Non-convex inverse problems: programming
exerclses

Iréne Waldspurger

waldspurger@ceremade.dauphine.fr

January and February 2026

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear
norm minimization.

1. We first consider the problem of matrix completion, for matrices of size
d x d (for some d € N*) and rank 1 :

recover X, € R4
from (Xo):;,V(i,7) € Q, (Matrix Completion)
knowing that rank(Xy) = 1.

We will perform tests for random matrices X, generated as
Xo = (uv))1<ij<d;

where uq, ..., uq,v1,...,vq are independent random variables, with uni-

form distribution in [—1;1].

a) Write a function which, given d and m, generates a random X, € R%*¢
as above, and a random subset Q of {1,...,d}* containing m elements
chosen uniformly at random.

waldspurger@ceremade.dauphine.fr

b) Write a function which, given d, ((Xo)ij)uj)eco and €, returns the
solution X, of the following convex problem :

minimize || X||.
for X € R™4, (Convex MC)
such that Xl] = (Xo)”,V(Z,]) € Q.

[See below for indications on how to solve such problems in Julia and
Python.|

¢) Test the previous function for a random X, € R'%*19 and Q of size 50.
Check whether X,,, is equal to X, or not.!

[Hint : run the test several times. If your implementation is correct,
Xeve and Xy should be equal in roughly half of the trials.]

d) For d = 10 and each m = 20,30, ...,100, try to solve 10 random
instances of (Matrix Completion) using (Convex MC). For each m,
compute the empirical probability that X.,, = Xy. What is the smal-
lest m for which the probability is above 50% ? Which percentage of
entries of Xy does it correspond to?

e) Same question for d = 20 and m = 80,100, ...,200, then for d = 40
and m = 270, 310, ..., 390.

2. In this question, we consider phase retrieval problems :

reconstruct zy € C* (Phase Retrieval)

from | (xo,v;) |,Vj =1,...,m,

where (v1,...,vy,) is a (known) family of measurement vectors.

We will perform tests for random problems, where xg, vy, ..., v, € C?
are generated according to independent standard normal complex dis-
tributions 2.

a) Write a function which, given (| (xo,v;) |)j<m and (v;);<m, computes

1. You can consider that X, = X¢ if || Xcve —Xo||F < 0.01|| Xo||#. This is an arbitrary
but reasonable rule.

2. A random variable z follows a standard normal complex distribution if Re(z) and
Im(z) are independent normal variables, both with mean 0 and variance 1/2.

the solution X,,, of the convex relaxation

minimize Tr(X)
for X € ¢4 (PhaseLift)
such that v; Xv; = | (o, v;) 2,Vi=1,...,m,
X = 0.

b) As seen during the lecture, if the relaxation is tight, then
Xeve = Toxy.

Assuming this equality holds, write a function which, given X, com-
putes xg.
c) For any 21, 20 € C?, we define the distance up to global phase between
z1 and z as
dist(z1, 20) = min ||e®z; — 25|
$ER

Show that

dist (21, 22) = \/||21||2 — 2| (21, 22) | + []22] [

Write a function to compute this distance.

d) Using the functions you just implemented, try to solve a random phase
retrieval problem with d = 10 and m = 50. Is the solution z.,, you
obtain equal® to x(?

[Hint : if your implementation is correct, ., and x, should almost
always be equal.]

e) For d = 10 and each m = 25,30,...,50, try to solve 10 random
instances of (Phase Retrieval) using (PhaseLift). For each m, compute
the empirical probability that x.,, = xo. What is the smallest m for
which the probability is above 50% ?

[Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift)
solver ; otherwise, some instances will take a long time.]

f) Same question for d = 20 and m = 50, 60, . . ., 100.

3. As before, we declare that z.,, and xg are equal if dist(x e, o) < 0.01]|20]|2

1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

minimize ||X]||.
over all X € R (1)
such that Tr(X A}) = y;, Vi < m,

where Ay, ..., A, € R4%% and yq, ...,y € R are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use

Convex.jl and SCS.jl.
using Convex, SCS

Convex.jl provides an interface to describe optimization problems and call a
solver ; SCS.jl is a particular solver.

A possible code for solving Problem (1) with these packages would be as
follows :

X = Variable(dl,d2)
for k=1:m
add_constraint! (X, tr(X * A[k]') == y[k])
end
problem = minimize(nuclearnorm(X))
solve! (problem,SCS.Optimizer)
X_sol = evaluate(X)

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~“waldspurger/tds/22_23_s2/M2/tps/sdp_example. j1.
Line 1 declares the type of the unknown X. Here, it is a matrix with size
di x dy and real coefficients. For complex coefficients, one would use

X = ComplexVariable(dl,d2)

Lines 2 to 4 declare the constraints which must be satisfied by X. Many other
types of constraints exist. For instance, if d; = d», it is possible to require X
to be semidefinite positive using

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl

add_constraint! (X, X in :SDP)

Line 5 declares the objective function. Line 6 calls the SCS solver and Line
7 returns the optimal X found by the solver.

It is possible to pass options to the solver. To avoid information display, one
would use

solve! (problem,SCS.Optimizer; silent_solver=true)
To set a time limit of 5 seconds, it would be

solve! (problem,Convex.MOI.OptimizerWithAttributes(
SCS.Optimizer, "time_limit_secs" => 5.))

1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package
provides an interface to define convex optimization problems and pass them
to solvers.

import cvxpy as cp
A possible code for solving Problem (1) using CVXPY is as follows :

X = cp.Variable((d1,d2))

constraints = [cp.trace(X @ A[:,:,k].T) == y[kl]
for k in range(m)]

objective = cp.Minimize(cp.norm(X, "nuc"))

problem = cp.Problem(objective,constraints)

problem.solve(solver=cp.SCS)

return X.value

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~“waldspurger/tds/22_23_s2/M2/tps/sdp_example.py.
Line 1 declares the variable X, here a variable of size d; x dy with real
coordinates. To declare a matrix of size d; x dy with complex coordinates,
one would have used

X = cp.Variable((d1,d2),complex=True)

And to additionally constrain X to be Hermitian,

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py

X = cp.Variable((d,d) ,hermitian=True)

Lines 2 and 3 declare the list of constraints. Other types of constraints than
linear are possible. For instance, to constrain a symmetric or Hermitian ma-
trix to be semidefinite positive, one can add

constraints.append(X >> 0)

Line 4 declares the objective function. Line 5 and 6 define the problem and
call the solver?. Line 7 returns the optimal X found by the solver.
To set a time limit for the solver, use

problem.solve(solver=cp.SCS,time_limit_secs=5.)

4. Here, the solver is SCS so as to match the code proposed for Julia users, but other
solvers are of course possible.

	Convexification for low-rank matrix recovery
	Semidefinite programming in Julia and Python
	In Julia, with Convex.jl and SCS.jl
	In Python, with CVXPY

