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Chapter 1

Introduction

What you should know / be able to do after this chapter

Know the definition of “inverse problem”, and a few examples.

Understand what we call (in the context of this course) theoretical as-
pects and algorithmic aspects of an inverse problem. Know that the
course will be about algorithmic aspects.

Know the definition of “uniqueness” and “stability” in the context of
inverse problems.

For a linear problem, determine whether it is stable or not by looking
at the singular values.

With some guidance, be able to prove that a given inverse problem
satisfies the uniqueness and stability properties (or not).

Know our evaluation criteria for algorithms.
Be able to determine whether a given problem is convex or not.

Identify the main common points and differences between sparse and
low-rank recovery.

Understand the change of variable which turns phase retrieval into a
low-rank matrix recovery problem.
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1.1 Inverse problems

1.1.1 Definition

An inverse problem consists in identifying a (possibly complicated) object
from a set of observations'. For instance, if we are given (two-dimensional)
photographs of a building, viewed from different angles, reconstructing a
three-dimensional model of the building is an inverse problem. Here, the
“object” is the 3D shape of the building and the set of observations is the set
of photographs.

Mathematically, these problems are formalized as follows. Let E be the
set of possible objects, and F' the set of possible observations. The observation
procedure is described by a function M : ' — F. An inverse problem is, given
some observation y € F',

find x € E such that M(x) = y. (Inverse)

The notion of inverse problem is often opposed to the notion of direct
problem. A direct problem is the converse of an inverse problem: as-
suming the object and the observation procedure are known, compute
the observations. For instance, if we are given a description of a fluid
at some instant (viscosity, density, velocity at each point...), predict-
ing how the fluid will be one minute later is a direct problem, which
amounts to solving a specific partial differential equation. Here, the
object is the fluid, and the observation procedure is “let it flow for one
minute, then look at it”.

1.1.2 Theoretical aspects

Problems of the form (Inverse) can be approached from two main angles.

e One can try to describe the properties of the solutions, without ex-
plicitely computing them. I will call this the theoretical aspects.

Here, we will call observation any procedure which, from the object, produces an
outcome.
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e One can design algorithms to numerically solve the problem. I will call
this the algorithmic aspects. ?

This course is about algorithmic aspects. However, it is difficult to design a
sensible algorithm if one has no idea at all of the properties of the solution.
Therefore, in this section, we give a very brief overview of the theoretical
aspects.

When given a specific instance of Problem (Inverse), a first question that
arises is the existence of solutions: for an arbitrary y, does there always exist
a solution z to Problem (Inverse)? If we restrict ourselves to vectors y which
are the outcome of a real measurement process (that is, of the form y = M (x)
for some z), the answer is obviously yes. But if some errors have occured in
the process, the answer may not be obvious anymore. For the problems we
will consider in this course, existence will rarely be a problem, so we leave
this question aside.

Assuming a solution exists, the other main two questions are uniqueness
and stability.

e Uniqueness: Is the solution of Problem (Inverse) unique? This question
is crucial, since, if the solution is not unique, it is impossible to recover
the true object of interest with certainty.

More formally, we say that Problem (Inverse) satisfies the uniqueness
property if and only if

Va1, x9 € E such that xq # x9, M(x1) # M (x3).

e Stability: If y is not exactly known, but only available up to some
error, what will the solution(s) of Problem (Inverse) look like? Will
it be close to the “true” solution, the one we would have obtained if
there had been no error on y? This is also crucial: in real life, exact
measurements are never available.

There are several sensible, but not equivalent, ways to translate this in-
formal property to a formal one. A standard one is to say that Problem
(Inverse) is stable if there exists constants Cy, Cy > 0 such that

Va1, 29 € E such that x; # 0,

2This choice of names does not mean that there is no “theory” behind algorithms.
Actually, this course is about algorithmic aspects, but it will be mostly theoretical and
rigorous.
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Cilloy — 2o||p <[|M(21) — M(22)||p < Collzy — 22|, (1.1)

g—f is “not too large” (say at most 10). Here, ||.||g and ||.||r are

norms on E and F.?

and

Example 1.1: finite-dimensional linear inverse problem

Let us assume that

e E, F are real finite-dimensional vector spaces: £ = R? and F =
R™ for some d, m € N*;

o M : E — F is linear, represented by some matrix A4 € R™*?,

Under these assumptions, Problem (Inverse) rewrites as

find z € R? such that Az = v.

For a given y, assuming a solution x, exists, it is unique if
{z € Rdan =y} = {z.},

that is if and only if Ker(A) = {0} (A is an injective matrix).

We now assume that the solution is unique. Is it stable? If the norms
|||z and ||.||r in Equation (1.1) are the standard ¢*-norms, then it is
possible to show that the problem is stable if and only if the smallest
and largest singular values of A satisfy

)\max A

Amax(4)
)\min(A)

The ratio f\mj"‘((ﬁ)) is called condition number of A.

For more details, see the exercises.

As said before, these questions will not be the subject of the course. For
each newly encountered problem, we will try to give conditions under which

3These norms must in principle be carefully chosen according to the physical structure
of the concrete underlying problem. Some choices may reflect better than others the
desired properties of the solutions.
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the solution is unique and stable but we will not spend much time on it.
When these questions are not mentionned, the reader can simply assume
that the considered problem satisfies uniqueness and stability properties.
However, in principle, when facing a new problem, these questions must be
the starting point, otherwise we are at risk of working towards the conception
of algorithms for solving problems which can actually not be solved.

1.1.3 Our focus: algorithms

In this course, we will be interested in algorithms which allow to solve inverse
problems. Cambridge dictionary defines the word algorithm as

“a set of mathematical instructions or rules that, especially if given to a
computer, will help to calculate an answer to a problem.”

Following this definition, an algorithm can take many forms. In particular,
although the class of iterative algorithms (that is, those that repeat a set
of instructions until some stopping criterion is met) will be of particular
importance to us, one must not imagine that all algorithms are iterative.

In applications, a “good” algorithm is an algorithm which

e works: given a problem, it must output a correct solution; we can
tolerate the algorithm failing once in a while, but the failure rate must
be as small as possible;

e uses as few computational resources as possible: it must be fast (not
too many operations) and have a moderate memory footprint.

Here, we will be interested in algorithms for which, moreover,
e these good properties (especially the first one) can be rigorously proved.

This additional requirement tends to be in contradiction with the compu-
tational efficiency, in the sense that, oftentimes, the algorithms which work
best in practice are difficult to study rigorously. As a consequence, the al-
gorithms we will present in this course will in most cases not be the best
ones for real applications. They must be considered as toy models for “really
usable” algorithms, should ideally retain as many specificities of their “really
usable” counterparts as possible, but will inevitably miss some.

Similarly, the hypotheses under which we will establish correctness guar-
antees for the algorithms will often be much stronger than what holds in real
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applications. It is an important but difficult research direction to weaken
these hypotheses.

1.2 Convex vs non-convex

All inverse problems can be reformulated as optimization problems, that is
problems of the following form:

minimize f(x)
over all z € H
such that = € (Y, (Opt)

x € (.
Here, f : H — R U {400} can be any objective function, over a real or
complex vector space H, and C',...,Cy are subsets of H which model the
constraints imposed on the unknown zx.
An optimization problem is called convex if f is a convex function and

C1,...,Cs are convex sets. By extension, we say that an inverse problem is
convex if it can be reformulated as a convex optimization problem.

Definition 1.2: convexity

A function f : H — RU {+o0} is convez if, for any x1,2o € H and
any s € [0;1],

F(1=s8)xy + swa) < (1 —8)f(x1) + sf(z2). (1.2)

A set C' C H is convex if, for any x1,25 € C' and any s € [0;1], the
vector
(1 —s)x1 + sxo

is also an element of C.

You may also have encountered in previous courses the following char-
acterizations of convex functions:
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o if f:R% = R is differentiable, it is convex if and only if, for any
T,y € RY,
fy) = f(@) +(Vf(z),y —z). (1.3)

o if f:R?Y — R is twice differentiable, it is convex if and only if,
for any x € R,
V2f(z) = 0.

In first approximation, we can say that convex problems admit efficient
algorithms. This is not an absolute rule, since some convex sets or functions
are quite difficult to manipulate. However, it is true that many algorithms
exist for convex problems, with a behavior which is quite well understood.

The situation is very different for the problems we will consider in this
course, which are non-convex. For non-convex problems, the existence of
algorithms both guaranteed to succeed and running in an reasonable amount
of time is an exception. It is important to understand that this fact is due to
the intrinsic difficulty of non-convex problems, and not to the fact that better
algorithms exist, but we have not discovered them yet. In particular, many
families of non-convex problems have been proved to be NP-difficult. This
means that, unless P=NP, there exists no algorithm able to solve all problems
in the family with a time complexity at most polynomial in their dimension.
As a consequence, in this course, we will not try to propose algorithms able
to solve all problems of a given non-convex family: this is hopeless. At best,
our algorithms will be able to solve “a large part” of problems of the family.

1.3 Non-convex inverse problems: examples

Let us now present a few examples of non-convex inverse problems.

1.3.1 Sparse recovery - compressed sensing

Our first example is called sparse recovery or compressed sensing. It consists
in recovering a vector x € R? from linear measurements

Y “oar e R™,

where A € R™*? is a known matrix, under the assumption that z is sparse.
The word sparse means that z has a small number of non-zero coordinates:
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for some k£ € N* much smaller than d,
lzllo <k,

where ||z]|y = Card{i < d,z; # 0}. (This quantity is often called the ¢°-
norm, although it is not a norm, since it is not homogeneous.)

Note that, if m > d and A is injective, then this problem can be solved
by inverting A; it is not necessary to use the sparsity assumption. This
problem is only interesting when m is much smaller than d, in which case A
is not injective and, if we were to ignore the sparsity assumption, y would
not uniquely determine x.

Assuming that k is known, the problem can be written as

recover € R?
such that Az =y, (CS)
and ||z]]|o < k.

It is non-convex because the set {z, ||z||o < k} is non-convex.

Sometimes, the unknown z is not directly sparse, but only sparse when
represented in some adequate basis, or after some adequate linear trans-
formation. In this case, the condition “||x||¢ < k” must be replaced with
“l|®z||o < k", where ® encodes the basis or linear transformation.

This problem is notably natural in image processing, since many natural
images enjoy a sparsity structure. Photos, for instance, are well-known to be
approximately sparse when represented in a wavelet basis.

For compressed sensing, uniqueness of the reconstruction can be guaran-
teed through a condition on the kernel of A.

Proposition 1.3 : unique recovery for compressed sensing

We assume that Ker(A) does not contain a vector X such that || X||o <
2k. Then, if Problem (CS) has a solution, this solution is unique.

Proof. Let us assume, by contradiction, that Problem (CS) has two distinct
solutions X, Xy € R%. Then

A(Xl—XQ):AXl—AXQZy—y:O,
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so X1 — X5 belongs to Ker(A). And
1X1 = Xaflo < |[Xallo + [ Xa[lo < 2k,
which contradicts the assumption. O]

From this proposition, one can show that, if m > 2k, then almost all
matrices A guarantee unique recovery of the underlying sparse vector. Under
a stronger condition on A, one can also establish stability recovery guarantees
(see for instance the introductory article [Candés and Wakin, 2008]).

1.3.2 Low rank matrix recovery

In low-rank matrix recovery, the goal is also to recover an object from linear
measurements. This time, the “object” is a matrix X € R4*% (or X €
Céxd2) - As in the case of compressed sensing, there are not enough linear
measurements to uniquely determine X without additinal information, but
we do have some additional information on X: it is low-rank. This yields
the problem

recover X € R4*
such that L(X) = v, (Low rank)
and rank(X) <.

Here, £ : R94*% — R™ is the linear measurement operator and r is a given
upper bound on the rank of the matrix. Given that any d; x do matrix has
rank at most min(dy, dy), the rank constraint is only useful if » < min(dy, ds).
In some applications, it is relevant to assume that d; = ds and X is semidef-
inite positive: X > 0.

This problem is sometimes called matriz sensing, especially when L is a
random operator. A uniqueness result similar to Proposition (1.3) holds.

Proposition 1.4: uniqueness for low-rank matrix recovery

We assume that Ker(£) does not contain a matrix X such that
rank(X) < 2r.

Then, if Problem (Low rank) has a solution, this solution is unique.
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The proof of the proposition is identical to Proposition 1.3. From this
proposition, one can show (but it is not easy) that the solution of Problem
(Low rank), when it exists, is unique, for almost all operators £, provided
that

m > 2r(dy + dy — 2r) if 2r < min(dy, ds),
> dids if min(dl, d2) <2r< Qmin(dl, dg)

When r is small (of order 1, for instance), this shows that we can hope to
recover the “true” matrix X with a number of linear measurements much
smaller than what we would need if we did not know X to be low-rank (in
this case, we would need m > dim(R%*92) = d,d,, which is much larger than
2r(dy + dy — 2r) if r < min(dy, dy)).

Matrix completion Several special cases of Problem (Low rank) are of
particular interest, and form subfamilies of inverse problems with their own
applications and theoretical characteristics. The first one is matriz comple-
tion. In this case, the linear measurements available on X are a subset of
coefficients:

recover X € R%1*4
such that X;; = vy;;,Y(4,j) € Q (Matrix completion)
and rank(X) <.

Here, Q C {1,...,d1} x {1,...,dy} contains the indices of available coeffi-
cients.

The most popular application is the so-called “Netfliz problem”.* In this
application, X represents the opinion of users on films: the coefficient Xj; is
an “affinity score” between User ¢ and Film j (it represents how much User
i would like Film j). It is reasonable to assume that X is low-rank:® this
models the similarities between the users, and between the films (e.g. if User
1 and 2 have the same opinion on Films 1, 2, 3, 4, it is plausible that they also
have essentially the same opinion on Film 5). The available coefficients X;

4asked by Netflix in 2006, with a 1,000, 000$ prize, and declared solved in 2009

5Keep however in mind that this assumption is only approximately satisfied by the
“true” Netflix affinity scores matrix. On the other hand, the true matrix has additional
structure that can be exploited to solve the problem.
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correspond to pairs (7, j) for which User ¢ has watched Film j and sent the
corresponding score to the film distribution platform. The other coefficients
are not available, but the platform would like to guess them, so as to be able
to propose relevant film suggestions to their users. Guessing the non-available
coefficients exactly amounts to solving Problem (Matrix completion).

Phase retrieval Another special case of Problem (Low rank) which we
will discuss in length in this course is phase retrieval.

At first sight, phase retrieval problems have nothing to do with matrices
and low-rankness. They are problems of the following general form

recover x € C?

Ph trieval
such that |Lj(x)| =y;,Vj <m. (Phase retrieval)

Here, Ly,...,L,, : C¢ — C are known linear operators, the notation “|.|”
stands for the usual complex modulus, and vy, ..., v, are given.

The main motivations for studying phase retrieval come from the field
of imaging. Indeed, it is much easier to record the intensity (that is, the
modulus, in an adequate mathematical model) of an electromagnetic wave
than its phase. It is therefore frequent to have to recover an object from
modulus-only measurements. Oftentimes, these measurements can specifi-
cally be described by a Fourier transform (because, under some assumptions,
the diffraction pattern of an object is the Fourier transform of its character-
istic function), but not always. Phase retrieval is also of interest for audio
processing.

For any x € C? and u € C such that |u| = 1, it holds
| Lj(uz)| = |uly(2)] = |ul |L;(2)] = |L;(2)], Vi< m.

Therefore, the sole knowledge of (y; = |L;(2)|);<m can never allow to
exactly recover x. There is always a global phase ambiguity: x cannot
be distinguished from uz.

This is in general not harmful in applications, and we will be satisfied
if we can recover x up to a global phase.
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Given specific linear forms L;, it is in general difficult to determine if the
(Phase retrieval) problem satisfies the uniqueness and stability properties.
However, it is known that uniqueness holds “in principle” as soon as m is
larger than (roughly) 4d.

Proposition 1.5: [Conca, Edidin, Hering, and Vinzant, 2015]

Let us assume that m > 4d — 4. Then, for almost all linear maps
Li,..., L, :C?— C, it holds that, for all z,2’ € C?,

(ILj(@)] = L;(@)|,Vi <m) = (FueC |ul=12=uz).

With a slightly larger m, stability also “generically” holds.

Let us now explain why phase retrieval is a special case of low-rank matrix
recovery. Readers which are not perfectly comfortable with the notions of
Hermitian matrices and of semidefinite positive matrices should first read
Appendix A.

The crucial ingredient is an adequate change of variable: instead of re-
covering x € C? up to a global phase, let us try to recover

‘Z‘l‘Q T1T2 ... T1Tq

_ 3 _

def z271 |z2|® ... T2Ta
X = xr* =

zam e fmal?

A matrix X € C%™9 can be written as X = zz* for some z € C? if and
only if
X >0 and rank(X)<1.

When these conditions hold, z is equal, up to a global phase, to

\/)\_1217

where ) is the largest eigenvalue of X, and z; any unit-normed eigen-
vector for this eigenvalue.

Proof. For any z € C%, the matrix zz* is Hermitian, and semidefinite posi-
tive:
VzeCl  (zaza%2) = 2*(za*)z = |2*2]* > 0.
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It has rank at most 1 because Range(zz*) = Vect{z}.
Conversely, if X = 0 and rank(X) < 1, then X can be diagonalized in an
orthogonal basis (z1, ..., 2zq):

d
X = Z Apzpz;,  with Ap > - -+ > )4 the eigenvalues.
k=1

All the eigenvalues are nonnegative, since X = 0. Since rank(X) < 1, they
are all 0, except possibly the first one, so

X =Mz = (VW z) (W Az)h,

so it can be written as X = za* with z = v/\;2;. This proves the first part
of the remark.

For the second part, let us assume that X = zz* for some x € C%. We
have just seen that X is also equal to #&* for # = /A121. We must simply
show that x and Z are equal up to a global phase. As

Vect{z} = Range(X) = Vect{z},

it holds that x and ¥ are colinear: there exists v € C such that x = uZ. In
addition,
||z]]* = Tr(X) = ||2]]?,

hence z and & have the same norm. As ||z|| = |u|||Z||, this implies that
|u| = 1: = and Z are equal up to a global phase. ]

From the previous remark, it is equivalent to recover x up to a global
phase or X. Indeed, X can be computed from z (even up to a global phase:
(uz)(ux)* = vuxz* = xx* if |[u| = 1) and x can be computed up to a
global phase from X by extracting the only eigenvector of X with non-zero
eigenvalue.

In addition, for any j, knowing |L;(z)| is equivalent to knowing |L;(z)[?.
Denoting v; the vector such that L; = (v;,.), we have

L@ = (v, 2) {oy,2)
= (v}2)(a"0y)

— * .
—vav].
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Consequently, Problem (Phase retrieval) is equivalent to

recover X € C¢
such that v Xv; = y,Vj <m,
X =0,
rank(X) < 1.

(Matrix PR)

This is, as announced, a low rank matrix recovery problem.

1.3.3 Other examples

These examples will not be covered in class (except for super-resolution, but
later); they are provided for curious readers only.

Machine learning In a machine learning task, the goal is to predict some
output y given some input x. For instance, the input can be a photograph,
and the output the name of the objects represented on the photograph, or
the input can be a low-quality audio signal and the output the corresponding
high-quality signal. We denote P the “perfect” prediction function, which to
an input x maps the correct

y = P(x).

The predictor P is unknown and must be learned from the available input-
output examples (z1,41),. .., (Zn,yn). This leads to the problem

find PeH

ML
such that P(xy) = v, Vk < n, (ML)

where H is a well-chosen class of functions (H can for instance be the set of
linear maps, or the set of neural networks with a given architecture).

The questions raised by Problem (ML) are quite different from the ones
raised by the other inverse problems we have seen. Indeed, it often hap-
pens that the perfect predictor P is not in the chosen set H, in which case
the problem may not have an exact solution, only an approximate one. In
addition, if H is a bit sophisticated, there are typically several (and even
many) elements P € H such that P(zy) = yx for all k& (in other words, the
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uniqueness property does not hold). All these elements P yield the same
predictions for the available inputs x1,...,x,, but may differ significantly
on unseen examples. It is therefore important to choose, among these P,
the one which has the best chances to perform well on unseen examples (i.e.
which generalizes best)

Dictionary learning In this problem, one is given a set of “interesting”
signals y1,...,%, € R? (e.g. patches of natural photographs or of medical
images), and the goal is to learn a good “representation” for them, under
the form of a dictionary. A dictionary is a set of elements a4, ..., ay € R?,
usually called atoms, such that any signal y, can be written as a linear
combination of a small number of atoms:

M
Y = Z )\l(k)al such that ||A®||y is small.
=1

We write the dictionary in matricial form by concatenating the atoms
into a single matrix:
A:(al as ... CLM)

Finding the dictionary A consists in solving the following problem

find A € R*M \O) - A ¢ RM
such that AN®) =y VE < m, (Dictionary learning)
AP0 < 8,

where S is an a priori bound on the number of atoms involved in the decom-
position of each signal y;.

Super-resolution Super-resolution is a general term which covers all prob-
lems where one tries to recover a “sharp” signal from a “blurred” version. In
this paragraph, we present the simplest possible model for such a problem.

The signal we aim at identifying is a collection of point masses in [0; 1[.
The positions of the masses are 7q,...,7s and their weights are ay,...,as.
This signal can be represented by a measure

S
n=7_ ady, € M([0;1]),

s=1
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where M([0; 1]) is the set of signed (or even complex-valued, if aq, . .., ag are
complex) finite Borel measures on [0;1] and, for any s, ¢, is the dirac at
position 7.5

The “blurred” version of the signal is modelled as the set of low-frequency

coefficients of the Fourier transform of u: for all k = —N, ..., N, we have
access to
1 S
ﬂ[k‘] _ / e_%iktdu(t) (: Zase—%rik‘rs) )
0 s=1
If we call y_u, ..., yn the known Fourier coefficients, the problem can be
written as

find p € M([0;1])
such that k] = yx,Vk = =N, ..., N, (Super-resolution)

and p is a sum of .S diracs.

This problem can be seen as a continuous version of compressed sensing
(Problem (CS)). The unknown, instead of a finite-dimensional vector, is a
measure on [0; 1[, but it must still be recovered from linear measurements,
and satisfies a sparsity constaint (it is the sum of at most S diracs).

Sthat is to say, d,, is the measure such that, for any measurable E C [0;1[, u(E) = 1
if 7, € F and u(E) = 0 otherwise.



Chapter 2

(General non-convex optimization

What you should know / be able to do after this chapter

Remember that, while it is a reasonable goal to find an approximate
minimizer of a convex function, the same objective is in general not
reasonable for a non-convex function.

Know the definition of first-order and second-order critical points.

Know that a local minimizer is a second-order critical point, that the
converse may not be true, but is true for so-called Morse functions.

Know that approximate second-order critical points can be found using
a second-order method (at least for smooth enough objective functions).

Describe the Trust Regions algorithm (without the detailed radius up-
date procedure).

About gradient descent:
— know a set of assumptions under which gradient descent iterates

necessarily converge (Theorem 2.11);

— know that, under these assumptions, the limit is a first-order crit-
ical point;

— know that, under these assumptions, the limit is a second-order
critical point for almost any initial point;

— be able to sketch the proof in the case where the objective function
is quadratic around any first-order critical point.

21
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The aim of this chapter is to give an overview of general non-convex
optimization algorithms.

To simplify the discussion, let us restrict ourselves to a finite-dimensional
and unconstrained optimization problem. “Unconstrained” means that, in
Problem (Opt), there are no constraint sets Cs. In other words, we consider
a problem of the following form:

minimize f(z) over all z € R?.

For simplicity, we assume that a minimizer exists.

In Section 2.1, we explain why finding a minimizer of f is possible (at least
approximately) when f is convex, but in general extremely difficult when f
is non-convex. For non-convex f, optimization algorithms can at best find a
so-called critical point. We define two versions of this notion: first-order and
second-order critical points.

In Sections 2.2 and 2.3, we turn to concrete algorithms, and describe the
convergence guarantees of standard optimization methods towards, respec-
tively, first and second-order critical points.

2.1 Critical points versus minimizers

2.1.1 Finding minimizers of non-convex maps is difficult

Definition 2.1

A point z, € R? is a (global) minimizer of f if
f(z) > f(z,),Vz € R%
It is a local minimaizer of f if there exists r > 0 such that
f(z) > f(zy),Vz € B(z,,7).

(Here, B(x,,r) is the ball centered at x, with radius r.)

You have seen in previous courses that, when f is convex, under reason-
able assumptions (some form of smoothness of f, in particular), it is possible
to numerically find an approximate minimizer, with an arbitrary level of
precision. Intuitively, one reason for this is that convexity allows to deduce
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global information from local one. For instance, if one knows the values at
a few points of a convex function f and its gradient, one has access (from
Inequalities (1.2) and (1.3)) to upper and lower bounds on f. Hence, one
can obtain an approximation of the minimum. It is then possible to query
the values at other points to refine the approximation. This is illustrated on
Figures 2.1a and 2.1b.

In addition, a local minimizer of a convex map is necessarily a global
one.! Therefore, it seems reasonable that algorithms based on local update
rules can find a global minimizer.

But if the function does not satisfy a property comparable to convexity,
the knowledge of its values at a few points provides no information about
the values at other points and, in particular, no information on its minimum.
This is illustrated on Figures 2.1c and 2.1d. Moreover, non-global local min-
ima may exist, and can trap iterative algorithms which use local information.
This is what makes non-convex optimization much more difficult than convex
optimization.

In the case where f is not convex, an intuitive strategy to find a global
minimizer of f is to query information on f (its value, at least) at all points of
a fine grid of R? (more realistically, a bounded subset thereof), and approxi-
mate the global minimizer with the minimizer on this fine grid. This strategy
indeed works, if f is somewhat smooth, in the sense that the output is an
approximate minimizer, with a precision that can be made arbitrarily good
if the grid is refined. However, it is extremely slow as soon as d is larger than
1 or 2: the number of points in a grid of (for instance) [0; 1]¢ with spacing ¢

is (%)d, which is prohibitive as soon as d > 2 or 3. Unfortunately, this simple
intuitive strategy is essentially optimal, implying that ¢ is not possible to
design an algorithm which globally minimizes any non-convex function in a
reasonable amount of time?.

Thus, what can we expect from a good non-convex optimization algo-
rithm? It won’t be able to find global minimizers with certainty. Can it at
least be guaranteed to find a local minimizer, if one exists? It turns out that
this is also out of reach: there are functions, even polynomial ones, for which

Proof: Let zj,. be a local minimizer. For any = € R, it holds that f(z..) < f((1 —
$)Zioc + sx) for any s € [0;1] close enough to 0 (as xjec is a local minimizer). From the
definition of convexity, this implies that f(zjoc) < (1 — 8)f(zi0c) + sf(x), hence f(z0.) <
f(z). As this is true for any z, xj,. is a global minimizer.

2even if we restrict ourselves to non-convex functions satisfying standard additional

smoothness assumptions
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8 8 5
6 6 |
41 4

Figure 2.1: (a) Representation of the values and derivatives of a function
f:R — R at a few points. (b) Upper and lower bounds on f (respectively
orange and red lines) one can deduce from the knowledge of these values
and derivatives if f is convex. Observe that it gives a reasonably tight ap-
proximation of f, its minimum and minimizer. (c) A non-convex function
compatible with these values and derivatives. (d) Another non-convex func-
tion compatible with these values and derivatives. Observe that the minimum
and minimizer are significantly different from 2.1c.
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determining whether a point is a local minimum is already NP-difficult.?
Therefore, we must lower our expectations again: if we try to solve an arbi-
trary non-convex problem, we cannot hope to find a local minimum; at best,
we can find a critical point.

2.1.2 Ciritical points

Critical points are points at which “the derivatives of f satisfy the same
properties as at a local minimizer”.

Definition 2.2: critical point

We say that an element z of R? is
e a first-order critical point of f if V f(z) =0,
e a second-order critical point of f if V f(x) = 0 and Hess f(x) = 0.

Of course, the first notion is well-defined only for differentiable func-
tions f, and the second one only for twice-differentiable ones.

\ )
Remark

Local minimizers of f are necessarily second-order critical points, but
the converse may not be true. For instance, the map z € R — 23 € R
has a second-order critical point at 0, but no local minimizer. However,
if  is a second-order critical point such that Hess f(z) > 0, then x is
a local minimizer of f.

3Interested readers can refer to [Murty and Kabadi, 1987] for an example. In a nutshell,
this article shows that it is NP-difficult to check whether an integer matrix D € Z?*? is
copositive, i.e. whether 27 Dz > 0 for any z € (RT)?. And this is equivalent to checking
whether 0 is a local minimum of

f : RE - R
d 2.2
T — Zi,j:lDijmixj'
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Example 2.3

Let us consider the map

For any (z,y) € R?,

Vi) = (T2 hespayy = (372772 9).

First-order critical points of f are the points (z,y) at which Vf(z,y) =

(2), ie.
(—1,0),(0,0) and (2,0).

The Hessian at these points is

Hessf(—l,o)z(g g) Hessf(O,O):(_O2 g)

and Hessf(2,0) = (g (2)) :

A diagonal matrix is semidefinite positive if and only if its diagonal co-
efficients are nonnegative. Consequently, (—1,0) and (2, 0) are second-
order critical points, but (0,0) is not.

Actually, the Hessian at (—1,0) and (2,0) is definite positive (as the
diagonal coefficients are strictly positive). Therefore, (—1,0) and (2,0)
are local minimizers of f. More precisely, it can be shown that (2,0)
is a global minimizer while (—1,0) is only a local one.

In the rest of the chapter, we will show that standard algorithms are
able to find critical points of non-convex functions (first or second-order,
depending on the assumptions). But the reader may wonder: why bother
proving that a given non-convex algorithm always outputs a critical point
of the objective function? What we really want are minimizers of f, not
critical points! For us, the main reason is that knowing that an algorithm
returns a critical point for sure is a first step towards analyzing its behavior.
Indeed, it allows us to restrict our analysis of possible outputs to the set of
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critical points. In particular, if the objective function has few critical points,
it already provides a lot of information on the output. Another motivation
to have in mind is that, although it is not true that second-order critical
points are always local minimizers (see the last remark), it is true for generic
functions. This is explained in the following subsection.

2.1.3 When second-order critical points are local mini-
mizers

In this subsection, we assume that f is C2.

Definition 2.4

Let x € R? be a point. We say that the Hessian of f at x is degenerate
if

Ker (Hess f(z)) # {0}.

Otherwise, it is called non-degenerate.

Definition 2.5

The map f is called a Morse function if, for any first-order critical
point x of f, the Hessian of f at z is non-degenerate.

Proposition 2.6

If f is a Morse function, all its second-order critical points are local
minimizers.

Proof. We assume that f is Morse.

Let # € R? be a second-order critical point of f. To show that it is a
local minimizer, it suffices to show that Hess f(x) is positive definite.

From the definition of second-order criticality, we know that Hess f(x) =
0, i.e. all its eigenvalues are nonnegative. In addition, Ker (Hess f(z)) = {0},
as f is Morse, so Hess f(x) has no zero eigenvalue (otherwise, the correspond-
ing eigenvectors would belong to the kernel). Therefore, all eigenvalues are
strictly positive, which means that Hess f(x) > 0 (see Proposition A.3). O
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Theorem 2.7

For almost any a € R?, the map

fo @ RY

N
T —

f(@) + (a, x)

is a Morse function.

Proof. Let a € R%. The first-order critical points of f, are the points z € R?
such that

Via(r) = Vf(z)+a=0,

that is,
a=—-Vf(z).

Moreover, for every z € R?, we have
Hess f,(z) = Hess f(z),

so a first-order critical point z of f, has a degenerate Hessian if and only if
Hess f(z) is degenerate, which is equivalent to — Hess f(z) being degenerate.

Consider the map F = —V f : R? — R?. For any a € R?, from the above,
f. is not Morse if and only if a is a critical value of F, i.e. there exists v € R?
such that

a=—-Vf(x)=F(r) and — Hess f(z) = dF(z) is degenerate.
By Sard’s theorem, the set of critical values of F' has Lebesgue measure zero

in R?. In other words, the set of vectors a for which f, is not Morse has
Lebesgue measure zero. O]

This theorem shows, in some sense, that sufficiently generic objective
functions are Morse.*

4This assertion can be formalized in different ways. For instance, it is possible to show
that the set of Morse functions is a Baire set in C?(R%,R) for the most standard topology.
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2.2 Finding first-order critical points

Assuming f is differentiable, the most basic optimization algorithm is gradi-
ent descent. It defines a sequence of iterates (z;);en by

Ty = 2 — oV f(ay), VteN

Here, the parameters oy > 0 are called the stepsizes.
In this subsection, we are going to see the following results:

e under very weak hypotheses, x; is an approximate first-order critical
point for ¢ large enough (Corollary 2.9);

e under slightly stricter (but still weak) hypotheses, z; actually converges
to a first-order critical point when ¢t — +oo (Theorem 2.11).

We first need a proposition about the decay of f along the gradient de-
scent trajectory.

Proposition 2.8

We assume that the gradient of f is L-Lipschitz® for some L > 0: for
any z,y € RY,

IVf(2) = Vi)l < Lllz = ylls.

10

We consider gradient descent with stepsize o = 1.

Then, for each t € N,

Flen) < Fl@) — 52V IR

%This assumption is often called L-smoothness.
®Other choices are possible. In practice, L is usually unknown and the stepsizes
are chosen using linesearch.

Proof. For all x,h € R,

1

flx+h)=f(x)+ (Vf(x+th),h)dt

1

= fl@)+ | (Vf(2)+ (Vf(z+th) =V [(z)) h)dt

S S—
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=f(x)+(Vf(x),h>+/O (Vf(x+th)—Vf(x), h)dt

< 7@+ (V1 [ 95 ) = 5@l
(by triangular inequality)
< I+ (V7@ + L [ (e
(as Vf is L-Lipschitz)
L
= [(@) + (V] (@), h) + SIAll5.
We apply this inequality to z = z; and h = —1V f(z,):
VteN, flzum) < fla) — —||Vf($t)||2

O

This property implies that the gradient descent iterates are “asymptoti-
cally first-order critical”, in the sense that V f goes to zero along the sequence.

Corollary 2.9

Under the same assumptions as Proposition 2.8, and recalling that we
assume the existence of at least one minimizer of f,

IV £ (@2)]l2 =5 0.

Proof. For any T' € N, from Proposition 2.8,
T

o S IVFEIB < 3 [F) — flan)]
= f(xo) — f(@rs1)

< f(zo) — min f.

Consequently, the sum >, ||V f(z:)||3 is convergent, so its terms go to
zZero. [

Refining the argument, we can moreover give an a priori estimate for the
convergence rate of ||V f(x;)||2 towards zero.
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Corollary 2.10

We keep the same assumptions as in Corollary 2.9
For any T, if we set Zr = argmin {||V f(x)||2,z € {xo,...,zr}}, this
point satisfies

: 2L(f(w0) — min f)
I\Vf(xT)HQS\/ o) — )

\. J

Proof. We have seen in the proof of Corollary 2.9 that, for any T,

D IV F@)ll3 < 2L(f(xo) — min f).

t=0

Since ||V f(Zr)|]2 < ||V f(z)||2 for any ¢ < T,
(T +D|IVf(@r)ll5 < 2L(f(z0) — min f),

which implies

: 2L ((w0) — min f)
HW(xT)IIzS\/ e

O

Another way of stating the above result is that, for fixed Lipschitz con-
stant L and gap (f(zo) — min(f)), gradient descent needs at most O (%)
iterations to find an e-approximate first-order critical point. Let us mention
that this convergence rate is optimal: for any algorithm and any €, there is at
least one function with the given Lipschitz constant and gap such that the al-
gorithm needs to query at least O (E%) values of the function or its derivatives
to find an e-approximate first-order critical point [Carmon, Duchi, Hinder,
and Sidford, 2020].

We have seen that gradient descent iterates are asymptotically first-order
critical. At this stage, a natural question is: do the iterates actually converge
towards a first-order critical point? This may not be true for non-coercive®
maps: the iterates may diverge to infinity. For coercive functions, it is also
not always true. In particular, it is possible® that the iterates cycle around

A function f is coercive if f(x) — 400 when ||x||z — +o0.
6in theory: in practice, this is very rare
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a large set of critical points. Therefore, we need additional assumptions to
obtain rigorous convergence guarantees.

Theorem 2.11: convergence of gradient descent iterates

We still assume that the gradient of f is L-Lipschitz, for some L > 0.
We also assume that f is coercive. In addition, we make either of the
following two assumptions:

e the set of first-order critical points of f is discrete;®

e f is analytic.®

We still consider gradient descent with stepsize %
The sequence of iterates (x;)cny converges towards a first-order critical

point of f.

“A set F is discrete if, for all z € E, there exists € > 0 such that E N B(x,¢) =
A function is analytic if it is C> and agrees with its Taylor series in a neigh-
borhood of every point.

J

Proof. We only prove the result for the first assumption. For the second one,
the reader is referred to [Absil, Mahony, and Andrews, 2005, Thm 3.2].
From Proposition 2.8, the iterates satisfy

flzy) < fxo), VteN.

We define A = {z € R?, f(x) < f(xo)}. It is a closed and bounded set, which
contains all points z;. Consequently, (z;)ien is bounded, hence has at least
one accumulation point.

From Corollary 2.9, and because Vf is continuous, all accumulation
points are first-order critical.

Let z.1,...,2.g be the first-order critical points in A. There is only a
finite number of them because the set of first-order critical points is discrete,
hence has finite intersection with every bounded set.

Let us fix

L.
€<3 min ||Zes — Tesr||2,
def

oMU Blren)
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We observe that pu > 0; otherwise, f would have a first-order critical point
in A, different from all z. s, contradicting the definition of z.1,...,z.s.
From Corollary 2.9, for t large enough, ||V f(z¢)||2 < p, hence

T € U B(z.,, €).

s<S

Also for t large enough, ||z41 — 24|l = ||V f(21)||]2 < €. Because all balls
B(z.s,€) are at distance at least € one from each other (from the definition
of €), it is impossible that

zy € B(zs,€) and x40 € Bz, ¢€) for s # s.

Therefore, for ¢ large enough, all iterates belong to the same ball B(z,, €).
Let s be the index of this ball. All accumulation points of (z;)cn are first-
order critical and the only first-order critical point in B(x.s,€) is Z.s, SO
(xt)ten is a bounded sequence with a single accumulation point, which is z ;.

Therefore,

t—+o0
Ty — Tes-

If the gradient of f is not Lipschitz, but simply continuous, the theorem

is still true, except for the fact that the stepsize of gradient descent
cannot be chosen as ¢ (the Lipschitz constant L is not defined): it

must be chosen by linesearch.

2.3 Finding second-order critical points

In this subsection, we assume that f is C? over R

2.3.1 Second-order algorithms

Since the definition of second-order critical points involves the Hessian of f, it
seems reasonable that using Hessf during the optimization procedure might
help to find a second-order critical point. Such algorithms, which use second-
order derivatives, are called second-order algorithms. In this paragraph, we
present a simplified version of one of them, called Trust-Region.
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The starting point of this algorithm is that for any z € R¢,
1
f(@+h) = f(z)+ (b, V[(2)) + 5 (b, Hess [ (x)h) + o [|1]]"). (2.1)

In view of this equation, one might be tempted to define the iterates (x;);en
using a recurrence relation x;,, = x; + hy, where

b € angming e (£(e0) + (0. V() + 5 {h Hessf(xh) )

Unfortunately, this definition makes no sense: when Hessf is not semidefinite
positive, the above function is not lower bounded, hence has no minimizer.
Even if a minimizer exists, it is only a sensible choice for x;,; if it belongs to
the neighborhood of z; on which Approximation (2.1) is valid. Therefore, it
is best to refine the previous definition as

Tir1 = Ty + ht, (22&)

hy € ET\I;L%I?}%H (f(xt) + (b, V f(xy)) + % (h,Hess f(:vt)h)) : (2.2b)

In this definition, R; is a positive number, the trust radius, which serves as
an estimation of the size of the region over which Equation (2.1) provides a
good approximation of f.

Theorem 2.12: convergence of the trust-region method

Let € > 0 be fixed.
We assume that f has at least one minimizer z, and Hess f is Lo-
Lipschitz for some Ly > 0:

Va,y,h € R", |[|(Hess f(x) — Hess f(y))h||2 < La||lz — yl|2 ||A]]2.

Let (x¢)¢en be defined as in Equations (2.2a) and (2.2b), with R; = %
for any t.
For any xy, € R", the algorithm finds an e-approximate second-order
2 —f(x o o .
critical point in at most O <%/2f())) iterations. More precisely,
there exists L2(F(z0) — £(2)
t<c 372
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(for some explicit constant ¢ > 0) such that

|V f(z)]]2 < Lig and Hessf(z;) + ely = 0.

Sketch of proof, based on [Ye, 2015]. We admit the following statement: for
each t, there exists o, > 0 such that

(Hessf(z¢) + 0¢ly) hy = =V f(x;) and Hessf(x;) + 0.y = 0.

In addition, if oy > 0, then ||h¢||2 = R;.
2
We first show that there exists ¢ < AL (;O/)Q_f @) 4 1 guch that

Ve

o < —.

2

By contradiction, let us assume that it is not true. Because the Hessian is
2 —
Lo-Lipschitz, for all t < AULY(f(wo)—f(ax) 1

3/2

f(@eg1) = fze + hy)
< fwe) + (he, Vf(20)) + % (he, Hess f(z)he) + %HhtH%

1 L
= f(xy) — (hy, Hessf(xy)hy + ophy) + 3 (hy, Hess f(x)he) + €2||ht||§’
1

o
= f(x) 5 (he, (Hessf (z¢) + oidg) hy) — gth? + FRt’d
(]|h¢]]2 = Ry since a; > 0)
o L
< flay) — éRf + FZRf
(as Hessf (z;) + 041y = 0),
L
<) - Yo+ 2Ry
(3/2
= f(xt) - @
Therefore, for any t < 24L%(f(65030/)2—f(x*)) ey

f(xo) = f(z4) > f(xo) = f(2441)
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¢3/2

> ——t
2412"

L5 (;O/){f (x*))w . This contradiction concludes

which cannot be true for t = [
the first part of the proof.

Let t < 24L§(f(:3(})2_f(x*)) + 1 be such that o, < %g We show that ;. is
an approximate second-order critical point. First, it holds

Hessf(x411) = Hessf(z; + hy)
= Hessf(xi) — Lo ||| 14
= Hessf(x;) + 0¢dg — 0¢lqg — La||h|| 14
= —ou Ly — Lao||h|| 14

= —Vely.

Second, ||V f(we1) — V f(ar) — Hess () hulla < 2| |h3, hence

L
IV f (@)l < [V () + Hessf () |2 + f\lhtH%

L
= || = ovhull2 + fllhtllg

Ve Ly s
< Y- i
< 2Rt+ 2Rt
_36
8Ly’

2.3.2 Gradient descent, again

We have seen in Subsection 2.2 that, under mild assumptions on f, gradient
descent, starting at any point o € R?, allows to find an approximate first-
order critical point. The same is not true for second-order critical points.
For instance, if xq is a first-order critical point of f, but not a second-order
critical point, then

Top=T1 =T2 = ...,

because V f(zg) = 0, hence gradient descent stays stuck at zy and never gets
close to a second-order critical point.
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Nevertheless, this phenomenon is very rare: for “general” initializations,
it does not happen, and gradient descent converges to a second-order critical
point.

Theorem 2.13: [Lee, Simchowitz, Jordan, and Recht, 2016],

[Panageas and Piliouras, 2017]

Let f be a C? function which satisfies the same assumptions as in
Theorem 2.11: the gradient of f is L-Lipschitz, for some L > 0; f is
coercive and at least one of the following two assumptions holds:

e the set of first-order critical points of f is discrete;
e f is analytic.

We consider gradient descent with constant stepsize a €]0; 7[.
For almost any z,* (2;);en converges to a second-order critical point.

%that is, for all zg outside a zero-Lebesgue measure set

\.

The theorem is still true even if Vf is not Lipschitz, if we replace
“with constant stepsize a €]0; %[” with “for a small enough stepsize «,
possibly depending on xy”. However, it is open whether the same holds
true when the stepsize is chosen using the most standard linesearch
procedure; see [Musat and Boumal, 2025].

Intuition of proof. We consider the setting where the first hypothesis holds
true: first-order critical points form a discrete set.

Theorem 2.11 shows that the gradient descent iterates (z;);en converge
to a first-order critical point whatever z.

We show that, if z.,.; is a first-order but not a second-order critical point
of f, then (x;);en does not converge to i, for almost any xg. Since there are
only countably many first-order critical points (a discrete set is countable),
this is enough to establish the result: a countable union of zero Lebesgue
measure sets has Lebesgue measure zero.

We consider an arbitrary first-order critical point which is not second-
order critical. Up to translation, we can assume that it is 0.
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We make the (very) simplifying hypothesis that f is quadratic in a ball
centered at 0, with radius r:

Vx € B(0,19), f(z)=={(x,Mzx)+ (z,b),

DN | —

for some n x n symmetric matrix M.

For any = € B(0,79), Vf(x) = Mz 4+ b. Since 0 is a first-order critical
point, we necessarily have b = 0. In addition, Hess f(z) = M for any x €
B(0,rp). The assumption that 0 is not a second-order critical point is then
equivalent to the fact that M ¥ 0.

The matrix M can be diagonalized in an orthonormal basis:

At 0
M:UT<: :)U,
0 o Xa

with Ay > --- > A4 the eigenvalues of M and U an orthonomal matrix. Up
to a change of coordinates, we can assume U = Id. Since M ¥ 0, at least
the smallest eigenvalue of M is negative: Ay < 0.

If the sequence (z;)ien of gradient descent iterates converges to ey = 0,
then x; belongs to B(0,ry) for any ¢ large enough, in which case

T =z — oV f(xy)
=xy — aMuz

( (1701)\1):1:@1 )
(l_a);d)xt,d
We fix ty such that this relation holds for any ¢t > ty. Then, for any s € N,
(lfa)\l)sa:toyl
Ttog+s — ( ) .
(1—aXq)*eig,a
If the sequence converges to 0, all the coordinates of x;,, must go to 0 when
s goes to +o0o (for any fixed t), which means that

Ve {l,...,d}, (1—aX\)’zyr =70 (2.3)

We have said that \; < 0, hence 1 < 1 —a); and (1 — a\y)® /4 0 when
s — +00. In order for Property (2.3) to hold, we must therefore have

Tto,d = 0.
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To summarize, we have shown that, if (x;)eny converges to 0, then, for
some %o,

Ty, € E X/ {z € B(0,1¢) such that z; = 0}.

As a consequence,
zo € (Id — aV ) ().

(For any map ¢ : R" — R", we define g7 (&) as the set of points z such
that g'o(x) = gototimeso g(x) € £.) Therefore, the set of initial points zq for
which gradient descent iterates may converge to 0 is included in

Jad—avs) ).

teN

The set £ has zero Lebesgue measure and one can check that Id — aVf is a
diffeomorphism, hence (Id — aV f)7*(£) has zero Lebesgue measure for any
t € N, and the set of “problematic” initial points also has zero Lebesgue
measure. O
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Chapter 3

Convexification

What you should know / be able to do after this chapter

Understand the general principle of convexification, and what “tight-
ness’ means.

Be able to suggest convex relaxations of non-convex problems, based
notably on the « convex hull » reasoning which provides intuition in
the cases of compressed sensing and low-rank recovery.

Using a 2-dimensional picture, explain why (Basis Pursuit) can be ex-
pected to be a tight relaxation of compressed sensing.

Know the definition of « restricted isometry ».

Know the proof technique for establishing tightness guarantees which
relies on restricted isometry (in particular, know the statements of The-
orems 3.4 and 77?).

Know that restricted isometry holds true for the simplest cases of ran-
dom linear operators.

Explain the limitations of this technique: restricted isometry does not
hold for some more “structured” operators.

Understand the proof scheme from Figure 7?7 and be able to apply it
in other (simpler) settings.
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Original Find the
& N Convex N solution of the
non-convex . .
approximation convex

problem

problem

i
Deduce the

solution of the
non-convex
problem

Figure 3.1: Principle of convexified algorithms, when relaxation is tight.

e Understand (i.e. be able to do it again alone, with minimal help) the
derivation of the dual problem of TV minimization.

A possible strategy to overcome the difficulty of solving a non-convex in-
verse problem is to approximate the non-convex problem with a convex one.
This convex approximation is called a convex relaxation. Since numerically
solving a convex problem is in general doable, we can usually solve the ap-
proximation. At first sight, there is no reason why solving this approximation
should provide useful information on the non-convex problem itself. But sur-
prisingly, it turns out that, in many situations, the convex approximation has
the same solution as the original non-convex problem! One then says that
relaxation is tight. When this happens, it yields a convenient method for
solving the non-convex problem. This general scheme is depicted on Figure
3.1.
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3.1 The basis: compressed sensing

3.1.1 Convexification: principle

The model example for this chapter, which serves as a basis for other prob-
lems, is compressed sensing.

recover © € R?
such that Az =y, (CS)
and ||z||o < k.

When the problem has a unique solution, it is the vector with minimal ¢°-
norm among all vectors x such that Az = y. This allows to reformulate the
problem as
minimize ||z||o
for z € R? (£°-min)
such that Ax = y.

The set {x € R? Az = y} is convex. The non-convex part of the problem
is the objective function ||.|[p. To make the problem convex, we replace the
("-norm with the ¢'-norm:

d
el = lil,
i=1
which leads to the following convexr problem:

minimize ||z||;
for z € R? (Basis Pursuit)
such that Ax = y.

3.1.2 Intuition

An intuitive reason for using the /’-norm as a convex approximation of the
(°-norm is that the unit ¢*-ball is the smallest convex set which contains the
“maximally sparse” vectors of norm 1.
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Proposition 3.1: ¢*-ball as a convex hull

Let S be the set of vectors with exactly one non-zero coordinate, equal
to —1 or 1.
The unit /*-ball {x € R?||z||; < 1} is the convex hull of S.

Proof. This proposition is a consequence of Proposition 3.2. Indeed, the unit
?'-ball is a closed compact and convex subset of R?. It is therefore the convex
hull of its extremal points (from the Krein-Milman theorem, see for instance
[Barvinok, 2002, Chapter II, thm 3.3]), that it is the convex hull of S. O

The next proposition states a stronger, but similar, result, which is crucial
in explaining the success of (Basis Pursuit) (i.e. why it is oftentimes a tight
convex relaxation).

Proposition 3.2 : extremal points of the ¢!-ball

The extremal points® of the unit ¢!-ball {z € R, ||z||; < 1} are the
vectors with exactly one non-zero coordinate, equal to —1 or 1.

2An extremal point of a convex set C' is a point y which cannot be written as
y=01—-0)z + 0z

for z1, 2o € C different from y and 6 € [0;1].

Proof. Let S be the set of vectors with exactly one non-zero coordinate, equal
to —1 or 1. Let By be the unit ¢-ball.

First, we show that the elements of & are extremal points of B,. Let
y € S be fixed. Let i be its unique non-zero coordinate. Let us assume
for simplicity that y; = 1 (the reasoning can be adapted for y; = —1). Let
21,29 € By, 6 € [0;1] be such that

Y = (1 — 9)2’1 + 022.

We must show that zy = y or 20 = y. If § = 0, then z; = y, and if § = 1,
then 2z, = y, so we can assume 6 # 0, 1.

We have
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Observe that (21); < |(21)i] < ||z1]l1 < 1 and, similarly, (22); < 1. These
two inequalities must be equalities, otherwise 1 = (1 — 0)(21); + 0(22); <
(1-60)+6=1.

Now that we know that (z1); = 1, we can say that

> 1)l = llzall = [(z1)il = llzalh — 1 <0,

J#i
hence (z1); = 0 for all j # 4. This shows z; = y, and concludes the proof
that y is an extremal point of By:.

Conversely, we show that every extremal point of By isin S. Let y € Bp
be extremal.

First, we note that ||y||; = 1. Indeed, if ||y||; < 1, we can write, for any
vector € € R?\ {0},

1 1
y=5+e+5y—e.
When € is close enough to zero, it holds ||y +e€||1, ||y — €|l < [y|l1+||el|1 < 1,
so y + €,y — € belong to By and are different from y, which contradicts the
extremality of y.

Now, we show that y has only one non-zero coordinate. Let ¢ be such
that y; # 0. By contradiction, we assume that not all other coordinates are
zero. Let ¢ be the vector which is equal to y, except that the i-th coordinate
1; has been replaced with 0; it is not the null vector. Let e € R? be the
vector such that

e; = sign(y;),

€; = 0, Vj 7é 1.
Then N N
v = lule + 171l = lwle + (1= [uil) o
[191]x 1911
which contradicts the extremality. (The last equality is true because ||g||; =
> izi il =Myl =yl = 1 = [wil ) 0

Let us give an intuitive explanation, based on the previous proposition, of
why we can expect (Basis Pursuit) to be a tight relaxation of Problem (CS),
at least in some situations.

If the vector x, we are trying to recover through Problem (CS) is sparse,
then it is a linear combination of a small number of “maximally sparse” non-
zero vectors. From Proposition 3.2, it is therefore a linear combination of a
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{z, Az = Ax,}

— 1 {z, Ax = Az,

Figure 3.2: Representation of By ,, and {z € R?, Az = Ax,} for A= (1-3)
in two situations: (a) when z, = (0,1) is sparse ; (b) when z, = (3, 2) is not
sparse. Observe that By , N {z, Az = Az} is a singleton in the first case,
but not in the second one.

small number of extremal points of the ¢*-ball. This can be geometrically
interpreted as the fact that z, belongs to a "corner" of the ¢!-ball

def
Bp,. = {z € RY, ||zl < |lz.|l}-

The convex approximation (Basis Pursuit) has a unique minimizer equal
to x, if and only if

Pz € RY such that Az =y = Az, and ||z|[; < ||2.|]1
& Bp, N{z R Az = Az,} = {z.}
<= Bp, N({z.}+Ker(A)) = {z.}.

And the intersection of By ,, and an affine space containing x, has much
more chances to be the singleton {z,} if =, is in a "corner" of Bp .. (very
crudely, if z, is in a "corner", then, in the neighborhood of ., Bp ,, occupies
only a small fraction of the space; it is therefore easier not to intersect it when
considering an affine space going through x,). This is depicted on Figure 3.2.
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3.1.3 Tightness guarantees under restricted isometry

The convex problem (Basis Pursuit) can be traced back to at least the 70’s.
Since then, many researchers have proposed conditions on z, and A under
which the relaxation is tight (that is, the solutions of (Basis Pursuit) and
(CS) are the same). A major progress (due notably to Candés, Donoho,
Romberg and Tao) on this subject was, around twenty years ago, the in-
troduction of the so-called Restricted Isometry Property, which is a simple
assumption on A under which it is possible to guarantee tightness without
imposing stringent conditions on x,.

Definition 3.3 : restricted isometry

Let A € R™*4 be a matrix. For any k € {1,...,d}, we define the k-
restricted isometry constant d, of A as the smallest real number such
that

(1= d)llzll2 < [[Az]l2 < (14 dk)l]2]]2

for all vectors z € R? with at most k non-zero coordinates.

Tightness of the convex relaxation (Basis Pursuit) under a restricted
isometry condition is guaranteed by the following theorem.

Theorem 3.4

Let A € R™*? be a matrix. For some k € {1,...,d}, we assume that
its 4k-restricted isometry constant satisfies
1
54k < —. (34)
4
For any z, € R? with at most k non-zero coordinates, Problem
(Basis Pursuit) with y = Ax, has a unique solution, which is x,.

Under the same condition, it is moreover possible to prove a stability
result for the convex relaxation: if y is “close” to Ax,, then the solution of a
slight modification of (Basis Pursuit) is “close” to .. The proof of Theorem
3.4 is the subject of an exercise, which follows [Candés, Romberg, and Tao,
2006].

Let us keep in mind that the restricted isometry property is a sufficient
but not necessary condition for the correctness of the basis pursuit approach:
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there are matrices A for which condition (3.4) does not hold and, neverthe-
less, Problems (CS) and (Basis Pursuit) have the same solution. However,
it turns out that many natural matrices A satisfy the condition, hence The-
orem 3.4 explains the success of the basis pursuit approximation in several
interesting situations. The following theorem provides the simplest example
of matrices with the restricted isometry property: matrices chosen at random
according to a normal distribution (with high probability).

Theorem 3.5: [Candés and Tao, 2005]

Let ¢ > 0 be some explicit constant, whose value we will not give here.
We assume that A € R™*9 is generated at random according to a
normal distribution®. If

cklog(d/k) < m,

Condition (3.4) holds with high probability.®

%hat is, each coefficient of A is chosen independently at random according to a
normal law N(0,1/m).

bWith high probability means that it holds with probability at least 1 — e~*™
for some constant o > 0.

J

This theorem, combined with Theorem 3.4, shows that convexification
allows to recovery k-sparse vectors from O(klog(d/k)) linear measurements.
This is surprisingly few. Indeed, Problem (CS) is only interesting when
the number of measurements is at least O(k) (otherwise, the solution is not
unique). At this threshold, solving this problem is a priori impossible with a
polynomial time algorithm, but we see that it suffices to increase the number
of measurements by a logarithmic factor so that polynomial time recovery
becomes possible, through convexification.



Appendix A

Reminders on symmetric and
Hermitian matrices

Let d € N* be fixed.
For any matrix M € C¥4, we denote M* the transpose conjugate of M,
that is the d x d matrix such that, for all 7, j < d,

The notation “(.,.)” stands for the standard dot product when applied to
real vectors: for all a,b € R,

d
<Cl, b> = Z G,sz
=1

When applied to complex vectors, it denotes the standard Hermitian product:
for all a,b € C¢,

d
(a,b) = ab; = a’D.
=1

Definition A.1: Hermitian matrices

A matrix M € C¥™9 is Hermitian if M = M*, that is if, for all 4, j < d,

M. —

ij

49
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Equivalently, M is Hermitian if and only if, for all z,y € C¢,

(Mz,y) = (z, My) .

Definition A.2: semidefinite positive matrices

Let K be R or C.
A matrix M € K4 is semidefinite positive if and only if it is symmetric
(if K = R) or Hermitian (if K = C) and, for all z € K¢,

(x, Mz) € RT.

It is denoted “M > 0.
It is definite positive if and only if it is semidefinite positive and, for
all z € K¢\ {0},

(x, Mz) > 0.

It is denoted “M = 0.

Proposition A.3: diagonalization of symmetric / Hermitian

matrices

Let Kbe R or C. Let M € K% be a symmetric or Hermitian matrix.
It can be diagonalized in an orthogonal basis, with real eigenvalues:

there exist \y,...,\q in R and (21,...,24) an orthonormal basis of K%
such that
A O 0
] d
X:(Zl zd) 0 Az : (zl Zd)*:Z)\ksz;:'
R k=1
Ad

Matrix M is semidefinite positive if and only if Ay > 0 for all k£ < d.
It is definite positive if and only if A\ > 0 for all £ < d.




Bibliography

P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of de-
scent methods for analytic cost functions. SIAM Journal on Optimization,
16(2):531-547, 2005.

A. Barvinok. A course in convezity, volume 54. American Mathematical
Society, 2002.

E. J. Candés and T. Tao. Decoding by linear programming. [EEFE transac-
tions on information theory, 51(12):4203-4215, 2005.

E. J. Candés and M. B. Wakin. An introduction to compressive sampling.
IEEE signal processing magazine, 25(2):21-30, 2008.

E. J. Candés, J. K. Romberg, and T. Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 59(8):1207-1223, 2006.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, 184(1-2):71-120, 2020.

A. Conca, D. Edidin, M. Hering, and C. Vinzant. Algebraic characterization
of injectivity in phase retrieval. Applied and Computational Harmonic
Analysis, 32(2):346-356, 2015.

J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient descent con-
verges to minimizers. In Proceedings of the Conference on Computational
Learning Theory, 2016.

K. G. Murty and S. N. Kabadi. Some np-complete problems in quadratic
and nonlinear programming. Mathematical Programming: Series A and B,
39(2):117-129, 1987.

ol



52 BIBLIOGRAPHY

A.-A. Musat and N. Boumal. Gradient descent avoids strict saddles with a
simple line-search method too. arXww preprint arXiv:2507.13804, 2025.

I. Panageas and G. Piliouras. Gradient descent only converges to minimiz-
ers: Non-isolated critical points and invariant regions. In Innovations in
Theoretical Computer Science, 2017.

Y. Ye. Second order optimization algorithms i,  2015.
http://web.stanford.edu/class/msande311/2017lecturel3.pdf.



	Introduction
	Inverse problems
	Definition
	Theoretical aspects
	Our focus: algorithms

	Convex vs non-convex
	Non-convex inverse problems: examples
	Sparse recovery - compressed sensing
	Low rank matrix recovery
	Other examples


	General non-convex optimization
	Critical points versus minimizers
	Finding minimizers of non-convex maps is difficult
	Critical points
	When second-order critical points are local minimizers

	Finding first-order critical points
	Finding second-order critical points
	Second-order algorithms
	Gradient descent, again


	Convexification
	The basis: compressed sensing
	Convexification: principle
	Intuition
	Tightness guarantees under restricted isometry


	Reminders on symmetric and Hermitian matrices

