
Second,

HessL(−e) = HessL(e) = 8
(

3 1
1 3

)
.

For any h,

hT HessL(−e)h = hT HessL(e)h = 8
(
⟨e, h⟩2 + 2||h||2

)
≥ 0.

Therefore, HessL(±e) ⪰ 0 : the second-order critical points of L are e
and −e.

4. With probability 1, the sequence of iterates converges to e or −e, that
is towards a solution of (P ) (one can check that L(−e) = L(e) = 0).
This is a consequence of Theorem 2.13 from the lecture notes (and, more
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specifically, from the remark after it: ∇L is not Lipschitz). Observe that
L has only three first-order critical points, hence the set of first-order
critical points is discrete and one of the two possible assumptions in the
theorem is verified.

Answer of Exercise 7
1. The vector x∗ is feasible for the problem (Basis Pursuit): Ax∗ = y.

Therefore, its ℓ1-norm is at least as large as the optimal value of the
problem:

||x∗||1 ≥ ||xBP ||1 = ||x∗ + h||1.
As a consequence,∑

i∈T∗

|x∗i| = ||x∗||1

≥ ||x∗ + h||1
=
∑
i

|(x∗ + h)i|

=
∑
i∈T∗

|x∗i + hi| +
∑
i/∈T∗

|hi|

≥
∑
i∈T∗

(|x∗i| − |hi|) +
∑
i/∈T∗

|hi|

=

(∑
i∈T∗

|x∗i|

)
− ||hT∗||1 + ||hT c

∗ ||1.

This implies ||hT∗||1 ≥ ||hT c
∗ ||1.

2. a) For any s ∈ Tl, s
′ ∈ Tl−1, because the coordinates of h are non-

increasing outside T∗,
|hs′| ≥ |hs|.

This implies that, for any s ∈ Tl,

||hTl−1||1 =
∑

s′∈Tl−1

|hs′| ≥ (Card(Tl−1))|hs| = 3k|hs|.

From this, we deduce that

||hTl
||22 =

∑
s∈Tl

|hs|2
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≤
∑
s∈Tl

||hTl−1||21
(3k)2

=
||hTl−1||21

(3k)2 (Card(Tl))

≤
||hTl−1||21

3k
.

b)

L∑
l=2

||hTl
||2 ≤ 1√

3k

L−1∑
l=1

||hTl
||1 from the previous question

≤ 1√
3k

L∑
l=1

||hTl
||1

=
||hT c

∗ ||1√
3k

≤ ||hT∗ ||1√
3k

from the first question.

c) By Cauchy-Schwarz,

||hT∗||1 ≤
√

Card(T∗)||hT∗ ||2 ≤
√
k||hT∗||2.

Combined with the previous question, it yields
L∑
l=2

||hTl
||2 ≤ ||hT∗||2√

3
.

3. a) As xBP is a feasible point of Problem (Basis Pursuit), we have AxBP =
y = Ax∗ = A(xBP − h) = AxBP − Ah. Consequently, Ah = 0.

b) As h = hT∗∪T1 + hT2 + · · · + hTL
, we have

||Ah||2 = ||AhT∗∪T1 +AhT2 +· · ·+AhTL
||2 ≥ ||AhT∗∪T1||2−

L∑
l=2

||AhTl
||2.

The vector hT∗∪T1 has at most Card(T∗) + Card(T1) ≤ k + 3k = 4k
non-zero coordinates. From the definition of the restricted isometry
constant,

||AhT∗∪T1||2 ≥ (1 − δ4k)||hT∗∪T1||2.
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Similarly, for any l ∈ {2, . . . , L},

||AhTl
||2 ≤ (1 + δ4k)||hTl

||2.

This gives the desired inequality:

||Ah||2 ≥ (1 − δ4k)||hT∗∪T1||2 − (1 + δ4k)
L∑
l=2

||hTl
||2.

c) Together, the previous two subquestions imply

(1 − δ4k)||hT∗∪T1||2 ≤ (1 + δ4k)
L∑
l=2

||hTl
||2

Using also Question 2.c,

(1 − δ4k)||hT∗||2 ≤ (1 − δ4k)||hT∗∪T1||2

≤ (1 + δ4k)
||hT∗||2√

3
.

Since δ4k < 1/4, this implies

3
4
||hT∗ ||2 ≤ 5

4
||hT∗||2√

3
⇒ 3

√
3

5
||hT∗ ||2 ≤ ||hT∗ ||2.

Since 3
√

3
5 > 1, this implies ||hT∗||2 = 0: the coordinates of h with

indices in T∗ are zero. From the first question, the coordinates of h
with indices in T c

∗ are therefore also zero, so h = 0 and

xBP = x∗.
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