

Non-convex inverse problems: programming exercises

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

January and February 2026

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear norm minimization.

1. We first consider the problem of matrix completion, for matrices of size $d \times d$ (for some $d \in \mathbb{N}^*$) and rank 1 :

recover $X_0 \in \mathbb{R}^{d \times d}$
from $(X_0)_{ij}, \forall (i, j) \in \Omega$, (Matrix Completion)
knowing that $\text{rank}(X_0) = 1$.

We will perform tests for random matrices X_0 , generated as

$$X_0 = (u_i v_j)_{1 \leq i, j \leq d},$$

where $u_1, \dots, u_d, v_1, \dots, v_d$ are independent random variables, with uniform distribution in $[-1; 1]$.

- a) Write a function which, given d and m , generates a random $X_0 \in \mathbb{R}^{d \times d}$ as above, and a random subset Ω of $\{1, \dots, d\}^2$ containing m elements chosen uniformly at random.

b) Write a function which, given d , $((X_0)_{ij})_{(i,j) \in \Omega}$ and Ω , returns the solution X_{cvx} of the following convex problem :

$$\begin{aligned} & \text{minimize } \|X\|_* \\ & \text{for } X \in \mathbb{R}^{d \times d}, \\ & \text{such that } X_{ij} = (X_0)_{ij}, \forall (i, j) \in \Omega. \end{aligned} \quad (\text{Convex MC})$$

[See below for indications on how to solve such problems in Julia and Python.]

c) Test the previous function for a random $X_0 \in \mathbb{R}^{10 \times 10}$ and Ω of size 50. Check whether X_{cvx} is equal to X_0 or not.¹
 [Hint : run the test several times. If your implementation is correct, X_{cvx} and X_0 should be equal in roughly half of the trials.]

d) For $d = 10$ and each $m = 20, 30, \dots, 100$, try to solve 10 random instances of (Matrix Completion) using (Convex MC). For each m , compute the empirical probability that $X_{cvx} = X_0$. What is the smallest m for which the probability is above 50%? Which percentage of entries of X_0 does it correspond to?

e) Same question for $d = 20$ and $m = 80, 100, \dots, 200$, then for $d = 40$ and $m = 270, 310, \dots, 390$.

2. In this question, we consider phase retrieval problems :

$$\begin{aligned} & \text{reconstruct } x_0 \in \mathbb{C}^d & & (\text{Phase Retrieval}) \\ & \text{from } |\langle x_0, v_j \rangle|, \forall j = 1, \dots, m, \end{aligned}$$

where (v_1, \dots, v_m) is a (known) family of *measurement vectors*.

We will perform tests for random problems, where $x_0, v_1, \dots, v_m \in \mathbb{C}^d$ are generated according to independent standard normal complex distributions².

a) Write a function which, given $(|\langle x_0, v_j \rangle|)_{j \leq m}$ and $(v_j)_{j \leq m}$, computes

1. You can consider that $X_{cvx} = X_0$ if $\|X_{cvx} - X_0\|_F \leq 0.01\|X_0\|_F$. This is an arbitrary but reasonable rule.

2. A random variable z follows a standard normal complex distribution if $\text{Re}(z)$ and $\text{Im}(z)$ are independent normal variables, both with mean 0 and variance $1/2$.

the solution X_{cvx} of the convex relaxation

$$\begin{aligned}
 & \text{minimize } \text{Tr}(X) \\
 & \text{for } X \in \mathbb{C}^{d \times d} \\
 & \text{such that } v_j^* X v_j = |\langle x_0, v_j \rangle|^2, \forall j = 1, \dots, m, \\
 & X \succeq 0.
 \end{aligned} \tag{PhaseLift}$$

b) As seen during the lecture, if the relaxation is tight, then

$$X_{cvx} = x_0 x_0^*.$$

Assuming this equality holds, write a function which, given X_{cvx} , computes x_0 .

c) For any $z_1, z_2 \in \mathbb{C}^d$, we define the distance up to global phase between z_1 and z_2 as

$$\text{dist}(z_1, z_2) = \min_{\phi \in \mathbb{R}} \|e^{i\phi} z_1 - z_2\|_2.$$

Show that

$$\text{dist}(z_1, z_2) = \sqrt{\|z_1\|^2 - 2|\langle z_1, z_2 \rangle| + \|z_2\|^2}.$$

Write a function to compute this distance.

d) Using the functions you just implemented, try to solve a random phase retrieval problem with $d = 10$ and $m = 50$. Is the solution x_{cvx} you obtain equal³ to x_0 ?

[Hint : if your implementation is correct, x_{cvx} and x_0 should almost always be equal.]

e) For $d = 10$ and each $m = 25, 30, \dots, 50$, try to solve 10 random instances of (Phase Retrieval) using (PhaseLift). For each m , compute the empirical probability that $x_{cvx} = x_0$. What is the smallest m for which the probability is above 50%?

[Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift) solver ; otherwise, some instances will take a long time.]

f) Same question for $d = 20$ and $m = 50, 60, \dots, 100$.

3. As before, we declare that x_{cvx} and x_0 are equal if $\text{dist}(x_{cvx}, x_0) \leq 0.01\|x_0\|_2$

1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

$$\begin{aligned}
 & \text{minimize } \|X\|_* \\
 & \text{over all } X \in \mathbb{R}^{d_1 \times d_2} \\
 & \text{such that } \text{Tr}(XA_i^T) = y_i, \forall i \leq m,
 \end{aligned} \tag{1}$$

where $A_1, \dots, A_m \in \mathbb{R}^{d_1 \times d_2}$ and $y_1, \dots, y_m \in \mathbb{R}$ are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use Convex.jl and SCS.jl.

```
using Convex, SCS
```

Convex.jl provides an interface to describe optimization problems and call a solver ; SCS.jl is a particular solver.

A possible code for solving Problem (1) with these packages would be as follows :

```

1  X = Variable(d1,d2)
2  for k=1:m
3      add_constraint!(X, tr(X * A[k]') == y[k])
4  end
5  problem = minimize(nuclearnorm(X))
6  solve!(problem,SCS.Optimizer)
7  X_sol = evaluate(X)

```

A complete example using this code is available at https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl.

Line 1 declares the type of the unknown X . Here, it is a matrix with size $d_1 \times d_2$ and real coefficients. For complex coefficients, one would use

```
X = ComplexVariable(d1,d2)
```

Lines 2 to 4 declare the constraints which must be satisfied by X . Many other types of constraints exist. For instance, if $d_1 = d_2$, it is possible to require X to be semidefinite positive using

```
add_constraint!(X, X in :SDP)
```

Line 5 declares the objective function. Line 6 calls the SCS solver and Line 7 returns the optimal X found by the solver.

It is possible to pass options to the solver. To avoid information display, one would use

```
solve!(problem,SCS.Optimizer; silent_solver=true)
```

To set a time limit of 5 seconds, it would be

```
solve!(problem,Convex.MOI.OptimizerWithAttributes(  
    SCS.Optimizer, "time_limit_secs" => 5.))
```

1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package provides an interface to define convex optimization problems and pass them to solvers.

```
import cvxpy as cp
```

A possible code for solving Problem (1) using CVXPY is as follows :

```
1  X = cp.Variable((d1,d2))  
2  constraints = [cp.trace(X @ A[:, :, k].T) == y[k]  
3      for k in range(m)]  
4  objective = cp.Minimize(cp.norm(X, "nuc"))  
5  problem = cp.Problem(objective,constraints)  
6  problem.solve(solver=cp.SCS)  
7  return X.value
```

A complete example using this code is available at https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py.

Line 1 declares the variable X , here a variable of size $d_1 \times d_2$ with real coordinates. To declare a matrix of size $d_1 \times d_2$ with complex coordinates, one would have used

```
X = cp.Variable((d1,d2), complex=True)
```

And to additionally constrain X to be Hermitian,

```
X = cp.Variable((d,d),hermitian=True)
```

Lines 2 and 3 declare the list of constraints. Other types of constraints than linear are possible. For instance, to constrain a symmetric or Hermitian matrix to be semidefinite positive, one can add

```
constraints.append(X >> 0)
```

Line 4 declares the objective function. Line 5 and 6 define the problem and call the solver⁴. Line 7 returns the optimal X found by the solver.

To set a time limit for the solver, use

```
problem.solve(solver=cp.SCS,time_limit_secs=5.)
```

4. Here, the solver is SCS so as to match the code proposed for Julia users, but other solvers are of course possible.