
Non-convex inverse problems: programming
exercises

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

January and February 2026

1 Convexification for low-rank matrix recovery

In this exercise, we will try to recover low-rank matrices through nuclear
norm minimization.
1. We first consider the problem of matrix completion, for matrices of size

d× d (for some d ∈ N∗) and rank 1 :

recover X0 ∈ Rd×d

from (X0)ij,∀(i, j) ∈ Ω, (Matrix Completion)
knowing that rank(X0) = 1.

We will perform tests for random matrices X0, generated as

X0 = (uivj)1≤i,j≤d,

where u1, . . . , ud, v1, . . . , vd are independent random variables, with uni-
form distribution in [−1; 1].
a) Write a function which, given d and m, generates a random X0 ∈ Rd×d

as above, and a random subset Ω of {1, . . . , d}2 containing m elements
chosen uniformly at random.

1

waldspurger@ceremade.dauphine.fr

b) Write a function which, given d, ((X0)ij)(i,j)∈Ω and Ω, returns the
solution Xcvx of the following convex problem :

minimize ||X||∗
for X ∈ Rd×d, (Convex MC)

such that Xij = (X0)ij,∀(i, j) ∈ Ω.

[See below for indications on how to solve such problems in Julia and
Python.]

c) Test the previous function for a random X0 ∈ R10×10 and Ω of size 50.
Check whether Xcvx is equal to X0 or not. 1

[Hint : run the test several times. If your implementation is correct,
Xcvx and X0 should be equal in roughly half of the trials.]

d) For d = 10 and each m = 20, 30, ..., 100, try to solve 10 random
instances of (Matrix Completion) using (Convex MC). For each m,
compute the empirical probability that Xcvx = X0. What is the smal-
lest m for which the probability is above 50% ? Which percentage of
entries of X0 does it correspond to ?

e) Same question for d = 20 and m = 80, 100, ..., 200, then for d = 40
and m = 270, 310, ..., 390.

2. In this question, we consider phase retrieval problems :

reconstruct x0 ∈ Cd (Phase Retrieval)
from | ⟨x0, vj⟩ |, ∀j = 1, . . . ,m,

where (v1, . . . , vm) is a (known) family of measurement vectors.
We will perform tests for random problems, where x0, v1, . . . , vm ∈ Cd

are generated according to independent standard normal complex dis-
tributions 2.
a) Write a function which, given (| ⟨x0, vj⟩ |)j≤m and (vj)j≤m, computes

1. You can consider that Xcvx = X0 if ||Xcvx−X0||F ≤ 0.01||X0||F . This is an arbitrary
but reasonable rule.

2. A random variable z follows a standard normal complex distribution if Re(z) and
Im(z) are independent normal variables, both with mean 0 and variance 1/2.

2

the solution Xcvx of the convex relaxation

minimize Tr(X)
for X ∈ Cd×d (PhaseLift)

such that v∗jXvj = | ⟨x0, vj⟩ |2,∀j = 1, . . . ,m,

X ⪰ 0.

b) As seen during the lecture, if the relaxation is tight, then

Xcvx = x0x
∗
0.

Assuming this equality holds, write a function which, given Xcvx, com-
putes x0.

c) For any z1, z2 ∈ Cd, we define the distance up to global phase between
z1 and z2 as

dist(z1, z2) = min
ϕ∈R

||eiϕz1 − z2||2.

Show that

dist(z1, z2) =
√

||z1||2 − 2| ⟨z1, z2⟩ | + ||z2||2.

Write a function to compute this distance.
d) Using the functions you just implemented, try to solve a random phase

retrieval problem with d = 10 and m = 50. Is the solution xcvx you
obtain equal 3 to x0 ?
[Hint : if your implementation is correct, xcvx and x0 should almost
always be equal.]

e) For d = 10 and each m = 25, 30, . . . , 50, try to solve 10 random
instances of (Phase Retrieval) using (PhaseLift). For each m, compute
the empirical probability that xcvx = x0. What is the smallest m for
which the probability is above 50% ?
[Hint : pass a time limit of (for instance) 5 seconds to the (PhaseLift)
solver ; otherwise, some instances will take a long time.]

f) Same question for d = 20 and m = 50, 60, . . . , 100.

3. As before, we declare that xcvx and x0 are equal if dist(xcvx, x0) ≤ 0.01||x0||2

3

1.1 Semidefinite programming in Julia and Python

Let us explain how to solve the following problem :

minimize ||X||∗
over all X ∈ Rd1×d2 (1)

such that Tr(XAT
i) = yi,∀i ≤ m,

where A1, . . . , Am ∈ Rd1×d2 and y1, . . . , ym ∈ R are given.

1.1.1 In Julia, with Convex.jl and SCS.jl

Several Julia packages allow to solve Problem (1). Here, we propose to use
Convex.jl and SCS.jl.

using Convex, SCS

Convex.jl provides an interface to describe optimization problems and call a
solver ; SCS.jl is a particular solver.
A possible code for solving Problem (1) with these packages would be as
follows :

1 X = Variable(d1,d2)
2 for k=1:m
3 add_constraint!(X, tr(X * A[k]') == y[k])
4 end
5 problem = minimize(nuclearnorm(X))
6 solve!(problem,SCS.Optimizer)
7 X_sol = evaluate(X)

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl.
Line 1 declares the type of the unknown X. Here, it is a matrix with size
d1 × d2 and real coefficients. For complex coefficients, one would use

X = ComplexVariable(d1,d2)

Lines 2 to 4 declare the constraints which must be satisfied by X. Many other
types of constraints exist. For instance, if d1 = d2, it is possible to require X
to be semidefinite positive using

4

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.jl

add_constraint!(X, X in :SDP)

Line 5 declares the objective function. Line 6 calls the SCS solver and Line
7 returns the optimal X found by the solver.
It is possible to pass options to the solver. To avoid information display, one
would use

solve!(problem,SCS.Optimizer; silent_solver=true)

To set a time limit of 5 seconds, it would be

solve!(problem,Convex.MOI.OptimizerWithAttributes(
SCS.Optimizer, "time_limit_secs" => 5.))

1.1.2 In Python, with CVXPY

In Python, we propose to solve Problem (1) using CVXPY. This package
provides an interface to define convex optimization problems and pass them
to solvers.

import cvxpy as cp

A possible code for solving Problem (1) using CVXPY is as follows :

1 X = cp.Variable((d1,d2))
2 constraints = [cp.trace(X @ A[:,:,k].T) == y[k]
3 for k in range(m)]
4 objective = cp.Minimize(cp.norm(X,"nuc"))
5 problem = cp.Problem(objective,constraints)
6 problem.solve(solver=cp.SCS)
7 return X.value

A complete example using this code is available at https://www.ceremade.
dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py.
Line 1 declares the variable X, here a variable of size d1 × d2 with real
coordinates. To declare a matrix of size d1 × d2 with complex coordinates,
one would have used

X = cp.Variable((d1,d2),complex=True)

And to additionally constrain X to be Hermitian,

5

https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py
https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s2/M2/tps/sdp_example.py

X = cp.Variable((d,d),hermitian=True)

Lines 2 and 3 declare the list of constraints. Other types of constraints than
linear are possible. For instance, to constrain a symmetric or Hermitian ma-
trix to be semidefinite positive, one can add

constraints.append(X >> 0)

Line 4 declares the objective function. Line 5 and 6 define the problem and
call the solver 4. Line 7 returns the optimal X found by the solver.
To set a time limit for the solver, use

problem.solve(solver=cp.SCS,time_limit_secs=5.)

4. Here, the solver is SCS so as to match the code proposed for Julia users, but other
solvers are of course possible.

6

	Convexification for low-rank matrix recovery
	Semidefinite programming in Julia and Python
	In Julia, with Convex.jl and SCS.jl
	In Python, with CVXPY

