
Thèse de doctorat
de l’École normale supérieure

École doctorale 386 : sciences mathématiques de Paris Centre

Discipline : mathématiques appliquées

Wavelet transform modulus: phase retrieval and
scattering

Transformée en ondelettes : reconstruction de
phase et scattering

par

Irène Waldspurger

présentée et soutenue le 10 novembre 2015 devant un jury composé de :

M. Andrés Almansa Examinateur
M. Habib Ammari Examinateur
M. Alexandre d’Aspremont Examinateur
M. Jalal Fadili Rapporteur
M. Philippe Jaming Rapporteur
M. Stéphane Mallat Directeur de thèse

Unité mixte de recherche 8548 : département d’informatique de l’École normale supérieure

...

2

Abstract

Automatically understanding the content of a natural signal, like a sound or an image, is in
general a difficult task. In their naive representation, signals are indeed complicated objects,
belonging to high-dimensional spaces. With a different representation, they can however be
easier to interpret.

This thesis considers a representation commonly used in these cases, in particular for the
analysis of audio signals: the modulus of the wavelet transform. To better understand the
behaviour of this operator, we study, from a theoretical as well as algorithmic point of view, the
corresponding inverse problem: the reconstruction of a signal from the modulus of its wavelet
transform.

This problem belongs to a wider class of inverse problems: phase retrieval problems. In a
first chapter, we describe a new algorithm, PhaseCut, which numerically solves a generic phase
retrieval problem. Like the similar algorithm PhaseLift, PhaseCut relies on a convex relaxation
of the phase retrieval problem, which happens to be of the same form as relaxations of the widely
studied problem MaxCut. We compare the performances of PhaseCut and PhaseLift, in terms
of precision and complexity.

In the next two chapters, we study the specific case of phase retrieval for the wavelet trans-
form. We show that any function with no negative frequencies is uniquely determined (up to
a global phase) by the modulus of its wavelet transform, but that the reconstruction from the
modulus is not stable to noise, for a strong notion of stability. However, we prove a local stability
property. We also present a new non-convex phase retrieval algorithm, which is specific to the
case of the wavelet transform, and we numerically study its performances.

Finally, in the last two chapters, we study a more sophisticated representation, built from
the modulus of the wavelet transform: the scattering transform. Our goal is to understand
which properties of a signal are characterized by its scattering transform. We first prove that
the energy of scattering coefficients of a signal, at a given order, is upper bounded by the energy
of the signal itself, convolved with a high-pass filter that depends on the order. We then study
a generalization of the scattering transform, for stationary processes. We show that, in finite
dimension, this generalized transform preserves the norm. In dimension one, we also show that
the generalized scattering coefficients of a process characterize the tail of its distribution.

1

Résumé

Les tâches qui consistent à comprendre automatiquement le contenu d’un signal naturel,
comme une image ou un son, sont en général difficiles. En effet, dans leur représentation näıve, les
signaux sont des objets compliqués, appartenant à des espaces de grande dimension. Représentés
différemment, ils peuvent en revanche être plus faciles à interpréter.

Cette thèse s’intéresse à une représentation fréquemment utilisée dans ce genre de situations,
notamment pour analyser des signaux audio : le module de la transformée en ondelettes. Pour
mieux comprendre son comportement, nous considérons, d’un point de vue théorique et algo-
rithmique, le problème inverse correspondant : la reconstruction d’un signal à partir du module
de sa transformée en ondelettes.

Ce problème appartient à une classe plus générale de problèmes inverses : les problèmes de
reconstruction de phase. Dans un premier chapitre, nous décrivons un nouvel algorithme, Phase-
Cut, qui résoud numériquement un problème de reconstruction de phase générique. Comme
l’algorithme similaire PhaseLift, PhaseCut utilise une relaxation convexe, qui se trouve en
l’occurence être de la même forme que les relaxations du problème abondamment étudié Max-
Cut. Nous comparons les performances de PhaseCut et PhaseLift, en termes de précision et de
rapidité.

Dans les deux chapitres suivants, nous étudions le cas particulier de la reconstruction de
phase pour la transformée en ondelettes. Nous montrons que toute fonction sans fréquence
négative est uniquement déterminée (à une phase globale près) par le module de sa transformée
en ondelettes, mais que la reconstruction à partir du module n’est pas stable au bruit, pour
une définition forte de la stabilité. On démontre en revanche une propriété de stabilité locale.
Nous présentons également un nouvel algorithme de reconstruction de phase, non-convexe, qui
est spécifique à la transformée en ondelettes, et étudions numériquement ses performances.

Enfin, dans les deux derniers chapitres, nous étudions une représentation plus sophistiquée,
construite à partir du module de transformée en ondelettes : la transformée de scattering. Notre
but est de comprendre quelles propriétés d’un signal sont caractérisées par sa transformée de
scattering. On commence par démontrer un théorème majorant l’énergie des coefficients de
scattering d’un signal, à un ordre donné, en fonction de l’énergie du signal initial, convolé par un
filtre passe-haut qui dépend de l’ordre. On étudie ensuite une généralisation de la transformée
de scattering, qui s’applique à des processus stationnaires. On montre qu’en dimension finie,
cette transformée généralisée préserve la norme. En dimension un, on montre également que
les coefficients de scattering généralisés d’un processus caractérisent la queue de distribution du
processus.

2

Remerciements

Pendant les quatre années qu’a duré ma thèse, Stéphane Mallat m’a fait découvrir avec
passion un domaine mathématique dont, initialement, je soupçonnais à peine l’existence. J’ai
pu bénéficier de sa vision claire et profonde de tous les sujets que nous avons abordés, de ses
idées foisonnantes et de sa grande culture scientifique. Je lui suis aussi reconnaissante de sa
patience et de sa disponibilité.

Ce sont Albert Cohen et Francis Bach qui, lorsque j’étais en master, m’ont incitée à le
contacter ; merci à eux pour ce conseil fructueux.

J’ai beaucoup apprécié les collaborations aussi conviviales qu’instructives que nous avons
menées avec d’autres chercheurs de l’ENS. Merci donc à Alexandre d’Aspremont et Fajwel Fogel,
ainsi qu’à Habib Ammari et Han Wang. Merci également à Alexandre pour son aide précieuse
dans ma recherche de post-doc.

En janvier 2013, j’ai eu la chance de passer un mois à l’université de Yale. Je suis très
reconnaissante à Ronald Coifman de m’avoir invitée et de m’avoir consacré autant de temps.
Merci également à Amit Singer et Afonso Bandeira pour le séjour à Princeton.

Ce manuscrit a été relu avec beaucoup de soin par Jalal Fadili et Philippe Jaming. Je les
remercie sincèrement pour ce travail, ainsi que pour les discussions que nous avons eues, en
Savoie et à Bordeaux, sur la reconstruction de phase. Merci aussi à Andrés Almansa, Habib
Ammari et Alexandre d’Aspremont d’avoir accepté de participer au jury.

Pendant ma thèse, j’ai été simultanément hébergée par les départements de mathématiques et
d’informatique de l’ENS. Tous deux offrent un environnement de travail d’une grande qualité et
je suis très heureuse qu’ils m’aient accueillie. Dans les équipes administratives, merci beaucoup
à Albane, Bénédicte, Isabelle, Joëlle, Lara, Laurence, Lise-Marie, Michelle, Valérie et Zäına
pour leur efficacité et leur gentillesse. Au service des prestations informatiques, merci à Claudie,
Jacques et Ludovic de m’avoir si souvent aidée. Merci également à toutes les personnes de la
bibliothèque.

Quant à mon monitorat, merci aux élèves de Paris 6 puis de l’ENS d’en avoir fait une
expérience aussi agréable et intéressante.

3

Dans les deux départements, merci beaucoup à mes collègues pour nos déjeuners et nos discus-
sions. Au DI, ces remerciements s’adressent en particulier aux � glorieux anciens �, Joakim, Joan
et Laurent, aux � jeunes �, Édouard, Grégoire, Mathieu et Vincent, aux � seniors � Carmine,
Gilles, Guy, Ivan, Matthew, Sira et Xiu-Yuan, ainsi qu’à tout-e-s les stagiaires ou invité-e-s
que je suis heureuse d’avoir rencontré-e-s, Chris, Goël, Maxime, Mia, Michel, Naoufal, Paul,
Tomás, Y-Lan et Zhuoran. Au DMA, merci à Cécile, Charles, Clémence, Jaime et Valentine
pour l’ambiance chaleureuse qui règne dans le bureau C21.

Au cours de ma scolarité, plusieurs professeur-e-s ont grandement contribué à développer mon
intérêt pour les mathématiques. Merci tout particulièrement à Serge Dupont et Yves Duval.

Dans un registre plus personnel, merci à tou-te-s les ami-e-s qui ont rendu ces dernières
années si agréables : Athanaric pour la cueillette des mirabelles, Benôıt, inoubliable binôme,
Catherine, Max et Silvain, qui m’ont fait découvrir Brewberry, Charles-Antoine et Jordi pour
nos voyages en Belgique, Esther et sa constante gentillesse, Jacques-Henri et Marie-Karelle pour
un voyage au Touquet riche en émotions, Jeremy, compagnon de pizzeria, Jonathan et son chat,
les organisateurs du séminaire de l’abbé Mole (Bastien, Julien, Silvain et Vincent), Stefania,
reine des bases de données et des tartes vapeur, Thierry, spécialiste ès foie gras et marathons,
et Xavier, randonneur véloce et cinéphile distingué.

Sans mes parents, je n’aurais probablement jamais entrepris d’études de mathématiques.
Heureusement qu’ils sont là. Je sais aussi que je peux toujours compter sur Hélöıse. Merci à
elle, et à Jonas. Merci également à Anne, Denis et Noémie.

Merci enfin à Gabriel de préparer le café comme personne.

4

Chapter 1

Introduction

The goal of data analysis is to develop methods to automatically understand the content of
natural signals. Examples of possible tasks are finding which objects are pictured in an image,
or transcribing an audio recording of a human voice.

These problems are in general difficult, because, under their raw form, signals tend to be
complicated objects, living in high-dimensional spaces. An audio signal of 2 seconds, sampled
at 44.1 kHz, is for example an element of R88200. To overcome this difficulty, a common method
is to find a better representation of signals, which makes them easier to interpret.

Such representations must satisfy two essential properties. They must be discriminative:
signals representing different things must have different representations. On the other hand,
signals representing the same thing (two audio recordings of the same voice pronouncing the
same words, for example) must have identical representations, even if they are not equal.

This thesis studies the wavelet transform modulus, which is an example of such a represen-
tation, used in particular in audio processing.

To understand to what extent it satisfies the previous two properties, we consider the corre-
sponding inverse problem: the reconstruction of a function from its wavelet transform modulus.
It is an example of a well-known class of inverse problems: phase retrieval problems. Chapter 2
of this thesis describes an algorithm to solve generic phase retrieval problems. Chapters 3 and 4
are devoted to the specific case of the wavelet transform.

In Chapters 5 and 6, we consider more sophisticated representations that are built from the
wavelet transform modulus: scattering transforms.

Section 1.1 of this introduction is about the class of phase retrieval problems. In Section 1.2,
we consider the specific case of phase retrieval for the wavelet transform. Section 1.3 is devoted
to the scattering transform. In each section, an introduction explains the main definitions and
known results, while the latter parts present the contributions of this thesis.

5

1.1 Phase retrieval problems

Phase retrieval problems are inverse problems of the form:

Reconstruct x from {|Li(x)|}i∈I

where: x is an unknown element of a complex vector space E
I is an arbitrary set of indexes
for any i ∈ I, Li : E → C is a known linear form
|.| denotes the usual complex modulus

Multiplying x by a unitary complex number has no influence on {|Li(x)|}i∈I :

if |λ| = 1, then ∀i ∈ I, |Li(x)| = |Li(λx)|

so we can not hope to reconstruct exactly x from the set of modulus {|Li(x)|}i∈I . We only try
to recover x up to a global phase, that is up to multiplication by a unitary complex number.

Phase retrieval problems have been studied from the fifties because of their numerous physical
applications, for example X-ray imaging [Miao et al., 2008], diffractive imaging [Bunk et al.,
2007] or astronomy [Dainty and Fienup, 1987]. In this section, we describe the theoretical and
algorithmic issues they raise. We then come to the first contribution of this thesis (chapter 2):
a general algorithm to solve phase retrieval problems.

1.1.1 Theoretical issues

Given a specific phase retrieval problem, the main theoretical question that it raises is to know
whether the problem is well-posed, in terms of uniqueness and stability: is the reconstruction
unique, up to a global phase? If it is unique, is it stable under measurement noise?

We call uniqueness in a phase retrieval problem the fact that all vectors x ∈ E are uniquely
determined by {|Li(x)|}i∈I , up to a global phase:

∀x, y ∈ E such that ∀i ∈ I, |Li(x)| = |Li(y)|,
∃λ ∈ C, |λ| = 1 such that x = λy

(Uniqueness)

The definition of stability is less canonical. Broadly speaking, we wish that, when the modulus
|Li(x)| are not exactly known, but only up to a small error, it is still possible to reconstruct an
approximation of the unknown x:

∀x, y ∈ E such that ∀i ∈ I, |Li(x)| ≈ |Li(y)|,
∃λ ∈ C, |λ| = 1 such that x ≈ λy

(Stability)

6

Various meanings are possible for the symbol “≈”. When the spaces E and (R+)I are endowed
with metrics, which we respectively denote by dE and dI , we can for example decide that the
reconstruction is stable if there exists C > 0 such that, for all ε > 0:

∀x, y ∈ E such that dI ({|Li(x)|}i∈I , {|Li(y)|}i∈I) < ε,
∃λ ∈ C, |λ| = 1 such that dE(x, λy) < Cε

(Strong stability)

This notion of stability can however be too strong. For the wavelet transform, we will have to
introduce a weaker notion of local stability.

Uniqueness and stability results for phase retrieval problems can be grouped in two main
families:

• when the measurements Li are randomly chosen: at least for particular choices of probabil-
ity laws, the phase retrieval problem is then well-posed with high probability; (Uniqueness)
and (Strong stability) both hold. The drawback of this case is that, in many applications,
the measurements are fixed: they can not be chosen at random.

• when the measurements Li are imposed by concrete applications: although useful, this
setting is in general more difficult to theoretically study. The main cases that can be
handled are when the Li have a particular form, which allows to use harmonic analysis
properties. Even in these cases, the results are often negative: there is no uniqueness or
no stability.

For random measurements, when the ambient space E has finite dimension, there is unique-
ness with probability 1 if the probability measure is uniformly continuous with respect to
Lebesgue measure [Balan et al., 2006; Conca et al., 2015], and the number of measurements
is large enough:

Card I ≥ 4 dim E − 4

When E = Cn and the measurements are independently chosen according to a normal random
law, there is uniqueness and (strong) stability with high probability [Candès et al., 2013; Candès
and Li, 2014], provided that, for a known constant C:

Card I ≥ C dim E

Other probability laws can be considered, as in [Alexeev et al., 2013; Candès et al., 2015; Gross
et al., 2015a].

For deterministic measurements, the most well-known case, and also the most important for
applications, is the reconstruction of a compactly-supported function from the modulus of its
Fourier transform:

Reconstruct a compactly-supported f ∈ L2(R) from |f̂ |

7

Here, the recovery is only considered up to trivial ambiguities (multiplication by a global phase,
translation and complex conjugation). Even up to these ambiguities, there is no uniqueness
[Akutowicz, 1956; Walther, 1963]. For uniqueness to hold, it is necessary that the signals f
verify additional hypotheses, such as sparsity [Ranieri et al., 2013].

In higher dimensions (f ∈ L2(Rd) with d ≥ 2), there is uniqueness for “generic” functions f
[Barakat and Newsam, 1984] but no stability.

The study of the phase retrieval problem for the Fourier transform relies on tools from har-
monic analysis. These tools can be adapted to handle other measurements than the Fourier
transform, notably fractional Fourier transforms. In this latter case, uniqueness holds, under
simple conditions on the parameters of the fractional Fourier transforms [Jaming, 2014]. How-
ever, there is no strong stability [Andreys and Jaming, 2015].

An intermediate way between random measurements and fixed measurements imposed by
a concrete situation is to design deterministic measurements so that they satisfy uniqueness or
stability properties, as in [Bodmann and Hammen, 2014]. This method is interesting from a
theoretical point of view, but it suffers from the same drawback as random measurements: it
has in general no physical application.

1.1.2 Algorithms

Even when it is well-posed, numerically solving a phase retrieval problem is also difficult.
Two main families of algorithms have been designed for generic phase retrieval problems, each
with its advantages and drawbacks:

• iterative methods, which are simple to implement and relatively fast, but tend to return
erroneous reconstructions

• methods by convexification, which often achieve exact reconstruction, but have high com-
plexity

Iterative methods are the older family. They consist in building a sequence of approximate
solutions, refined step by step until it converges, and returning the limit of this sequence. They
notably include the alternate projection algorithm, introduced by Gerchberg and Saxton [1972],
and improved by Fienup [1982].

Unfortunately, there is in general no guarantee that the sequence of approximate solutions
converges towards the true solution. Phase retrieval problems are indeed highly non-linear, and
do not admit a convex formulation. The sequence of approximations can therefore converge only
towards a local optimum.

Depending on the considered application, various heuristics have been developed to overcome
convergence problems [Millane, 1990]. For particular choices of random measurements, iterative

8

methods have been proven to converge towards the true solutions when correctly initialized
[Netrapalli et al., 2013; Candès et al., 2015]. However, in general, their convergence properties
are not well understood. For phase retrieval problems which arise in audio processing (and to
which we will come back), they are often disappointing: reconstructed signals tend to present
audio artifacts [Sturmel and Daudet, 2011].

Methods by convexification have been introduced by Chai et al. [2011] and by Candès et al.
[2013], whose algorithm PhaseLift we briefly describe. The principle is to reformulate the phase
retrieval problem under a matricial form. This reformulation is still a non-convex problem, but
has a convex approximation. At least for precise choices of random measurements, the solution
to the approximated problem can be proven to be the same as the solution to the initial problem,
with high probability.

To describe the reformulation of the problem into a matricial form, we assume that we are
in a finite-dimensional setting: E = Cn, for some n ∈ N∗. The linear forms Li : E → C are then
matrices with one line: Li ∈M1,n(C). For any i, we set bi = |Li(x)|. The constraint |Li(x)| = bi
can be rewritten as:

|Li(x)| = bi ⇐⇒ |Li(x)|2 = b2
i ⇐⇒ x∗L∗iLix = b2

i ⇐⇒ Tr (L∗iLixx
∗) = b2

i

The phase retrieval problem then becomes:

Find x s.t. ∀i, |Li(x)| = bi ⇐⇒ Find x s.t. ∀i,Tr (L∗iLixx
∗) = b2

i

With a change of variable X = xx∗, this is equivalent to:

Find X ∈Mn(C)

s.t. rank(X) = 1

and ∀i,Tr (L∗iLiX) = b2
i

This problem is not convex, because the set of matrices with rank 1 is not convex. However, it
can be approximated by a convex problem, with the same method as used for matrix completion
[Candès and Recht, 2009]. This convex problem can be solved in a time which is polynomial in
the dimension n and the number of measurements.

Candès et al. [2013]; Candès and Li [2014] have shown that, when the linear forms Li are
chosen according to random normal laws, then the convex approximation and the initial problem
have the same solution, provided that:

Card I ≥ C dim E

(where C is a known constant).

9

Even if these correctness guarantees are limited to specific choices of measurements, empirical
evaluations show that PhaseLift yields exact reconstructions in many cases.

However, the dimension of the reformulated problem is much higher than the dimension of
the original problem: X has n2 entries, while x is an n-dimensional vector. The algorithm
thus has a high (although polynomial) complexity, worse than iterative methods. It prevents
it from being used for applications where signals are necessarily of high dimension, as in audio
processing.

1.1.3 A general phase retrieval algorithm, PhaseCut (chapter 2)

Chapter 2 of this thesis describes a new phase retrieval algorithm, called PhaseCut, belonging
to the class of methods by convexification. It is similar to PhaseLift, but uses a different matricial
reformulation. It yields an algorithm with a different complexity, more efficient than PhaseLift
for some instances of phase retrieval problems.

Instead of directly reconstructing x ∈ Rn, as in PhaseLift, we focus on reconstructing
{Li(x)}i∈I (which, under mild assumptions, also allows to recover x). By assumption, the
modulus |Li(x)| are known. So it suffices to reconstruct the phases, that is the complex numbers
ui such that:

Li(x) = |Li(x)|ui and |ui| = 1

In the same way as, in PhaseLift, the constraints |Li(x)| = bi could be reformulated by intro-
ducing the matrix X = xx∗, here, the constraints |ui| = 1 can be reformulated by introducing
the matrix U = uu∗, where:

u =

(
u1...
um

)
So, as in PhaseLift, we obtain a reformulation of the phase retrieval problem in terms of matrices,
and this reformulation also has a convex approximation, which we call PhaseCut.

Almost the same correctness guarantees hold for PhaseLift and PhaseCut. We can actually
show that PhaseLift yields exact reconstruction when and only when a slightly modified version
of PhaseCut yields exact reconstruction. The same argument allows one to compare the stability
to noise of both algorithms: PhaseCut is at least as stable to noise as a slightly modified version
of PhaseLift, but can be more stable, especially when the set of measurements {Li(x)}i∈I is
sparse.

The main advantage of PhaseCut over PhaseLift is its different complexity. At first sight,
the complexity of PhaseCut seems worse, because the involved matrices are of higher dimension
as in PhaseLift : they have m2 entries, with m the number of measurements, while matrices in
PhaseLift only have n2 entries, with n the dimension of the unknown x (always smaller than

10

m). However, it happens that the convex problem obtained with PhaseCut has the same form
as convex relaxations of MaxCut-type problems, which have been widely studied since their
introduction in [Delorme and Poljak, 1993; Goemans and Williamson, 1995]. We can thus apply
to PhaseCut optimization techniques developed for MaxCut, which do not apply to PhaseLift.

So the complexity of PhaseCut can be better or worse than the one of PhaseLift, depending
on the optimization algorithm used to solve the convex problem. PhaseLift will then be more
efficient for some problems, while PhaseCut will be better suited to others. Our numerical
experiments indicate that PhaseCut is better for difficult phase retrieval problems, where the
reconstruction is not very stable.

1.2 Phase retrieval for the wavelet transform

We now consider a specific phase retrieval problem, with important applications in audio
processing: the case of the wavelet transform. We first define the wavelet transform, and give
our motivations for studying the corresponding phase retrieval problem. Finally, we describe
the theoretical and algorithmic contributions of this thesis.

1.2.1 Wavelet transform modulus

Wavelets have been introduced at the end of the eighties; introductions can be found in
[Cohen, 1992; Daubechies, 1992; Mallat, 2009].

In this thesis, we call wavelet any function ψ : R→ C, in L1 ∩ L2(R) such that:∫
R
ψ(t)dt = 0

If such a function ψ is fixed, we can define by contraction or dilation of ψ a whole family of
wavelets (ψj)j∈Z:

∀j ∈ Z, t ∈ R ψj(t) = 2−jψ(2−jt)

⇐⇒ ∀j ∈ Z, ω ∈ R ψ̂j(ω) = ψ̂(2jω)

The wavelet transform W : L2(R)→ (L2(R))Z is then:

W : L2(R) → (L2(R))Z

f → {f ? ψj}j∈Z

In general, the mother wavelet ψ is chosen so that it is well-localized around 0, and its Fourier
transform ψ̂ is well-localized around 1. For any j ∈ Z, ψj can then be interpreted as a band-pass

11

−5 0 5
−1

−0.5

0

0.5

1

1.5

(a)

−5 0 5
−1

−0.5

0

0.5

1

1.5

(b)

−5 0 5
−1

−0.5

0

0.5

1

1.5

(c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(d)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(e)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(f)

Figure 1.1: Example of a wavelet family. (a) (b) (c) Functions ψ1, ψ0, ψ−1; only the real part is
displayed (d) (e) (f) Functions ψ̂1, ψ̂0, ψ̂−1

filter of characteristic frequency 2−j and bandwidth proportional to 2−j. Informally, the wavelet
transform of a function f is thus a decomposition of f in (overlapping) frequency bands.

Figure 1.1 shows an example of a wavelet family, and Figure 1.2a an example of wavelet
transform.

Wavelets are generally complex-valued, so too are thus the f ? ψj. We denote the wavelet
transform modulus by:

|W | : L2(R) → (L2(R))Z

f → {|f ? ψj|}j∈Z

Informally, |f ?ψj(t)| represents the energy of the signal f , around time t, in the frequency band
centered at 2−j. An example is on Figure 1.2b.

1.2.2 Interest of the phase retrieval problem

The modulus of the wavelet transform, sometimes called scalogram, is a common way to
represent and analyze audio signals, relatively similar to the spectrogram. It has also been
proposed as a model of the auditory cortex [Yang et al., 1992]. Indeed, it possesses the desirable
properties mentioned at the beginning of this introduction [Balan et al., 2006; Risset and Wessel,
1999]:

• Audio signals which sound different to the human ear have different scalograms.

• Audio signals which are identical to the ear have almost the same scalograms, although
they may not be equal.

To theoretically justify these properties, it is natural to consider the inverse phase retrieval
problem: to what extent is it possible to recover an audio signal from the modulus of its wavelet
transform? This problem has been investigated from the early eighties [Griffin and Lim, 1984;
Nawab et al., 1983], but from an experimental, rather than theoretical, point of view.

12

-0.2

-0.4

0

0

0.2

0.4

0.6

-10 -5 5 10

-1

-0.5

0

0

0.5

1

-10 -5 5 10

-0.2

-0.4

0

0

0.2

0.4

0.6

-10 -5 5 10

-0.2

-0.1

0

0

0.1

0.2

0.3

-10 -5 5 10

(a) Example of wavelet transform. On the left: a function f . On the right, from top to bottom:
f ? ψ1, f ? ψ0, f ? ψ−1 (only real parts are displayed).

0 0

0.1

0.2

0.3

0.4

0.5

0.6

-10 -5 5 10

-1

-0.5

0

0

0.5

1

-10 -5 5 10 0 0

0.1

0.2

0.3

0.4

0.5

0.6

-10 -5 5 10

0 0

0.05

0.1

0.15

0.2

0.25

0.3

-10 -5 5 10

(b) Example of modulus of wavelet transform. On the left: the same function f as previously. On the
right, from top to bottom: |f ? ψ1|, |f ? ψ0|, |f ? ψ−1|.

Figure 1.2: Wavelet transform and modulus of the wavelet transform

13

Besides its theoretical motivations, the phase retrieval problem for the wavelet transform
has concrete applications: in audio processing, some tasks require modifying the scalogram of
a given signal, then reconstructing a new signal. It then amounts to solve a phase retrieval
problem. Examples include blind source separation [Virtanen, 2007] and audio texture synthesis
[Bruna and Mallat, 2013b].

For the study of phase retrieval problems, the case of the wavelet transform is also interesting,
because it has atypical properties, compared to other known examples:

• It is a non-random case, relevant for applications, where harmonic analysis properties allow
to prove a uniqueness result, for a specific choice of the wavelet family.

• We can show that the reconstruction is not stable to noise in a strong sense. However, for
a specific choice of the wavelet family, it satisfies a local stability property, which had not
been observed until now.

1.2.3 Phase retrieval for the Cauchy wavelet transform (chapter 3)

In chapter 3, we study the phase retrieval problem from a theoretical point of view, for a
specific choice of wavelets.

We use Cauchy wavelets (which will be defined in chapter 3). These wavelets satisfy a very
particular property: for any function f ∈ L2(R),

∀j ∈ Z, t ∈ R, f ? ψj(t) = cjF (t+ i2j)

where (cj)j∈Z is a sequence of explicit constants, and F is the holomorphic extension of (a mod-
ification of) f to the complex upper plane. The phase retrieval problem can then be rephrased
in terms of holomorphic functions, and analyzed with techniques similar to Akutowicz [1956],
by factorizing F into Blaschke products.

We have a uniqueness theorem:

Theorem (3.2). If f, g ∈ L2(R) are two functions such that f̂(ω) = ĝ(ω) = 0 for any ω < 0,
and, for at least two distinct values of j ∈ Z:

|f ? ψj| = |g ? ψj|

then f = eiφg for some φ ∈ R.

This result is strong in the sense that it does not require the whole wavelet transforms of f and
g to be equal in modulus: it suffices that only two components are equal.

14

However, we show that the reconstruction is not strongly stable, in the sense that, for any
ε > 0, there exist f, g ∈ L2(R) such that:∣∣∣∣ |W |f − |W |g∣∣∣∣

2
< ε but ∀φ ∈ R, ||f − eiφg||2 ≥ 1

where |W | still denotes the modulus of the wavelet transform. This holds for all wavelets, not
especially Cauchy ones.

We nevertheless have a form of local stability. If |W |f ≈ |W |g, then our numerical experi-
ments show that:

∀j ∈ Z, t ∈ R, f ? ψj(t) ≈ eiφj(t)g ? ψj(t) (1.1)

where (j, t) → φj(t) is a phase whose variation is slow in j and t, except maybe at the points
where f ? ψj(t) is close to zero. Informally, Equation (1.1) expresses the fact that the wavelet
transforms of f and g are approximately equal, up to a global phase, in the neighborhood of
each point (j, t) of the time-frequency plane. Hence the term local stability.

This numerical result can be formalized and proven for Cauchy wavelets (Theorems 3.17
and 3.18), although the statements are more technical than this simplified exposition.

1.2.4 Phase retrieval for wavelet transforms: a non-convex algorithm
(chapter 4)

Results from Chapter 3 indicate that phase retrieval for the wavelet transform is a relatively
well-posed problem, as reconstruction is unique and locally stable. However, generic phase
retrieval algorithms tend to yield disappointing numerical results:

• Convexification methods like PhaseLift [Chai et al., 2011; Candès et al., 2011] and Phase-
Cut (Chapter 2) give very encouraging results for toy problems of small dimension [Sun
and Smith [2012], Paragraph 2.4.3]. However, their complexity is too high for them to be
used on real-size problems.

• Iterative methods for audio signals have been introduced by [Griffin and Lim, 1984] and
subsequently refined [Achan et al., 2004; Bouvrie and Ezzat, 2006]. However, as the prob-
lem is non-convex, they tend to get stuck in local optima, and they generally do not yield
reconstruction results of high quality.

In Chapter 4, we propose a new iterative method, achieving the same precision as convexification
methods on small-size problems, with a complexity roughly linear in the size of the signal,
allowing it to be used on real audio signals.

The main tool of this algorithm is a reformulation of the phase retrieval problem. This
reformulation uses the notion of holomorphic extension, as in Chapter 3, but applies to any
family of (exponentially-decaying wavelets), and not only to Cauchy ones.

15

The reformulation yields a multiscale algorithm, reconstructing the unknown signal f fre-
quency band by frequency band, starting with the low frequencies and ending with the high
ones. At each step, the already recovered phase information is exploited to reconstruct one more
frequency band.

Numerical experiments confirm that the algorithm performs well: the reconstruction is of
high quality, and degrades proportionally to measurement noise. It is worth noting that, because
the phase retrieval problem is locally but not globally stable, the signals that are reconstructed
from the wavelet transform modulus may not be very close to the original signals. However, they
have almost exactly the same wavelet transform, in modulus. In the case of audio signals, original
signals and their reconstructions, although not necessarily equal, are in general indistinguishable
to the ear.

We use our algorithm to experimentally validate the theoretical conclusions of Chapter 3.
We in particular highlight the fact that reconstruction is more difficult and less stable when the
wavelet transform modulus has a lot of values close to zero.

1.3 Scattering transforms

In the last two chapters of the thesis, we consider the integration of the wavelet transform
modulus in a more sophisticated representation: the scattering transform.

The scattering operator, introduced in [Mallat, 2012], is a deep representation, obtained by
iterative application of the wavelet transform modulus. It has been defined so as to be invariant
to translations of the input signal, and stable to small deformations. Since then, it has achieved
important success in various data analysis tasks.

After a definition of the scattering (Paragraph 1.3.1), we discuss its main achievements and
the theoretical questions it raises (Paragraph 1.3.2). In the frame of this thesis, the main question
is to understand which properties of a signal are characterized by its scattering transform,
especially which regularity properties. In Paragraphs 1.3.3 and 1.3.4, we describe the results of
Chapters 5 and 6 related to this question.

1.3.1 Definition of scattering

The scattering transform is defined as a cascade of wavelet transform modulus, followed by
averages.

Starting from a function f ∈ L2(R), we compute its local temporal mean by convolving it
with a smooth window function φJ , whose support has a characteristic size proportional to 2J ,

16

for some J ∈ Z:
f → f ? φJ

This temporal mean f ? φJ (called scattering coefficient of order 0) has the good property of
being almost invariant under translations of f :

f ? φJ ≈ f(.− τ) ? φJ when |τ | � 2J

However, f ? φJ gives a very rough information on f : all high frequencies of f have been
lost. Therefore, although it has the advantage of being invariant to translations, f ? φJ is not
discriminative enough to be an interesting representation of f .

We recover the high frequencies with the wavelet transform (whose very low frequencies can
be discarded):

f ? ψJ , f ? ψJ−1, f ? ψJ−2, ...

After an application of the complex modulus, we average these components with φJ , to obtain
scattering coefficients of order 1:

|f ? ψJ | ? φJ , |f ? ψJ−1| ? φJ , |f ? ψJ−2| ? φJ , ...

Again, these averaged functions are almost invariant under translations of f . Together with
f?φJ , they bring more information about f than f?φJ alone, and thus form a more discriminative
representation.

However, the high frequencies of the |f ?ψj| have been lost during the averaging. We recover
them with a new application of the wavelet transform modulus, and so on.

Scattering coefficients of order n are thus defined as the temporal average of the wavelet
transform modulus, n times composed with itself. The whole process is schematized on Fig-
ure 1.3. Scattering coefficients make up a representation of f that is invariant to translations
(when J goes to infinity) and stable to small deformations of f [Mallat, 2012].

This definition can be refined so as to be invariant or stable to other transformations than
translations and deformations, for example rotations [Sifre and Mallat, 2013; Oyallon and Mallat,
2015].

1.3.2 Success and open question

Its invariance and stability properties allow the scattering transform to be successfully applied
to various data analysis tasks, in particular classification tasks. Applications cover a high range
of domains, such as images [Bruna and Mallat, 2013a], audio signals [Andén and Mallat, 2011]
or even quantum chemistry [Hirn et al., 2015].

Compared to learned classifiers, the scattering offers competitive performances, with the
advantage of being a deterministic transform, that does not need to be trained from data. This

17

f

|f ? ψJ−2| |f ? ψJ−1| |f ? ψJ |

||f ? ψJ | ? ψJ−1| ||f ? ψJ | ? ψJ |

f ? φJ

...

|f ? ψJ−2| ? φJ
|f ? ψJ−1| ? φJ
|f ? ψJ | ? φJ

...

||f ? ψJ−1| ? ψJ | ? φJ
...

||f ? ψJ | ? ψJ−1| ? φJ
||f ? ψJ | ? ψJ | ? φJ

...

... ...

...

......

Figure 1.3: Schematic illustration of the scattering transform

gives a simple and generic framework, that can be efficiently implemented [Sifre et al., 2013],
and analyzed from a theoretical point of view.

One of the main problems related to scattering is to determine which properties of a signal
can be recovered from its scattering transform.

The scattering transform of a signal does not uniquely determine the signal. However, it
characterizes some of its properties. For example, from the scattering transform of a sample of
an auditive texture, it is not possible to exactly recover the sample. However, a perceptually
plausible sample of the same texture can be reconstructed [Bruna and Mallat, 2013b].

In particular, we wonder to what extent the regularity of a signal can be characterized from
its scattering transform. It is known that some regularity classes, like Besov spaces, can be
characterized by the decay of wavelet coefficients [DeVore et al., 1992]. Are there similar results
for scattering coefficients? An indication that this may be possible is that first and second-order
scattering coefficients are already known to characterize some structural properties of stationary
processes [Bruna et al., 2015].

18

1.3.3 Exponential decay of scattering coefficients (chapter 5)

In Chapter 5, we prove a result in this optic. We consider the decay of scattering coefficients
as a function of their order; we show that it is controlled by the decay of the signal’s Fourier
transform.

[Mallat, 2012] proves that the scattering transform preserves the L2-norm, provided that the
wavelets satisfy some hypotheses. For any real-valued function f ∈ L2(R):∑

n≥0

||Sn[f]||22 = ||f ||22

where Sn[f] is the set of scattering coefficients of f with order n.
However, this result gives no information on how ||Sn(f)||2 decays with n. Theorem 5.2

partially solves this problem with an upper bound on ||Sn(f)||2. It indeed states that, under
relatively general hypotheses on the wavelets, there exist constants r > 0, a > 1 such that, for
any n ≥ 2 and any real-valued function f ∈ L2(R):∑

m≥n

||Sm[f]||22 ≤
∫
R
|f̂(ω)|2

(
1− e−(ω

ran)
2)
dω (1.2)

The function ω → 1− e−(ω
ran)

2

is a high-pass filter, with a bandwidth proportional to ran.
Equation (1.2) shows the existence, in the scattering transform, of a phenomenon of en-

ergy propagation towards the low frequencies. The energy of f carried by the frequency band
[−ran; ran] is output in the scattering coefficients with order smaller that n; the energy of scat-
tering coefficients with order at least n comes almost only from higher frequency ranges.

1.3.4 Generalized scattering (chapter 6)

In Chapter 6, we introduce a generalization of the (finite-dimensional) scattering transform
for stationary processes (as defined in [Mallat, 2012]). We show that these generalized scattering
coefficients characterize some simple properties of the underlying stationary processes.

The generalized scattering starts with a random process X, taking its values in Rm. We
iteratively define:

X0 = X

∀n ∈ N, Xn+1 = |WnXn − E(WnXn)|

where the Wn are linear unitary operators and |.| denotes the coordinate-wise modulus.

19

The scattering coefficients are {E(WnXn)}n∈N.
This definition generalizes the scattering, in the sense that the linear operators Wn can repre-

sent transformations other than the wavelet transform; the expectation replaces the convolution
with the low-pass filter φJ .

Its interest is to offer a mathematical framework for the study of deep learned representations,
in particular the ones learned in an unsupervised way. Within this framework, we can indeed
consider learning the linear operators Wn, to adapt them to the law of X.

With no assumption on the ambient dimension, we simply show an energy preservation result
(Theorem 6.2):

if E(X2) < +∞ E(X2) =
+∞∑
n=0

||E(WnXn)||2

In dimension one (that is, when the processes Xn take their values in R instead of Rm

with general m), we can analyze the process with more precision. We show that scattering
coefficients characterize the distribution tail of X (Theorem 6.4). More precisely, when X is not
almost surely bounded and takes only positive values, then:

E(Xn) ∼ 2f(Sn) when n→ +∞

where: - f(t) = E((X − t)1X≥t) characterizes the law of X
- Sn =

∑
k<n E(Xk) can be computed from the scattering coefficients

The sequence (Sn) goes to infinity with n but Sn+1− Sn → 0, so (E(Xn))n∈N precisely describes
the asymptotic behavior of f , that is, the distribution tail of X.

20

Chapter 2

A general phase retrieval algorithm,
PhaseCut

This chapter has be written in collaboration with Alexandre d’Aspremont and Stéphane
Mallat, and published in [Waldspurger et al., 2015].

We consider a generic phase retrieval problem, in finite dimension. So we aim at reconstruct-
ing an unknown vector x, from linear complex-valued measurements Ax. The phase of these
measurements has been lost; we have only access to their modulus b = |Ax|. Such a problem
can be ill-posed; the modulus |Ax| may for example not uniquely determine x. However, we are
not concerned here with such issues: we assume the phase retrieval problem to be well-posed
and focus on the design of a numerical algorithm.

Phase retrieval problems have traditionally been solved with iterative algorithms [Gerchberg
and Saxton, 1972; Fienup, 1982]. Despite their success in some cases [Dainty and Fienup, 1987],
these algorithms often stall in local minima, whose existence comes from the non-convexity of the
problem. To overcome this difficulty, Chai et al. [2011] and Candès et al. [2011] have proposed a
convex relaxation for the phase retrieval problem, called PhaseLift. It has been proven in [Candès
et al., 2013; Candès and Li, 2014] that, with high probability, when the measurement matrix A
has independent Gaussian entries, the relaxation is tight, meaning that it has the same solution
as the original problem. So with high probability, the convex relaxation exactly reconstructs the
unknown x, but, as it is convex, it can be solved with polynomial-time algorithms. It is also
stable to noise.

The contribution of this chapter is to propose a different convex relaxation, called PhaseCut.
Compared to PhaseLift, which directly reconstructs the unknown vector x, PhaseCut focuses
on the reconstruction of the phase of Ax, which is an element of the complex unit torus. The

21

convex relaxation to which we then arrive has the same form as semidefinite programs for
solving MaxCut-type problems [Delorme and Poljak, 1993; Goemans and Williamson, 1995].
Links had already been established between MaxCut and angular synchronization [Singer, 2011]
and maximum-likelihood channel detection [Luo et al., 2003; Kisialiou and Luo, 2010; So, 2010],
but it is the first time that a connection is drawn with phase retrieval.

We obtain correctness results for PhaseCut by showing (with the help of [Voroninski, 2012])
an equivalence with PhaseLift : in the noiseless case, the relaxation PhaseLift is tight if and
only if a slightly modified version of PhaseCut is tight (the same equivalence exists between
the unmodified PhaseCut and a slight modification of PhaseLift enjoying the same properties
[Demanet and Hand, 2012; Candès and Li, 2014]). We also compare the stability to noise of
PhaseLift and PhaseCut : PhaseCut is at least as stable as a variant of PhaseLift, but empirically
appears to be more stable in some cases, in particular when b = |Ax| is sparse.

Although the convex relaxation PhaseCut typically has a larger dimension thanPhaseLift, it
has a simpler structure. We can then apply efficient algorithms designed for MaxCut, in partic-
ular a provably convergent block coordinate descent algorithm whose complexity per iteration
is the same as in the iterative algorithm [Gerchberg and Saxton, 1972]. Depending on the used
algorithm, the complexity of PhaseCut is thus different from the one of PhaseLift, and signifi-
cantly better in some cases. Depending on the exact considered phase retrieval problem, one or
the other algorithm suits better.

From the point of view of combinatorial optimization, showing an equivalence between phase
recovery and MaxCut allows us to expose a new class of nontrivial problem instances where the
semidefinite relaxation for a MaxCut-like problem is tight, together with explicit conditions for
tightness directly imported from the matrix completion formulation of these problems (these
conditions are also hard to check, but hold with high probability for some classes of random
experiments).

The chapter is organized as follows. In Section 2.1, we explain how to factorize away the
magnitude information in the phase retrieval problem, so as to reformulate it as a non-convex
quadratic optimization problem on the phase variables. The convex relaxation is derived in
Paragraph 2.1.4. In Section 2.2, we detail several algorithms for solving this problem. In
Section 2.3, we prove the equivalence, in terms of tightness, between a variant of PhaseCut
and PhaseLift. We compare the stability to noise and the complexity of both algorithms. In
Section 2.4, we perform numerical experiments comparing PhaseLift, PhaseCut and an iterative
baseline, for three different phase retrieval problems. Section 2.5 contains technical lemmas.

Notations

We write Sp (resp. Hp) the cone of symmetric (resp. Hermitian) matrices of dimension p;
S+
p (resp. H+

p) denotes the set of positive symmetric (resp. Hermitian) matrices.

22

We write ‖ · ‖p the Schatten p-norm of a matrix, that is the p-norm of the vector of its
eigenvalues (in particular, ‖ · ‖∞ is the spectral norm). The notation ‖A‖`1 refers to the sum of
the modulus of the coefficients of A.

We write A† the (Moore-Penrose) pseudo-inverse of a matrix A. For x ∈ Rp, we write
diag (x) the matrix with diagonal x. When X ∈ Hp however, diag (X) is the vector containing
the diagonal elements of X. For X ∈ Hp, X

∗ is the Hermitian transpose of X, with X∗ = (X̄)T .
Finally, we write b2 the vector with components b2

i , i = 1, . . . , n.

2.1 Phase recovery

The phase recovery problem seeks to retrieve a signal x ∈ Cp from the amplitude b = |Ax|
of n linear measurements, solving

find x
such that |Ax| = b,

(2.1)

in the variable x ∈ Cp, where A ∈ Cn×p and b ∈ Rn.

2.1.1 Greedy optimization in the signal

Approximate solutions x of the recovery problem in (2.1) are usually computed from b = |Ax|
using algorithms inspired from the alternating projection method in [Gerchberg and Saxton,
1972]. These algorithms compute iterates yk in the set F of vectors y ∈ Cn such that |y| = b =
|Ax|, which are getting progressively closer to the image of A.

The Gerchberg-Saxton algorithm projects the current iterate yk on the image of A using the
orthogonal projector AA†, then it adjusts to bi the amplitude of each coordinate, so as to obtain
a new element of F. We describe this method explicitly below.

Algorithm 1 Gerchberg-Saxton.

Input: An initial y1 ∈ F, i.e. such that |y1| = b.
1: for k = 1, . . . , N − 1 do
2: Set

yk+1
i = bi

(AA†yk)i
|(AA†yk)i|

, i = 1, . . . , n. (Gerchberg-Saxton)

3: end for
Output: yN ∈ F.

23

Because F is not convex however, this alternating projection method usually converges to
a stationary point y∞ which does not belong to the intersection of F with the image of A,
and hence |AA†y∞| 6= b. Several modifications proposed in [Fienup, 1982] do not eliminate the
existence of multiple stationary points. To guarantee convergence to a unique solution, which
hopefully belongs to the intersection of F and the image of A, this non-convex optimization
problem has recently been relaxed as a semidefinite program [Chai et al., 2011; Candès et al.,
2011], where phase recovery is formulated as a matrix completion problem (described in Sec-
tion 2.3). Although the computational complexity of this relaxation is much higher than that
of the Gerchberg-Saxton algorithm, it is able to recover x from |Ax| (up to a multiplicative
constant) in a number of cases [Chai et al., 2011; Candès et al., 2011].

2.1.2 Splitting phase and amplitude variables

As opposed to these strategies, we solve the phase recovery problem by explicitly separating
the amplitude and phase variables, and by only optimizing the values of the phase variables.
In the noiseless case, we can write Ax = diag (b)u where u ∈ Cn is a phase vector, satisfying
|ui| = 1 for i = 1, . . . , n. Given b = |Ax|, the phase recovery problem can thus be written as

min
u∈Cn, |ui|=1,

x∈Cp

‖Ax− diag (b)u‖2
2,

where we optimize over both variables u ∈ Cn and x ∈ Cp. In this format, the inner minimization
problem in x is a standard least squares and can be solved explicitly by setting

x = A†diag (b)u,

which means that problem (2.1) is equivalent to the reduced problem

min
|ui|=1
u∈Cn

‖AA†diag (b)u− diag (b)u‖2
2.

The objective of this last problem can be rewritten as follows

‖AA†diag (b)u− diag (b)u‖2
2 = ‖(AA† − I)diag (b)u‖2

2

= u∗diag (bT)M̃diag (b)u.

where M̃ = (AA†− I)∗(AA†− I) = I−AA†. Finally, the phase recovery problem (2.1) becomes

minimize u∗Mu
subject to |ui| = 1, i = 1, . . . n,

(2.2)

24

in the variable u ∈ Cn, where the Hermitian matrix

M = diag (b)(I− AA†)diag (b)

is positive semidefinite. The intuition behind this last formulation is that (I − AA†) is the
orthogonal projector on the orthogonal complement of the image of A (the kernel of A∗). So
this last problem simply minimizes in the phase vector u the norm of the component of diag (b)u
which is not in the image of A.

2.1.3 Greedy optimization in phase

Having transformed the phase recovery problem (2.1) in the quadratic minimization prob-
lem (2.2), we will be able to describe the associated convex relaxation. However, the reformula-
tion (2.2) also yields a natural greedy optimization method; we begin with the latter.

Suppose that we are given an initial vector u ∈ Cn, and focus on optimizing over a single
component ui for i = 1, . . . , n. The problem is equivalent to solving

minimize ūiMiiui + 2Re
(∑

j 6=i ūjMjiui

)
subject to |ui| = 1, i = 1, . . . n,

in the variable ui ∈ C where all the other phase coefficients uj remain constant. Because |ui| = 1
this then amounts to solving

min
|ui|=1

Re

(
ui
∑
j 6=i

Mjiūj

)
which means

ui =
−
∑

j 6=i M̄jiuj∣∣∣∑j 6=i M̄jiuj

∣∣∣ (2.3)

for each i = 1, . . . , n, when u is the optimum solution to problem (2.2). We can use this fact to
derive Algorithm 2, a greedy algorithm for optimizing the phase problem.

This greedy algorithm converges to a stationary point u∞, but it is generally not a global
solution of problem (2.2), and hence |AA†diag (u∞)b| 6= b. It has often nearly the same stationary
points as the Gerchberg-Saxton algorithm. One can indeed verify that if u∞ is a stationary point
then y∞ = diag (u∞)b is a stationary point of the Gerchberg-Saxton algorithm. Conversely if b
has no zero coordinate and y∞ is a stable stationary point of the Gerchberg-Saxton algorithm
then u∞i = y∞i /|y∞i | defines a stationary point of the greedy algorithm in phase.

If Ax can be computed with a fast algorithm using O(n log n) operations, which is the case
for Fourier or wavelets transform operators for example, then each Gerchberg-Saxton iteration is

25

Algorithm 2 Greedy algorithm in phase.

Input: An initial u ∈ Cn such that |ui| = 1, i = 1, . . . , n. An integer N > 1.
1: for k = 1, . . . , N do
2: for i = 1, . . . n do
3: Set

ui =
−
∑

j 6=i M̄jiuj∣∣∣∑j 6=i M̄jiuj

∣∣∣
4: end for
5: end for

Output: u ∈ Cn such that |ui| = 1, i = 1, . . . , n.

computed withO(n log n) operations. The greedy phase algorithm above does not take advantage
of this fast algorithm and requires O(n2) operations to update all coordinates ui for each iteration
k. However, we will see in Section 2.2.6 that a small modification of the algorithm allows for
O(n log n) iteration complexity.

2.1.4 Complex MaxCut

In this paragraph, we describe the convex relaxation of (2.2). It is an optimization problem
over the set of Hermitian matrices. In the second half of the paragraph, we explain how to
reformulate it as a real semidefinite program.

Following the classical relaxation argument in [Shor, 1987; Lovász and Schrijver, 1991; Goe-
mans and Williamson, 1995; Nesterov, 1998], we first write U = uu∗ ∈ Hn. Problem (2.2),
written

QP (M)
def
= min. u∗Mu

subject to |ui| = 1, i = 1, . . . n,

in the variable u ∈ Cn, is equivalent to

min. Tr (UM)
subject to diag (U) = 1

U � 0, Rank(U) = 1,

in the variable U ∈ Hn. After dropping the (non-convex) rank constraint, we obtain the following
convex relaxation

SDP (M)
def
= min. Tr (UM)

subject to diag (U) = 1, U � 0,
(PhaseCut)

26

which is a semidefinite program (SDP) in the matrix U ∈ Hn and can be solved efficiently.
When the solution of problem PhaseCut has rank one, the relaxation is tight and the vector u
such that U = uu∗ is an optimal solution of the phase recovery problem (2.2). If the solution
has rank larger than one, a normalized leading eigenvector v of U is used as an approximate
solution, and diag (U − vvT) gives a measure of the uncertainty around the coefficients of v.

In practice, semidefinite programming solvers are rarely designed to directly handle problems
written over Hermitian matrices and start by reformulating complex programs in Hn as real
semidefinite programs over S2n based on the simple facts that follow. For Z, Y ∈ Hn, we define
T (Z) ∈ S2n as in [Goemans and Williamson, 2004]

T (Z) =

(
Re (Z) −Im (Z)
Im (Z) Re (Z)

)
(2.4)

so that Tr (T (Z)T (Y)) = 2Tr (ZY). By construction, Z ∈ Hn if and only if T (Z) ∈ S2n. One
can also check that z = x+ iy is an eigenvector of Z with eigenvalue λ if and only if(

x
y

)
and

(
−y
x

)
are eigenvectors of T (Z), both with eigenvalue λ (depending on the normalization of z, one
corresponds to (Re (z), Im (z)), the other one to (Re (i z), Im (i z)). This means in particular
that Z � 0 if and only if T (Z) � 0.

We can use these facts to formulate an equivalent semidefinite program over real symmetric
matrices, written

minimize Tr (T (M)X)
subject to Xi,i +Xn+i,n+i = 2

Xi,j = Xn+i,n+j, Xn+i,j = −Xi,n+j, i, j = 1, . . . , n,
X � 0,

in the variable X in S2n. This last problem is equivalent to PhaseCut . In fact, because of
symmetries in T (M), the equality constraints enforcing symmetry can be dropped, and this
problem is equivalent to a MaxCut-like problem in dimension 2n, which reads

minimize Tr (T (M)X)
subject to diag (X) = 1, X � 0,

(2.5)

in the variable X in S2n. As we will see below, formulating a relaxation to the phase recovery
problem as a complex MaxCut-like semidefinite program has direct computational benefits.

27

2.2 Algorithms

In the previous section, we have approximated the phase recovery problem (2.2) by a convex
relaxation, written

minimize Tr (UM)
subject to diag (U) = 1, U � 0,

which is a semidefinite program in the matrix U ∈ Hn. The dual, written

max
w∈Rn

nλmin(M + diag (w))− 1Tw, (2.6)

is a minimum eigenvalue maximization problem in the variable w ∈ Rn. Both primal and dual
can be solved efficiently. When exact phase recovery is possible, the optimum value of the primal
problem PhaseCut is zero and we must have λmin(M) = 0, which means that w = 0 is an optimal
solution of the dual.

2.2.1 Interior point methods

For small scale problems, with n ∼ 102, generic interior point solvers such as SDPT3 [Toh
et al., 1999] solve problem (2.5) with a complexity typically growing as O (n4.5 log(1/ε)) where
ε > 0 is the target precision [Ben-Tal and Nemirovski, 2001, §4.6.3]. Exploiting the fact that
the 2n equality constraints on the diagonal in (2.5) are singletons, Helmberg et al. [1996] de-
rive an interior point method for solving the MaxCut problem, with complexity growing as
O (n3.5 log(1/ε)) where the most expensive operation at each iteration is the inversion of a posi-
tive definite matrix, which costs O(n3) flops.

2.2.2 First-order methods

When n becomes large, the cost of running even one iteration of an interior point solver
rapidly becomes prohibitive. However, we can exploit the fact that the dual of problem (2.5)
can be written (after switching signs) as a maximum eigenvalue minimization problem. Smooth
first-order minimization algorithms detailed in [Nesterov, 2007] then produce an ε-solution after

O

(
n3
√

log n

ε

)
floating point operations. Each iteration requires forming a matrix exponential, which costs
O(n3) flops. This is not strictly smaller than the iteration complexity of specialized interior

28

point algorithms, but matrix structure often allows significant speedup in this step. Finally, the
simplest subgradient methods produce an ε-solution in

O

(
n2 log n

ε2

)
floating point operations. Each iteration requires computing a leading eigenvector which has
complexity roughly O(n2 log n).

2.2.3 Block coordinate descent

We can also solve the semidefinite program in PhaseCut using a block coordinate descent
algorithm. While no explicit complexity bounds are available for this method in our case, the
algorithm is particularly simple and has a very low cost per iteration (it only requires computing
a matrix vector product). We write ic the index set {1, . . . , i− 1, i+ 1, . . . , n} and describe the
method as Algorithm 3.

Block coordinate descent is widely used to solve statistical problems where the objective is
separable (LASSO is a typical example) and was shown to efficiently solve semidefinite programs
arising in covariance estimation [d’Aspremont et al., 2008]. These results were extended by [Wen
et al., 2012] to a broader class of semidefinite programs, including MaxCut. We briefly recall
its simple construction below, applied to a barrier version of the MaxCut relaxation PhaseCut ,
written

minimize Tr (UM)− µ log det(U)
subject to diag (U) = 1

(2.7)

which is a semidefinite program in the matrix U ∈ Hn, where µ > 0 is the barrier parameter.
As in interior point algorithms, the barrier enforces positive semidefiniteness and the value of
µ > 0 precisely controls the distance between the optimal solution to (2.7) and the optimal set
of PhaseCut . We refer the reader to [Boyd and Vandenberghe, 2004] for further details. The
key to applying coordinate descent methods to problems penalized by the log det(·) barrier is
the following block-determinant formula

det(U) = det(B) det(y − xTB−1x), when U =

(
B x
xT y

)
, U � 0. (2.8)

This means that, all other parameters being fixed, minimizing the function det(X) in the row and
column block of variables x, is equivalent to minimizing the quadratic form y−xTZ−1x, arguably
a much simpler problem. Solving the semidefinite program (2.7) row/column by row/column
thus amounts to solving the simple problem (2.9) described in the following lemma.

29

Lemma 2.1. Suppose σ > 0, c ∈ Rn−1, and B ∈ Sn−1 are such that b 6= 0 and B � 0, then the
optimal solution of the block problem

min
x

cTx− σ log(1− xTB−1x) (2.9)

is given by

x =

√
σ2 + γ − σ

γ
Bc

where γ = cTBc.

Proof. As in [Wen et al., 2012], a direct consequence of the first order optimality conditions
for (2.9).

Here, we see problem (2.7) as an unconstrained minimization problem over the off-diagonal
coefficients of U , and (2.8) shows that each block iteration amounts to solving a minimization
subproblem of the form (2.9). Lemma 2.1 then shows that this is equivalent to computing a
matrix vector product. Linear convergence of the algorithm is guaranteed by the result in [Boyd
and Vandenberghe, 2004, §9.4.3] and the fact that the function log det is strongly convex over
compact subsets of the positive semidefinite cone. So the complexity of the method is bounded
by O

(
log 1

ε

)
but the constant in this bound depends on n here, and the dependence cannot be

quantified explicitly.

Algorithm 3 Block Coordinate Descent Algorithm for PhaseCut .

Input: An initial X0 = In and ν > 0 (typically small). An integer N > 1.
1: for k = 1, . . . , N do
2: Pick i ∈ [1, n].
3: Compute

x = Xk
ic,icMic,i and γ = x∗Mic,i

4: If γ > 0, set

Xk+1
ic,i = Xk+1∗

i,ic = −
√

1− ν
γ

x

else
Xk+1
ic,i = Xk+1∗

i,ic = 0.

5: end for
Output: A matrix X � 0 with diag (X) = 1.

30

2.2.4 Initialization & randomization

Suppose the Hermitian matrix U solves the semidefinite relaxation PhaseCut . As in [Goe-
mans and Williamson, 2004; Ben-tal et al., 2003; Zhang and Huang, 2006; So et al., 2007], we
generate complex Gaussian vectors x ∈ Cn with x ∼ NC(0, U), and for each sample x, we form
z ∈ Cn such that

zi =
xi
|xi|

, i = 1, . . . , n.

All the sample points z generated using this procedure satisfy |zi| = 1, hence are feasible points
for problem (2.2). This means in particular that QP (M) ≤ E[z∗Mz]. In fact, this expectation
can be computed almost explicitly, using

E[zz∗] = F (U), with F (w) =
1

2
ei arg(w)

∫ π

0

cos(θ) arcsin(|w| cos(θ))dθ

where F (U) is the matrix with coefficients F (Uij), i, j = 1, . . . , n. We then get

SDP (M) ≤ QP (M) ≤ Tr (MF (U)) (2.10)

In practice, to extract good candidate solutions from the solution U to the SDP relaxation
in PhaseCut , we sample a few points from NC(0, U), normalize their coordinates and simply
pick the point which minimizes z∗Mz.

This sampling procedure also suggests a simple spectral technique for computing rough solu-
tions to problem PhaseCut : compute an eigenvector of M corresponding to its lowest eigenvalue
and simply normalize its coordinates (this corresponds to the simple bound on MaxCut by [De-
lorme and Poljak, 1993]). The information contained in U can also be used to solve a robust
formulation [Ben-Tal et al., 2009] of problem (2.1) given a Gaussian model u ∼ NC(0, U).

2.2.5 Approximation bounds

The semidefinite program in PhaseCut is a MaxCut-type graph partitioning relaxation whose
performance has been studied extensively. Note however that most approximation results for
MaxCut study maximization problems over positive semidefinite or nonnegative matrices, while
we are minimizing in PhaseCut so, as pointed out in [Kisialiou and Luo, 2010; So and Ye,
2010] for example, we do not inherit the constant approximation ratios that hold in the classical
MaxCut setting.

2.2.6 Exploiting structure

In some instances, we have additional structural information on the solution of problems (2.1)
and (2.2), which usually reduces the complexity of approximating PhaseCut and improves the
quality of the approximate solutions. We briefly highlight a few examples below.

31

Alignment

In other instances, we might have prior knowledge that the phases of certain samples are
aligned, i.e. that there is an index set I such that ui = uj, for all i, j ∈ I, this reduces to the
symmetric case discussed above when the phase is arbitrary. W.l.o.g., we can also fix the phase
to be one, with ui = 1 for i ∈ I, and solve a constrained version of the relaxation PhaseCut

min. Tr (UM)
subject to Uij = 1, i, j ∈ I,

diag (U) = 1, U � 0,

which is a semidefinite program in U ∈ Hn.

Fast Fourier transform

If the product Mx can be computed with a fast algorithm in O(n log n) operations, which is
the case for Fourier or wavelet transform operators, we significantly speed up the iterations of
Algorithm 3 to update all coefficients at once. Each iteration of the modified Algorithm 3 then
has cost O(n log n) instead of O(n2).

Real valued signal

In some cases, we know that the solution vector x in (2.1) is real valued. Problem (2.1) can
be reformulated to explicitly constrain the solution to be real, by writing it

min
u∈Cn, |ui|=1,

x∈Rp

‖Ax− diag (b)u‖2
2

or again, using the operator T (·) defined in (2.4)

minimize

∥∥∥∥T (A)

(
x
0

)
− diag

(
b
b

)(
Re (u)
Im (u)

)∥∥∥∥2

2

subject to u ∈ Cn, |ui| = 1
x ∈ Rp.

The optimal solution of the inner minimization problem in x is given by x = A†2B2v, where

A2 =

(
Re (A)
Im (A)

)
, B2 = diag

(
b
b

)
, and v =

(
Re (u)
Im (u)

)
hence the problem is finally rewritten

minimize ‖(A2A
†
2B2 −B2)v‖2

2

subject to v2
i + v2

n+i = 1, i = 1, . . . , n,

32

in the variable v ∈ R2n. This can be relaxed as above by the following problem

minimize Tr (VM2)
subject to Vii + Vn+i,n+i = 1, i = 1, . . . , n,

V � 0,

which is a semidefinite program in the variable V ∈ S2n, where M2 = (A2A
†
2B2−B2)T (A2A

†
2B2−

B2) = BT
2 (I− A2A

†
2)B2.

2.3 Matrix completion & exact recovery conditions

In [Chai et al., 2011; Candès et al., 2011], phase recovery (2.1) is cast as a matrix completion
problem. In this section, we briefly review this approach and compare it with the semidefinite
program in PhaseCut .

Given a signal vector b ∈ Rn and a sampling matrix A ∈ Cn×p, we look for a vector x ∈ Cp

satisfying
|a∗ix| = bi, i = 1, . . . , n,

where the vector a∗i is the ith row of A and x ∈ Cp is the signal we are trying to reconstruct.
The phase recovery problem is then written as

minimize Rank(X)
subject to Tr (aia

∗
iX) = b2

i , i = 1, . . . , n
X � 0

in the variable X ∈ Hp, where X = xx∗ when exact recovery occurs. This last problem can be
relaxed as

minimize Tr (X)
subject to Tr (aia

∗
iX) = b2

i , i = 1, . . . , n
X � 0

(PhaseLift)

which is a semidefinite program (called PhaseLift by Candès et al. [2011]) in the variable X ∈ Hp.
Recent results in [Candès et al., 2013; Candès and Li, 2014] give explicit (if somewhat stringent)
conditions on A and x under which the relaxation is tight (i.e. the optimal X in PhaseLift is
unique, has rank one, with leading eigenvector x).

In Paragraph 2.3.1, we define a variant of PhaseLift, easier to compare with PhaseCut. In
paragraph 2.3.2, we show that this variant and PhaseCut can be seen as projection problems.
Paragraph 2.3.3 compares the tightness of PhaseLift and a slight modification of PhaseCut.
Paragraph 2.3.4 discusses the stability to noise and paragraph 2.3.6 compares the complexities
of both methods.

33

2.3.1 Weak formulation

We also introduce a weak version of PhaseLift , which is more directly related to PhaseCut
and is easier to interpret geometrically. It was noted in [Candès et al., 2013] that, when I ∈
span{aia∗i }ni=1, the condition Tr (aia

∗
iX) = b2

i , i = 1, ..., n determines Tr (X), so in this case the
trace minimization objective is redundant and PhaseLift is equivalent to

find X
subject to Tr (aia

∗
iX) = b2

i , i = 1, . . . , n
X � 0.

(Weak PhaseLift)

When I /∈ span{aia∗i }ni=1 on the other hand, Weak PhaseLift and PhaseLift are not equivalent:
solutions of PhaseLift solve Weak PhaseLift too but the converse is not true. Interior point
solvers typically pick a solution at the analytic center of the feasible set of Weak PhaseLift
which in general can be significantly different from the minimum trace solution.

However, in practice, the removal of trace minimization does not really seem to alter the
performances of the algorithm. We will illustrate this affirmation with numerical experiments
in Paragraph 2.4.4 and a formal proof is given in [Demanet and Hand, 2012; Candès and Li,
2014] who showed that, in the case of Gaussian random measurements, the relaxation of Weak
PhaseLift is tight with high probability under the same conditions as PhaseLift .

2.3.2 Phase recovery as a projection

We will see in what follows that phase recovery can be interpreted as a projection problem.
These results will prove useful later to study stability. The PhaseCut reconstruction problem is
written

minimize Tr (UM)
subject to diag (U) = 1, U � 0,

with M = diag (b)(I−AA†)diag (b). In what follows, we assume bi 6= 0, i = 1, ..., n, which means
that, after scaling U , solving PhaseCut is equivalent to solving

minimize Tr (V (I− AA†))
subject to diag (V) = b2, V � 0.

(2.11)

In the following lemma, we show that this last semidefinite program can be understood as a
projection problem on a section of the semidefinite cone using the trace (or nuclear) norm. We
define

F = {V ∈ Hn : x∗V x = 0,∀x ∈ Range (A)⊥}
which is also F = {V ∈ Hn : (I−AA†)V (I−AA†) = 0}, and we now formulate the objective of
problem (2.11) as a distance.

34

Lemma 2.2. For all V ∈ Hn such that V � 0,

Tr (V (I− AA†)) = d1(V,F) (2.12)

where d1 is the distance associated to the trace norm.

Proof. Let B1 (resp. B2) be an orthonormal basis of Range A (resp. (Range A)⊥). Let T be the
transformation matrix from canonical basis to orthonormal basis B1 ∪ B2. Then

F = {V ∈ Hn s.t. T−1V T =
(
S1 S2
S∗2 0

)
, S1 ∈ Hp, S2 ∈Mp,n−p}

As the transformation X → T−1XT preserves the nuclear norm, for every matrix V � 0, if we
write

T−1V T =
(
V1 V2
V ∗2 V3

)
then the orthogonal projection of V onto F is

W = T
(
V1 V2
V ∗2 0

)
T−1,

so d1(V,F) = ‖V −W‖1 = ‖
(

0 0
0 V3

)
‖1. As V � 0,

(
V1 V2
V ∗2 V3

)
� 0 hence

(
0 0
0 V3

)
� 0, so d1(V,F) =

Tr
(

0 0
0 V3

)
. Because AA† is the orthogonal projection onto Range (A), we have T−1(I−AA†)T =

(0 0
0 I) hence

d1(V,F) = Tr
(

0 0
0 V3

)
= Tr ((T−1V T)(T−1(I− AA†)T)) = Tr (V (I− AA†))

which is the desired result.

This means that PhaseCut can be written as a projection problem, i.e.

minimize d1(V,F)
subject to V ∈ H+

n ∩Hb
(2.13)

in the variable V ∈ Hn, where Hb = {V ∈ Hn s.t. Vi,i = b2
i , i = 1, ..., n}. Moreover, with ai the

i-th row of A, we have for all X ∈ H+
p , Tr (aia

∗
iX) = a∗iXai = diag (AXA∗)i, i = 1, . . . , n, so

if we call V = AXA∗ ∈ F , when A is injective, X = A†V A†∗ and Weak PhaseLift is equivalent
to

find V ∈ H+
n ∩ F

subject to diag (V) = b2.

First order algorithms for Weak PhaseLift will typically solve

minimize d(diag (V), b2)
subject to V ∈ H+

n ∩ F

35

Figure 2.1: Schematic representation of the sets involved in equations (2.13) and (2.14): the
cone of positive hermitian matrices H+

n (in light grey), its intersection with the affine subspace
Hb, and F ∩H+

n , which is a face of H+
n .

for some distance d over Rn. If d is the ls-norm, for any s ≥ 1, d(diag (V), b2) = ds(V,Hb), where
ds is the distance generated by the Schatten s-norm, and the algorithm becomes

minimize ds(V,Hb)
subject to V ∈ H+

n ∩ F
(2.14)

which is another projection problem in V .
Thus, PhaseCut and Weak PhaseLift are comparable, in the sense that both algorithms aim

at finding a point of H+
n ∩ F ∩ Hb but PhaseCut does so by picking a point of H+

n ∩ Hb and
moving towards F while Weak PhaseLift moves a point of H+

n ∩ F towards Hb. We can push
the parallel between both relaxations much further. We will show in what follows that, in a
very general case, PhaseLift and a modified version of PhaseCut are simultaneously tight. We
will also be able to compare the stability of Weak PhaseLift and PhaseCut when measurements
become noisy.

2.3.3 Tightness of the semidefinite relaxation

We will now formulate a refinement of the semidefinite relaxation in PhaseCut and prove
that this refinement is equivalent, in terms of tightness, to the relaxation in PhaseLift under
mild technical assumptions. Suppose u is the optimal phase vector, we know that the optimal
solution to (2.1) can then be written x = A†diag (b)u, which corresponds to the matrix X =
A†diag (b)uu∗diag (b)A†∗ in PhaseLift , hence

Tr (X) = Tr (diag (b)A†∗A†diag (b)uu∗).

36

Writing B = diag (b)A†∗A†diag (b), when problem (2.1) is solvable, we look for the “minimum
trace” solution among all the optimal points of relaxation PhaseCut by solving

SDP2(M)
def
= min. Tr (BU)

subject to Tr (MU) = 0
diag (U) = 1, U � 0,

(PhaseCutMod)

which is a semidefinite program in U ∈ Hn. When problem (2.1) is solvable, then every optimal
solution of the semidefinite relaxation PhaseCut is a feasible point of relaxation PhaseCutMod .
In practice, the semidefinite program SDP (M + γB), written

minimize Tr ((M + γB)U)
subject to diag (U) = 1, U � 0,

obtained by replacing M by M+γB in problem PhaseCut , will produce a solution to PhaseCut-
Mod whenever γ > 0 is sufficiently small (this is essentially the exact penalty method detailed in
[Bertsekas, 1998, §4.3] for example). This means that all algorithms (greedy or SDP) designed
to solve the original PhaseCut problem can be recycled to solve PhaseCutMod with negligible
effect on complexity. We now show that the PhaseCutMod and PhaseLift relaxations are si-
multaneously tight when A is injective. An earlier version of this text showed that PhaseLift
tightness implies PhaseCutMod tightness, and the argument was reversed in [Voroninski, 2012]
under mild additional assumptions.

Proposition 2.3. Assume that bi 6= 0 for i = 1, . . . , n, that A is injective and that there is a
solution x to (2.1). The function

Φ : Hp → Hn

X 7→ Φ(X) = diag (b)−1AXA∗diag (b)−1

is a bijection between the feasible points of PhaseCutMod and those of PhaseLift.

Proof. Note that Φ is injective whenever b > 0 and A has full rank. We have to show that U is
a feasible point of PhaseCutMod if and only if it can be written under the form Φ(X), where X
is feasible for PhaseLift . We first show that

Tr (MU) = 0, U � 0, (2.15)

is equivalent to
U = Φ(X) (2.16)

37

for some X � 0. Observe that Tr (UM) = 0 means UM = 0 because U,M � 0, hence
Tr (MU) = 0 in (2.15) is equivalent to

AA†diag (b)Udiag (b) = diag (b)Udiag (b)

because b > 0 and M = diag (b)(I − AA†)diag (b). If we set X = A†diag (b)Udiag (b)A†∗, this
last equality implies both

AX = AA†diag (b)Udiag (b)A†∗ = diag (b)Udiag (b)A†∗

and
AXA∗ = diag (b)Udiag (b)A†∗A∗ = diag (b)Udiag (b)

which is U = Φ(X), and shows (2.15) implies (2.16). Conversely, if U = Φ(X) then:

diag (b)Udiag (b) = AXA∗

and, using AA†A = A, we get AXA∗ = AA†AXA∗ = AA†diag (b)Udiag (b) which means MU =
0, hence (2.15) is in fact equivalent to (2.16) since U � 0 by construction.

Now, if X is feasible for PhaseLift , we have shown Tr (MΦ(X)) = 0 and φ(X) � 0, moreover
diag (Φ(X))i = Tr (aia

∗
iX)/b2

i = 1, so U = Φ(X) is a feasible point of PhaseCutMod . Conversely,
if U is feasible for PhaseCutMod , we have shown that there exists X � 0 such that U = Φ(X)
which means diag (b)Udiag (b) = AXA∗. We also have Tr (aia

∗
iX) = b2

iUii = b2
i , which means X

is feasible for PhaseLift and concludes the proof.

We now have the following central corollary showing the equivalence between PhaseCutMod
and PhaseLift in the noiseless case.

Corollary 2.4. If A is injective, bi 6= 0 for all i = 1, ..., n and if the reconstruction problem (2.1)
admits an exact solution, then PhaseCutMod is tight (i.e. has a unique rank one solution)
whenever PhaseLift is.

Proof. When A is injective, Tr (X) = Tr (BΦ(X)) and Rank(X) = Rank(Φ(X)).

This last result shows that in the noiseless case, the relaxations PhaseLift and PhaseCutMod
are in fact equivalent. In the same way, we could have shown that Weak PhaseLift and Phase-
Cut were equivalent. The performances of both algorithms may not match however when the
information on b is noisy and perfect recovery is not possible.

Remark 2.5. Note that Proposition 2.3 and Corollary 2.4 also hold when the initial signal
is real and the measurements are complex. In this case, we define the B in PhaseCutMod by
B = B2A

†∗
2 A

†
2B2 (with the notations of paragraph 2.2.6). We must also replace the definition

of Φ by Φ(X) = B−1
2 A2XA

∗
2B
−1
2 . Furthermore, all steps in the proof of Proposition 2.3 are

still valid if we replace M by M2, A by A2 and diag (b) by B2. The only difference is that now
1
b2i

Tr (aia
∗
iX) = diag (Φ(X))i + diag (Φ(X))n+i.

38

2.3.4 Stability in the presence of noise

We now consider the case where the vector of measurements b is of the form b = |Ax0|+bnoise.
We first introduce a definition of C-stability for PhaseCut and Weak PhaseLift . The main result
of this section is that, when the Weak PhaseLift solution in (2.14) is stable at a point, PhaseCut
is stable too, with a constant of the same order. The converse does not seem to be true when b
is sparse.

Definition 2.6. Let x0 ∈ Cn, C > 0. The algorithm PhaseCut (resp. Weak PhaseLift) is said to
be C-stable at x0 iff for all bnoise ∈ Rn close enough to zero, every minimizer V of equation (2.13)
(resp. (2.14)) with b = |Ax0|+ bnoise, satisfies

‖V − (Ax0)(Ax0)∗‖2 ≤ C‖Ax0‖2‖bnoise‖2.

The following matrix perturbation result motivates this definition, by showing that a C-stable
algorithm generates a O(C‖bnoise‖2)-error over the signal it reconstructs.

Proposition 2.7. Let C > 0 be arbitrary. We suppose that Ax0 6= 0 and ‖V − (Ax0)(Ax0)∗‖2 ≤
C‖Ax0‖2‖bnoise‖2 ≤ ‖Ax0‖2

2/2. Let y be V ’s main eigenvector, normalized so that (Ax0)∗y =
‖Ax0‖2. Then

‖y − Ax0‖2 = O(C‖bnoise‖2),

and the constant in this last equation does not depend upon A, x0, C or ‖b‖2.

Proof. We use [Karoui and d’Aspremont, 2010, Eq.10] for

u =
Ax0

‖Ax0‖2

v =
y

‖Ax0‖2

E =
V − (Ax0)(Ax0)∗

‖Ax0‖2
2

This result is based on [Kato, 1995, Eq. 3.29], which gives a precise asymptotic expansion of u−v.
For our purposes here, we only need the first-order term. See also Bhatia [1997], Stewart and
Sun [1990] or Stewart [2001] among others for a complete discussion. We get ‖v−u‖ = O(‖E‖2)
because if M = uu∗, then ‖R‖∞ = 1 in [Karoui and d’Aspremont, 2010, Eq.10]. This implies

‖y − Ax0‖2 = ‖Ax0‖2‖u− v‖ = O

(
‖V − (Ax0)(Ax0)∗‖2

‖Ax0‖2

)
= O(C‖bnoise‖)

which is the desired result.

Note that normalizing y differently, we would obtain ‖y − Ax0‖2 ≤ 4C‖bnoise‖2. We now
show the main result of this section, according to which PhaseCut is “almost as stable as”
Weak PhaseLift . In numerical applications, the exact values of the stability constants have only
a small importance, what matters is that they are of the same order.

39

Theorem 2.8. Let A ∈ Cn×m, for all x0 ∈ Cn, C > 0, if Weak PhaseLift is C-stable in x0,
then PhaseCut is (2C + 2

√
2 + 1)-stable in x0.

Proof. Let x0 ∈ Cn, C > 0 be such that Weak PhaseLift is C-stable in x0. Ax0 is a non-zero
vector (because, with our definition, neither Weak PhaseLift nor PhaseCut may be stable in x0 if
Ax0 = 0 andA 6= 0). We setD = 2C+2

√
2+1 and suppose by contradiction that PhaseCut is not

D-stable in x0. Let ε > 0 be arbitrary. Let bn,PC ∈ Rn be such that ‖bn,PC‖2 ≤ max(‖Ax0‖2, ε/2)
and such that, for b = |Ax0|+ bn,PC, the minimizer VPC of (2.13) verifies

‖VPC − (Ax0)(Ax0)∗‖2 > D‖Ax0‖2‖bn,PC‖2

Such a VPC must exist or PhaseCut would be D-stable in x0. We call V
�
PC the restriction of

VPC to Range (A) (that is, the matrix such that x∗(V
�
PC)y = x∗(VPC)y if x, y ∈ Range (A)

and x∗(V
�
PC)y = 0 if x ∈ Range (A)⊥ or y ∈ Range (A)⊥) and V ⊥PC the restriction of VPC to

Range (A)⊥. Let us set bn,PL =

√
V

�
PC ii − |Ax0|ii for i = 1, ..., n. As V

�
PC ∈ H+

n ∩ F , V
�
PC

minimizes (2.14) for b = |Ax0| + bn,PL (because V
�
PC ∈ Hb). Lemmas 2.9 and 2.10 (proven in

the appendix) imply that ‖V �
PC − (Ax0)(Ax0)∗‖2 > C‖Ax0‖2‖bn,PL‖2 and ‖bn,PL‖2 ≤ ε. As ε

is arbitrary, Weak PhaseLift is not C-stable in x0, which contradicts our hypotheses. Conse-
quently, PhaseCut is (2C + 2

√
2 + 1)-stable in x0.

The proof of this theorem is based on the fact that, when VPC solves (2.13), one can construct

some VPL = V
�
PC close to VPC , which is an approximate solution of (2.14). It is natural to

wonder whether, conversely, from a solution VPL of (2.14), one can construct an approximate
solution VPC of (2.13). It does not seem to be the case. One could for example imagine
setting VPC = diag (R)VPLdiag (R), where Ri = bi/

√
VPL ii. Then VPC would not necessarily

minimize (2.13) but at least belong to Hb. But ‖VPC − VPL‖2 might be quite large: (2.14)
implies that ‖diag (VPL)− b2‖s is small but, if some coefficients of b are very small, some Ri may
still be huge, so diag (R) 6≈ I. This does happen in practice (see Paragraph 2.4.5).

To conclude this section, we relate this definition of stability to the one introduced in [Candès
and Li, 2014]. Suppose that A is a matrix of random gaussian independant measurements such
that E[|Ai,j|2] = 1 for all i, j. We also suppose that n ≥ c0p (for some c0 independent of n and
p). In the noisy setting, Candès and Li [2014] showed that the minimizer X of a modified version
of PhaseLift satisfies with high probability

||X − x0x
∗
0||2 ≤ C0

|| |Ax0|2 − b2 ||1
n

(2.17)

for some C0 independent of all variables. Assuming that the Weak PhaseLift solution in (2.14)
behaves as PhaseLift in a noisy setting and that (2.17) also holds for Weak PhaseLift , then

||AXA∗ − (Ax0)(Ax0)∗||2 ≤ ||A||2∞||X − x0x
∗
0||2

40

≤ C0
||A||2∞
n
|| |Ax0|2 − b2 ||1

≤ C0
||A||2∞
n

(2||Ax0||2 + ||bnoise||2)||bnoise||2

Consequently, for any C > 2C0
||A||2∞
n

, Weak PhaseLift is C-stable in all x0. With high probability,
||A||2∞ ≤ (1+1/8)n (it is a corollary of [Candès and Li, 2014, Lemma 2.1]) so Weak PhaseLift (and
thus also PhaseCut) is C-stable with high probability for some C independent of all parameters
of the problem.

2.3.5 Perturbation results

We recall here sensitivity analysis results for semidefinite programming from Yildirim and
Todd [2001]; Yildirim [2003], which produce explicit bounds on the impact of small perturbations
in the observation vector b2 on the solution V of the semidefinite program (2.11). Roughly
speaking, these results show that if b2 + bnoise remains in an explicit ellipsoid (called Dikin’s
ellipsoid), then interior point methods converge back to the solution in one full Newton step,
hence the impact on V is linear, equal to the Newton step. These results are more numerical
in nature than the stability bounds detailed in the previous section, but they precisely quantify
both the size and, perhaps more importantly, the geometry of the stability region.

2.3.6 Complexity comparisons

Both the relaxation in PhaseLift and that in PhaseCut are semidefinite programs and we
highlight below the relative complexity of solving these problems depending on algorithmic
choices and precision targets. Note that, in their numerical experiments, [Candès et al., 2011]
solve a penalized formulation of problem PhaseLift , written

min
X�0

n∑
i=1

(Tr (aia
∗
iX)− b2

i)
2 + λTr (X) (2.18)

in the variable X ∈ Hp, for various values of the penalty parameter λ > 0.
The trace norm promotes a low rank solution, and solving a sequence of weighted trace-

norm problems has been shown to further reduce the rank in [Fazel et al., 2003; Candès et al.,
2011]. This method replaces Tr (X) by Tr (WkX) where W0 is initialized to the identity I.
Given a solution Xk of the resulting semidefinite program, the weighted matrix is updated to
Wk+1 = (Xk+ηI)−1 (see Fazel et al. [2003] for details). We denote by K the total number of such
iterations, typically of the order of 10. Trace minimization is not needed for the semidefinite pro-
gram (PhaseCut), where the trace is fixed because we optimize over a normalized phase vector.

41

However, weighted trace-norm iterations could potentially improve performance in PhaseCut as
well.

Recall that p is the size of the signal and n is the number of measured samples with n = Jp
in the examples reviewed in Section 2.4. In the numerical experiments in [Candès et al., 2011]
as well as in this paper, J = 3, 4, 5. The complexity of solving the PhaseCut and PhaseLift
relaxations in PhaseLift using generic semidefinite programming solvers such as SDPT3 [Toh
et al., 1999], without exploiting structure, is given by

O

(
J4.5 p4.5 log

1

ε

)
and O

(
K J2 p4.5 log

1

ε

)
for PhaseCut and PhaseLift respectively [Ben-Tal and Nemirovski, 2001, § 6.6.3]. The fact that
the constraint matrices have only one nonzero coefficient in PhaseCut can be exploited (the fact
that the constraints aia

∗
i are rank one in PhaseLift helps, but it does not modify the principal

complexity term) so we get

O

(
J3.5 p3.5 log

1

ε

)
and O

(
K J2p4.5 log

1

ε

)
for PhaseCut and PhaseLift respectively using the algorithm in Helmberg et al. [1996] for ex-
ample. If we use first-order solvers such as TFOCS [Becker et al., 2012], based on the optimal
algorithm in [Nesterov, 1983], the dependence on the dimension can be further reduced, to
become

O

(
J3 p3

ε

)
and O

(
KJ p3

ε

)
for a penalized version of the PhaseCut relaxation and the penalized formulation of PhaseLift
in (2.18). While the dependence on the signal dimensions p is somewhat reduced, the dependence
on the target precision grows from log(1/ε) to 1/ε. Finally, the iteration complexity of the block
coordinate descent Algorithm 3 is substantially lower and its convergence is linear, but no fully
explicit bounds on the number of iterations are known in our case. The complexity of the
method is then bounded by O

(
log 1

ε

)
but the constant in this bound depends on n here, and

the dependence cannot be quantified explicitly.
Algorithmic choices are ultimately guided by precision targets. If ε is large enough so that

a first-order solver or a block coordinate descent can be used, the complexity of PhaseCut is
not significantly better than that of PhaseLift . On the contrary, when ε is small, we must use
an interior point solver, for which PhaseCut ’s complexity is an order of magnitude lower than
that of PhaseLift because its constraint matrices are singletons. In practice, the target value
for ε strongly depends on the sampling matrix A. For example, when A corresponds to the
convolution by 6 Gaussian random filters (Paragraph 2.4.2), to reconstruct a Gaussian white

42

noise of size 64 with a relative precision of η, we typically need ε ∼ 2.10−1η. For 4 Cauchy
wavelets (Paragraph 2.4.3), it is twenty times less, with ε ∼ 10−2η. For other types of signals
than Gaussian white noise, we may even need ε ∼ 10−3η.

2.3.7 Greedy refinement

If the PhaseCut or PhaseLift algorithms do not return a rank one matrix then an approxi-
mate solution of the phase recovery problem is obtained by extracting a leading eigenvector v.
For PhaseCut and PhaseLift , x̃ = A†diag (b)v and x̃ = v are respectively approximate solutions
of the phase recovery problem with |Ax̃| 6= b = |Ax|. This solution is then refined by applying
the Gerchberg-Saxton algorithm initialized with x̃. If x̃ is sufficiently close to x then, according
to numerical experiments of Section 2.4, this greedy algorithm converges to λx with |λ| = 1.
These greedy iterations require much less operations than PhaseCut and PhaseLift algorithms,
and thus have no significant contribution to the computational complexity.

2.3.8 Sparsity

Minimizing Tr (X) in the PhaseLift problem means looking for signals which match the
modulus constraints and have minimum `2 norm. In some cases, we have a priori knowledge
that the signal we are trying to reconstruct is sparse, i.e. Card(x) is small. The effect of
imposing sparsity was studied in e.g. [Moravec et al., 2007; Shechtman et al., 2011; Li and
Voroninski, 2013].

Assuming n ≤ p, the set of solutions to ‖Ax − diag (b)u‖2 is written x = A†diag (b)u + Fv
where F is a basis for the nullspace of A. In this case, when the rows of A are independent,
AA† = I and the reconstruction problem with a `1 penalty promoting sparsity is then written

minimize ‖A†diag (b)u+ Fv‖2
1

subject to |ui| = 1,

in the variables u ∈ Cp and y ∈ Cp−n. Using the fact that ‖y‖2
1 = ‖yy∗‖`1 , this can be relaxed as

minimize ‖V UV ∗‖`1
subject to U � 0, |Uii| = 1, i = 1, . . . , n,

which is a semidefinite program in the (larger) matrix variable U ∈ Hp and V = (A†diag (b), F).
On the other hand, when n > p and A is injective, the matrix F disappears. We can take

sparsity into account by adding an l1 penalization to PhaseCut . As noted in [Voroninski, 2012]
however, the effect of an `1 penalty on least-squares solutions is not completely clear.

43

2.4 Numerical results

In this section, we compare the numerical performance of the Gerchberg-Saxton, PhaseCut
and PhaseLift algorithms on various phase recovery problems. As in [Candès et al., 2011],
the PhaseLift problem is solved using the package in [Becker et al., 2012], with reweighting,
using K = 10 outer iterations and 1000 iterations of the first order algorithm. The PhaseCut
and Gerchberg-Saxton algorithms described here are implemented in a public software package
available at

http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip

Other numerical experiments about PhaseCut have been conducted in the optic of applications
to imaging problems, and can be found in [Fogel et al., 2013].

In our experiments, the phase recovery algorithms compute an approximate solution x̃ from
|Ax| and the reconstruction error is measured by the relative Euclidean distance up to a complex
phase given by

ε(x, x̃)
def
= min

c∈C,|c|=1

‖x− c x̃‖
‖x‖

. (2.19)

We also record the error over measured amplitudes, written

ε(|Ax|, |Ax̃|) def
=
‖|Ax| − |Ax̃|‖
‖Ax‖

. (2.20)

Note that when the phase recovery problem either does not admit a unique solution or is un-
stable, we usually have ε(|Ax|, |Ax̃|) � ε(x, x̃). In the next three subsections, we study these
reconstruction errors for three different phase recovery problems, where A is defined as an over-
sampled Fourier transform, as multiple filterings with random filters, or as a wavelet transform.
Numerical results are computed on three different types of test signals x: realizations of a com-
plex Gaussian white noise, sums of complex exponentials aω e

iωm with random frequencies ω and
random amplitudes aω (the number of exponentials is random, around 6), and signals whose
real and imaginary parts are scan-lines of natural images. Each signal has p = 128 coefficients.
Figure 2.2 shows the real part of sample signals, for each signal type.

2.4.1 Oversampled Fourier transform

The discrete Fourier transform ŷ of a signal y of q coefficients is written

ŷk =

q−1∑
m=0

ym exp

(
−i2πkm

q

)
.

44

http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip

20 40 60 80 100 120
−3

−2

−1

0

1

2

3

4

0 50 100
−0.05

0

0.05

0 50 100
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 2.2: Real parts of sample test signals. (a) Gaussian white noise. (b) Sum of 6 sinuoids
of random frequencies and amplitudes. (c) Scan-line of an image.

In X-ray crystallography or diffraction imaging experiments, compactly supported signals are
estimated from the amplitude of Fourier transforms oversampled by a factor J ≥ 2. The corre-
sponding operator A computes an oversampled discrete Fourier transform evaluated over n = Jp
coefficients. The signal x of size p is extended into xJ by adding (J − 1)p zeros and

(Ax)k = x̂Jk =

p∑
m=1

xm exp(−i2πkm
n

).

For this oversampled Fourier transform, the phase recovery problem does not have a unique
solution [Akutowicz, 1956]. In fact, one can show [Sanz, 1985] that there are as many as 2p−1

solutions x̃ ∈ Cp such that |Ax̃| = |Ax|. Moreover, increasing the oversampling factor J beyond
2 does not reduce the number of solutions.

Because of this intrinsic instability, we will observe that all algorithms perform similarly
on this type of reconstruction problems and Table 2.1 shows that the percentage of perfect
reconstruction is below 5% for all methods. The only signals which can be perfectly recovered
are sums of few sinusoids. Because these test signals are very sparse in the Fourier domain, the
number of signals having identical Fourier coefficient amplitudes is considerably smaller than
in typical sample signals. As a consequence, there is a small probability (about 5%) of exactly
reconstructing the original signal given an arbitrary initialization. None of the Gaussian random
noises and image scan lines are exactly recovered. Note that we say that an exact reconstruction
is reached when ε(x, x̃) < 10−2 because a few iterations of the Gerchberg-Saxton algorithm from
such an approximate solution x̃ will typically converges to x. Numerical results are computed
with 100 sample signals in each of the 3 signal classes.

Table 2.2 gives the average relative error ε(x, x̃) over signals that are not perfectly recon-
structed, which is of order one here. Despite this large error, Table 2.3 shows that the relative
error ε(|Ax|, |Ax̃|) over the Fourier modulus coefficients is below 10−3 for all algorithms. This is

45

Fourier Random Filters Wavelets
Gerchberg-Saxton 5% 49% 0%

PhaseLift with reweighting 3% 100% 62%
PhaseCut 4% 100% 100%

Table 2.1: Percentage of perfect reconstruction from |Ax|, over 300 test signals, for the three
different operators A (columns) and the three algorithms (rows).

Fourier Random Filters Wavelets
Gerchberg-Saxton 0.9 1.2 1.3

PhaseLift with reweighting 0.8 exact 0.5
PhaseCut 0.8 exact exact

Table 2.2: Average relative signal reconstruction error ε(x̃, x) over all test signals that are not
perfectly reconstructed, for each operator A and each algorithm.

due to the non-uniqueness of the phase recovery from Fourier modulus coefficients. Recovering a
solution x̃ with identical or nearly identical oversampled Fourier modulus coefficients as x does
not guarantee that x̃ is proportional to x.

Overall, in this set of ill-posed Fourier experiments, recovery performance is very poor for
all methods and the PhaseCut and PhaseLift relaxations do not improve much on the results of
the faster Gerchberg-Saxton algorithm.

2.4.2 Multiple random illumination filters

To guarantee uniqueness of the phase recovery problem, one can add independent measure-
ments by “illuminating” the object through J filters hj in the context of X-ray imaging or
crystallography [Candès et al., 2013]. The resulting operator A is the discrete Fourier transform

Fourier Random Filters Wavelets
Gerchberg-Saxton 9.10−4 0.2 0.3

PhaseLift with reweighting 5.10−4 exact 8.10−2

PhaseCut 6.10−4 exact exact

Table 2.3: Average relative error ε(|Ax̃|, |Ax|) of coefficient amplitudes, over all test signals that
are not perfectly reconstructed, for each operator A and each algorithm.

46

of x multiplied by each filter hj of size p

(Ax)k+pj = (̂xhj)k = (x̂ ? ĥj)k for 1 ≤ j ≤ J and 0 ≤ k < p,

where x̂ ? ĥj is the circular convolution between x̂ and ĥj.
Candès et al. [2015]; Gross et al. [2015b] prove that, in a close setting to this one, PhaseLift

is tight with high probability, for a number J of filters logarithmic in p. Candès et al. [2011]
empirically observe that, for signals of size p = 128, with J = 4 filters, perfect recovery is
achieved in 100% of their experiments.

Table 2.1 confirms this behavior and shows that the PhaseCut algorithm achieves perfect re-
covery in all our experiments. As predicted by the equivalence results presented in the previous
section, we observe that PhaseCut and PhaseLift have identical performance in these experi-
ments. With 4 filters, the solutions of these two SDP relaxations are not of rank one but are
“almost” of rank one, in the sense that their first eigenvector v has an eigenvalue much larger
than the others, by a factor of about 5 to 10. Numerically, we observe that the corresponding
approximate solutions, x̃ = diag (v)b, yield a relative error ε(|Ax|, |Ax̃|) which, for scan-lines of
images and especially for Gaussian signals, is of the order of the ratio between the largest and
the second largest eigenvalue of the matrix U . The resulting solutions x̃ are then sufficiently
close to x so that a few iterations of the Gerchberg-Saxton algorithm started at x̃ will converge
to x.

Table 2.1 shows however that directly applying the Gerchberg-Saxton algorithm starting from
a random initialization point yields perfect recovery in only about 50% of our experiments. This
percentage decreases as the signal size p increases. The average error ε(x, x̃) on non-recovered
signals in Table 2.2 is 1.3 whereas on the average error on the modulus ε(|Ax|, |Ax̃|) is 0.2.

2.4.3 Wavelet transform

Finally, we test the algorithm on the phase retrieval problem that will be discussed in the
next two chapters of this thesis: the case of the wavelet transform.

To simplify experiments, we consider wavelets dilated by dyadic factors 2j, which have a
lower frequency resolution than audio wavelets. A discrete wavelet transform is computed by
circular convolutions with discrete wavelet filters, i.e.

(Ax)k+jp = (x ? ψj)k =

p∑
m=1

xmψ
j
k−m for 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ p

where ψjm is a p periodic wavelet filter. It is defined by dilating, sampling and periodizing a

47

complex wavelet ψ ∈ L2(C), with

ψjm =
∞∑

k=−∞

ψ(2j(m/p− k)) for 1 ≤ m ≤ p.

Numerical computations are performed with a Cauchy wavelet whose Fourier transform is, up
to a scaling factor

ψ̂(ω) = ωd e−ω 1ω>0,

with d = 5. To guarantee that A is an invertible operator, the lowest signal frequencies are
carried by a suitable low-pass filter φ and

(Ax)k+Jp = (x ? φ)k for 1 ≤ k ≤ p.

One can prove that x is always uniquely determined by |Ax|, up to a multiplication factor (this
will be done in Chapter 3).

We consider the case of real signals x; recall that the results of Paragraph 2.2.6 allow us to
explicitly impose the condition that x is real in the PhaseCut recovery algorithm. For PhaseLift
in Candès et al. [2011], this condition is enforced by imposing that X = xx∗ is real. For
the Gerchberg-Saxton algorithm, when x is real, we simply project at each iteration on the
image of Rp by A, instead of projecting on the image of Cp by A.

Numerical experiments are performed on the real part of the complex test signals. Table 2.1
shows that Gerchberg-Saxton does not reconstruct exactly any test signal from the modulus of
its wavelet coefficients. The average relative error ε(x̃, x) in Table 2.2 is 1.2 where the coefficient
amplitudes have an average error ε(|Ax̃|, |Ax|) of 0.3 in Table 2.3.

PhaseLift reconstructs 62% of test signals, but the reconstruction rate varies with the signal
type. The proportions of exactly reconstructed signals among random noises, sums of sinusoids
and image scan-lines are 27%, 60% and 99% respectively. Indeed, image scan-lines have a large
proportion of wavelet coefficients whose amplitudes are negligible. The proportion of phase co-
efficients having a strong impact on the reconstruction of x is thus much smaller for scan-line
images than for random noises, which reduces the number of significant variables to recover.
Sums of sinuoids of random frequency have wavelet coefficients whose sparsity is intermediate
between image scan-lines and Gaussian white noises, which explains the intermediate perfor-
mance of PhaseLift on these signals. The overall average error ε(x̃, x) on non-reconstructed
signals is 0.5. Despite this relatively important error, x̃ and x are usually almost equal on most
of their support, up to a sign switch, and the importance of the error is precisely due to the
number of sign switches.

The PhaseCut algorithm exactly reconstructs all test signals. Moreover, the recovered matrix
U is always of rank one and it is therefore not necessary to refine the solution with Gerchberg-
Saxton iterations. At first sight, this difference in performance between PhaseCut and PhaseLift

48

may seem to contradict the equivalence results of Paragraph 2.3.3 (which are valid both when x is
real and when x is complex). It can be explained however by the fact that 10 steps of reweighting
and 1000 inner iterations per step are not enough to let PhaseLift fully converge. In these
experiments, the precision required to get perfect reconstruction is very high and, consequently,
the number of first-order iterations required to achieve it is too large (see Paragraph 2.3.6). With
an interior-point-solver, this number would be much smaller but the time required per iteration
would become prohibitively large. The much simpler structure of the PhaseCut relaxation allows
us to solve these larger problems more efficiently.

2.4.4 Impact of trace minimization

We saw in Paragraph 2.3.1 that, in the absence of noise, PhaseCut was very similar to a
simplified version of PhaseLift, Weak PhaseLift , in which no trace minimization is performed.
Here, we confirm empirically that Weak PhaseLift and PhaseLift are essentially equivalent.
Minimizing the trace is usually used as rank minimization heuristic, with recovery guarantees
in certain settings [Fazel et al., 2003; Candès and Recht, 2009; Chandrasekaran et al., 2012]
but it does not seem to make much difference here. In fact, Demanet and Hand [2012]; Candès
and Li [2014] showed that in the setting where measurements are randomly chosen according
to independant Gaussian laws, Weak PhaseLift has a unique (rank one) solution with high
probability, i.e. the feasible set of PhaseLift is a singleton and trace minimization has no impact.
Of course, from a numerical point of view, solving the feasibility problem Weak PhaseLift is about
as hard as solving the trace minimization problem PhaseLift , so this result simplifies analysis
but does not really affect numerical performance.

Figure 2.3 compares the performances of PhaseLift and Weak PhaseLift as a function of n
(the number of measurements). We plot the percentage of successful reconstructions (left) and
the percentage of cases where the relaxation was exact, i.e. the reconstructed matrix X was rank
one (right). The plot shows clear phase transitions when the number of measurements increases.
For PhaseLift , these transitions happen respectively at n = 155 ≈ 2.5p and n = 285 ≈ 4.5p, while
for Weak PhaseLift , the values become n = 170 ≈ 2.7p and n = 295 ≈ 4.6p, so the transition
thresholds are very similar. Note that, in the absence of noise, Weak PhaseLift and PhaseCut
have the same solutions, up to a linear transformation (see Paragraph 2.3.2), so we can expect
the same results when comparing PhaseCut with PhaseCutMod .

2.4.5 Reconstruction in the presence of noise

Numerical stability is crucial for practical applications. In this last subsection, we suppose
that the vector b of measurements is of the form

b = |Ax|+ bnoise

49

100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Weak PhaseLift
PhaseLift

Number of measurements

R
ec
on

st
ru
ct
io
n
ra
te

PhaseLift
100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Weak PhaseLift
PhaseLift

Number of measurements

P
ro
p
or
ti
on

of
ra
n
k
on

e
so
ls
.

PhaseLift

Figure 2.3: Comparison of PhaseLift and Weak PhaseLift performance, for 64-sized signals, as a
function of the number of measurements. Reconstruction rate, after Gerchberg-Saxton iterations
(left) and proportion of rank one solutions (right).

with ‖bnoise‖2 = o(‖Ax‖2). In our experiments, bnoise is always a Gaussian white noise.
Two reasons can explain numerical instabilities in the solution x̃. First, the reconstruction

problem itself can be unstable, with ‖x̃ − cx‖ � ‖|Ax̃| − |Ax|‖ for all c ∈ C. Second, the
algorithm may fail to reconstruct x̃ such that ‖|Ax̃| − b‖ ≈ ‖bnoise‖. No algorithm can overcome
the first cause but good reconstruction methods will overcome the second one. In the following
paragraphs, to complement the results in Paragraph 2.3.4, we will demonstrate empirically
that PhaseCut is stable, and compare its performances with PhaseLift . We will observe in
particular that PhaseCut appears to be more stable than PhaseLift when b is sparse.

Wavelet transform

Figure 2.4 displays the performance of PhaseCut in the wavelet transform case. It shows
that PhaseCut is stable up to around 5 − 10% of noise. Indeed, the reconstructed x̃ usually
satisfies ε(|Ax|, |Ax̃|) = ‖ |Ax| − |Ax̃| ‖2 ≤ ‖bnoise‖2, which is the best we can hope for. Wavelet
transform is a case where the underlying phase retrieval problem may present instabilities,
therefore the reconstruction error ε(x, x̃) is sometimes much larger than ε(|Ax|, |Ax̃|). This
remark applies especially to sums of sinusoids, which represent the most unstable case.

When all coefficients of Ax have approximately the same amplitude, PhaseLift and PhaseCut
produce similar results, but when Ax is sparse, PhaseLift appears less stable. We gave a quali-
tative explanation of this behavior at the end of Paragraph 2.3.4 which seems to be confirmed by
the results in Figure 2.4. Indeed, the performance of PhaseLift and PhaseCut are equivalent in
the case of Gaussian random filters (where measurements are never sparse), they are a bit worse

50

in the case of sinusoids (where measurements are sometimes sparse) and quite unsatisfactory for
scan-lines of images (where measurements are always sparse).

Multiple random illumination filters

Candès and Li [2014] prove that, if A is a Gaussian matrix, the reconstruction problem is
stable with high probability, and PhaseLift reconstructs a x̃ such that

ε(x̃, x) ≤ O

(
‖bnoise‖2

‖Ax‖2

)
.

The same result seems to hold for A corresponding to Gaussian random illumination filters (cf.
Paragraph 2.4.2). Moreover, PhaseCut is as stable as PhaseLift . Actually, up to 20% of noise,
when followed by some Gerchberg-Saxton iterations, PhaseCut and PhaseLift almost always
reconstruct the same function. Figure 2.5 displays the corresponding empirical performance,
confirming that both algorithms are stable. The relative reconstruction errors are approximately
linear in the amount of noise, with

ε(|Ax̃|, |Ax|) ≈ 0.8× ‖bnoise‖2

‖Ax‖2

and ε(x̃, x) ≈ 2× ‖bnoise‖2

‖Ax‖2

in our experiments.
The impact of the sparsity of b discussed in the last paragraph may seem irrelevant here: if

A and x are independently chosen, Ax is never sparse. However, if we do not choose A and x
independently, we may achieve partial sparsity. We performed tests for the case of five Gaussian
random filters, where we chose x ∈ C64 such that (Ax)k = 0 for k ≤ 60. This choice has no
particular physical interpretation but it allows us to check that the influence of sparsity in |Ax|
over PhaseLift is not specific to the wavelet transform. Figure 2.5 displays the relative error
over the reconstructed matrix in the sparse and non-sparse cases. If we denote by Xpl ∈ Cp×p

(resp. Xpc ∈ Cn×n) the matrix reconstructed by PhaseLift (resp. PhaseCut), this relative error
is defined by

ε =
‖AXplA

∗ − (Ax)(Ax)∗‖2

‖(Ax)(Ax)∗‖2

(for PhaseLift)

ε =
‖diag (b)Xpcdiag (b)− (Ax)(Ax)∗‖2

‖(Ax)(Ax)∗‖2

(for PhaseCut)

In the non-sparse case, both algorithms yield very similar error ε ≈ 7‖bnoise‖2/‖Ax‖2 (the dif-
ference for a relative noise of 10−4 may come from a computational artifact). In the sparse
case, there are less phases to reconstruct, because we do not need to reconstruct the phase of

51

Gaussian Sinusoids

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise

R
el
at
iv
e
er
ro
r

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise
R
el
at
iv
e
er
ro
r

Image Scan-Lines

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise

R
el
at
iv
e
er
ro
r

Reconstruction error (PhaseCut)

Modulus error (PhaseLift)

Modulus error (PhaseCut)

Figure 2.4: Mean reconstruction errors versus amount of noise for PhaseLift and PhaseCut , both
in decimal logarithmic scale, for three types of signals: Gaussian white noises, sums of sinusoids
and scan-lines of images. Both algorithms were followed by a few hundred Gerchberg-Saxton
iterations.

52

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reconstruction error (PhaseLift)
Reconstruction error (PhaseCut)
Modulus error (PhaseLift)
Modulus error (PhaseCut)

Amount of noise

R
el
at
iv
e
er
ro
r

PhaseCut)

−4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

PhaseLift (non−sparse)
PhaseCut (non−sparse)
PhaseLift (sparse)
PhaseCut (sparse)

R
ec
on

st
ru
ct
io
n
er
ro
r

Amount of noise(sparse)

Figure 2.5: Left: Mean performances of PhaseLift and PhaseCut , followed by Gerchberg-Saxton
iterations, for four Gaussian random illumination filters. The x-axis represents the relative noise
level, ‖bnoise‖2/‖Ax‖2 and the y-axis the relative error on the result, which is either ε(x̃, x) or
ε(|Ax̃|, |Ax|). Right: Loglog plot of the relative error over the matrix reconstructed by PhaseLift
(resp. PhaseCut) when A represents the convolution by five Gaussian filters. Black curves
correspond to Ax non-sparse, red ones to sparse Ax.

null measurements. Consequently, the problem is better constrained and we expect the algo-
rithms to be more stable. Indeed, the relative errors over the reconstructed matrices are smaller.
However, in this case, the performance of PhaseLift and PhaseCut do not match anymore:
ε ≈ 3‖bnoise‖2/‖Ax‖2 for PhaseLift and ε ≈ 1.2‖bnoise‖2/‖Ax‖2 for PhaseCut . This remark has
no practical impact in our particular example here because taking a few Gerchberg-Saxton iter-
ations would likely make both methods converge towards the same solution, but it confirms the
importance of accounting for the sparsity of |Ax|.

2.5 Technical lemmas

We now prove two technical lemmas used in the proof of Theorem 2.8.

Lemma 2.9. Under the assumptions and notations of Theorem 2.8, we have

‖V �
PC − (Ax0)(Ax0)∗‖2 > 2C‖Ax0‖2‖bn,PC‖2

Proof. We first give an upper bound of ‖VPC − V �
PC‖2. We use the Cauchy-Schwarz inequality:

for every positive matrix X and all x, y, |x∗Xy| ≤
√
x∗Xx

√
y∗Xy. Let {fi} be an hermitian

base of Range (A) diagonalizing V
�
PC and {gi} an hermitian base of Range (A)⊥ diagonalizing

53

V ⊥PC . As {fi} ∩ {gi} is an hermitian base of Cn, we have

‖VPC − V �
PC‖

2
2 =

∑
i,i′

|f ∗i (VPC − V �
PC)fi′ |2 +

∑
i,j

|f ∗i (VPC − V �
PC)gj|2

+
∑
i,j

|g∗j (VPC − V
�
PC)fi|2 +

∑
j,j′

|g∗j (VPC − V
�
PC)gj′ |2

= 2
∑
i,j

|f ∗i (VPC)gj|2 +
∑
i

|g∗i (V ⊥PC)gi|2

≤ 2
∑
i,j

|f ∗i (VPC)fi‖g∗j (VPC)gj|+ (
∑
i

g∗i (V
⊥
PC)gi)

2

= 2TrV
�
PCTrV ⊥PC + (TrV ⊥PC)2

≤
(√

2

√
TrV

�
PC

√
TrV ⊥PC + TrV ⊥PC

)2

(2.21)

Let us now bound TrV ⊥PC . We first note that TrV ⊥PC = Tr ((I − AA†)VPC(I − AA†)) =
Tr (VPC(I − AA†)) = d1(VPC ,F) (according to Lemma 2.2). Let u ∈ Cn be such that, for all
i, |ui| = 1 and (Ax0)i = ui|Ax0|i. We set b = |Ax0| + bn,PC and V = (b × u)(b × u)∗. As
V ∈ H+

n ∩Hb and VPC minimizes (2.13),

TrV ⊥PC = d1(VPC ,F) ≤ d1(V,F) = d1((Ax0 + bn,PCu)(Ax0 + bn,PCu)∗,F)

= d1((bn,PCu)(bn,PCu)∗,F)

≤ ‖(bn,PCu)(bn,PCu)∗‖1 = Tr (bn,PCu)(bn,PCu)∗ = ‖bn,PC‖2
2

We also have TrV
�
PC = TrVPC − TrV ⊥PC . This equality comes from the fact that, if {fi} is an

hermitian base of Range (A) and {gi} an hermitian base of Range (A)⊥, then

TrVPC =
∑
i

fiVPCf
∗
i +

∑
i

giVPCg
∗
i =

∑
i

fiV
�
PCf

∗
i +

∑
i

giV
⊥
PCg

∗
i = TrV

�
PC + TrV ⊥PC

As V ⊥PC � 0, TrV
�
PC ≤ TrVPC = ‖|Ax0| + bn,PC‖2

2 and, by combining this with relations (2.21)
and (2.22), we get

‖VPC − V �
PC‖2 ≤

√
2‖|Ax0|+ bn,PC‖2‖bn,PC‖2 + ‖bn,PC‖2

2

≤
√

2‖Ax0‖2‖bn,PC‖2 + (1 +
√

2)‖bn,PC‖2
2

And, by reminding that we assumed ‖bn,PC‖2 ≤ ‖Ax0‖2,

‖V �
PC − (Ax0)(Ax0)∗‖2 ≥ ‖VPC − (Ax0)(Ax0)∗‖2 − ‖V �

PC − VPC‖2

54

> D‖Ax0‖2‖bn,PC‖2 −
√

2‖Ax0‖2‖bn,PC‖2 − (1 +
√

2)‖bn,PC‖2
2

≥ (D − 2
√

2− 1)‖Ax0‖2‖bn,PC‖2 = 2C‖Ax0‖2‖bn,PC‖2

which concludes the proof.

Lemma 2.10. Under the assumptions and notations of Theorem 2.8, we have ‖bn,PL‖2 ≤
2‖bn,PC‖.

Proof. Let ei be the i-th vector of Cn’s canonical base. We set ei = fi + gi where fi ∈ Range (A)
and gi ∈ Range (A)⊥.

VPC ii = e∗iVPCei

= f ∗i V
�
PCfi + 2Re (f ∗i VPCgi) + g∗i V

⊥
PCgi

= V
�
PC ii + 2Re (f ∗i VPCgi) + V ⊥PC ii

Because |f ∗i VPCgi| ≤
√
f ∗i VPCfi

√
g∗i VPCgi =

√
V

�
PC ii

√
V ⊥PC ii,

(

√
V

�
PC ii −

√
V ⊥PC ii)

2 ≤ VPC ii ≤ (

√
V

�
PC ii +

√
V ⊥PC ii)

2

⇒
√
V

�
PC ii −

√
V ⊥PC ii ≤

√
VPC ii ≤

√
V

�
PC ii +

√
V ⊥PC ii

So

|bn,PL,i| = |
√
V

�
PC ii − |Ax0|i|

≤ |
√
V

�
PC ii −

√
VPC ii|+ |

√
VPC ii − |Ax0|i|

≤
√
V ⊥PC ii + bn,PC,i

and, by (2.22),

‖bn,PL‖2 ≤ ‖
{√

V ⊥PC ii

}
i

‖2 + ‖bn,PC‖2

=
√

TrV ⊥PC + ‖bn,PC‖2 ≤ 2‖bn,PC‖2

which concludes the proof.

55

Acknowledgments

The authors are grateful to Richard Baraniuk, Emmanuel Candès, Rodolphe Jenatton, Amit
Singer and Vlad Voroninski for very constructive comments. In particular, Vlad Voroninski
showed in [Voroninski, 2012] that the argument in the first version of this text, proving that
PhaseCutMod is tight when PhaseLift is, could be reversed under mild technical conditions and
pointed out an error in our handling of sparsity constraints. AA would like to acknowledge
support from a starting grant from the European Research Council (project SIPA), and SM
acknowledges support from ANR grant BLAN 012601.

56

Chapter 3

Phase retrieval for the Cauchy wavelet
transform

After presenting an algorithm for solving generic phase retrieval problems in the previous
chapter, we now consider a specific phase retrieval problem: the case of the wavelet transform.
A wavelet family (ψj)j∈Z being fixed, the problem is:

reconstruct f ∈ L2(R) from {|f ? ψj|}j∈Z

In this chapter, we study the well-posedness of this problem, in terms of uniqueness and stability:
is any function f uniquely determined by its wavelet transform modulus? Is the reconstruction
stable to noise?

We restrict ourselves to a specific class of wavelets, namely Cauchy wavelets, whose link with
harmonic analysis makes it easier to study.

Besides its applications in audio processing, this problem has a theoretical interest in the
general context of phase retrieval.

The wavelet transform is one of the only known natural1 operators for which the phase
retrieval problem is now known to be well-posed (uniqueness of the reconstruction, and a form
of stability). It in particular contrasts with the Fourier transform [Walther, 1963; Akutowicz,
1956] and the fractional Fourier transform [Jaming, 2014], which can be studied with the same
tools: in the first case, there is no uniqueness; in the second one, there is uniqueness, but there
is no stability in a strong sense, and no result for a weaker form of stability is known.

Moreover, the notion of local stability which appears in the case of the wavelet transform is
new to phase retrieval.

1“natural” in the sense that it appears in other fields than phase recovery

57

The uniqueness result is Corollary 3.2. It shows that two analytical signals whose wavelet
transforms are identical in modulus are equal up to a global phase. A signal f is said to be
analytical if f̂(ω) = 0 when ω < 0. This condition may seem restrictive, but it is actually not,
because almost the same result holds for real-valued signals (Corollary 3.3), which covers all
conceivable applications.

In Theorem 3.11, we prove that the reconstruction operator is continuous. This is a weak
notion of stability to noise, and we show that no strong stability holds, in the sense that, for
any ε > 0, there exist functions f, g such that:∣∣∣∣{|f ? ψj|}j − {|g ? ψj|}j∣∣∣∣2 < ε but ||f − g||2 ≥ 1

So two functions can have almost the same wavelet transform modulus without being close in
the L2-norm sense.

However, we have a form of local stability. Theorems 3.17 and 3.18 can be approximately
summarized by the following informal assertion: if the wavelet transform modulus of two func-
tions are close, then the wavelet transforms are close, up to a global phase, in the neighborhood of
each point (j, t) of the time-frequency plane, except maybe at points where the wavelet transform
is close to zero.

Our proof techniques naturally yield a reconstruction algorithm. We have implemented it;
it yields precise reconstruction results and is relatively stable to noise. Because it only works
for Cauchy wavelets, it has limited application. However, it allows us to empirically confirm our
theoretical results.

Section 3.1 is concerned with uniqueness results. Section 3.2 proves the weak stability theo-
rem. Section 3.3 explains why there is no strong stability. The local stability results are proved
in Section 3.4. Section 3.5 describes the algorithm and our numerical experiments. Finally,
Section 3.6 proves useful technical lemmas.

The results of this chapter have been published in [Mallat and Waldspurger, 2014].

Notations

For any f ∈ L1(R), we denote by f̂ or F(f) the Fourier transform of f :

f̂(ω) =

∫
R
f(x)e−iωxdx ∀ω ∈ R

We extend this definition to L2 by continuity.

58

We denote by F−1 : L2(R) → L2(R) the inverse Fourier transform and recall that, for any
f ∈ L1 ∩ L2(R):

F−1(f)(x) =
1

2π

∫
R
f̂(ω)eiωxdω

We denote by H the Poincaré half-plane: H = {z ∈ C s.t. Im z > 0}.

3.1 Uniqueness of the reconstruction for Cauchy wavelets

3.1.1 Definition of the wavelet transform; comparison with Fourier

The most important phase retrieval problem, which naturally arises in several physical set-
tings, is the case of the Fourier transform:

reconstruct f ∈ L2(R) from |f̂ |

Without additional assumptions over f , the reconstruction is clearly impossible: any choice of
phase φ : R→ R yield a signal g = F−1(|f̂ |eiφ) ∈ L2(R) such that |ĝ| = |f̂ |.

To avoid this problem, one may for example require that f is compactly supported. However,
Akutowicz [1957]; Walther [1963] showed that, even with this constraint, the reconstruction is
still not possible.

More precisely, their result is the following one. If f ∈ L2(R) is a compactly supported
function, then its Fourier transform f̂ admits a holomorphic extension F over all C: F (z) =∫
R f(x)e−izxdx. If g ∈ L2(R) is another compactly supported function and G is this holomorphic

extension of its Fourier transform, the equality |f̂ | = |ĝ| happens to be equivalent to:

∀z ∈ C, F (z)F (z) = G(z)G(z)

This in turn is essentially equivalent to:

{zn} ∪ {zn} = {z′n} ∪ {z′n} (3.1)

where the (zn) and (z′n) are the respective zeros of F and G over C, counted with multiplicity.
This means that F and G must have the same zeros, up to symmetry with respect to the real
axis.

Conversely, for every choice of {z′n} satisfying (3.1), it is possible to find a compactly sup-
ported g such that the zeroes of G are the z′n, which implies |f̂ | = |ĝ|.

A similar result can be established in the case where the function f ∈ L2(R) is assumed to
be identically zero on the negative real line [Akutowicz, 1956] instead of compactly supported.

59

Let us now define the wavelet transform and compare it with the Fourier transform.
Let ψ ∈ L1 ∩ L2(R) be a wavelet, that is a function such that

∫
R ψ(x)dx = 0. Let a > 1 be

fixed; we call a the dilation factor. We define a family of wavelets by:

∀x ∈ R ψj(x) = a−jψ(a−jx) ⇔ ∀ω ∈ R ψ̂j(ω) = ψ̂(ajω)

The wavelet transform operator is:

f ∈ L2(R)→ {f ? ψj}j∈Z ∈ (L2(R))Z

This operator is unitary if the so-called Littlewood-Paley condition is satisfied:(∑
j

|ψ̂j(ω)|2 = 1, ∀ω ∈ R

)
⇒

(
||f ||22 =

∑
j

||f ? ψj||22 ∀f ∈ L2(R)

)
(3.2)

The phase retrieval problem associated with this operator is:

reconstruct f ∈ L2(R) from {|f ? ψj|}j∈Z

This problem may or may not be well-posed, depending on which wavelet family we use.
The simplest case is the one where the wavelets are Shannon wavelets:

ψ̂ = 1[1;a] ⇒ ∀j ∈ Z, ψ̂j(ω) = 1[a−j ;a−j+1]

Reconstructing f amounts to reconstruct f̂1[a−j ;a−j+1] = f̂ ψ̂j for all j. For each j, we have only

two pieces of information about f̂ ψ̂j: its support is included in [a−j; a−j+1] and the modulus of
its inverse Fourier transform is |f ? ψj|. From the results of the Fourier transform case, it is not

enough to determine uniquely f̂ ψ̂j. Thus, for Shannon wavelets, the phase retrieval problem is
as ill-posed as for the Fourier transform.

In this example, the problem comes from the fact that the ψ̂j have non-overlapping supports.
Thus, reconstructing f is equivalent to reconstructing independently each f ?ψj, and that is not
possible.

However, in general, the ψ̂j have overlapping supports and the f ? ψj are not independent
for different values of j. They satisfy the following relation:

(f ? ψj) ? ψk = (f ? ψk) ? ψj ∀j, k ∈ Z (3.3)

Thus, there is “redundancy” in the wavelet decomposition of f . We can hope that this redun-
dancy compensates the loss of phase of |f ? ψj|. In the following, we show that, at least for
specific wavelets, it is the case.

60

3.1.2 Uniqueness theorem for Cauchy wavelets

In this paragraph, we consider wavelets of the following form:

ψ̂(ω) = ρ(ω)ωpe−ω1ω>0 (3.4)

ψ̂j(ω) = ψ̂(ajω) ∀ω ∈ R

where p > 0 and ρ ∈ L∞(R) is such that ρ(aω) = ρ(ω) for almost every ω ∈ R and ρ(ω) 6= 0,∀ω.
The presence of ρ allows some flexibility in the choice of the family. In particular, if it is

properly chosen, the Littlewood-Paley condition (3.2) may be satisfied. However, the proofs are
the same with or without ρ.

When ρ = 1, the wavelets of the form (3.4) are called Cauchy wavelets of order p. The
figure 3.1 displays an example of such wavelets. For these wavelets, the wavelet transform has
the property to be a set of sections of a holomorphic function along horizontal lines.

If f ∈ L2(R), its analytic part f+ is defined by:

f̂+(ω) = 2f̂(ω)1ω>0 (3.5)

We define:

F (z) =
1

2π

∫
R
ωpf̂+(ω)eiωzdω ∀z s.t. Im z > 0 (3.6)

When f+ is sufficiently regular, F is the holomorphic extension of its p-th derivative.
For each y > 0, if we denote by F (.+ iy) the function x ∈ R→ F (x+ iy):

F (.+ iy) = F−1
(

2ωpf̂(ω)1ω>0e
−yω
)

Consequently, for each j ∈ Z:

apj

2
F (.+ iaj) = f ? ψj ∀j ∈ Z (3.7)

So f ? ψj is the restriction of F to the horizontal line R + iaj. In this case, the relation (3.3)
is equivalent to the fact that, for all j, k, f ? ψj and f ? ψk are the restrictions of the same
holomorphic function to the lines R + iaj and R + iak.

Reconstructing f+ from {|f ? ψj|}j∈Z now amounts to reconstruct the holomorphic function
F : H = {z ∈ C, Im z > 0} → C from its modulus on an infinite set of horizontal lines. The
figure 3.2 shows these lines for a = 2. Our phase retrieval problem thus reduces to a harmonic
analysis problem. Actually, knowing |F | on only two lines is already enough to recover F and
one of the two lines may even be R, the boundary of H.

61

−2 0 2 4 6 8 10 12
0

5

10

15

20

25

ω

Figure 3.1: Cauchy wavelets of order p = 5
for j = 2, 1, 0,−1, a = 2

−5 0 5
−1

0

1

2

3

4

5

Real line

Im
a
g
in
a
ry

li
n
e

Figure 3.2: Lines in C over which |F | is
known (for a = 2)

Theorem 3.1. Let α > 0 be fixed. Let F,G : H → C be holomorphic functions such that, for
some M > 0: ∫

R
|F (x+ iy)|2dx < M and

∫
R
|G(x+ iy)|2dx < M ∀y > 0 (3.8)

We suppose that:

|F (x+ iα)| = |G(x+ iα)| for a.e. x ∈ R
lim
y→0+
|F (x+ iy)| = lim

y→0+
|G(x+ iy)| for a.e. x ∈ R

Then, for some φ ∈ R:
F = eiφG (3.9)

The proof is given in section 3.1.4.

Corollary 3.2. We consider wavelets (ψj)j∈Z of the form (3.4). Let f, g ∈ L2(R) be such that,
for some j, k ∈ Z with j 6= k:

|f ? ψj| = |g ? ψj| and |f ? ψk| = |g ? ψk| (3.10)

We denote by f+ and g+ the analytic parts of f and g (as defined in (3.5))
There exists φ ∈ R such that:

f+ = eiφg+ (3.11)

62

Another uniqueness result for the wavelet transform can be found in [Jaming, 2014, Thm 4.4].
However, it is of different nature, because it concerns wavelet transforms with continuous fre-
quency parameter.

Proof. We may assume that j < k. We define F and G as in (3.6), with the additional ρ:

F (z) =
1

2π

∫
R
ωpρ(ω)f̂+(ω)eiωzdω G(z) =

1

2π

∫
R
ωpρ(ω)ĝ+(ω)eiωzdω ∀z ∈ H

For each y > 0, F (. + iy) = F−1(2ωpρ(ω)e−yω1ω>0f̂(ω)). For y = aj and y = ak, it implies
F (.+ iaj) = 2

ajp
f ? ψj and F (.+ iak) = 2

akp
f ? ψk. From (3.10):

|F (.+ iaj)| = 2

apj
|f ? ψj| =

2

apj
|g ? ψj| = |G(.+ iaj)|

|F (.+ iak)| = 2

apk
|f ? ψk| =

2

apk
|g ? ψk| = |G(.+ iak)|

So the functions F (. + iaj) and G(. + iaj) coincide in modulus on two horizontal lines: R and
R + i(ak − aj). From Theorem 3.1, they are equal up to a global phase. As ρ does not vanish,
it implies that f+ and g+ are equal up to this global phase.

In order to be able to apply Theorem 3.1, we must verify that the condition (3.8) holds for
F (.+ iaj) and G(.+ iaj). For any y > aj:

F (.+ iy) = F−1
(

2ωpρ(ω)f̂(ω)e−yω
)

⇒ ||F (.+ iy)||22 =
1

2π
||2ωpρ(ω)f̂(ω)e−yω1ω≥0||22

≤ 1

2π
||2ωpρ(ω)f̂(ω)e−a

jω1ω≥0||22

=

(
2

ajp

)2

||f ? ψj||22

The same inequality holds for G: the condition (3.8) is true for M =
(

2
ajp

)2 ||f ? ψj||22.

We have just proven that the modulus of the wavelet transform uniquely determines, up to
a global phase, the analytic part of a function, that is its positive frequencies. On the contrary,
as wavelets are analytic (ψ̂j(ω) = 0 if ω < 0), the wavelet transform contains no information
about the negative frequencies. In practice, signals are often real so negative frequencies are
determined by positive ones and this latter limitation is not really important.

63

Corollary 3.3. Let f, g ∈ L2(R) be real-valued functions; f+ and g+ are their analytic parts.
We assume that, for some j, k ∈ Z such that j 6= k:

|f ? ψj| = |g ? ψj| and |f ? ψk| = |g ? ψk|

Then, for some φ ∈ R:
f+ = eiφg+ ⇔ f = Re (eiφg+)

Remark 3.4. Although Corollary 3.2 holds for only two wavelets and does not require |f ?ψs| =
|g ?ψs| for each s ∈ Z, the reconstruction of f from only two components, |f ?ψj| and |f ?ψk|, is

very unstable in practice. Indeed, ψ̂j and ψ̂k are concentrated around characteristic frequencies
of order 2−j and 2−k. Thus, from f ?ψj and f ?ψk (and even more so from |f ?ψj| and |f ?ψk|),
reconstructing the frequencies of f which are not close to 2−j or 2−k is numerically impossible.
It is an ill-conditioned deconvolution problem.

Before ending this section, let us note that, with a proof similar to the one of Corollary 3.2,
Theorem 3.1 also implies the following result.

Corollary 3.5. Let α > 0 be fixed. Let f, g ∈ L2(R) be such that f̂(ω) = ĝ(ω) = 0 for every
ω < 0.

If |f̂ | = |ĝ| and | ̂f(t)e−αt| = | ̂g(t)e−αt|, then, for some φ ∈ R:

f = eiφg

This says that there is uniqueness in the phase retrieval problem associated to the masked
Fourier transform, in the case where there are two masks, t→ 1 and t→ e−αt.

3.1.3 Discrete case

Naturally, the functions we have to deal with in practice are generally not in L2(R). They are
instead discrete finite signals. In this section, we explain how to switch from the continuous to the
discrete finite setting. As we will see, all results derived in the continuous case have a discrete
equivalent but proofs become simpler because they use polynomials instead of holomorphic
functions.

Let f ∈ Cn be a discrete function. We assume n is even. The discrete Fourier transform of
f is:

f̂ [k] =
n−1∑
s=0

f [s]e−
2πisk
n for k = −n

2
+ 1, ...,

n

2

The analytic part of f is f+ ∈ Cn such that:

f̂+[k] = 0 if − n

2
+ 1 ≤ k < 0

64

f̂+[k] = f̂ [k] if k = 0 or k =
n

2

f̂+[k] = 2f̂ [k] if 0 < k <
n

2

When f is real, f = Re (f+).
We consider wavelets of the following form, for p > 0 and a > 1:

ψ̂j[k] = ρ(ajk)(ajk)pe−a
jk1k≥0 for all j ∈ Z, k = −n

2
+ 1, ...,

n

2
(3.12)

where ρ : R+ → C is such that ρ(ax) = ρ(x) for every x and ρ does not vanish.

As in the continuous case, the set {|f ? ψj|}j∈Z almost uniquely determines f+. Naturally,
the global phase still cannot be determined. The mean value of f+ can also not be determined,
because ψ̂j[0] = 0 for all j. To determine the mean value and the global phase, we would need
some additional information, for example the value of f ? φ for some low frequency signal φ.

Theorem 3.6 (Discrete version of 3.2). Let f, g ∈ Cn be discrete signals and (ψj)j∈Z a family
of wavelets of the form (3.12). Let j, l ∈ Z be two distinct integers. Then:

|f ? ψj| = |g ? ψj| and |f ? ψl| = |g ? ψl| (3.13)

if and only if, for some φ ∈ R, c ∈ C:

f+ = eiφg+ + c

Proof. We first assume f+ = eiφg+ + c. Taking the Fourier transform of this equality yields:

f̂ [k] = eiφĝ[k] for all k = 1, ...,
n

2

As ψ̂j[k] = 0 for k = −n
2

+ 1, ..., 0:

f̂ [k]ψ̂j[k] = eiφĝ[k]ψ̂j[k] for all k = −n
2

+ 1, ...,
n

2
⇒ (f ? ψj = eiφ(g ? ψj))

So |f ? ψj| = |g ? ψj| and, similarly, |f ? ψl| = |g ? ψl|.

We now suppose conversely that |f ? ψj| = |g ? ψj| and |f ? ψl| = |g ? ψl|. We define:

F (z) =
1

n

n/2∑
k=1

f̂ [k]ρ(k)kpzk G(z) =
1

n

n/2∑
k=1

ĝ[k]ρ(k)kpzk ∀z ∈ C

65

These polynomials are the discrete equivalents of functions F and G used in the proof of 3.2.
For all s = −n

2
+ 1, ..., n

2
:

F (e−a
j

e
2πis
n) =

1

n

n/2∑
k=1

f̂ [k]ρ(k)kpe−a
jke

2πiks
n

= a−jp
1

n

n/2∑
k=−n/2+1

f̂ [k]ψ̂j[k]e
2πiks
n

= a−jp (f ? ψj[s])

Similarly, G(e−a
j
e

2πis
n) = a−jp(g ? ψj[s]) for all s = −n

2
+ 1, ..., n

2
.

Thus, f ?ψj and g ?ψj can be seen as the restrictions of F and G to the circle of radius e−a
j
.

This is similar to the continuous case, where f ? ψj and g ? ψj were the restrictions of functions
F,G to horizontal lines.

The equality (3.13) implies:∣∣∣F (e−a
j

e
2πis
n)
∣∣∣2 =

∣∣∣G(e−a
j

e
2πis
n)
∣∣∣2 for all s = −n

2
+ 1, ...,

n

2

⇔ F (e−a
j

e
2πis
n)F (e−a

j

e−
2πis
n) = G(e−a

j

e
2πis
n)G(e−a

j

e−
2πis
n) for all s = −n

2
+ 1, ...,

n

2

The functions z → F (e−a
j
z)F (e−a

j 1
z
) and z → G(e−a

j
z)G(e−a

j 1
z
) are polynomials of degree n−2

(up to multiplication by zn/2−1). They share n common values so they are equal. The same is
true for l instead of j so:

F (e−a
j

z)F

(
e−a

j 1

z

)
= G(e−a

j

z)G

(
e−a

j 1

z

)
∀z ∈ C (3.14)

F (e−a
l

z)F

(
e−a

l 1

z

)
= G(e−a

l

z)G

(
e−a

l 1

z

)
∀z ∈ C (3.15)

If we show that these equalities imply F = eiφG for some φ ∈ R, the proof will be finished.
Indeed, from the definition of F and G, we will then have f̂ [k] = eiφĝ[k] for all k = 1, ..., n

2
so

f̂+[k] = eiφĝ+[k] for all k 6= 0. It implies f+ = eiφg+ + c for c = 1
n

(
f̂+[0]− eiφĝ+[0]

)
.

It suffices to show that F and G have the same roots (with multiplicity) because then, they
will be proportional and, from (3.14), (3.15), the proportionality constant must be of modulus
1.

66

For each z ∈ C, let µF (z) (resp. µG(z)) be the multiplicity of z as a root of F (resp. G).
The polynomials of (3.14) are of respective degree n− 2µF (0) and n− 2µG(0) so µF (0) = µG(0).

For all z 6= 0, the multiplicity of ea
j
z as a zero of (3.14) is:

µF (z) + µF

(
e−2aj

z

)
= µG(z) + µG

(
e−2aj

z

)

and the multiplicity of e2aj−alz as a zero of (3.15) is:

µF (e2(aj−al)z) + µF

(
e−2aj

z

)
= µG(e2(aj−al)z) + µG

(
e−2aj

z

)
Subtracting this last equality to the previous one implies that, for all z:

µF (z)− µG(z) = µF (e2(aj−al)z)− µG(e2(aj−al)z)

By applying this equality several times, we get, for all n ∈ N:

µF (z)− µG(z) = µF (e2(aj−al)z)− µG(e2(aj−al)z)

= µF (e4(aj−al)z)− µG(e4(aj−al)z)

= ...

= µF (e2n(aj−al)z)− µG(e2n(aj−al)z)

As F and G have a finite number of roots, µF (e2n(aj−al)z) − µG(e2n(aj−al)z) = 0 if n is large
enough. So µF (z) = µG(z) for all z ∈ C.

As in the section 3.1.2, a very similar proof gives a uniqueness result for the case of the
Fourier transform with masks, if the masks are well-chosen.

Theorem 3.7 (Discrete version of 3.5). Let α > 0 be fixed. Let f, g ∈ C2n−1 be two discrete
signals with support in {0, ..., n− 1}:

f [s] = g[s] = 0 for s = n, ..., 2n− 2

If |f̂ | = |ĝ| and | ̂f [s]e−sα| = | ̂g[s]e−sα|, then, for some φ ∈ R:

f = eiφg

Remark that this theorem describes systems of 4n − 2 linear measurements whose moduli
are enough to recover each complex signal of dimension n. It is known that 4n − 4 generic
measurements always achieve this property ([Balan et al., 2006; Conca et al., 2015]). However,
it is in general difficult to find deterministic systems for which it can be proven.

67

3.1.4 Proof of Theorem 3.1

Theorem (3.1). Let α > 0 be fixed. Let F,G : H → C be holomorphic functions such that, for
some M > 0: ∫

R
|F (x+ iy)|2dx < M and

∫
R
|G(x+ iy)|2dx < M ∀y > 0 (3.8)

We suppose that:

|F (x+ iα)| = |G(x+ iα)| for a.e. x ∈ R
lim
y→0+
|F (x+ iy)| = lim

y→0+
|G(x+ iy)| for a.e. x ∈ R

Then, for some φ ∈ R:
F = eiφG (3.16)

Proof of Theorem 3.1. This proof relies on the ideas used by Akutowicz [1956].
If F = 0, the theorem is true: G is null over a whole line and, as G is holomorphic, G = 0.

The same reasoning holds if G = 0. We now assume F 6= 0, G 6= 0.
The central point of the proof is to factorize the functions F, F (.+ iα), G,G(.+ iα) as in the

following lemma.

Lemma 3.8. [Kryloff, 1939]2 The function F admits the following factorization:

F (z) = eic+iβzB(z)D(z)S(z)

Here, c and β are real numbers. The function B is a Blaschke product. It is formed with the
zeros of F in the upper half-plane H. We call (zk) these zeros, counted with multiplicity, with
the exception of i. We call m the multiplicity of i as zero.

B(z) =

(
z − i
z + i

)m∏
k

|zk − i|
zk − i

|zk + i|
zk + i

z − zk
z − zk

(3.17)

This product converges over H, which is equivalent to:∑
k

Im zk
1 + |zk|2

< +∞ (3.18)

2Non Russian speaking readers may also deduce this theorem from Rudin [1987, Thm 17.17]: functions over
H may be turned into functions over D(0, 1) by composing them with the conformal application z ∈ D(0, 1) →
1−z
1+z i ∈ H. The main difficulty is to show that if H : H→ C satisfies (3.8), then H̃ : z ∈ D(0, 1)→ H

(
1−z
1+z i

)
∈ C

is of class H2 and Rudin’s theorem can be applied.

68

The functions D and S are defined by:

D(z) = exp

(
1

πi

∫
R

1 + tz

t− z
log |F (t)|

1 + t2
dt

)
(3.19)

S(z) = exp

(
i

π

∫
R

1 + tz

t− z
dE(t)

)
(3.20)

In the first equation, |F (t)| is the limit of |F | on R. In the second one, dE is a positive bounded
measure, singular with respect to Lebesgue measure.

Both integrals converge absolutely for any z ∈ H.

The same factorization can be applied to F (.+ iα), G and G(.+ iα):

F (z) = eicF+iβF zBF (z)DF (z)SF (z) G(z) = eicG+iβGzBG(z)DG(z)SG(z)

F (z + iα) = eic̃F+iβ̃F zB̃F (z)D̃F (z)S̃F (z) G(z + iα) = eic̃G+iβ̃GzB̃G(z)D̃G(z)S̃G(z)

As F (.+ iα) and G(.+ iα) are analytic on the real line, they actually have no singular part
S. The proof may be found in [Garnett, 1981, Thm 6.3]; it is done for functions on the unit disk
but also holds for functions on H.

S̃F = S̃G = 1 (3.21)

Because lim
y→0+
|F (. + iy)| = lim

y→0+
|G(. + iy)| and |F (. + iα)| = |G(. + iα)|, we have DF = DG

and D̃F = D̃G. We show that it implies a relation between the B’s, that is, a relation between
the zeros of F and G. From this relation, we will be able to prove that F and G have the same
zeros and that, up to a global phase, they are equal.

For all z ∈ H:

eicF+iβF (z+iα)BF (z + iα)DF (z + iα)SF (z + iα)

eic̃F+iβ̃F zB̃F (z)D̃F (z)

=
F (z + iα)

F (z + iα)
= 1

=
G(z + iα)

G(z + iα)

=
eicG+iβG(z+iα)BG(z + iα)DG(z + iα)SG(z + iα)

eic̃G+iβ̃GzB̃G(z)D̃G(z)

⇒ BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
= eiC+iBzSG(z + iα)

SF (z + iα)
(3.22)

69

for some C,B ∈ R

Equality (3.22) holds only for z ∈ H. It is a priori not even defined for z ∈ C−H. Before going
on, we must show that (3.22) is meaningful and still valid over all C. This is the purpose of the
two following lemmas, whose proofs may be found in Paragraph 3.6.1.

For z ∈ H, we denote by µF (z) (resp. µG(z)) the multiplicity of z as a zero of F (resp. G).

Lemma 3.9. There exists a meromorphic function Bw : C→ C such that:

Bw(z) =
BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
∀z ∈ H

Moreover, for every z ∈ H, the multiplicity of z − iα as a pole of Bw is:

(µF (z)− µG(z))− (µF (z + 2iα)− µG(z + 2iα)) (3.23)

Lemma 3.10. For every z ∈ H, SG(z+iα)
SF (z+iα)

= 1.

Equation (3.22) and Lemmas 3.9 and 3.10 give, for all z ∈ H and thus all z ∈ C (because
functions are meromorphic):

Bw(z) = eiC+iBz ∀z ∈ C
The function eiC+iBz has no zero nor pole so, from (3.23), for all z ∈ H:

(µF (z)− µG(z))− (µF (z + 2iα)− µG(z + 2iα)) = 0

So if µF (z) 6= µG(z) for some z, we may by symmetry assume that µF (z) > µG(z) and, in
this case, for all n ∈ N∗:

µF (z + 2niα)− µG(z + 2niα) = ...

= µF (z + 2iα)− µG(z + 2iα)

= µF (z)− µG(z) > 0

In particular, z + 2niα is a zero of F for all n ∈ N∗. But this is impossible because, if it is the

case, Im(z+2niα)
1+|z+2niα|2 ∼

1
2nα

and: ∑
k

Im zk
1 + |zk|2

= +∞

where the (zk) are the zeros of F over H. It is in contradiction with (3.18).
So for all z ∈ H, µF (z) = µG(z). This implies that BF = BG and B̃F = B̃G. So, for all

z ∈ H:

F (z + iα) = eic̃F+iβ̃F zB̃F (z)D̃F (z) = eic̃F+iβ̃F zB̃G(z)D̃G(z) = eiγ+iδzG(z + iα)

70

with γ = c̃F − c̃G and δ = β̃F − β̃G

The functions F and G are meromorphic over H so the last equality actually holds over all
{z ∈ C s.t. Im z > −α}.

| lim
y→0+

F (x+ iy)| = | lim
y→0+

eiγ+iδ(x+iy−iα)G(x+ iy)|

= eδα| lim
y→0+

G(x+ iy)|

Consequently, because δ is real and α 6= 0, δ = 0. So:

F (z) = eiγG(z) ∀z ∈ H

3.2 Weak stability of the reconstruction

In the previous section, we proved that the operator U : f → {|f ? ψj|} was injective, up to
a global phase, for Cauchy wavelets. So we can theoretically reconstruct any function f from
U(f). However, if we want the reconstruction to be possible in practice, we also need it to be
stable to a small amount of noise:

(U(f1) ≈ U(f2)) ⇒ (f1 ≈ f2)

In this section, we show that it is, in some sense, the case: U−1 is continuous.
Contrarily to the ones of the previous section, this result is not specific to Cauchy wavelets:

it holds for all reasonable wavelets, as soon as U is injective.

3.2.1 Definitions

As in the previous section, we consider only functions without negative frequencies:

L2
+(R) = {f ∈ L2(R) s.t. f̂(ω) = 0 for a.e. ω < 0}

As the reconstruction is always up to a global phase, we need to define the quotient L2
+(R)/S1:

f = g in L2
+(R)/S1 ⇔ f = eiφg for some φ ∈ R

The set L2
+(R)/S1 is equipped with a natural metric:

D2(f, g) = inf
φ∈R
||f − eiφg||2

71

Remark that D2(f, 0) = ||f ||2.
We also define:

l2(Z, L2(R)) =

{
(hj)j∈Z ∈ L2(R)Z s.t.

∑
j

||hj||22 < +∞

}
∣∣∣∣(hj)− (h′j)

∣∣∣∣
2

=

√∑
j∈Z

||hj − h′j||22 for any (hj), (h
′
j) ∈ l2(Z, L2(R))

We are interested in the operator U :

U : L2
+(R)/S1 → l2(Z, L2(R))
f → (|f ? ψj|)j∈Z

(3.24)

We require two conditions over the wavelets. They must be analytic:

ψ̂j(ω) = 0 for a.e. ω < 0, j ∈ Z (3.25)

and satisfy an approximate Littlewood-Paley inequality:

A ≤
∑
j∈Z

|ψ̂j(ω)|2 ≤ B for a.e. ω > 0, for some A,B > 0 (3.26)

This last inequality and the fact that D2(f, 0) = ||f ||2 imply:

∀f ∈ L2
+(R)/S1,

√
AD2(f, 0) ≤ ||U(f)||2 ≤

√
BD2(f, 0) (3.27)

In particular, it ensures the continuity of U .

3.2.2 Weak stability theorem

Theorem 3.11. We suppose that, for all j ∈ Z, ψj ∈ L1(R)∩L2(R) and that (3.25) and (3.26)
hold. We also suppose that U is injective. Then:

(i) The image of U , IU = {U(f) s.t. f ∈ L2
+(R)/S1} is closed in l2(Z, L2(R)).

(ii) The application U−1 : IU → L2
+(R)/S1 is continuous.

Proof. What we have to prove is the following: if (U(fn))n∈N converges towards a limit v ∈
l2(Z, L2(R)), then v = U(g) for some g ∈ L2

+(R)/S1 and fn → g in L2
+(R)/S1.

So let (U(fn))n∈N be a sequence of elements in IU , which converges in l2(Z, L2(R)). Let
v = (hj)j∈Z ∈ L2

Z(R) be the limit. We show that v ∈ IU .

72

Lemma 3.12. For all j ∈ Z, {fn ? ψj}n∈N is relatively compact in L2(R) (that is, the closure of
this set in L2(R) is compact).

The proof of this lemma is given in Paragraph 3.6.2. It uses the Riesz-Fréchet-Kolmogorov
theorem, which gives an explicit characterization of the relatively compact subsets of L2(R).

For every j ∈ Z, {fn ? ψj}n∈N is thus included in a compact subset of L2(R). In a compact
set, every sequence admits a convergent subsequence: there exists φ : N→ N injective such that
(fφ(n) ? ψj)n∈N converges in L2(R). Actually, we can choose φ such that (fφ(n) ? ψj)n converges
for any j (and not only for a single one). We denote by lj the limits.

Lemma 3.13 (Proof in Paragraph 3.6.2). There exists g ∈ L2
+(R) such that lj = g ?ψj for every

j. Moreover, fφ(n) → g in L2(R).

As U is continuous, U(g) = lim
n
U(fφ(n)) = v. So v belongs to IU .

The g such that U(g) = v is uniquely defined in L2
+(R)/S1 because U is injective (it does

not depend on the choice of φ). We must now show that fn → g.
From Lemma 3.13, (fn)n admits a subsequence (fφ(n)) which converges to g. By the same

reasoning, every subsequence (fψ(n))n of (fn)n admits a subsequence which converges to g. This
implies that (fn)n globally converges to g.

Remark 3.14. The same proof gives a similar result for wavelets on Rd, of the form (ψj,γ)j∈Z,γ∈Γ,
for Γ a finite set of parameters.

3.3 The reconstruction is not uniformly continuous

Theorem 3.11 states that the operator U : f → {|f ? ψj|}j∈Z has a continuous inverse U−1,
when it is invertible. However, U−1 is not uniformly continuous. Indeed, for any ε > 0, there
exist g1, g2 ∈ L2

+(R)/S1 such that:

||U(g1)− U(g2)|| < ε but ||g1 − g2|| ≥ 1 (3.28)

In this section, we describe a way to construct such “unstable” pairs (g1, g2): we start from
any g1 and modulate each g1 ? ψj by a low-frequency phase. We then (approximately) invert
this modified wavelet transform and obtain g2.

This construction seems to be “generic” in the sense that it includes all the instabilities that
we have been able to observe in practice.

73

3.3.1 A simple example

To begin with, we give a simple example of instabilities and relate it to known results about
the stability in general phase retrieval problems.

In phase retrieval problems with (a finite number of) real measurements, the stability of the
reconstruction operator is characterized by the following theorem ([Bandeira et al., 2014], [Balan
and Wang, 2015]).

Theorem 3.15. Let A ∈ Rm×n be a measurement matrix. For any S ⊂ {1, ...,m}, we denote
by AS the matrix obtained by discarding the rows of A whose indexes are not in S. We call λ2

S

the lower frame bound of AS, that is, the largest real number such that:

||ASx||22 ≥ λ2
S||x||22 ∀x ∈ Rn

Then, for any x, y ∈ Rn:

|| |Ax| − |Ay| ||2 ≥
(

min
S

√
λ2
S + λ2

Sc

)
.min(||x− y||2, ||x+ y||2)

Moreover, min
S

√
λ2
S + λ2

Sc is the optimal constant.

This theorem implies that, in the real case, the reconstruction operator has a Lipschitz

constant exactly equal to 1/
(

min
S

√
λ2
S + λ2

Sc

)
. In the complex case, it is only possible to prove

that the Lipschitz constant is at least 1/
(

min
S

√
λ2
S + λ2

Sc

)
.

Theorem 3.16. Let A ∈ Cm×n be a measurement matrix. There exist x, y ∈ Cn such that:

|| |Ax| − |Ay| ||2 ≤
(

min
S

√
λ2
S + λ2

Sc

)
.min
|η|=1

(||x− ηy||2)

Consequently, if the set of measurements can be divided in two parts S and Sc such that λ2
S

and λ2
Sc are very small, then the reconstruction is not stable.

Such a phenomenon occurs in the case of the wavelet transform. We define:

S = {ψj s.t. j ≥ 0} and Sc = {ψj s.t. j < 0}

Let us fix a small ε > 0. We choose f1, f2 ∈ L2(R) such that:

f̂1(x) = 0 if |x| < 1/ε and f̂2(x) = 0 if x /∈ [−ε; ε]

74

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
−0.1

0

0.1

0 10 20 30
0

0.05

(a) (b) (c) (d)

Figure 3.3: (a) Wavelet transform of f1 (b) Wavelet transform of f2 (c) Wavelet transform of
f1 + f2 (solid blue) and f1 − f2 (dashed red) (d) Modulus of the wavelet transforms of f1 + f2

and f1 − f2; the two modulus are almost equal
In each column, each graph corresponds to a specific frequency; the highest frequency is on top
and the lowest one at bottom. For complex functions, only the real part is displayed.

For every ψj ∈ S, f1 ? ψj ≈ 0 because the characteristic frequency of ψj is smaller than 1 and f1

is a very high frequency function. So:

|(f1 + f2) ? ψj| ≈ |f2 ? ψj| = | − f2 ? ψj| ≈ |(f1 − f2) ? ψj|

And similarly, for ψj ∈ Sc, f2 ? ψj ≈ 0 and:

|(f1 + f2) ? ψj| ≈ |f1 ? ψj| ≈ |(f1 − f2) ? ψj|

As a consequence:
{|(f1 + f2) ? ψj|}j∈Z ≈ {|(f1 − f2) ? ψj|}j∈Z

Nevertheless, f1 + f2 and f1 − f2 may not be close in L2(R)/S1: g1 = f1 + f2 and g2 = f1 − f2

satisfy (3.28).
The figure 3.3 displays an example of this kind.

75

3.3.2 A wider class of instabilities

We now describe the construction of more general “unstable” pairs (g1, g2).
Let g1 ∈ L2(R) be any function. We aim at finding g2 ∈ L2(R) such that, for all j ∈ Z:

(g1 ? ψj)e
iφj ≈ g2 ? ψj (3.29)

for some real functions φj.
In other words, we must find phases φj such that (g1 ? ψj)e

iφj is approximately equal to the
wavelet transform of some g2 ∈ L2(R). Any phases φj(t) which vary slowly both in t and in j
satisfy this property.

Indeed, if the φj(t) vary “slowly enough”, we set:

g2 =
∑
j∈Z

(
(g1 ? ψj)e

iφj
)
? ψ̃j

where {ψ̃j}j∈Z are the dual wavelets associated to {ψj}.
Then, for all k ∈ Z, t ∈ R:

g2 ? ψk(t) =
∑
j∈Z

(
(g1 ? ψj)e

iφj
)
? ψ̃j ? ψk(t)

=
∑
j∈Z

∫
R
eiφj(t−u)(g1 ? ψj)(t− u)(ψ̃j ? ψk)(u) du

(g1 ? ψk(t))e
iφk(t) = eiφk(t)

∑
j∈Z

(g1 ? ψj) ? (ψ̃j ? ψk)(t)

=
∑
j∈Z

∫
R
eiφk(t)(g1 ? ψj)(t− u)(ψ̃j ? ψk)(u) du

So:

g2 ? ψk(t)− (g1 ? ψk(t))e
iφk(t) =

∑
j∈Z

∫
R
(eiφj(t−u) − eiφk(t))(g1 ? ψj)(t− u)(ψ̃j ? ψk)(u) du (3.30)

The function ψ̃j ? ψk(u) is negligible if j is not of the same order as k or if u is too far away
from 0. It means that, for some C ∈ N, U ∈ R (which may depend on k):

g2 ? ψk(t)− (g1 ? ψk(t))e
iφk(t) ≈

∑
|j−k|≤C

∫
[−U ;U]

(eiφj(t−u) − eiφk(t))(g1 ? ψj)(t− u)(ψ̃j ? ψk)(u) du

76

If φj(t− u) does not vary much over [k − C; k + C]× [−U ;U], it gives the desired relation:

g2 ? ψk(t)− (g1 ? ψk(t))e
iφk(t) ≈ 0

which is (3.29).
To summarize, we have described a way to construct g1, g2 ∈ L2(R) such that |g1 ? ψj| ≈

|g2 ? ψj| for all j. The principle is to multiply the wavelet transform of g1 by any set of phases
{eiφj(t)}j∈Z whose variations are slow enough in j and t.

How slow the variations must be depends on g1. Indeed, at the points (j, t) where g1 ? ψj(t)
is small, the phase may vary more rapidly because, then, the presence of g1 ? ψj(t− u) in (3.30)
compensates for a bigger (eiφj(t−u) − eiφk(t)).

All instabilities g1, g2 that we were able to observe in practice were of the form we described:
each time, the wavelet transforms of g1 and g2 were equal up to a phase whose variation was
slow in j and t, except at the points where g1 ? ψj was small.

3.4 Local stability result

The goal of this section is to give a partial formal justification to the fact that has been
non-rigorously discussed in section 3.3.2: when two functions g1, g2 satisfy |g1 ?ψj| ≈ |g2 ?ψj| for
all j, then the wavelet transforms {g1 ? ψj(t)}j and {g2 ? ψj(t)}j are equal up to a phase whose
variation is slow in t and j, except eventually at the points where |g1 ? ψj(t)| is small.

In the whole section, we consider f (1), f (2) two non-zero functions. We denote by F (1), F (2)

the holomorphic extensions defined in (3.6). We recall that, for all j ∈ Z:

f ? ψj(x) =
apj

2
F (x+ iaj) ∀x ∈ R (3.31)

We define:
Nj = sup

x∈R,s=1,2
|f (s) ? ψj(x)|

3.4.1 Main principle

From |f ?ψj|, one can calculate |f ?ψj|2 and thus, from (3.31), |F (x+iaj)|2, for all x ∈ R. But

this last function coincides with Gj(z) = F (z + iaj)F (z + iaj) on the horizontal line Im z = 0.
As Gj is holomorphic, it is uniquely determined by its values on one line. Consequently, Gj is
uniquely determined from |f ? ψj|.

Combining the functions Gj for different values of j allows to write explicit reconstruction
formulas. The stability of these formulas can be studied, to obtain relations of the following

77

form, for K > 0:(
|f (1) ? ψk| ≈ |f (2) ? ψk| ∀k ∈ Z

)
⇒
(

(f (1) ? ψj)(f (1) ? ψj+K) ≈ (f (2) ? ψj)(f (2) ? ψj+K) ∀j ∈ Z
)

These relations imply that, for each j, the phases of f (1) ? ψj and f (2) ? ψj are approximately

equal up to multiplication by the phase of
f (1)?ψj+K

f (2)?ψj+K
. If K is not too small, this last phase is

low-frequency, compared to the phase of f (1) ? ψj and f (2) ? ψj.

The results we obtain are local, in the sense that if the approximate equality |f (1) ? ψk| ≈
|f (2) ? ψk| only holds on a (large enough) interval of R, the equality (f (1) ? ψj)(f (1) ? ψj+K) ≈
(f (2) ? ψj)(f (2) ? ψj+K) still holds (also on an interval of R).

Our main technical difficulty was to handle properly the fact that the Gj’s may have zeros
(which is a problem because we need to divide by Gj in order to get reconstruction formulas). We
know that, when the wavelet transform has a lot of zeros, the reconstruction becomes unstable.
On the other hand, if they are only a few isolated zeros, the reconstruction is stable and this
must appear in our theorems.

They are several ways to write reconstruction formulas, which give different stability results.
In the dyadic case (a = 2), there is a relatively simple method. We present it first. Then we
handle the case where a < 2. We do not consider the case where a > 2. Indeed, it has less
practical interest for us. Moreover, when the value of a increases, the reconstruction becomes
much less stable.

3.4.2 Case a = 2

In the dyadic case, we only assume that two consecutive moduli are approximately known,
on an interval of R: |f ? ψj| and |f ? ψj+1|. We also assume that, on this interval, the moduli
are never too close to 0. Then we show these moduli determine in a stable way:

f ? ψj+2

f ? ψj+1

Theorem 3.17. Let ε, c, λ ∈]0; 1[,M > 0 be fixed, with c ≥ ε.
We assume that, for all x ∈ [−M2j;M2j]:∣∣|f (1) ? ψj(x)|2 − |f (2) ? ψj(x)|2

∣∣ ≤ εN2
j∣∣|f (1) ? ψj+1(x)|2 − |f (2) ? ψj+1(x)|2

∣∣ ≤ εN2
j+1

78

and:

|f (1) ? ψj(x)|2, |f (2) ? ψj(x)|2 ≥ cN2
j

|f (1) ? ψj+1(x)|2, |f (2) ? ψj+1(x)|2 ≥ cN2
j+1

Then, for all x ∈ [−λ2M2j;λ2M2j]:∣∣∣∣f (1) ? ψj+2

f (1) ? ψj+1

(x)− f (2) ? ψj+2

f (2) ? ψj+1

(x)

∣∣∣∣ ≤ A

c

(
Nj−1

Nj+1

)4/3

ε(1/3−αM)(4/5−α′M)

if 1/3− αM > 0 and 4/5− α′M > 0, where:

• A is a constant which depends only on p.

• αM , α′M → 0 exponentially when M → +∞.

Principle of the proof. Here, we only give a broad outline of the proof. A rigorous one is given
in Paragraph 3.6.3, with all the necessary technical details.

As explained in the paragraph 3.4.1, |f (1) ? ψj+1| uniquely determines the values of z →
F (1)(z + i2j+1)F (1)(z + i2j+1) on the line Im z = 0. Thus, it uniquely determines all the values
(because the function is holomorphic) and in particular (for z = x+ i2j):

F (1)(x+ i3.2j)F (1)(x+ i2j) ∀x ∈ R

Moreover, this determination is a stable operation:(
|f (1) ? ψj+1(x)|2 ≈ |f (2) ? ψj+1(x)|2 ∀x ∈ R

)
⇒
(
F (1)(x+ i3.2j)F (1)(x+ i2j) ≈ F (2)(x+ i3.2j)F (2)(x+ i2j) ∀x ∈ R

)
If we divide this last expression by |F (1)(x+ i2j)|2 ≈ |F (2)(x+ i2j)|2 (whose values we know from
|f ? ψj|2):

F (1)(x+ i3.2j)

F (1)(x+ i2j)
≈ F (2)(x+ i3.2j)

F (2)(x+ i2j)
for x ∈ R

As previously, using the holomorphy of F allows to replace, in the last expression, the real
number x by x+ i2j:

F (1)(x+ i2j+2)

F (1)(x+ i2j+1)
≈ F (2)(x+ i2j+2)

F (2)(x+ i2j+1)
for x ∈ R

By (3.31), this is the same as:
f (1) ? ψj+2

f (1) ? ψj+1

≈ f (2) ? ψj+2

f (2) ? ψj+1

79

From this theorem, if f (s) ? ψj+2 has no small values either on [−λ2M2j;λ2M2j], then:

phase(f (1) ? ψj+1)− phase(f (2) ? ψj+1) ≈ phase(f (1) ? ψj+2)− phase(f (2) ? ψj+2)

If more than two consecutive components of the wavelet transform have almost the same modulus
(and all these components do not come close to 0), one can iterate this approximate equality. It
gives:

phase(f (1) ? ψj+1)− phase(f (2) ? ψj+1) ≈ phase(f (1) ? ψj+K)− phase(f (2) ? ψj+K)

This holds for any K ∈ N∗ but with an approximation error that becomes larger and larger as
K increases.

When K is large enough, this means that f (1) ? ψj+1 and f (2) ? ψj+1 are equal up to a
low-frequency phase.

3.4.3 Case a < 2

For this section, we fix:

• j ∈ Z: the frequency of the component whose phase we want to estimate

• K ∈ N∗ even: the number of components of the wavelet transform whose modulus are
approximately equal

• ε, κ ∈]0; 1[: they will control the difference between |f (1) ? ψj| and |f (2) ? ψj|, as well as the
minimal value of those functions.

• M > 0: we will assume that the approximate equality between the modulus holds on
[−Maj+K ;Maj+K].

• k ∈ N∗ such that a−k < 2 − a: this number will control the stability with which one can
derive information about f ? ψl−1 from |f ? ψl|. Typically, for a ≤ 1.5, we may take k = 3.

We define:

• J ∈ [j + K − 1; j + K] such that aJ = 2
a+1

aj+K + a−1
a+1

aj: we will prove that f (1) ? ψj and

f (2) ? ψj are equal up to a phase which is concentrated around aJ in frequencies (that is,
a much lower-frequency phase than the phase of f ? ψj).

• c = 1− a−1
1−a−k ∈]0; 1[and dM = c− 4 e−πM/(K+2)

1−e−πM/(K+2) , which converges exponentially to c when
M
K

goes to ∞.

80

Theorem 3.18. We assume that κ ≥ ε2(1−c).
We assume that, for x ∈ [−Maj+K ;Maj+K] and l = j + 1, ..., j +K:∣∣|f (1) ? ψl(x)|2 − |f (2) ? ψl(x)|2

∣∣ ≤ εN2
l (3.32)

|f (1) ? ψl(x)|2, |f (2) ? ψl(x)|2 ≥ κN2
l (3.33)

Then, for any x ∈
[
−Maj+K

2
; Maj+K

2

]
, as soon as dM < 1:

1

NJNj

∣∣∣(f (1) ? ψJ(x)
) (

f (1) ? ψj(x)
)
−
(
f (2) ? ψJ(x)

) (
f (2) ? ψj(x)

)∣∣∣ ≤ CK
κK/4

εdM (3.34)

where CK = 6
1−
√
κ

K/2−1∏
s=0

(
ap(k−1)Nns−1−k

Nns−2

)
As in the dyadic case a = 2, this theorem shows that, if two functions f (1) and f (2) have

their wavelet transforms almost equal in moduli, then, for each j, f (1) ? ψj ≈ f (2) ? ψj up to
multiplication by a low-frequency function.

In contrast to the dyadic case, we are not able to show directly that:

f (1) ? ψj
f (2) ? ψj

≈ f (1) ? ψj+1

f (2) ? ψj+1

Because of that, the inequality we get is less good than in the dyadic case: the bound in (3.34)
is exponential in K instead of being proportional to K.

With a slightly different method, we could have obtained a better bound, proportional to
K. This better bound would have been valid for any a > 1, but under the condition that f ? ψl
does not come close to 0 for some explicit non-integer values of l, which would have been rather
unsatisfactory because, in practice, these values of l do not seem to play a particular role.

Principle of the proof. The full proof may be found in Paragraph 3.6.4. Its principle is to show,
by induction over s = 0, ..., K/2, that:

(f (1) ? ψJs)(f
(1) ? ψj+K−2s) ≈ (f (2) ? ψJs)(f

(2) ? ψj+K−2s) (3.35)

where Js is an explicit number in the interval [j +K − 1; j +K].
For s = 0, we set Js = j +K and (3.35) just says:∣∣f (1) ? ψj+K

∣∣2 ≈ ∣∣f (2) ? ψj+K
∣∣2

which is true by hypothesis.

81

Then, to go from s to s+ 1, we use the fact that:

(f (1) ? ψj+K−2s)(f
(1) ? ψl) ≈ (f (2) ? ψj+K−2s)(f

(2) ? ψl) (3.36)

if we choose l such that al = 2aj+K−2s−1 − aj+K−2s: we can check that, up to multiplication by
a constant, (f (r) ? ψj+K−2s)(f

(r) ? ψl) is the evaluation on the line aj+K−2s − aj+K−2s−1 of the
holomorphic extension of |f (r) ? ψj+K−2s−1|2. The holomorphic extension is a stable transforma-
tion (in a sense that has to be made precise). As |f (1) ? ψj+K−2s−1|2 ≈ |f (2) ? ψj+K−2s−1|2, this
implies (3.36).

Multiplying (3.35) and (3.36) and dividing by |f (1) ? ψj+K−2s|2 ≈ |f (2) ? ψj+K−2s|2 yields:

(f (1) ? ψJs)(f
(1) ? ψl) ≈ (f (2) ? ψJs)(f

(2) ? ψl) (3.37)

If Js+1 is suitably chosen, (f (r) ?ψJs+1)(f
(r) ?ψj+K−2(s+1)) may be seen as the restriction to a line

of the holomorphic extension of (f (r) ? ψJs)(f
(r) ? ψl). Because, again, taking the holomorphic

extension is relatively stable, the relation (3.37) implies the recurrence hypothesis (3.35) at order
s+ 1.

For s = K/2, the recurrence hypothesis is equivalent to the stated result.

3.5 Numerical experiments

In the previous section, we proved a form of stability for the phase retrieval problem as-
sociated to the Cauchy wavelet transform. The proof implicitly relied on the existence of an
explicit reconstruction algorithm. In this section, we describe a practical implementation of this
algorithm and its performances.

The main goal of our numerical experiments is to investigate the issue of stability. Theo-
rems 3.17 and 3.18 prove that the reconstruction is, in some sense, stable, at least when the
wavelet transform does not have small values. Are these results confirmed by the implementa-
tion? To what extent does the presence of small values make the reconstruction unstable?

As we will see, our algorithm can fail when large parts of the wavelet transform are close to
zero. In all other cases, it seems to succeed and to be stable to noise, even when the amount of
noise over the wavelet transform is relatively high (∼ 10%). The presence of a small number of
zeroes in the wavelet transform is not a problem.

In practical applications, the wavelet transforms of the signals of interest (mostly audio
signals) always have a lot of small values. The algorithm that we present is thus mostly a
theoretical tool. Without modifications, it is not intended for real applications. Nevertheless,
the results it gives for audio signals are better than expected so, with some more work, it could
be suited to practical applications in audio processing. This will be the subject of future work.

82

The code is available at http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.
html, along with examples of reconstruction for audio signals. It only handles the dyadic case
a = 2 but could easily be extended to other values of a.

3.5.1 Description of the algorithm

In practice, we must restrict our wavelet transform to a finite number of components. So we
only consider the |f ? ψj| for j ∈ {Jmin, ..., Jmax}. To compensate for the loss of the |f ? ψj| with
j > Jmax, we give to our algorithm an additional information about the low-frequency, under
the form of f ? φJmax , where φ̂Jmax is negligible outside an neighborhood of 0 of size ∼ a−Jmax .

The algorithm takes as input the functions |f ? ψJmin
|, |f ? ψJmin+1|, ..., |f ? ψJmax |, f ? φJmax ,

for some unknown f , and tries to reconstruct f . The input functions may be contaminated by
some noise. To simplify the implementation, we have assumed that the probability distribution
of the noise was known.

For any real numbers j, k1, k2 such that j ∈ Z and 2.aj = ak1 + ak2 , it comes from the
reasoning of the previous section that |f ? ψj| uniquely determines (f ? ψk1).(f ? ψk2). More
precisely, we have, for all ω ∈ R:

̂(f ? ψk1).(f ? ψk2)(ω) = ̂|f ? ψj|2(ω)e(ak2−aj)ω a
k1+k2

a2j
(3.38)

The algorithm begins by fixing real numbers kJmin−1, kJmin
, ..., kJmax such that:

kJmin−1 < Jmin < kJmin
< Jmin + 1 < ... < Jmax < kJmax (3.39)

∀j, 2.aj = akj−1 + akj

Then, for all j, it applies (3.38) to determine gj
def
= (f ? ψkj−1

).(f ? ψkj). Because of the expo-
nential function present in (3.38), the gj may take arbitrarily high values in the frequency band
{(ak2 − aj)ω � 1}. To avoid this, we truncate the high frequencies of gj.

The function f ?ψkJmax
may be approximately determined from f ?φJmax . From this function

and the gj, the algorithm estimates all the f ? ψkj . As this estimation involves divisions by
functions which may be close to zero at some points, it is usually not very accurate. In particular,
the estimated set {f ? ψkj}j do not generally satisfy the constraint that it must belong to the
range of the function f ∈ L2(R)→ {f ? ψkj}Jmin−1≤j≤Jmax .

Thus, in a second step, the algorithm refines the estimation. To do this, it attempts to
minimize an error function which takes into account both the fact that (f ? ψkj−1

).(f ? ψkj)
is known for every j and the fact that {f ? ψkj−1

}Jmin−1≤j≤Jmax must belong to the range of
f ∈ L2(R)→ {f ? ψkj}Jmin−1≤j≤Jmax . The minimization is performed by gradient descent, using
the previously found estimations as initialization.

83

http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html
http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html

Finally, we deduce f from the f ? ψkj−1
and refine this estimation one more time by a

few steps of the classical Gerchberg-Saxton algorithm ([Gerchberg and Saxton, 1972]). This
final refinement step is useful, because the Gerchberg-Saxton algorithm converges much faster
than the gradient descent. According to our tests, the performances of the algorithm would be
approximately the same with more gradient descent iterations and no final refinement. However,
the execution time would be much longer.

The principle of the algorithm is summarized by the pseudo-code 4.

Algorithm 4 Reconstruction algorithm

Input: {|f ? ψj|}Jmin≤j≤Jmax and f ? φJmax

1: Choose kJmin−1, ..., kJmax as in (3.39).
2: for all j do
3: Determine gj = (f ? ψkj−1

).(f ? ψkj) from |f ? ψj|2.
4: end for
5: Determine f ? ψkJmax

from f ? φJmax .
6: for all j do
7: Estimate hj ≈ f ? ψkj .
8: end for
9: Refine the estimation with a gradient descent.

10: Deduce f from {f ? ψkj}Jmin−1≤j≤Jmax .
11: Refine the estimation of f with the Gerchberg-Saxton algorithm.
Output: f

3.5.2 Input signals

We study the performances of this algorithm on three classes of input signals with finite size
n. The figure 3.4 shows an example for each of these three classes.

The first class contains realizations of Gaussian processes with renormalized frequencies.
More precisely, the signals f of this class satisfy:

f̂ [n] =
Xn√
n+ 2

where the Xn are independent realizations of a Gaussian random variable X ∼ N (0, 1). The
normalization 1√

n+2
ensures that all dyadic frequency bands contain approximately the same

amount of energy.

84

0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

(b)

0 200 400 600 800 1000

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Figure 3.4: examples of signals: (a) realization of a Gaussian process (b) sum of sinusoids (c)
piecewise regular

The second class consists in sums of a few sinusoids. The amplitudes, phases and frequencies
of the sinusoids are randomly chosen. In each dyadic frequency band, there is approximately
the same mean number of sinusoids (slightly smaller than 1).

The signals of the third class are random lines extracted from real images. They usually
are structured signals, with smooth regular parts and large discontinuities at a small number of
points.

To study the influence of the size of the signals on the reconstruction, we perform tests
for signals of size N = 128, N = 1024 and N = 8192. For each N , we used log2(N) − 1
Cauchy wavelets of order p = 3. Our low-pass filter is a Gaussian function of the form φ̂[k] =
exp(−αk2/2), with α independent of N .

3.5.3 Noise

The inputs that are provided to the algorithm are not exactly {|f ? ψj|}, f ? φJmax but
{|f ? ψj| + nψ,j}, f ? φJmax + nφ. The nψ,j and the nφ represent an additive noise. In all our
experiments, this noise is white and Gaussian.

We measure the amplitude of the noise in relative l2-norm:

relative noise =

√
||nφ||22 +

∑
j

||nψ,j||22√
||f ? φJmax ||22 +

∑
j

||f ? ψj||22

3.5.4 Results

The results are displayed on the figure 3.5.

85

The x-axis displays the relative error induced by the noise over the input and the y-axis
represents the reconstruction error, both over the reconstructed function and over the modulus
of the wavelet transform of the reconstructed function.

For an input signal f and output frec, we define the relative error between f and frec by:

function error =
||f − frec||2
||f ||2

and the relative error over the modulus of the wavelet transform by:

modulus error =

√
||f ? φJmax − frec ? φJmax||22 +

∑
j

|| |f ? ψj| − |frec ? ψj| ||22√
||f ? φJmax||22 +

∑
j

||f ? ψj||22

The modulus error describes the capacity of the algorithm to reconstruct a signal whose
wavelet transform is close, in modulus, to the one which has been provided as input. The function
error, on the other hand, quantifies the intrinsic stability of the phase retrieval problem. If the
modulus error is small but the function error is large, it means that there are several functions
whose wavelet transforms are almost equal in moduli and the reconstruction problem is ill-posed.

An ideal reconstruction algorithm would yield a small modulus error (that is, proportional
to the noise over the input). Nevertheless, the function error could be large or small, depending
on the well-posedness of the phase retrieval problem.

We expect that our algorithm may fail when the input modulus contain very small values
(because the algorithm performs divisions, which become very unstable in presence of zeroes).

For almost each of the signals that we consider, there exist x’s such that f ? ψkj(x) ≈ 0 but
the number of such points vary greatly, depending on which class the signal belongs. As an
example, the wavelet transforms of the three signals of the figure 3.4 are displayed in 3.6.

For Gaussian signals, there are generally not many points at which the wavelet transform
vanishes. The positions of these points do not seem to be correlated in either space or frequency.

For piecewise regular signals, there are more of this points but they are usually distributed
in such a way that if f ? ψj(x) ≈ 0, then f ? ψk(x) ≈ 0 for all wavelets ψk of higher frequencies
than ψj. This distribution makes the reconstruction easier.

When the signals are sums of sinusoids, it often happens that some components of the wavelet
transform are totally negligible: for some j, f ? ψj(x) ≈ 0 for any x. The negligible frequencies
may be either high, low or intermediate.

From the results shown in 3.5, it is clear that the number of zeros influences the reconstruc-
tion, but also that isolated zeroes do not prevent reconstruction. The algorithm performs well on

86

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Gaussian signals

moduli (128)
function (128)
moduli (1024)
function (1024)
moduli (8192)
function (8192)

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Gaussian signals (Gerchberg-Saxton)

moduli (128)
function (128)
moduli (1024)

function (1024)
moduli (8192)

function (8192)

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Sum of sinusoids

moduli (128)
function (128)
moduli (1024)
function (1024)
moduli (8192)
function (8192)

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Sum of sinusoids (Gerchberg-Saxton)

moduli (128)
function (128)
moduli (1024)

function (1024)
moduli (8192)

function (8192)

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Piecewise regular functions

moduli (128)
function (128)
moduli (1024)
function (1024)
moduli (8192)
function (8192)

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Relative noise

R
el

at
iv

e
er

ro
r

Piecewise regular functions (Gerchberg-Saxton)

moduli (128)
function (128)
moduli (1024)

function (1024)
moduli (8192)

function (8192)

Figure 3.5: Reconstruction results for the three considered classes of signals. Left column: our
algorithm. Right column: alternate projections (Gerchberg-Saxton)

87

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

(a)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0 500 1000 1500 2000
0

0.1

0.2

0.3

0 500 1000 1500 2000
0

0.1

0.2

0.3

0 500 1000 1500 2000
0

0.1

0.2

0.3

(b)

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

0 500 1000 1500 2000
0

0.1

0.2

(c)

Figure 3.6: wavelet transforms, in modulus, of the signals of the figure 3.4: (a) realization of a
Gaussian process (b) sum of sinusoids (c) piecewise regular
Each column represents the wavelet transform of one signal. Each graph corresponds to one
frequency component of the wavelet transform. For sake of visibility, only 4 components are
shown, although nine were used in the calculation.

Gaussian or piecewise regular signals. The distance in modulus between the wavelet transform
of the reconstructed signal and of the original one is proportional to the amount of noise (and
generally significantly smaller). This holds up to large levels of noise (10%). By comparison,
the classical Gerchberg-Saxton algorithm is much less efficient.

However, the algorithm often fails when the input signal is a sum of sinusoids. Not surpris-
ingly, the most difficult signals in this class are the ones for which the sinusoids are not equally
distributed among frequency bands and the wavelet transform has a lot of zeroes. The relative
error over the modulus of the wavelet transform is then often of several percent, even when the
relative error induced by the noise is of the order of 0.1%.

In the section 3.3, we explained why, for any function f , it is generally possible to construct
g such that f and g are not close but their wavelet transform have almost the same modulus.
This construction holds provided that the time and frequency support of f is large enough.

Increasing the time and frequency support of f amounts here to increase the size N of the
signals. Thus, we expect the function error to increase with N . It is indeed the case but this
effect is very weakly perceptible on Gaussian signals. It is stronger on piecewise regular functions,
probably because the wavelet transforms of these signals have more zeroes; their reconstruction
is thus less stable.

In the case of the sums of sinusoids, because of the failure of the algorithm, we can not draw

88

firm conclusions regarding the stability of the reconstruction. We nevertheless suspect that this
class of signals is the least stable of all and that these instabilities are the cause of the incorrect
behavior of our algorithm.

3.6 Technical lemmas

3.6.1 Lemmas of the proof of Theorem 3.1

Proof of Lemma 3.9. We recall equation (3.22):

BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
= eiC+iBzSG(z + iα)

SF (z + iα)
(3.22)

We want to show that the left part of this equality admits a meromorphic extension to C. We
also want this meromorphic extension to have the same poles (with multiplicity) than it would
if all four functions BF , BG, B̃F and B̃G were meromorphically defined over all C.

We first remark that B̃F and B̃G admit meromorphic extensions to C. Indeed, if the (zk)k are
the zeros of F (.+ iα) in H, this set has no accumulation point in H: if z∞ was an accumulation
point, z∞+ iα ∈ H would be an accumulation point of the zeros of F and, as F is holomorphic,
it would be the null function. From the classical properties of Blaschke products, B̃F converge
over C and so does B̃G.

On the contrary, BF and BG may not admit meromorphic extensions over C. But their
quotient BF/BG does.

We define:

B′F (z) =

(
z − i
z + i

)mF ∏
k

|zFk − i|
zFk − i

|zFk + i|
zFk + i

z − zFk
z − zFk

where the (zFk)’s are the zeros of F , each zFk being counted, not with multiplicity µF (zFk), but
with multiplicity max(0, µF (zFk)− µG(zFk)) (and mF is still the multiplicity of i as a zero of F).

Similarly:

B′G(z) =

(
z − i
z + i

)mG∏
k

|zGk − i|
zGk − i

|zGk + i|
zGk + i

z − zGk
z − zGk

where the (zGk)’s are the zeros of G counted with multiplicity max(0, µG(zGk)− µF (zGk)).
We define:

BF,G(z) =
∏
k

|zF,Gk − i|
zF,Gk − i

|zF,Gk + i|
zF,Gk + i

z − zF,Gk

z − zF,Gk

89

where the zF,Gk are the zeros of F or G, counted with multiplicity min(µF (zF,Gk), µG(zF,Gk)). The
function BF,G corresponds to the “common part” of BF and BG, which we may factorize in the
quotient BF/BG.

The products B′F , B
′
G, BF,G converge over H and, for all z ∈ H:

BF (z) = B′F (z)BF,G(z) BG(z) = B′G(z)BF,G(z)

So for all z ∈ H:
BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
=
B′F (z + iα)B̃G(z)

B′G(z + iα)B̃F (z)

If we show that B′F and B′G converge over C, we can take Bw(z) =
B′F (z+iα)B̃G(z)

B′G(z+iα)B̃F (z)
. It will be

meromorphic over C.

To prove this, we first establish a relation between the zeros of F and G.
Let z be such that 0 < Im z ≤ α. The zeros of BF are the zeros of F in H, counted with

multiplicity. Thus, z−iα is a zero of BF (.+iα) with multiplicity µF (z). It is a zero of BG(.+iα)
with multiplicity µG(z).

Because Im (z − iα) ≤ 0, it is not a zero of B̃F (resp. B̃G) but may be a pole. As a pole, its
multiplicity is the multiplicity of z − iα = z + iα as a zero of F (. + iα) (resp. G(. + iα)): it is
µF (z + 2iα) (resp. µG(z + 2iα)).

The right part of (3.22), eiC+iBz SG(z+iα)
SF (z+iα)

has no zero neither pole over {z ∈ C s.t. Im z > −α}
(from the definition of SG and SF given in (3.20)). So neither does the left part. In particular,
z − iα is not a zero and is not a pole:

µF (z)− µG(z)− µG(z + 2iα) + µF (z + 2iα) = 0 (3.40)

We now explain why B′F converges over C. The same result will hold for B′G. From the
properties of Blaschke products, B′F converges over C if (zFk) has no accumulation point in R.

By contradiction, we assume that some subsequence of (zFk), denoted by (zFφ(k)), converges

to λ ∈ R. Because the zFk ’s appear in B′F with multiplicity max(0, µF (zFk) − µG(zFk)), we must
have:

µF (zFφ(k))− µG(zFφ(k)) > 0 ∀k ∈ N

We can assume that, for all k, 0 < Im zFφ(k) ≤ α. From (3.40):

µG(zFφ(k) + 2iα)− µF (zFφ(k) + 2iα) = µF (zFφ(k))− µG(zFφ(k)) > 0

Consequently, zFφ(k) + 2iα is a zero of G for all k. As zFφ(k) → λ ∈ R, λ + 2iα ∈ H is an
accumulation point of the zeros of G. This is impossible because G is holomorphic over H and
we have assumed that it was not the null function.

90

To conclude, we have to prove Equation (3.23).
For any z ∈ H, the multiplicity of z − iα as a pole of B′F (. + iα) is the multiplicity of

z as a zero of B′F , that is max(0, µF (z) − µG(z)). Its multiplicity as a pole of B′G(. + iα) is
max(0, µG(z)− µF (z)). As a pole of B̃F (resp. B̃G), it is µF (z + 2iα) (resp. µG(z + 2iα)).

The multiplicity of z − iα as a pole of Bw is then, as required:

max(0, µF (z)− µG(z))−max(0, µG(z)− µF (z))− µF (z + 2iα) + µG(z + 2iα)

= (µF (z)− µG(z))− (µF (z + 2iα)− µG(z + 2iα))

Proof of Lemma 3.10. We call dEF and dEG the singular measures appearing in the definitions
of SF and SG (see (3.20)).

From equation (3.22) and Lemma 3.9, for any z ∈ H:

exp

(
i

π

∫
R

1 + tz

t− z
(dEG − dEF)(t)

)
=
SG(z)

SF (z)
= Bw(z − iα)e−iC−iB(z−iα)

The function z → Bw(z − iα)e−iC−iB(z−iα) is meromorphic over C. From the following lemma,
dEG − dEF must then be the null measure, so SG = SF over H.

Lemma 3.19. Let dE be a real bounded measure, singular with respect to Lebesgue measure.
We define:

S(z) = exp

(
i

π

∫
R

1 + tz

t− z
dE(t)

)
∀z ∈ H

If S admits a meromorphic extension in the neighborhood of each point of R, then dE = 0.

Proof. Let s(z) = − log |S(z)| for all z ∈ H. This is well-defined and:

s(x+ iy) =
1

π

∫
R

y

(t− x)2 + y2
(1 + t2)dE(t) ∀x, y ∈ R s.t. y > 0

This is the Poisson integral of (1 + t2)dE(t). So, as dE is bounded, (1 + t2)dE(t) is the limit,
in the sense of distributions, of s(t + iy)dt when y → 0+. The principle of the proof will then
be to show that s(. + iy) also converges to − log |S|R|, where S|R is the extension of S to R, so

dE = − log |S(t)|dt
1+t2

. The singularity of dE will imply log |S|R| = 0 and dE = 0.

We still denote by S(t) the meromorphic extension of S to a neighborhood of H. Let {rk}
be the zeros or poles of S.

When y → 0+, s(.+ iy) tends to − log |S| almost everywhere. On every compact of R−{rk},
the convergence is uniform, and thus in L1.

91

Let rk be any zero or pole and ε > 0 be such that S admits a meromorphic extension over
a neighborhood of [rk − ε; rk + ε] × [−ε; ε] and rj /∈ [rk − ε; rk + ε] for all j 6= k. There exist
h : [rk − ε; rk + ε]× [−ε; ε]→ C holomorphic and m ∈ Z such that:

S(z) = (z − rk)mh(z) ∀z ∈ [rk − ε; rk + ε]× [−ε; ε] and h(rk) 6= 0

For all y ∈]0; ε[:∫ rk+ε

rk−ε
|s(t+ iy) + log |S(t)||dt =

∫ rk+ε

rk−ε

∣∣m log |t− rk + iy|+ log |h(t+ iy)|

−m log |t− rk| − log |h(t)|
∣∣dt

≤ m

∫ rk+ε

rk−ε

∣∣ log |t− rk + iy| − log |t− rk|
∣∣dt

+

∫ rk+ε

rk−ε

∣∣ log |h(t+ iy)| − log |h(t)|
∣∣dt (3.41)

As log |h| is continuous, log |h(.+ iy)| converges uniformly to log |h|R| over [rk − ε; rk + ε]:∫ rk+ε

rk−ε

∣∣ log |h(t+ iy)| − log |h(t)|
∣∣dt→ 0 when y → 0+

As log |.− rk + iy| converges to log |.− rk| in L1([rk − ε; rk + ε]):∫ rk+ε

rk−ε

∣∣ log |t− rk + iy| − log |t− rk|
∣∣dt→ 0

So, by (3.41), s(. + iy) converges in L1 to t ∈ R → − log |S(t)|, over [rk − ε; rk + ε]. As the
sequence (rk) has no accumulation point in R, s(.+ iy)→ − log |SR| (in L1) over each compact
set of R.

For every f ∈ C0
c (R):∫

R
f(t)(1 + t2)dE(t) = lim

y→0+

∫
R
s(t+ iy)f(t)dt = −

∫
R

log |S(t)|f(t)dt

We deduce that dE(t) = − log |S(t)|dt
1+t2

. As dE is singular with respect to Lebesgue measure, we
must have log |S(t)| = 0 for all t ∈ R and dE = 0.

92

3.6.2 Lemmas of the proof of Theorem 3.11

Proof of Lemma 3.12. We first recall the Riesz-Fréchet-Kolmogorov theorem.

Theorem (Riesz-Fréchet-Kolomogorov). Let p ∈ [1; +∞[. Let F be a subset of Lp(R). The set
F is relatively compact if and only if:

(i) F is bounded.

(ii) For every ε > 0, there exists some compact K ⊂ R such that:

sup
f∈F
||f ||Lp(R−K) ≤ ε

(iii) For every ε > 0, there exists δ > 0 such that:

sup
f∈F
||f(.+ h)− f ||p ≤ ε ∀h ∈ [−δ; δ]

We want to apply this theorem to p = 2 and F = {fn ? ψj}n∈N.
First of all, F is bounded: actually, from (3.27), (fn)n∈N itself is bounded (because (U(fn))n

converges and thus is bounded). It implies that {fn ? ψj}n is bounded because ||fn ? ψj||2 ≤
||fn||2||ψj||1 (by Young’s inequality).

Let us now prove (ii). Let any ε > 0 be fixed.
The sequence (|fn ? ψj|)n converges in L2(R) (to hj, because U(fn)→ (hj)j∈Z in l2(Z, L2(R))).

So {|fn ?ψj|}n is relatively compact in L2(R). By the Riesz-Fréchet-Kolmogorov theorem, there
exists K ⊂ R a compact set such that:

sup
n∈N
|| |fn ? ψj| ||L2(R−K) ≤ ε

But, for all n, || |fn ? ψj| ||L2(R−K) = ||fn ? ψj||L2(R−K) so (ii) holds:

sup
n∈N
||fn ? ψj||L2(R−K) ≤ ε

We finally check (iii). Let ε > 0 be fixed. For any h ∈ R:

||(fn ? ψj)(.+ h)− (fn ? ψj)||2 = ||fn ? (ψj(.− h)− ψj)||2 ≤ ||fn||2||ψj(.− h)− ψj||1

As sup
n
||fn||2 < +∞ and lim

h→0
||ψj(. − h) − ψj||1 = 0 (this property holds for any L1 function),

we have, for δ > 0 small enough:

sup
n
||(fn ? ψj)(.+ h)− (fn ? ψj)||2 ≤ ε ∀h ∈ [−δ; δ]

93

Proof of Lemma 3.13. We want to find g ∈ L2
+(R) such that l̂j = ĝψ̂j for every j ∈ Z.

If ω ≤ 0, we set ĝ(ω) = 0. Then, for each j, we set ĝ = l̂j/ψ̂j on the support of ψ̂j, which we

denote by Supp ψ̂j. This definition is correct in the sense that:

if j1 6= j2,
l̂j1

ψ̂j1
=

l̂j2

ψ̂j2
a.e. on Supp ψ̂j1 ∩ Supp ψ̂j2

Indeed, for all n, (fφ(n)?ψj1)?ψj2 = (fφ(n)?ψj2)?ψj1 so, by taking the limit in n, lj1 ?ψj2 = lj2 ?ψj1
and l̂j1ψ̂j2 = l̂j2ψ̂j1 .

We can note that, for all j, ĝψ̂j = l̂j. It is true on Supp ψ̂j, by definition. And, on R−Supp ψ̂j,

l̂j = 0 = ĝψ̂j because l̂j is the L2-limit of f̂φ(n)ψ̂j and f̂φ(n)ψ̂j = 0 on R− Supp ψ̂j.
The ĝ we just defined belongs to L2(R). Indeed, by (3.26):

||ĝ||22 ≤
1

B

∫
R+

|ĝ|2
∑
j

|ψ̂j|2 =
1

B

∫
R+

∑
j

|l̂j|2 =
1

B

∑
j

||lj||22

As fφ(n) ? ψj goes to lj when n goes to ∞ and U(fφ(n)) = {|fφ(n) ? ψj|}j goes to (hj)j∈Z ∈
l2(Z, L2(R)), we must have |lj| = hj for each j. So 1

B

∑
j

||lj||22 = 1
B

∑
j

||hj||22 = 1
B
||(hj)j∈Z||22 < +∞

and ĝ belongs to L2(R).
As ĝ ∈ L2(R), it is the Fourier transform of some g ∈ L2(R). For all j ∈ Z, as ĝψ̂j = l̂j, we

have g ? ψj = lj.
We now show that fφ(n) → g when n→∞.
For every J, n ∈ N:√∑

|j|>J

||fφ(n) ? ψj||22 =

√∑
|j|>J

||U(fφ(n))j ||22

≤
√∑
|j|>J

||U(fφ(n))j − hj||22 +

√∑
|j|>J

||hj||22

≤ ||U(fφ(n))− (hj)||2 +

√∑
|j|>J

||hj||22

So lim sup
n

(∑
|j|>J
||fφ(n) ? ψj||22

)
≤
∑
|j|>J
||hj||22 and:

lim sup
n

(∑
j∈Z

||fφ(n) ? ψj − g ? ψj||22

)
≤ lim sup

n

∑
|j|≤J

||fφ(n) ? ψj − g ? ψj||22

94

+ lim sup
n

∑
|j|>J

||fφ(n) ? ψj − g ? ψj||22

= lim sup

n

∑
|j|>J

||fφ(n) ? ψj − g ? ψj||22

≤
∑
|j|>J

||hj||22

This last quantity may be as small as desired, for J large enough, so
∑
j∈Z
||fφ(n)?ψj−g?ψj||22 → 0.

By (3.26): ∑
j∈Z

||fφ(n) ? ψj − g ? ψj||22 =

∫
R

∣∣∣f̂φ(n) − ĝ
∣∣∣2 (
∑
j

|ψ̂j|2)

≥ A

∫
R

∣∣∣f̂φ(n) − ĝ
∣∣∣2

=
A

2π
||fφ(n) − g||22

so ||fφ(n) − g||2 → 0.

3.6.3 Proof of Theorem 3.17

In this section, we prove Theorem 3.17, which gives a stability result for the case of dyadic
wavelets.

For all y > 0, we define:
N (y) = sup

x∈R,s=1,2
|F (s)(x+ iy)|

The following lemma is not necessary to our proof but we will use it to progressively simplify
our inequalities.

Lemma 3.20. For all y1, y2 ∈ R∗+, if y1 < y2:

N (y1) ≥ N (y2) (3.42)

and for all y3 ∈ [y1; y2]:

N (y3) ≤ N (y1)
y2−y3
y2−y1N (y2)

y3−y1
y2−y1 (3.43)

95

Proof. The second inequality comes directly from Theorem 3.24, applied to functions F (1) and
F (2) on the band {z ∈ C s.t. y1 < Im z < y2}.

The first inequality may be derived from (3.43). The function N (y) is bounded when y →
+∞.

Keeping y1 and y3 fixed in (3.43) and letting y2 go to +∞ then gives:

N (y3) ≤ N (y1)

Remark 3.21. When y → +∞, then N (y)→ 0 because, from (3.6) and the Hölder inequality:

|F (s)(x+ iy)| =
∣∣∣∣ 1

2π

∫
R
ωpf̂+(ω)eiω(x+iy)dω

∣∣∣∣
≤ 1

2π
||f̂+||2||ω → ωpeiω(x+iy)||2

≤ 1

2π
||f̂+||2||ω → ωpe−ωy||2

which decreases geometrically to zero when y → +∞.

We can now prove the theorem.

Proof of Theorem 3.17. From the relation (3.31) between F (s) and the f (s) ? ψj and from the
hypotheses, the following inequalities hold for all x ∈ [−M2j;M2j]:∣∣|F (1)(x+ i2j)|2 − |F (2)(x+ i2j)|2

∣∣ ≤ εN (2j)2∣∣|F (1)(x+ i2j+1)|2 − |F (2)(x+ i2j+1)|2
∣∣ ≤ εN (2j+1)2

|F (1)(x+ i2j)|2, |F (2)(x+ i2j)|2 ≥ cN (2j)2

|F (1)(x+ i2j+1)|2, |F (2)(x+ i2j+1)|2 ≥ cN (2j+1)2

Let us set, for all z such that −2j+1 < Im z < 2j+1:

G(z) = F (1)(z + i2j+1)F (1)(z + i2j+1)− F (2)(z + i2j+1)F (2)(z + i2j+1)

For all z such that Im z = 0:

|G(z)| =
∣∣|F (1)(z + i2j+1)|2 − |F (2)(z + i2j+1)|2

∣∣ ≤ εN (2j+1)2 if |Re z| ≤M2j

≤ N (2j+1)2 if |Re z| > M2j

96

and for all z such that Im z = 3.2j−1:

|G(z)| = |F (1)(Re z + 7.2j−1i)F (1)(Re z + 2j−1i)− F (2)(Re z + 7.2j−1i)F (2)(Re z + 2j−1i)|
≤ 2N (7.2j−1)N (2j−1)

We apply Lemma 3.25 for a = 0, b = 3.2j−1, t = 2/3, A = N (2j+1)2, B = 2N (7.2j−1)N (2j−1). It
implies that, for all x ∈ [−λM2j;λM2j]:

|G(x+ i2j)| ≤ 22/3ε1/3−αMN (2j+1)2/3N (2j−1)2/3N (7.2j−1)2/3

where αM = 4
3

exp(− 2π
3

(1−λ)M)
1−exp(− 2π

3
(1−λ)M)

.

Replacing G by its definition gives, for all x ∈ [−λM2j;λM2j]:

|F (1)(x+ i3.2j)F (1)(x+ i2j)− F (2)(x+ i3.2j)F (2)(x+ i2j)|
≤ 22/3ε1/3−αMN (2j+1)2/3N (2j−1)2/3N (7.2j−1)2/3

≤ 2ε1/3−αMN (2j+1)4/3N (2j−1)2/3

We used Equation (3.42) to obtain the last inequality.
So, for all x ∈ [−λM2j;λM2j]:∣∣F (1) (x+ i3.2j)F (1)(x+ i2j)F (2)(x+ i2j)F (2)(x+ i2j)

−F (2)(x+ i3.2j)F (2)(x+ i2j)F (1)(x+ i2j)F (1)(x+ i2j)
∣∣∣

≤ |F (1)(x+ i3.2j)F (1)(x+ i2j)− F (2)(x+ i3.2j)F (2)(x+ i2j)|.|F (2)(x+ i2j)F (2)(x+ i2j)|
+ |F (2)(x+ i3.2j)F (2)(x+ i2j)||F (2)(x+ i2j)F (2)(x+ i2j)− F (1)(x+ i2j)F (1)(x+ i2j)|
≤ 2ε1/3−αMN (2j+1)4/3N (2j−1)2/3|F (2)(x+ i2j)|2 + εN (2j)2|F (2)(x+ i3.2j)F (2)(x+ i2j)|

Dividing by |F (1)(x+ i2j)F (2)(x+ i2j)| gives:

|F (1)(x+ i3.2j)F (2)(x+ i2j)− F (2)(x+ i3.2j)F (1)(x+ i2j)|

≤ 2ε1/3−αMN (2j+1)4/3N (2j−1)2/3 |F (2)(x+ i2j)|
|F (1)(x+ i2j)|

+ εN (2j)2 |F (2)(x+ i3.2j)|
|F (1)(x+ i2j)|

For each x ∈ [−λM2j;λM2j], this relation also holds if we switch the roles of F (1) and F (2).
Thus, we can assume that |F (2)(x+i2j)| ≤ |F (1)(x+i2j)|. Using also the fact that |F (1)(x+i2j)| ≥√
cN (2j) yields (always for x ∈ [−λM2j;λM2j]):

|F (1)(x+ i3.2j)F (2)(x+ i2j)− F (2)(x+ i3.2j)F (1)(x+ i2j)|

97

≤ 2ε1/3−αMN (2j+1)4/3N (2j−1)2/3 +
ε√
c
N (2j)N (3.2j)

= 2N (2j)N (3.2j)

(
N (2j+1)4/3N (2j−1)2/3

N (2j)N (3.2j)
ε1/3−αM +

ε

2
√
c

)
≤ 2N (2j)N (3.2j)

((
N (2j−1)

N (2j+1)

)2/3

ε1/3−αM +
ε

2
√
c

)

≤ 3N (2j)N (3.2j)

(
N (2j−1)

N (2j+1)

)2/3

ε1/3−αM (3.44)

In the middle, we used Equation (3.43): N (2j+1) ≤ N (2j)1/2N (3.2j)1/2. For the last inequality,

we used the fact that c ≥ ε so ε
2
√
c
≤
√
ε

2
≤ ε1/3−αM

2
≤
(
N (2j−1)
N (2j+1)

)2/3
ε1/3−αM

2
.

For all z such that Im z > −2j, we set:

H(z) = F (1)(z + i3.2j)F (2)(z + i2j)− F (2)(z + i3.2j)F (1)(z + i2j)

From (3.44):

|H(z)| ≤ 2N (2j)N (3.2j) if Im z = 0 and |Re z| > λM2j

≤ 2N (2j)N (3.2j) min

(
1,

3

2

(
N (2j−1)

N (2j+1)

)2/3

ε1/3−αM

)
if Im z = 0 and |Re z| ≤ λM2j

≤ 2N (2j+3)N (6.2j) if Im z = 5.2j

We may apply Lemma 3.25 again. For all x ∈ [−λ2M2j;λ2M2j]:

|H(x+ i2j)| ≤ 2 min

(
1,

3

2

(
N (2j−1)

N (2j+1)

)2/3

ε1/3−αM

)4/5−α′M

×N (2j)4/5N (3.2j)4/5N (2j+3)1/5N (6.2j)1/5

≤ 2 min

(
1,

3

2

(
N (2j−1)

N (2j+1)

)2/3

ε1/3−αM

)4/5−α′M

N (2j)4/5N (2j+1)6/5

where α′M = 2
5

exp(−π5 λ(1−λ)M))
1−exp(−π5 λ(1−λ)M))

.

Replacing H by its definition and dividing by |F (1)(x+i2j+1)F (2)(x+i2j+1)| (which is greater
that cN (2j+1)2) gives:∣∣∣∣F (1)(x+ i2j+2)

F (1)(x+ i2j+1)
−F

(2)(x+ i2j+2)

F (2)(x+ i2j+1)

∣∣∣∣
98

≤ 2

c
min

(
1,

(
3

2

N (2j−1)

N (2j+1)

)2/3

ε1/3−αM

)4/5−α′M (N (2j)

N (2j+1)

)4/5

As soon as 4/5− α′M > 0 and 1/3− αM > 0:∣∣∣∣F (1)(x+ i2j+2)

F (1)(x+ i2j+1)
− F (2)(x+ i2j+2)

F (2)(x+ i2j+1)

∣∣∣∣ ≤ 3

c

(
N (2j−1)

N (2j+1)

)8/15(N (2j)

N (2j+1)

)4/5

ε(1/3−αM)(4/5−α′M)

≤ 3

c

(
N (2j−1)

N (2j+1)

)4/3

ε(1/3−αM)(4/5−α′M)

=
3

c

(
Nj−1

Nj+1

22p

)4/3

ε(1/3−αM)(4/5−α′M)

So: ∣∣∣∣f (1) ? ψj+2(x)

f (1) ? ψj+1(x)
− f (2) ? ψj+2(x)

f (2) ? ψj+1(x)

∣∣∣∣ ≤ 3

c
2

11p
3

(
Nj−1

Nj+1

)4/3

ε(1/3−αM)(4/5−α′M)

which is the desired result with A = 3.2
11p
3 .

3.6.4 Proof of Theorem 3.18

In this whole section, as in the paragraph 3.4.3, k is assumed to be a fixed integer such that:

a−k < 2− a

and we define:

c = 1− a− 1

1− a−k
Lemma 3.22. Let the following numbers be fixed:

ε ∈]0; 1[M > 0 µ ∈ [0;M [j ∈ Z

We assume that, for all x ∈ [−Maj;Maj]:∣∣|F (1)(x+ iaj)|2 − |F (2)(x+ iaj)|2
∣∣ ≤ εN (aj)2

Then, for all x ∈ [−(M − µ)aj; (M − µ)aj]:∣∣∣F (1)(x+ i(2aj − aj+1))F (1)(x+ iaj+1)− F (2)(x+ i(2aj − aj+1))F (2)(x+ iaj+1)
∣∣∣

≤ N (aj)2c
(
2N (aj+1)N (aj−k)

)1−c
εc−α

where:

α = 2
e−πµ

1− e−πµ

99

Proof. We set:

H(z) = F (1)(z + iaj)F (1)(z + iaj)− F (2)(z + iaj)F (2)(z + iaj)

When y = 0, |H(x+ iy)| =
∣∣|F (1)(x+ iaj)|2 − |F (2)(x+ iaj)|2

∣∣. So:

|H(x+ iy)| ≤ εN (aj)2 if x ∈ [−Maj;Maj]

≤ N (aj)2 if x /∈ [−Maj;Maj]

When y = aj − aj−k:

|H(x+ iy)| = |F (1)(x+ iaj−k)F (1)(x+ i(2aj − aj−k))− F (2)(x+ iaj−k)F (2)(x+ i(2aj − aj−k))|
≤ 2N (2aj − aj−k)N (aj−k) (∀x ∈ R)

We apply Lemma 3.25 to H, restricted to the band {z ∈ C s.t. Im z ∈ [0; aj − aj−k]}.
From this lemma, when y = aj+1 − aj and x ∈ [−µMaj;µMaj]:

|H(x+ iy)| ≤ εf(x+iy)N (aj)2c
(
2N (2aj − aj−k)N (aj−k)

)1−c

where c = 1− a−1
1−a−k and:

f(x+ iy) ≥ c− 2
a− 1

1− a−k
e
−π Maj−|x|

aj−aj−k

1− e−π
Maj−|x|
aj−aj−k

Because of the definition of k, a−1
1−a−k ≤ 1. Moreover, Maj−|x|

aj−aj−k ≥
µ

1−a−k ≥ µ, so:

f(x+ iy) ≥ c− 2
e−πµ

1− e−πµ
= c− α

Replacing H by its definition yields:∣∣∣F (1)(x+ i(2aj − aj+1))F (1)(x+ iaj+1)− F (2)(x+ i(2aj − aj+1))F (2)(x+ iaj+1)
∣∣∣

= |H(x+ i(aj+1 − aj))|

≤ εc−αN (aj)2c
(
2N (2aj − aj−k)N (aj−k)

)1−c

To conclude, it suffices to note that, because of the way we chose k, 2aj − aj−k ≥ aj+1 so,
from 3.20, N (2aj − aj−k) ≤ N (aj+1).

100

Theorem 3.23. Let the following numbers be fixed:

ε, κ ∈]0; 1[with κ ≥ ε2(1−c) M > 0 µ ∈ [0;M [j ∈ Z K ∈ N

We assume that, for any n ∈ {j + 1, ..., j +K} and x ∈ [−Maj+K ;Maj+K]:∣∣|F (1)(x+ ian)|2 − |F (2)(x+ ian)|2
∣∣ ≤ εN (an)2 (3.45)

|F (1)(x+ ian)|2, |F (2)(x+ ian)|2 ≥ κN (an)2 (3.46)

We define recursively:

n0 = j +K w0 = aj+K

∀l ∈ N nl+1 = nl − 2 wl+1 = wl − (a− 1)2anl+1

We define:

Dl =
l−1∏
s=0

(
N (ans−1−k)

N (ans−2)

)
and cl = c− 2

(
1 +

2

a

a2 − 1

a+ 2

(
l−1∑
s=0

a−2s

))(
e−πµ

1− e−πµ

)
For any l ≥ 0 such that nl ≥ j and M − (l + 1)µ > 0, we have, provided that cl < 1:

1

N (wl)N (anl)

∣∣∣F (1)(x+ iwl)F
(1)(x+ ianl)− F (2)(x+ iwl)F

(2)(x+ ianl)
∣∣∣

≤ 3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
εcl(

∀x ∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]
)

(3.47)

Proof. We proceed by induction over l.
For l = 0, (3.47) is a direct consequence of (3.45). Indeed, w0 = an0 , D0 = 1, c0 < 1 so, for

x ∈ [−Maj+K ;Maj+K]:

1

N (an0)2

∣∣|F (1)(x+ ian0)|2 − |F (2)(x+ ian0)|2
∣∣ ≤ ε ≤ 3D0ε

c0

We now suppose that (3.47) holds for l and prove it for l + 1.
We proceed in two parts. First, we use the induction hypothesis to bound the function∣∣∣F (1)(x+ iwl)F

(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F
(2)(x+ i(2anl−1 − anl))

∣∣∣. We then use

this bound to obtain the desired result.

101

First part: by triangular inequality,∣∣∣F (1)(x+ iwl) F
(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F

(2)(x+ i(2anl−1 − anl))
∣∣∣

≤
∣∣∣F (1)(x+ iwl)F

(1)(x+ ianl)− F (2)(x+ iwl)F
(2)(x+ ianl)

∣∣∣ (3.48)

×
∣∣∣∣F (1)(x+ i(2anl−1 − anl))

F (1)(x+ ianl)

∣∣∣∣
+

∣∣∣∣∣F (2)(x+ ianl)

F (1)(x+ ianl)
− F (1)(x+ ianl)

F (2)(x+ ianl)

∣∣∣∣∣ (3.49)

×
∣∣∣F (2)(x+ iwl)F

(1)(x+ i(2anl−1 − anl))
∣∣∣

+
∣∣∣F (1)(x+ ianl)F (1)(x+ i(2anl−1 − anl))

−F (2)(x+ ianl)F (2)(x+ i(2anl−1 − anl))
∣∣∣ (3.50)

×

∣∣∣∣∣ F (2)(x+ iwl)

F (2)(x+ ianl)

∣∣∣∣∣
By the induction hypothesis, for x ∈ [−(M − 2lµ)aj+K ; (M − 2lµ)aj+K], (3.48) is bounded by:∣∣∣F (1)(x+ iwl)F

(1)(x+ ianl) −F (2)(x+ iwl)F
(2)(x+ ianl)

∣∣∣
≤ 3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
N (wl)N (anl)εcl

Because of (3.45) and (3.46) (for n = nl), (3.49) is bounded by:∣∣∣∣∣F (2)(x+ ianl)

F (1)(x+ ianl)
− F (1)(x+ ianl)

F (2)(x+ ianl)

∣∣∣∣∣ =

∣∣∣∣ |F (2)(x+ ianl)|2 − |F (1)(x+ ianl)|2

F (1)(x+ ianl)F (2)(x+ ianl)

∣∣∣∣ ≤ ε

κ

Finally, from Lemma 3.22 applied to j = nl − 1, (3.50) is bounded by:∣∣∣F (1)(x+ ianl)F (1)(x+ i(2anl−1 − anl)) − F (2)(x+ ianl)F (2)(x+ i(2anl−1 − anl))
∣∣∣

≤ N (anl−1)2c(2N (anl)N (anl−1−k))1−cεc−α

for all x ∈ [−Maj+K + µaj;Maj+K − µaj] ⊃ [−(M − (l + 1)µ)aj+K ; (M − (2l + 1)µ)aj+K].
We insert these bounds into the triangular inequality. We also use the fact that |F (1)(x +

ianl)|, |F (2)(x+ianl)| ≥
√
κN (anl). We get, for any x ∈ [−(M−(l+1)µ)aj+K ; (M−(l+1)µ)aj+K]:∣∣∣F (1)(x+ iwl) F

(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F
(2)(x+ i(2anl−1 − anl))

∣∣∣
102

≤ 1√
κ

3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
N (wl)N (2anl−1 − anl)εcl

+
ε

κ
N (wl)N (2anl−1 − anl)

+
21−c
√
κ

N (wl)

N (anl)c
N (anl−1)2cN (anl−1−k)1−cεc−α

We must now simplify this inequality.
First, 2anl−1 − anl = canl−1 + (1 − c)anl−1−k so, from Lemma 3.20, N (2anl−1 − anl) ≤

N (anl−1)cN (anl−1−k)1−c. So:∣∣∣F (1)(x+ iwl) F
(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F

(2)(x+ i(2anl−1 − anl))
∣∣∣

≤ N (wl)N (anl−1)cN (anl−1−k)1−c

×
(

1√
κ

3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
εcl +

ε

κ
+

21−c
√
κ

N (anl−1)c

N (anl)c
εc−α

)
Now we note that 1 ≤ N (anl−1)c

N (anl)c
(from Lemma 3.20 again, because anl−1 ≤ anl). Because

κ ≥ ε2(1−c), we also have ε
κ
≤ εc√

κ
≤ εc−α√

κ
. And as c− α ≥ cl, ε

c−α ≤ εcl . This gives:∣∣∣F (1)(x+ iwl) F
(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F

(2)(x+ i(2anl−1 − anl))
∣∣∣

≤ εcl√
κ
N (wl)

N (anl−1)2cN (anl−1−k)1−c

N (anl)c

(
3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
+ 1 + 21−c

)
If we bound 21−c by 2 and notice that Dl ≥ 1 (because, from 3.20, it is a product of terms bigger
that 1), we have:∣∣∣F (1)(x+ iwl) F

(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F
(2)(x+ i(2anl−1 − anl))

∣∣∣
≤ εcl√

κ
3DlN (wl)

N (anl−1)2cN (anl−1−k)1−c

N (anl)c

((
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
+ 1

)
≤ 3εclDlN (wl)

N (anl−1)2cN (anl−1−k)1−c

N (anl)c

(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
Finally, from 3.20, we have N (anl−1) ≤ N (anl)1/2N (2anl−1 − anl)1/2 so:∣∣∣F (1)(x+ iwl) F

(1)(x+ i(2anl−1 − anl))− F (2)(x+ iwl)F
(2)(x+ i(2anl−1 − anl))

∣∣∣
≤ 3εclDlN (wl)N (2anl−1 − anl)

(
N (anl−1−k)

N (2anl−1 − anl)

)1−c(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
103

Second part: we define, for any z ∈ C such that −2anl−1 + anl < Im z < wl:

H(z) = F (1)(z + iwl)F
(1)(z + i(2anl−1 − anl))− F (2)(z + iwl)F

(2)(z + i(2anl−1 − anl))

We write:

B =
3

2
Dl

(
N (anl−1−k)

N (2anl−1 − anl)

)1−c(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
From the first part:

|H(x+ iy)| ≤ 2N (wl)N (2anl−1 − anl)Bεcl

if y = 0, x ∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]

≤ 2N (wl)N (2anl−1 − anl)
if y = 0, x /∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]

Moreover, if we set yl = wl − 2anl−1 + anl :

H(x+ iyl) = F (1)(x+ i(2anl−1 − anl))F (1)(x+ iwl)− F (2)(x+ i(2anl−1 − anl))F (2)(x+ iwl)

= H(x)

Thus, we also have:

|H(x+ iy)| ≤ 2N (wl)N (2anl−1 − anl)Bεcl

if y = yl, x ∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]

≤ 2N (wl)N (2anl−1 − anl)
if y = yl, x /∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]

We apply Lemma 3.26 with a = 0, b = yl. For Im z = (a − 1)2anl−2 and |Re z| ≤ (M − (l +
1)µ)aj+K :

|H(z)| ≤ 2N (wl)N (2anl−1 − anl)(Bεcl)f(z) (3.51)

with f(z) ≥ 1− 4 (a−1)2anl−2

yl

(
e
−π (M−(l+1)µ)aj+K−|Re z|

yl

1−e
−π (M−(l+1)µ)aj+K−|Re z|

yl

)
.

From the definition of wl, one may check that (wl) is a decreasing sequence which converges

to 2aj+K

a+1
when l goes to ∞. So, for any l ≥ 0:

yl ≤ wl ≤ w0 = aj+K

104

yl ≥
2aj+K

a+ 1
− 2anl−1 + anl ≥ 2aj+K

a+ 1
− 2aj+K−1 + aj+K =

(a− 1)(a+ 2)

(a+ 1)
aj+K−1

From this we deduce:

f(z) ≥ 1− 4
a2 − 1

a+ 2
a−2l−1

 e−π
(M−(l+1)µ)aj+K−|Re z|

aj+K

1− e−π
(M−(l+1)µ)aj+K−|Re z|

aj+K

So, when |Re z| ≤ (M − (l + 2)µ)aj+K , f(z) ≥ 1− 4 a2−1

a+2
a−2l−1

(
e−πµ

1−e−πµ

)
.

As B ≥ 1 and f(z) ≤ 1, Bf(z) ≤ B. Moreover, cl ≤ 1 so clf(z) ≥ cl−(1−f(z)) if 1−f(z) ≥ 0.
Equation (3.51) thus gives:

|H(z)| ≤ 2N (wl)N (2anl−1 − anl)Bεcl−4 a2−1
a+2

a−2l−1
(

e−πµ
1−e−πµ

)
= 2N (wl)N (2anl−1 − anl)Bεcl+1

= 3DlN (wl)N (2anl−1 − anl)cN (anl−1−k)1−c
(

2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
εcl+1

Because wl ≥ wl+1 and 2anl−1−anl ≥ anl−1−k, we have N (wl) ≤ N (wl+1) and N (2anl−1−anl) ≤
N (anl−1−k). Thus:

|H(z)| ≤ 3DlN (wl+1)N (anl−2)
N (anl−1−k)

N (anl−2)

(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
εcl+1

= 3Dl+1N (wl+1)N (anl−2)

(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
εcl+1

So, for any x ∈ [−(M − (l + 2)µ)aj+K ; (M − (l + 2)µ)aj+K]:

1

N (wl+1)N (anl+1)

∣∣∣F (1)(x+ iwl+1)F (1)(x+ ianl+1)− F (2)(x+ iwl+1)F (2)(x+ ianl+1)
∣∣∣

= |H(x+ i(a− 1)2anl−2)|

≤ 3Dl+1

(
2κ−(l+1)/2 − κ−l/2 − 1

1−
√
κ

)
εcl+1

This is exactly the induction hypothesis at the order l + 1.

Proof of Theorem 3.18. We will obtain the desired theorem as a corollary of the previous one
(3.23).

105

The conditions (3.45) and (3.46) in the statement of Theorem 3.23 are equivalent to (3.32)
and (3.33), required in Theorem 3.18.

Thus, if we fix µ ∈ [0;M [, we have that, for any l ≥ 0 such that nl ≥ j and M − (l+ 1)µ > 0,
under the condition that cl < 1:

1

N (wl)N (anl)

∣∣∣F (1)(x+ iwl)F
(1)(x+ ianl)− F (2)(x+ iwl)F

(2)(x+ ianl)
∣∣∣

≤ 3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1−
√
κ

)
εcl(

∀x ∈ [−(M − (l + 1)µ)aj+K ; (M − (l + 1)µ)aj+K]
)

where the constants are defined as in 3.23.
We can check that, for any l, wl = aj+K

a+1

(
2 + (a− 1)a−2l

)
.

We take l = K/2. We then have wl = 2
a+1

aj+K + a−1
a+1

aj = aJ and nl = j. For this l, the
previous inequality is equivalent to:

1

NJNj

∣∣∣f (1) ? ψJ(x)f (1) ? ψj(x)− f (2) ? ψJ(x) f (2) ? ψj(x)
∣∣

≤ 3Dl

(
2κ−K/4 − κ−(K−2)/4 − 1

1−
√
κ

)
εcl

We observe that cl ≥ lim
l→∞

cl = c−2
(
1 + 2 a

a+2

) (
e−πµ

1−e−πµ

)
≥ c− 4

(
e−πµ

1−e−πµ

)
and 2κ−K/4−κ−(K−2)/4−1

1−
√
κ

≤
2κ−K/4

1−
√
κ

.

So, for any x ∈ [−(M − µ(1 +K/2))aj+K ; (M − µ(1 +K/2))aj+K]:

1

NJNj

∣∣∣f (1) ? ψJ(x)f (1) ? ψj(x)− f (2) ? ψJ(x) f (2) ? ψj(x)
∣∣

≤ 6Dl
κ−K/4

1−
√
κ
ε
c−4

(
e−πµ

1−e−πµ

)

From Equation (3.31):

Dl =

K/2−1∏
s=0

(
N (ans−1−k)

N (ans−2)

)
=

K/2−1∏
s=0

(
ap(k−1)Nns−1−k

Nns−2

)
For µ = M

K+2
, our last inequality is exactly the desired result.

106

3.6.5 Bounds for holomorphic functions

In the proofs of the section 3.4, we often have to consider holomorphic functions defined
on a band of the complex plane. We want to obtain information about their values inside the
band from their values on the boundary of the band. This is the purpose of the three theorems
contained in this section.

In the whole section, a, b are fixed real numbers such that a < b. We write Ba,b = {z ∈
C s.t. a < Im z < b}. We consider a holomorphic function W : Ba,b → C which satisfies the
following properties:

(i) W is bounded on Ba,b.

(ii) W admits a continuous extension over Ba,b, which we still denote by W .

The first theorem we need is a well-known fact. We recall its proof because it is very short
and relies on the same idea that will also be used in the other proofs.

Theorem 3.24. We suppose that, for some A,B > 0:

|W (z)| ≤ A if Im z = a

|W (z)| ≤ B if Im z = b

Then, for all t ∈]0; 1[and all z ∈ C such that Im z = (1− t)a+ tb:

|W (z)| ≤ A1−tBt

Proof. For every ε > 0 and z ∈ Ba,b:

L(z) = log(|W (z)|)− (b− Im z) log(A) + (Im z − a) log(B)

b− a
− ε log |z + i(1− a)|

is subharmonic on Ba,b and continuous on Ba,b. It is upper-bounded and takes negative values on
∂Ba,b. Moreover, L(z)→ −∞ when Re (z)→ ±∞. From the maximum principle, this function
must be negative on Ba,b.

Letting ε go to 0 implies:

log(|W (z)|) ≤ (b− Im z) log(A) + (Im z − a) log(B)

b− a
∀z ∈ Ba,b

⇒ |W (z)| ≤ A
b−Im z
b−a B

Im z−a
b−a

107

e−πM/(b−a)0 eπM/(b−a)

�
�
�
�
�
�
�
�
�

e
e
e
e
e
e
e
e
e

eπ(z−ia)/(b−a)

Figure 3.7: Positions of the points used in the definition of f

Lemma 3.25. Let A,B, ε > 0 be fixed real numbers, with ε ≤ 1. We assume that:

|W (z)| ≤ B if Im z = b

|W (z)| ≤ A if Im z = a and Re z /∈ [−M ;M]

|W (z)| ≤ εA if Im z = a and Re z ∈ [−M ;M]

Then, for all z such that a < Im z < b, if t ∈ [0; 1] is such that Im z = (1− t)a+ tb:

|W (z)| ≤ εf(z)A1−tBt

where:

f(z) =
1

π
arg

(
eπM/(b−a) − eπ(z−ia)/(b−a)

e−πM/(b−a) − eπ(z−ia)/(b−a)

)
and this function satisfies, when |Re z| ≤M : f(z) ≥ (1− t)− 2t e

−π
M−|Re z|

b−a

1−e−π
M−|Re z|

b−a

.

Proof. The function f may be continuously extended to Ba,b − {−M + ia;M + ia}. By looking
at the figure 3.7, one sees that:

f(x+ ia) = 0 for all x ∈ R− [−M ;M]

= 1 for all x ∈]−M ;M [

f(x+ ib) = 0 for all x ∈ R

We set:
f(−M + ia) = f(M + ia) = 1

108

This definition makes the extension of f upper semi-continuous on Ba,b (because f ≤ 1 on all
Ba,b).

For any η > 0, the following function is subharmonic on Ba,b:

L(z) = log(|W (z)|)− log(ε)f(z)− (b− Im z) log(A) + (Im z − a) log(B)

b− a
− η log |z + i(1− a)|

It is upper semi-continuous on Ba,b and tends to −∞ when Re z → ±∞. Thus, this function
admits a local maximum over Ba,b. This maximum is attained on ∂Ba,b, because L is subhar-
monic.

From the hypotheses, one can check that L(z) ≤ 0 for all z ∈ ∂Ba,b. The function L is
thus negative on the whole band Ba,b. Letting η go to zero gives, for all z ∈ Ba,b such that
Im z = (1− t)a+ tb:

|W (z)| ≤ εf(z)A1−tBt

We are only left to show that f(z) ≥ (1− t)− 2t e
−π

M−|Re z|
b−a

1−e−π
M−|Re z|

b−a

when Im z = (1− t)a+ tb.

If we write x = Re (z), we have:

f(z) =
1

π
arg

(
−e−iπt 1− eπ(x−M)/(b−a)eπit)

1− e−π(M+x)/(b−a)e−πit

)
= (1− t) +

1

π
arg

(
1− eπ(x−M)/(b−a)eπit)

1− e−π(M+x)/(b−a)e−πit

)
We note that: ∣∣∣arg

(
1− eπ

x−M
b−a eiπt

)∣∣∣ ≤ ∣∣∣tan
(

1− eπ
x−M
b−a eiπt

)∣∣∣
= |sin(πt)| eπ

x−M
b−a

1− eπ
x−M
b−a cos(πt)

≤ |sin(πt)| eπ
x−M
b−a

1− eπ
x−M
b−a

≤ πt
eπ

x−M
b−a

1− eπ
x−M
b−a
≤ πt

e−π
M−|Re z|

b−a

1− e−π
M−|Re z|

b−a

And the same inequality holds for
∣∣∣arg

(
1− e−π

M+x
b−a e−iπt

)∣∣∣. This implies the result.

109

The proof of the third result is similar to the proof of the second one. We do not reproduce
it.

Lemma 3.26. Let M,A, ε > 0 be fixed real numbers, with ε ≤ 1. We assume that:

|W (x+ ia)| ≤ A |W (x+ ib)| ≤ A ∀x ∈ R− [−M ;M]

|W (x+ ia)| ≤ εA |W (x+ ib)| ≤ εA ∀x ∈ [−M ;M]

Then, for all z such that a < Im z < b:

|W (z)| ≤ εf(z)A

where:

f(z) =
1

π
arg

(
eπM/(b−a) − eπ(z−ia)/(b−a)

e−πM/(b−a) − eπ(z−ia)/(b−a)
.
−e−πM/(b−a) − eπ(z−ia)/(b−a)

−eπM/(b−a) − eπ(z−ia)/(b−a)

)

and this function satisfies, when |Re z| ≤M : f(z) ≥ 1− 4t

(
e
−π

M−|Re z|
b−a

1−e−π
M−|Re z|

b−a

)
, for t = Im z−a

b−a .

110

Chapter 4

Phase retrieval for wavelet transforms:
a non-convex algorithm

In Chapter 3, we proved that, at least for a specific choice of wavelets, the phase retrieval
problem for the wavelet transform is well-posed: any function is uniquely determined by the
modulus of its wavelet transform (sometimes called scalogram in the context of audio signals),
and the reconstruction has a form of stability to noise. In this chapter, we propose an algorithm
to numerically solve the problem.

Algorithms used to reconstruct audio signals from their scalogram (or spectrogram, which is
similar) are divided into the same two classes as generic phase retrieval problems: iterative and
convexified methods.

Iterative algorithms have been introduced for the spectrogram in [Griffin and Lim, 1984].
While simple and relatively fast, they tend to produce distinct auditive artifacts. Improvements
have been achieved in particular in [Bouvrie and Ezzat, 2006] (by applying the algorithm to small
temporal windows, and not to the whole signal at once) and in [Achan et al., 2004; Eldar et al.,
2015] (in the case where additional information is available about the signal). The Douglas-
Rachford method [Fienup, 1982; Bauschke et al., 2002] can also yield significant improvements;
however, from our experiments, it does not remove all artifacts1.

Methods by convexification seem to perform very well on small signals [Sun and Smith [2012]
or Paragraph 2.4.3 of this thesis]. Nevertheless, their high complexity prevents them to be used
on real audio signals.

In this chapter, we propose a new iterative algorithm, combining the advantages of both
families. Its complexity is roughly linear in the signal size, up to logarithmic factors, so that it
can be used on real-size problems. However, the quality of reconstructed signals is as good as

1A few examples are available at http://www.di.ens.fr/~waldspurger/wavelets_phase_retrieval.html.

111

http://www.di.ens.fr/~waldspurger/wavelets_phase_retrieval.html

with a convexified method.

This new algorithm is multiscale: it reconstructs the signal frequency band by frequency
band, starting with the low frequencies. Its main tool is a reformulation of the phase retrieval
problem, which extends to more general wavelets the reconstruction algorithm presented in the
previous chapter (Section 3.5) for the case of Cauchy wavelets. This reformulation has two
advantages. First, it gives a simple method to propagate the phase information reconstructed
in low frequency bands towards higher frequency bands. Second, it naturally yields a local
optimization algorithm to refine approximate solutions; this local optimization method, although
non-convex, seems to be robust to the problem of local minima.

In Section 4.1, we describe our reformulation and prove its equivalence with the original
problem. We explain its advantages. In Section 4.2, we describe the resulting algorithm, includ-
ing a new multigrid error correction step. In Section 4.3, we discuss the superiority of multiscale
algorithms over non-multiscale ones. Finally, Section 4.4 is devoted to numerical results. It
shows that our algorithm is both precise and stable to noise. Moreover, it uses the algorithm
to numerically investigate the intrinsic stability of the phase retrieval problem, in line with the
theoretical results of Chapter 3.

Definitions and assumptions

All signals f [n] are of finite length N . Their discrete Fourier transform is defined by:

f̂ [k] =
N−1∑
s=0

f [n]e−2πi kn
N k = 0, ..., N − 1

and the convolution always refers to the circular convolution.
We define a family of wavelets (ψj)0≤j≤J by:

ψ̂j[k] = ψ̂(ajk) k = 0, ..., N − 1

where the dilation factor a can be any number in (1; +∞) and ψ : R → C is a fixed mother
wavelet. We assume that J is sufficiently large so that ψ̂J is negligible outside a small set of
points. An example is shown in Figure 4.1.

The wavelet transform is defined by:

∀f ∈ RN , Wf = {f ? ψj}0≤j≤J

The problem we consider here consists in reconstructing functions from the modulus of their
wavelet transform:

Reconstruct f from {|f ? ψj|}0≤j≤J

112

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

ψ̂
j
[k
]

Figure 4.1: Example of wavelets; the figure
shows ψj for J − 5 ≤ j ≤ J in the Fourier do-
main. Only the real part is displayed.

Multiplying a function by a unitary complex does not change the modulus of its wavelet trans-
form, so we only aim at reconstructing functions up to multiplication by a unitary complex, that
is up to a global phase.

All signals are assumed to be analytic:

f̂ [k] = 0 when N/2 < k ≤ N − 1 (4.1)

Equivalently, we could assume the signals to be real but set the ψ̂j[k] to zero for N/2 < k ≤ N−1.

4.1 Reformulation of the phase retrieval problem

In the first part of this section, we reformulate the phase retrieval problem for the wavelet
transform, by introducing two auxiliary wavelet families.

We then describe the two main advantages of this reformulation. First, it allows to propagate
the phase information from the low-frequencies to the high ones, and so enables us to perform the
reconstruction scale by scale. Second, from this reformulation, we can define a natural objective
function to locally optimize approximate solutions. Although non-convex, this function has few
local minima; hence, the local optimization algorithm is efficient.

113

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

ψ̂low
j ψ̂j ψ̂

high
j

Figure 4.2: ψJ , ..., ψj+1, ψj (in the Fourier do-

main), along with ψlowj and ψhighj (dashed lines)

4.1.1 Introduction of auxiliary wavelets and reformulation

Let us fix r ∈]0; 1[and define:

∀k = 0, ..., N − 1, ψ̂lowj [k] = ψ̂j[k]rk

ψ̂highj [k] = ψ̂j[k]r−k

This definition is illustrated by Figure 4.2. The wavelet ψ̂lowj has a lower characteristic frequency

than ψ̂j and ψ̂highj a higher one. The following theorem explains how to rewrite a condition on

the modulus of f ? ψj as a condition on f ? ψlowj and f ? ψhighj .

Theorem 4.1. Let j ∈ {0, ..., J} and gj ∈ (R+)N be fixed. Let Qj be the function whose Fourier
transform is:

Q̂j[k] = rkĝ2
j [k] (4.2)

∀k =

⌊
N

2

⌋
−N + 1, ...,

⌊
N

2

⌋
For any f ∈ CN satisfying the analycity condition (4.1), the following two properties are equiv-
alent:

1. |f ? ψj| = gj

2. (f ? ψlowj)(f ? ψhighj) = Qj

114

Proof. The proof consists in showing that the second inequality is the analytic extension of the
first one, in a sense that will be precisely defined.

For any function h : {0, ..., N − 1} → C, let P (h) be:

∀z ∈ C P (h)(z) =

bN2 c∑
k=bN2 c−N+1

ĥ[k]zk

Up to a change of coordinates, P (|f ? ψj|2) and P (g2
j) are equal to P ((f ? ψlowj)(f ? ψhighj)) and

P (Qj):

Lemma 4.2. For any f satisfying the analycity condition (4.1):

∀z ∈ C P (|f ? ψj|2)(rz) = P ((f ? ψlowj)(f ? ψhighj))(z)

and P (g2
j)(rz) = P (Qj)(z)

This lemma is proved in the appendix 4.5.2. It implies the result because then:

|f ? ψj| = gj ⇐⇒ |f ? ψj|2 = g2
j

⇐⇒ ∀z, P (|f ? ψj|2)(z) = P (g2
j)(z)

⇐⇒ ∀z, P (|f ? ψj|2)(rz) = P (g2
j)(rz)

⇐⇒ ∀z, P ((f ? ψlowj)(f ? ψhighj))(z) = P (Qj)(z)

⇐⇒ (f ? ψlowj)(f ? ψhighj) = Qj

By applying simultaneously Theorem 4.1 to all indexes j, we can reformulate the phase
retrieval problem |f ? ψj| = gj, ∀j in terms of the f ? ψlowj ’s and f ? ψhighj ’s.

Corollary 4.3 (Reformulation of the phase retrieval problem). Let (gj)0≤j≤J be a family of
signals in (R+)N . For each j, let Qj be defined as in (4.2). Then the following two problems are
equivalent:

Find f satisfying (4.1) such that:

∀j, |f ? ψj| = gj

⇐⇒
Find f satisfying (4.1) such that:

∀j, (f ? ψlowj)(f ? ψhighj) = Qj (4.3)

115

4.1.2 Phase propagation across scales

This new formulation yields a natural multiscale reconstruction algorithm, in which one
reconstructs f frequency band by frequency band, starting from the low frequencies.

Indeed, once f ?ψJ , ..., f ?ψj+1 have been reconstructed, it is possible to estimate f ?ψlowj by
deconvolution. This deconvolution is stable to noise because, if r is sufficiently small, then the
frequency band covered by ψlowj is almost included in the frequency range covered by ψJ , ..., ψj+1

(see figure 4.2). From f ? ψlowj , one can reconstruct f ? ψhighj , using (4.3):

f ? ψhighj =
Qj

f ? ψlowj
(4.4)

Finally, one reconstructs f ? ψj from f ? ψhighj and f ? ψlowj .
The classical formulation of the phase retrieval problem does not allow the conception of such

a multiscale algorithm. Indeed, from f ? ψJ , ..., f ? ψj+1, it is not possible to directly estimate
f ? ψj: it would require performing a highly unstable deconvolution. The introduction of the
two auxiliary wavelet families is essential.

4.1.3 Local optimization of approximate solutions

From the reformulation (4.3), we can define a natural objective function for the local opti-
mization of approximate solutions to the phase retrieval problem. This is also possible from the
classical formulation but the objective function then has numerous local minima, which make it
difficult to globally minimize. Empirically, the objective function associated to the reformulation
suffers dramatically less from this drawback.

The objective function has 2J + 3 variables: (hlowj)0≤j≤J , (hhighj)0≤j≤J and f . The intuition

is that f is the signal we aim at reconstructing and the hlowj , hhighj correspond to the f ? ψlowj ’s

and f ? ψhighj ’s. The objective function is:

obj(hlowJ , ..., hlow0 , hhighJ , ..., hhigh0 , f)

=
J∑
j=0

||hlowj hhighj −Qj||22

+ λ

J∑
j=0

(
||f ? ψlowj − hlowj ||22 + ||f ? ψhighj − hhighj ||22

)
(4.5)

We additionally constrain the variables (hlowj)0≤j≤J and (hhighj)0≤j≤J to satisfy:

∀j = 0, ..., J − 1 hlowj ? ψhighj+1 = hhighj+1 ? ψ
low
j (4.6)

116

The first term of the objective ensures that Equalities (4.3) are satisfied, while the second term
and the additional constraint (4.6) enforce the fact that the hlowj ’s and hhighj ’s must be the wavelet
transforms of the same function f .

The parameter λ is a positive real number. In our implementation, we choose a small λ, so
that the first term dominates over the second one.

A similar objective function can also be derived directly from the classical formulation.
However, empirically, it appears to have much more local minima than the function (4.5); hence,
it is more difficult to efficiently minimize. A possible explanation is that the set of zeroes of
the first term of (4.5) (which dominates the second one) has a smaller dimension when the
reformulation is used, thus reducing the number of local minima it contains.

4.2 Description of the algorithm

In this section, we describe our implementation of the multiscale reconstruction algorithm
introduced in Section 4.1. We explain the general organization in Paragraph 4.2.1. We then
describe our exhaustive search method for solving phase retrieval problems of very small size
(paragraph 4.2.2), which our algorithm uses to initialize the multiscale reconstruction. In Para-
graph 4.2.3, we describe an additional multigrid correction step.

4.2.1 Organization of the algorithm

We start by reconstructing f ? ψJ from |f ? ψJ | and |f ? ψJ−1|. We use an exhaustive search
method, described in the next paragraph 4.2.2, which takes advantage of the fact that ψ̂J and
ψ̂J−1 have very small supports.

We then reconstruct the components of the wavelet transform scale by scale, as described in
Section 4.1.

At each scale, we reconstruct f ? ψlowj by propagating the phase information coming from
f ? ψJ , ..., f ? ψj+1 (as explained in Paragraph 4.1.2). This estimation can be imprecise, so we
refine it by local optimization, using the objective function defined in Paragraph 4.1.3, from
which we drop all the terms with higher scales than j. The local optimization algorithm we use
in the implementation is L-BFGS ([Nocedal, 1980]), a low-memory approximation of a second
order method.

We then reconstruct f ? ψhighj by Equation (4.4).

At the end of the reconstruction, we run a few steps of the classical Gerchberg-Saxton
algorithm to further refine the estimation.

117

The pseudo-code 5 summarizes the structure of the implementation.

Algorithm 5 overview of the algorithm

Input: {|f ? ψj|}0≤j≤J
1: Initialization: reconstruct f ? ψJ by exhaustive search
2: for all j = J : (−1) : 0 do
3: Estimate f ? ψlowj by phase propagation

4: Refine the values of f ? ψlowJ , ..., f ? ψlowj , f ? ψhighJ , ..., f ? ψhighj+1 by local optimization
5: Do an error correction step
6: Refine again
7: Compute f ? ψhighj by f ? ψhighh = Qj/f ? ψ

low
j

8: end for
9: Compute f

10: Refine f with Gerchberg-Saxton
Output: f

4.2.2 Reconstruction by exhaustive search for small problems

In this paragraph, we explain how to reconstruct f ? ψj from |f ? ψj| and |f ? ψj−1| by

exhaustive search, in the case where the support of ψ̂j and ψ̂j−1 is small.
This is the method we use to initialize our multiscale algorithm. It is also useful for the

multigrid error correction step described in the next paragraph 4.2.3.

Lemma 4.4. Let m ∈ RN and K ∈ N∗ be fixed. We consider the problem:

Find g ∈ CN s.t. |g| = m

and Supp(ĝ) ⊂ {1, ..., K}

This problem has at most 2K−1 solutions, up to a global phase, and there exist a simple algorithm
which, from m and N , returns the list of all possible solutions.

Proof. This lemma is a consequence of classical results about the phase retrieval problem for
the Fourier transform. It can for example be derived from [Hayes, 1982]. We give a proof in the
appendix 4.5.1.

We apply this lemma to m = |f ? ψj| and |f ? ψj−1|, and construct the lists of all possible
f ? ψj’s and of all possible f ? ψj−1’s. The true f ? ψj and f ? ψj−1 are the only pair in these two
lists which satisfy the equality:

(f ? ψj) ? ψj−1 = (f ? ψj−1) ? ψj

118

This solves the problem.

The number of elements in the lists is exponential in the size of the supports of ψ̂j and ψ̂j−1,
so this algorithm has a prohibitive complexity when the supports become large. Otherwise, our
numerical experiments show that it works well.

4.2.3 Error correction

When the modulus are noisy, there can be errors during the phase propagation step. The
local optimization generally corrects them, if run for a sufficient amount of time, but, for the
case where some errors are left, we add, at each scale, a multigrid error correction step. This
step does not totally remove the errors but greatly reduces their amplitude.

Principle

First, we determine the values of n for which f ? ψlowj [n] and f ? ψhighj+1 [n] seems to have been

incorrectly reconstructed. We use the fact that f ? ψlowj and f ? ψhighj+1 must satisfy:

(f ? ψlowj) ? ψhighj+1 = (f ? ψhighj+1) ? ψlowj

The points where this equality does not hold provide a good estimation of the places where the
values of f ? ψlowj and f ? ψhighj+1 are erroneous.

We then construct a set of smooth “windows” w1, ..., wS, whose supports cover the interval
on which errors have been found (see figure 4.3), such that each window has a small support.
For each s, we reconstruct (f ? ψlowj).ws and (f ? ψhighj+1).ws, by expressing these functions as the
solutions to phase retrieval problems of small size, which we can solve by the exhaustive search
method described in Paragraph 4.2.2.

As ws is smooth, the multiplication by ws approximately commutes with the convolution by
ψj, ψj+1:

|(f.ws) ? ψj| ≈ |(f ? ψj).ws| = ws|f ? ψj|
|(f.ws) ? ψj+1| ≈ |(f ? ψj+1).ws| = ws|f ? ψj+1|

The wavelets ψj and ψj+1 have a small support in the Fourier domain, if we truncate them to
the support of ws, so we can solve this problem by exhaustive search, and reconstruct (f.ws)?ψj
and (f.ws) ? ψj+1.

From (f.ws) ? ψj and (f.ws) ? ψj+1, we reconstruct (f ? ψlowj).ws ≈ (f.ws) ? ψ
low
j and (f ?

ψhighj+1).ws ≈ (f.ws) ? ψ
high
j+1 by deconvolution.

119

0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

w1 w2 w3 w4

Figure 4.3: Four window signals, whose supports
cover the interval in which errors have been de-
tected

Usefulness of the error correction step

The error correction step does not perfectly correct the errors, but greatly reduces the am-
plitude of large ones.

Figure 4.4 shows an example of this phenomenon. It deals with the reconstruction of a difficult
audio signal, representing a human voice saying “I’m sorry”. Figure 4.4a shows f ? ψlow7 after
the multiscale reconstruction at scale 7, but before the error correction step. The reconstruction
presents large errors. Figure 4.4b shows the value after the error correction step. It is still not
perfect but much closer to the ground truth.

So the error correction step must be used when large errors are susceptible to occur, and
turned off otherwise: it makes the algorithm faster without reducing its precision.

Figure 4.5 illustrates this affirmation by showing the mean reconstruction error for the same
audio signal as previously. When 200 iterations only are allowed at each local optimization step,
there are large errors in the multiscale reconstruction; the error correction step significantly
reduces the reconstruction error. When 2000 iterations are allowed, all the large errors can be
corrected during the local optimization steps and the error correction step is not useful.

4.3 Multiscale versus non-multiscale

Our reconstruction algorithm has very good reconstruction performances, mainly because it
uses the reformulation of the phase retrieval problem introduced in Section 4.1. However, the

120

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

after the optimization step
true value

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

true value
after the optimization step

(a)

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

after the correction step
true value

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

true value
after the correction step

(b)

Figure 4.4: For an audio signal, the reconstructed value of f ?ψlow7 at the scale 7 of the multiscale
algorithm, in modulus (dashed line); the solid line represents the ground true. (a) Before the
error correction step (b) After the error correction step

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

with correction (200 iterations)
without correction (200 iterations)

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

with correction (2 000 iterations)
without correction (2 000 iterations)

Figure 4.5: Mean reconstruction error (4.9) as a function of the noise, for an audio signal
representing a human voice. (a) Maximal number of iterations per local optimization step equal
to 200 (b) Maximal number equal to 2000.

121

quality of its results is also due to its multiscale structure. It is indeed known that, for the
reconstruction of functions from their spectrogram or scalogram, multiscale algorithms perform
better than non-multiscale ones [Bouvrie and Ezzat, 2006; Bruna, 2013].

In this section, we propose two justifications for this phenomenon (paragraph 4.3.1). We
then introduce a multiscale version of the classical Gerchberg-Saxton algorithm, and numer-
ically verify that it yields better reconstruction results than the usual non-multiscale version
(paragraph 4.3.2).

4.3.1 Advantages of the multiscale reconstruction

At least two factors can explain the superiority of multiscale methods, where the f ?ψj’s are
reconstructed one by one, and not all at the same time.

First, they can partially remedy the possible ill-conditioning of the problem. In particular,
if the f ? ψj’s have very different norms, then a non-multiscale algorithm will be more sensitive
to the components with a high norm. It may neglect the information given by |f ? ψj|, for the
values of j such that this function has a small norm. With an multiscale algorithm where all
the |f ? ψj|’s are successively considered, this happens less frequently.

Second, iterative algorithms, like Gerchberg-Saxton, are very sensitive to the choice of their
starting point (hence the care given to their initialization in the literature [Netrapalli et al., 2013;
Candès et al., 2015]). If all the components are reconstructed at the same time and the starting
point is randomly chosen, the algorithm almost never converges towards the correct solution: it
gets stuck in a local minima. In a multiscale algorithm, the starting point at each scale can be
chosen so as to be consistent with the values reconstructed at lower scales; it yields much better
results.

4.3.2 Multiscale Gerchberg-Saxton

To justify the efficiency of the multiscale approach, we introduce a multiscale version of the
classical Gerchberg-Saxton algorithm [Gerchberg and Saxton, 1972] (by alternate projections)
and compare its performances with the non-multiscale algorithm.

The multiscale algorithm reconstructs f ? ψJ by exhaustive search (paragraph 4.2.2).
Then, for each j, once f ? ψJ , ..., f ? ψj+1 are reconstructed, an initial guess for f ? ψj

is computed by deconvolution. The frequencies of f ? ψj for which the deconvolution is too
unstable are set to zero. The regular Gerchberg-Saxton algorithm is then simultaneously applied
to f ? ψJ , ..., f ? ψj.

We test this algorithm on realizations of Gaussian random processes (see Section 4.4.2 for
details), of various lengths. On Figure 4.6, we plot the mean reconstruction error obtained with

122

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

size of the signal

re
la
ti
ve

er
ro
r

Figure 4.6: Mean reconstruction error, as a function of the size of the signal; the solid blue line
corresponds to the multiscale algorithm and the dashed red one to the non-multiscale one.

the regular Gerchberg-Saxton algorithm and the error obtained with the multiscale version (see
Paragraph 4.4.1 for the definition of the reconstruction error).

None of the algorithms is able to perfectly reconstruct the signals, in particular when their
size increases. However, the multiscale algorithm clearly yields better results, with a mean error
approximately twice smaller.

4.4 Numerical results

In this section, we describe the behavior of our algorithm. We compare it with Gerchberg-
Saxton and with PhaseLift. We show that it is much more precise than Gerchberg-Saxton.
It is comparable with PhaseLift in terms of precision, but significantly faster, so it allows to
reconstruct larger signals.

The performances strongly depend on the type of signals we consider. The main source of
difficulty for our algorithm is the presence of small values in the wavelet transform, especially
in the low frequencies.

Indeed, the reconstruction of f ?ψhighj by Equation (4.4) involves a division by f ?ψlowj . When

f ? ψlowj has small values, this operation is unstable and induces errors.
As we will see in Section 4.4.3, the signals whose wavelet transform has many small values

are also the signals for which the phase retrieval problem is the least stable (in the sense that two
functions can have wavelet transforms almost equal in modulus without being close in l2-norm).
This suggests that this class of functions is intrinsically the most difficult to reconstruct; it is

123

not an artifact of our algorithm.

We describe our experimental setting in Paragraph 4.4.1. In Paragraph 4.4.2, we give detailed
numerical results for various types of signals. In Paragraph 4.4.3, we use our algorithm to investi-
gate the stability to noise of the underlying phase retrieval problem. Finally, in Paragraph 4.4.4,
we study the influence of various parameters on the quality of the reconstruction.

Code and audio examples are available at:

http://www.di.ens.fr/~waldspurger/wavelets_phase_retrieval.html

4.4.1 Experimental setting

At each reconstruction trial, we choose a signal f and compute its wavelet transform {|f ?
ψj|}0≤j≤J . We corrupt it with a random noise nj:

hj = |f ? ψj|+ nj (4.7)

We measure the amplitude of the noise in l2-norm, relatively to the l2-norm of the wavelet
transform:

amount of noise =

√∑
j

||nj||22√∑
j

||f ? ψj||22
(4.8)

We run the algorithm on the noisy wavelet transform {hj}0≤j≤J . It returns a reconstructed
signal frec. We quantify the reconstruction error by the difference, in relative l2-norm, between
the modulus of the wavelet transform of the original signal f and the modulus of the wavelet
transform of the reconstructed signal frec:

reconstruction error =

√∑
j

|| |f ? ψj| − |frec ? ψj| ||22√∑
j

||f ? ψj||22
(4.9)

Alternatively, we could measure the difference between f and frec:

error on the signal =
||f − frec||2
||f ||2

(4.10)

But we know that the reconstruction of a function from the modulus of its wavelet transform
is not stable to noise (Section 3.3 of this document). So we do not hope the difference between

124

http://www.di.ens.fr/~waldspurger/wavelets_phase_retrieval.html

f and frec to be small. We just want the algorithm to reconstruct a signal frec whose wavelet
transform is close to the wavelet transform of f , in modulus. Thus, the reconstruction error (4.9)
is more relevant to measure the performances of the algorithm.

In all the experiments, unless otherwise specified, we use dyadic Morlet wavelets, to which
we subtract Gaussian functions of small amplitude so that they have zero mean:

ψ̂(ω) = exp(−p(ω − 1)2)− β exp(−pω2)

where β > 0 is chosen so that ψ̂(0) = 0 and the parameter p is arbitrary (it controls the frequency
bandwidth of the wavelets). For N = 256, our family of wavelets contains eight elements, which
are plotted on Figure 4.18a. The performances of the algorithm strongly depend on the choice
of the wavelet family; this is discussed in Paragraph 4.4.4.

The maximal number of iterations per local optimization step is set to 10000 (with an ad-
ditional stopping criterion, so that the 10000-th iteration is not always reached). We study the
influence of this parameter in Paragraph 4.4.4.

The noises are realizations of Gaussian white noises.
The error correction step described in Paragraph 4.2.3 is always turned on.

Gerchberg-Saxton is applied in a multiscale fashion, as described in Paragraph 4.3.2, which
yields better results than the regular implementation.

We use PhaseLift [Candès et al., 2011] with ten steps of reweighting, followed by 2000 iter-
ations of the Gerchberg-Saxton algorithm. In our experiments with PhaseLift, we only consider
signals of size N = 256. Handling larger signals is difficult with a straightforward Matlab
implementation.

4.4.2 Results

We describe four classes of signals, whose wavelet transforms have more or less small values.
For each class, we plot the reconstruction error of our algorithm, Gerchberg-Saxton and PhaseLift
as a function of the noise error.

Realizations of Gaussian random processes

We first consider realizations of Gaussian random processes. A signal f in this class is defined
by:

f̂ [k] =
Xk√
k + 1

if k ∈ {1, ..., N/2}

= 0 if not

125

0 50 100 150 200 250

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

50 100 150 200 250

1

2

3

4

5

6

7

8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.7: Realization of a Gaussian process (left) and modulus of its wavelet transform (right)

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Gerchberg−Saxton (N=256)
Gerchberg−Saxton (N=10000)
Phaselift (N=256)
our algorithm (N=256)
our algorithm (N=10000)

Figure 4.8: Mean reconstruction error as a function of the noise, for Gaussian signals of size
N = 256 or 10000

126

0 50 100 150 200 250

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250

1

2

3

4

5

6

7

8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.9: Line from an image (left) and modulus of its wavelet transform (right)

where X1, ..., XN/2 are independent realizations of complex Gaussian centered variables. The

role of the
√
k + 1 is to ensure that all components of the wavelet transform approximately

have the same l2-norm (in expectation). An example is displayed on Figure 4.7, along with the
modulus of its wavelet transform.

The wavelet transforms of these signals have few small values, disposed in a seemingly random
pattern. This is the most favorable class for our algorithm.

The reconstruction results are shown in Figure 4.8. Even for large signals (N = 10000), the
mean reconstruction error is proportional to the input noise (generally 2 or 3 times smaller); this
is the best possible result. The performances of PhaseLift are exactly the same, but Gerchberg-
Saxton often fails.

Lines from images

The second class consists in lines randomly extracted from photographs. These signals have
oscillating parts (corresponding to the texture zones of the initial image) and smooth parts, with
large discontinuities in between. Their wavelet transforms generally contain a lot a small values,
but, as can be seen in Figure 4.9, the distribution of these small values is particular. They are
more numerous at high frequencies and the non-small values tend to concentrate on vertical lines
of the time-frequency plane.

This distribution is favorable to our algorithm: small values in the wavelet transform are
mostly a problem when they are in the low frequencies and prevent the correct initialization of
the reconstruction at medium or high frequencies. Small values at high frequencies are not a
problem.

Indeed, as in the case of Gaussian signals, the reconstruction error is proportional to the
input noise (figure 4.10). This is also the case for PhaseLift but not for Gerchberg-Saxton.

127

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Gerchberg−Saxton (N=256)
Gerchberg−Saxton (N=10000)
Phaselift (N=256)
our algorithm (N=256)
our algorithm (N=10000)

Figure 4.10: Mean reconstruction error as a function of the noise, for lines extracted from images,
of size N = 256 or 10000

Sums of a few sinusoids

The next class of signals contains sums of a few numbers of sinusoids, multiplied by a window
function w to avoid boundary effects. Formally, a signal in this class is of the form:

f [n] =

N/2∑
k=1

αk exp

(
i
2πkn

N

)× w[n]

where the αk are zero with high probability and realizations of complex Gaussian centered
variables with small probability.

The wavelet transforms of these signals often have components of very small amplitude,
which may be located at any frequential scale (figure 4.11). This can prevent the reconstruction.

The results are on Figure 4.12. Our algorithm performs much better than Gerchberg-Saxton
but the results are not as good as for the two previous classes of signals.

In most reconstruction trials, the signal is correctly reconstructed, up to an error proportional
to the noise. But, with a small probability, the reconstruction fails. The same phenomenon
occurs for PhaseLift.

The probability of failure seems a bit higher for PhaseLift than for our algorithm. For
example, when the signals are of size 256 and the noise has a relative norm of 0.01%, the
reconstruction error is larger than the noise error 20% of the time for PhaseLift and only 10%
of the time for our algorithm. However, PhaseLift has a smaller mean reconstruction error
because, in these failure cases, the result it returns, although not perfect, is more often close to

128

0 50 100 150 200 250

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

50 100 150 200 250

1

2

3

4

5

6

7

8

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.11: Random sum of sinusoids, multiplied by a window function (left) and modulus of
its wavelet transform (right)

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Gerchberg−Saxton (N=256)
Gerchberg−Saxton (N=10000)
Phaselift (N=256)
our algorithm (N=256)
our algorithm (N=10000)

Figure 4.12: Mean reconstruction error as a function of the noise, for random sums of sinusoids
multiplied by a window function, of size N = 256 or 10000

129

0.5 1 1.5 2 2.5 3

x 10
4

2

4

6

8

10

12

14

16

0.1

0.2

0.3

0.4

0.5

0.6

(a)

0.5 1 1.5 2 2.5 3

x 10
4

2

4

6

8

10

12

14

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 4.13: Wavelet transforms of the audio signals (a) Rimsky-Korsakov (b) “I’m sorry”

the truth: the mean reconstruction error in the failure cases is 0.2% for PhaseLift versus 1.7%
for our algorithm.

Audio signals

Finally, we test our algorithm on real audio signals. These signals are difficult to reconstruct
because they do not contain very low frequencies (as the human ear cannot hear them, these
frequencies are not included in the recordings), so the first components of their wavelet transforms
are very small.

The reconstruction results may vary from one audio signal to the other. We focus here on
two representative examples.

The first signal is an extract of five seconds of a musical piece played by an orchestra (the
Flight of the Bumblebee, by Rimsky-Korsakov). Figure 4.13a shows the modulus of its wavelet
transform. It has 16 components and 9 of them (the ones with lower characteristic frequencies)
seem negligible, compared to the other ones. However, its non-negligible components have a
moderate number of small values.

The second signal is a recording of a human voice saying “I’m sorry” (figure 4.13b). The low-
frequency components of its wavelet transform are also negligible, but even the high-frequency
components tend to have small values, which makes the reconstruction even more difficult.

The results are presented in Figures 4.14 and 4.15. For relatively high levels of noise (0.5%
or higher), the results, in the sense of the l2-norm, are satisfying: the reconstruction error is
smaller or equal to the amount of noise.

In the high precision regime (that is, for 0.1% of noise or less), the lack of low frequencies does
not allow a perfect reconstruction. Nevertheless, the results are still good: the reconstruction
error is of the order of 0.1% or 0.2% when the noise error is below 0.1%. More iterations in the
optimization steps can further reduce this error. By comparison, the reconstruction error with
Gerchberg-Saxton is always several percent, even when the noise is small.

130

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Gerchberg−Saxton
our algorithm

Figure 4.14: mean reconstruction error as a function of the noise, for the audio signal “Rimsky-
Korsakov”

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Gerchberg−Saxton
our algorithm

Figure 4.15: mean reconstruction error as a function of the noise, for the audio signal “I’m sorry”

131

4.4.3 Stability of the reconstruction

In this section, we use our reconstruction algorithm to investigate the stability of the recon-
struction. From Section 3.3, we know that the reconstruction is not globally stable to noise: the
reconstruction error (4.9) can be small (the modulus of the wavelet transform is almost exactly
reconstructed), even if the error on the signal (4.10) is not small (the difference between the
initial signal and its reconstruction is large).

We show that this phenomenon can occur for all classes of signals, but is all the more frequent
when the wavelet transform has a lot of small values, especially in the low frequency components.

We also experimentally show that, when this phenomenon happens, the original and recon-
structed signals have their wavelet transforms {f ? ψj(t)}j∈Z,t∈R equal up to multiplication by
a phase {eiφj(t)}j∈Z,t∈R, which varies slowly in both j and t, except maybe at the points where
f ?ψj(t) is close to zero. For Cauchy wavelets, we have proven an approximation of this assertion
in Section 3.4; we conjecture this result to be valid for more general wavelets.

We perform a large number of reconstruction trials, with various reconstruction parameters.
This gives us a large number of pairs (f, frec), such that ∀j, t, |f ?ψj(t)| ≈ |frec ?ψj(t)|. For each
one of these pairs, we compute:

error on the modulus =

√∑
j

|| |f ? ψj| − |frec ? ψj| ||22√∑
j

||f ? ψj||22
(4.9)

error on the signal =
||f − frec||2
||f ||2

(4.10)

The results are plotted on Figure 4.16, where each point corresponds to one reconstruction
trial. The x-coordinate represents the error on the modulus and the y-coordinate the error on
the signal.

We always have:

error on the modulus ≤ C × (error on the function)

with C a constant of the order of 1. This is not surprising because the modulus of the wavelet
transform is a Lipschitz operator, with a constant close to 1.

As expected, the converse inequality is not true: the error on the function can be significantly
larger than the error on the modulus. For each class, an important number of reconstruction
trials yield errors such that:

error on the signal ≈ 30× error on the modulus

132

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

error on the modulus

e
rr
o
r
o
n
th

e
si
g
n
a
l

(a)

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

error on the modulus

e
rr
o
r
o
n
th

e
si
g
n
a
l

(b)

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

error on the modulus

e
rr
o
r
o
n
th

e
si
g
n
a
l

(c)

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

error on the modulus

e
rr
o
r
o
n
th

e
si
g
n
a
l

(d)

Figure 4.16: error on the signal (4.10) as a function of the error on the modulus of the wavelet
transform (4.9), for several reconstruction trials; the red line y = x is here to serve as a reference
(a) Gaussian signals (b) lines from images (c) sums of sinusoids (d) audio signal “I’m sorry”

For realizations of Gaussian random processes or for lines extracted from images (figures 4.16a
and 4.16b), the ratio between the two errors never exceeds 30 (except for one outlier). But for
sums of a few sinusoids (4.16c) or audio signals (4.16d), we may even have:

error on the signal ≥ 100× error on the modulus

So instabilities appear in the reconstruction of all kinds of signals, but are stronger for sums of
sinusoids and audio signals, that is for the signals whose wavelet transforms have a lot of small
values, especially in the low frequencies.

These results have a theoretical justification. Let us recall that, in Section 3.3, we have
explained how, from any signal f , it is possible to construct g such that |f ?ψj| ≈ |g ? ψj| for all
j but f 6≈ g in the l2-norm sense.

The principle of the construction is to multiply each f ?ψj(t) by a phase eiφj(t). The function
(j, t)→ eiφj(t) must be chosen so that it varies slowly in both j and t, except maybe at the points
(j, t) where f ? ψj(t) is small. Then there exist a signal g such that (f ? ψj(t))e

iφj(t) ≈ g ? ψj(t)
for any j, t. Taking the modulus of this approximate equality yields:

∀j, t |f ? ψj(t)| ≈ |g ? ψj(t)|

However, we may not have f ≈ g.
This construction works for any signal f (unless the wavelet transform is very localized in

the time frequency domain), but the number of possible {eiφj(t)}j,t is larger when the wavelet
transform of f has a lot of small values, because the constraint of slow variation is relaxed at
the points where the wavelet transform is small (especially when the small values are in the low
frequencies). This is probably why instabilities occur for all kinds of signals, but more frequently
when the wavelet transforms have a lot of zeroes.

133

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

2000 4000 6000 8000 10000

2

4

6

8

10

12

14 −3

−2

−1

0

1

2

3

(b)

Figure 4.17: (a) modulus of the wavelet transform of a signal (b) phase difference between the
wavelet transform of this signal and of its reconstruction (black points correspond to places
where the modulus is too small for the phase to be meaningful)

From our experiments, it seems that the previous construction describes all the instabilities:
when the wavelet transforms of f and frec have almost the same modulus and f is not close to
frec, then the wavelet transforms of f and frec are equal up to slow-varying phases {eiφj(t)}j,t.

Figure 4.17 shows an example. The signal is a sum of sinusoids. The relative difference
between the modulus is 0.3%, but the difference between the initial and reconstructed signals is
more than a hundred times larger; it is 46%. The right subfigure shows the difference between
the phases of the two wavelet transforms. It indeed varies slowly, in both time and frequency
(actually, it is almost constant along the frequency axis), and a bit faster at the extremities,
where the wavelet transform is closer to zero.

4.4.4 Influence of the parameters

In this paragraph, we analyze the importance of the two main parameters of the algorithm:
the choice of the wavelets (paragraph 4.4.4) and the number of iterations allowed per local
optimization step (paragraph 4.4.4).

Choice of the wavelets

Two properties of the wavelets are especially important: the exponential decay of the wavelets
in the Fourier domain (so that the Qj’s (4.2) are correctly computed) and the amount of overlap
between two neighboring wavelets (if the overlap is too small, then f ? ψJ , ..., f ? ψj+1 contain
not much information about f ? ψj and the multiscale approach is less efficient).

We compare the reconstruction results for four families of wavelets.

134

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.18: Four wavelet families. (a) Morlet (b) Morlet with dilation factor 21/8 (c) Laplacian
(d) Gammatone

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

Morlet (a=2)
Morlet (a=sqrt(2))
Laplacian
Gammatone

(a)

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

Morlet (Q=1)
Morlet (Q=8)
Laplacian
Gammatone

(b)

Figure 4.19: Mean reconstruction error as a function of the noise for the four wavelet families
displayed in 4.18. (a) Lines from images (b) Audio signal “I’m sorry”

The first family (figure 4.18a) is the one we used in all the previous experiments. It contains
dyadic Morlet wavelets. The second family (figure 4.18b) also contains Morlet wavelets, with a
smaller bandwidth (Q-factor ≈ 8) and a dilation factor of 21/8 instead of 2. This is the kind of
wavelets used in audio processing. The third family (figure 4.18c) consists in dyadic Laplacian
wavelets ψ̂(ω) = ω2e1−ω2

. Finally, the wavelets of the fourth family (figure 4.18d) are (derivatives
of) Gammatone wavelets.

Figure 4.19 displays the mean reconstruction error as a function of the noise, for two classes
of signals: lines randomly extracted from natural images and audio signals.

Morlet wavelets have a fast decay and consecutive wavelets overlap well. This does not
depend upon the dilation factor so the reconstruction performances are similar for the two
Morlet families (figures 4.19a and 4.19b).

Laplacian wavelets are similar, but the overlap between consecutive wavelets is not as good.

135

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

(a)

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

(b)

Figure 4.20: for the audio signal “I’m sorry”, reconstruction error as a function of the maximal
number of iterations (a) with 0.01% of noise (b) with 0.6% of noise

So Laplacian wavelets globally have the same behavior as Morlet wavelets but require signifi-
cantly more computational effort to reach the same precision. Figures 4.19a and 4.19b have been
generated with a maximal number of iterations per optimization step equal to 30000 (instead of
10000) and the reconstruction error is still larger.

The decay of Gammatone wavelets is polynomial instead of exponential. The products Qj

cannot be efficiently estimated and our method performs significantly worse. In the case of lines
extracted from images (4.19a), the reconstruction error stagnates at 0.1%, even when the noise
is of the order of 0.01%. For audio signals (4.19b), it is around 1% for any amount of noise.

Number of iterations in the optimization step

The maximal number of iterations allowed per local optimization step (paragraph 4.1.3) can
have a huge impact on the quality of the reconstruction.

Figure 4.20 represents, for an audio signal, the reconstruction error as a function of this
number of iterations. As the objective functions are not convex, there are no guarantees on
the speed of the decay when the number of iterations increases. It can be slow and even non-
monotonic. Nevertheless, it clearly globally decays.

The execution time is roughly proportional to the number of iterations. It is thus important
to adapt this number to the desired application, so as to reach the necessary precision level
without making the algorithm excessively slow.

136

4.5 Proof of Lemmas 4.4 and 4.2

4.5.1 Proof of Lemma 4.4

Lemma. (4.4) Let m ∈ RN and K ∈ N∗ be fixed. We consider the problem:

Find g ∈ CN s.t. |g| = m

and Supp(ĝ) ⊂ {1, ..., K}

This problem has at most 2K−1 solutions, up to a global phase, and there exist a simple algorithm
which, from m and N , returns the list of all possible solutions.

Proof. We define:
P (g)(X) = ĝ[1] + ĝ[2]X + ...+ ĝ[K]XK−1

We show that the constraint |g| = m amounts to knowing P (g)(X)P (g)(1/X). This is in turn
equivalent to knowing the roots of P (g) (and thus knowing g) up to inversion with respect to
the unit circle. There are in general K − 1 roots, and each one can be inverted. This gives 2K−1

solutions.
We set:

Q(g)(X) = P (g)(1/X)

= ĝ[K]X−(K−1) + ĝ[K − 1]X−(k−2) + ...+ ĝ[1]

Equation |g|2 = m2 is equivalent to |̂g|2 = m̂2, that is 1
N
ĝ ? ĝ = m̂2. For each k ∈ {−(K −

1), ..., K − 1}:
ĝ ? ĝ[k] =

∑
s

ĝ[k − s]ĝ[−s]

This number is the coefficient of order k of P (g)(X)Q(g)(X), so |g| = m if and only if:

P (g)(X)Q(g)(X) = N

K−1∑
k=−(K−1)

m̂2[k]Xk (4.11)

Let us denote by r1, ..., rK−1 the roots of P (g)(X), so that:

P (g)(X) = ĝ[K](X − r1)...(X − rK−1)

Q(g)(X) = ĝ[K](1/X − r1)...(1/X − rK−1)

137

From (4.11), the equality |g| = m holds if and only if ĝ[K], r1, ..., rK−1 satisfy:

|ĝ[K]|2
K−1∏
j=1

(X − rj)(1/X − rj)

= N
K−1∑

k=−(K−1)

m̂2[k]Xk (4.12)

If we denote by s1, 1/s1, ..., sK−1, 1/sK−1 the roots of the polynomial function
K−1∑

k=−(K−1)

m̂2[k]Xk,

then the only possible choices for r1, ..., rK−1 are, up to permutation:

r1 = s1 or 1/s1 r2 = s2 or 1/s2 . . .

So there are 2K−1 possibilities. Once the rj have been chosen, ĝ[K] is uniquely determined
by (4.12), up to multiplication by a unitary complex.

From r1, ..., rK−1, ĝ[K], P (g) is uniquely determined and so is g. The algorithm is summarized
in 6.

Algorithm 6 reconstruction by exhaustive search for a small problem

Input: K,m

1: Compute the roots of
K−1∑

k=−(K−1)

m̂2[k]Xk

2: Group them by pairs (s1, 1/s1), ..., (sK−1, 1/sK−1)
3: List the 2K−1 elements (r1, ..., rK−1) of {s1, 1/s1} × ...× {sK−1, 1/sK−1}
4: for all the elements do
5: Compute the corresponding ĝ[K] by (4.12)
6: Compute the coefficients of P (g)(X) = ĝ[K](X − r1)...(X − rK−1)
7: Apply an IFFT to the coefficients to obtain g
8: end for

Output: the list of 2K−1 possible values for g

4.5.2 Proof of Lemma 4.2

Lemma (4.2). For any f satisfying the analycity condition (4.1):

∀z ∈ C P (|f ? ψj|2)(rz) = P ((f ? ψlowj)(f ? ψhighj))(z)

and P (g2
j)(rz) = P (Qj)(z)

138

Proof. Recall that, by definition, for any h ∈ CN :

∀z ∈ C P (h)(z) =

bN2 c∑
k=bN2 c−N+1

ĥ[k]zk

So for any two signals h,H, the condition P (h)(rz) = P (H)(z),∀z ∈ C is equivalent to:

∀k =

⌊
N

2

⌋
−N + 1, ...,

⌊
N

2

⌋
ĥ[k]rk = Ĥ[k] (4.13)

Applied to g2
j and Qj, this property yields the equality P (g2

j)(rz) = P (Qj)(z),∀z ∈ C: by the
definition of Qj in (4.2), Equation (4.13) is clearly satisfied.

Let us now show that:

P (|f ? ψj|2)(rz) = P ((f ? ψlowj)(f ? ψhighj))(z),∀z ∈ C

It suffices to prove that (4.13) holds, that is:

∀k ∈
⌊
N

2

⌋
−N + 1, ...,

⌊
N

2

⌋
,

̂|f ? ψj|2[k]rk =
̂

(f ? ψlowj)(f ? ψhighj)[k]

Indeed, because the analycity condition (4.1) holds, we have for all k:

̂|f ? ψj|2[k] =
1

N

(
f̂ ? ψj

)
?

(
f̂ ? ψj

)
[k]

=
1

N

bN/2c∑
l=1

f̂ [l]ψ̂j[l]f̂ [l − k]ψ̂j[l − k]

=
r−k

N

bN/2c∑
l=1

f̂ [l]ψ̂lowj [l]f̂ [l − k]ψ̂highj [l − k]

=
r−k

N

(
̂f ? ψlowj

)
?

(
̂

f ? ψhighj

)
[k]

= r−k
(

̂
(f ? ψlowj)(f ? ψhighj)

)
[k]

139

Chapter 5

Exponential decay of scattering
coefficients

In Chapters 3 and 4, we have studied, from the point of view of phase retrieval, the wavelet
transform modulus. Our motivation was to understand the behavior of this operator, commonly
used in data analysis as a convenient representation of signals, especially audio signals. However,
if the wavelet transform modulus is an ubiquitous tool in signal processing, it can be insufficient
for some tasks. It is indeed not invariant enough to perceptually negligible modifications of
the input signal. It can then be used as a building block to construct more sophisticated
representations, with more invariance properties.

In this chapter, we consider such a representation, the scattering transform. Introduced in
[Mallat, 2012], the scattering transform has the property to be stable to translations and small
deformations of the input signal. It gives excellent results in tasks which are naturally invariant
to this transformations, like classification of audio signals and images [Bruna and Mallat, 2013a;
Andén and Mallat, 2011].

The scattering is defined as a cascade of wavelet transform modulus. At each step of the
cascade, the components of the wavelet transform are averaged, to produce so-called scattering
coefficients. Each scattering coefficient has an order, which is the number of wavelet transform
modulus that have been necessary to compute it.

Our long-term goal is to understand which properties of input signals are characterized by
their scattering transform, in particular which regularity properties.

In this chapter, we focus on the relation between the order of scattering coefficients and the
frequency band that they describe in the input signal. Theorem 5.2 indeed states that scattering
coefficients of order n do almost not contain information on the frequential band centered at 0,
of bandwidth proportional ran, for some constants r > 0, a > 1.

This indicates that there exists in scattering a phenomenon of propagation from high fre-

140

quencies towards low frequencies. Intuitively, the information initially contained in a frequency
band of width A is moved, after one application of the wavelet transform modulus, to a fre-
quency band of width Aa−1, for some a > 1. After a second application of the wavelet transform
modulus, it is in a band of width Aa−2. And so on, until it is in the frequency band covered by
the averaging operator, and disappears, absorbed in a scattering coefficient.

In Section 5.1, we precisely define the scattering transform and some known results about
it. We also describe in more detail the propagation phenomenon. In Section 5.2, we state the
theorem. In Section 5.3, we give the principle of the proof. Section 5.4 adapts the theorem to the
scattering transform on stationary processes. Finally, Section 5.5 proves the lemmas necessary
for the proof of the main theorem.

5.1 The scattering transform

As in the previous chapters, once a wavelet ψ ∈ L1 ∩ L2(R) (such that
∫
R ψ = 0) has been

chosen, we define a family of wavelets (ψj)j∈Z by:

∀j ∈ Z, t ∈ R ψj(t) = 2−jψ(2−jt)

⇐⇒ ∀j ∈ Z, ω ∈ R ψ̂j(ω) = ψ̂(2jω)

5.1.1 Definition

We follow the definition of [Mallat, 2012].
The scattering transform consists in a cascade of modulus of wavelet transforms. After each

application of the modulus, the resulting functions are locally averaged. The set of averages
constitutes the scattering transform.

The averaging is performed with a real-valued positive function φ ∈ L1 ∩ L2(R) such that
φ̂(0) = 1. We define:

∀J ∈ Z, t ∈ R φJ(t) = 2−Jφ(2−Jt)

The convolution with φJ represents an average on an interval of characteristic size 2J .

We now formally define the cascade of modulus of wavelet transforms. For any function
f ∈ L2(R), we set:

U [ø]f = f

and iteratively define, for any n-uplet (j1, ..., jn) ∈ Zn, with n ≥ 1:

U [(j1, ..., jn)]f =
∣∣U [(j1, ..., jn−1)]f ? ψjn

∣∣
141

f

|f ? ψJ−2| |f ? ψJ−1| |f ? ψJ |

||f ? ψJ | ? ψJ−1| ||f ? ψJ | ? ψJ |

f ? φJ

...

|f ? ψJ−2| ? φJ
|f ? ψJ−1| ? φJ
|f ? ψJ | ? φJ

...

||f ? ψJ−1| ? ψJ | ? φJ
...

||f ? ψJ | ? ψJ−1| ? φJ
||f ? ψJ | ? ψJ | ? φJ

...

... ...

...

......

Figure 5.1: Schematic illustration of the scattering transform: the tree on the right represents
the cascade of modulus of wavelet transforms; the output scattering coefficients are on the left.

For any J ∈ Z, we set PJ = {(j1, ..., jn), n ∈ N, j1, ..., jn ∈ {−∞, ..., J}}; we refer to the
elements of PJ as paths. We denote the length (that is, the number of elements) of a path p by
|p|.

For any p ∈ PJ , we define:
SJ [p]f = U [p]f ? φJ

The scattering coefficients associated to f at scale J are the set {SJ [p]f}p∈PJ .

The computation of the scattering coefficients is schematized in Figure 5.1.

5.1.2 Norm preservation and energy propagation

When the wavelets are suitably chosen, the scattering transform preserves the norm [Mallat,
2012, Theorem 2.6]: ∑

p∈PJ

||SJ [p]f ||22 = ||f ||22 (5.1)

In this paragraph, we briefly describe this result. To explain it, we introduce the informal
idea that the repeated application of the modulus of the wavelet transform moves the energy
contained in the high frequencies of the initial signal towards the low frequencies.

142

For the moment, we assume the wavelets to be analytical:

ψ̂(ω) = 0 if ω < 0

and, together with the low-pass filter φ, to satisfy a Littlewood-Paley condition:

∀ω ≥ 0 |φ̂(ω)|2 +
1

2

∑
j≤0

|ψ̂j(ω)|2 = 1

This condition ensures that, for any scale J ∈ Z, the wavelet transform with low-pass filter
f → {f ? φJ , {f ? ψj}j≤J} is unitary over the set of real-valued functions:

∀f ∈ L2(R,R) ||f ? φJ ||22 +
∑
j≤J

||f ? ψj||22 = ||f ||22

Consequently, the application WJ : f → {f ? φJ , {|f ? ψj|}j≤J} preserves the norm. As the
scattering transform is computed by recursively applying this operator to the input function, we
can prove by iteration over n that, for any length n ≥ 0:

∀f ∈ L2(R,R)
∑

p∈PJ ,|p|<n

||SJ [p]f ||22 +
∑

p∈PJ ,|p|=n

||U [p]f ||22 = ||f ||22

If we can prove that
∑

p∈PJ ,|p|=n ||U [p]f ||22 goes to zero when n goes to infinity, then we can prove

Equation (5.1). Under an additional condition on the wavelets, this is done in [Mallat, 2012,
Theorem 2.6]:

Theorem 5.1. A family (φ, {ψj}j∈Z) is said to be admissible if there exists η ∈ R and a positive
real-valued function ρ ∈ L2(R) such that:

∀ω ∈ R, |ρ̂(ω)| ≤ |φ̂(2ω)| and ρ̂(0) = 1

and that the function:

Ψ̂(ω) = |ρ̂(ω − η)|2 −
+∞∑
k=1

k(1− |ρ̂(2−k(ω − η))|2)

satisfies:

inf
1≤ω≤2

+∞∑
j=−∞

Ψ̂(2jω)|ψ̂j(ω)|2 > 0 (5.2)

143

If (φ, {ψj}j∈Z) is admissible, then, for any real-valued function f ∈ L2(R) and any scale J ∈ Z:∑
p∈PJ ,|p|=n

||U [p]f ||22 → 0 when n→ +∞ (5.3)

which implies the norm preservation:∑
p∈PJ

||SJ [p]f ||22 = ||f ||22

Intuitively, the property (5.3) holds because the iterative application of the modulus of the
wavelet transform moves the energy carried by the high frequencies of the signal towards the low
frequencies. At each step of the scattering transform, the energy in the lowest frequency bands
is output by convolution with φJ . The remaining part is shifted towards the lower frequencies
by a new application of the modulus of the wavelet transform and so on.

For the displacement of the energy towards the low frequencies, the modulus is essential:
for each signal f , f ? ψj is a function whose energy is concentrated in a frequency band of
characteristic size 2−j, with a mean frequency also of the order of 2−j. After application of the
modulus, |f ?ψj| tends to have its energy concentrated in a frequency band of characteristic size
still equal to 2−j, but now centered around zero. So the frequencies that it contains are globally
lower than the frequencies of f ?ψj. An example of this phenomenon is displayed on Figure 5.2.

According to this simplistic reasoning, the modulus of the wavelet transform approximately
moves the energy contained in a frequency band around 2j to the frequency band [−2j−1, 2j−1].
By iteratively applying this argument, we expect the energy to arrive in the frequency band
[−2J , 2J] (and thus disappear) after a number of scattering steps proportional to j. The theorem
of the next section will formalize this idea.

5.2 Theorem statement

The theorem of this section relies on similar ideas to the ones of Theorem 5.1 but improves
it in two aspects:

• It gives a precise bound on
∑

p∈PJ ,|p|=n ||U [p]f ||22, instead of simply ensuring that this
quantity goes to zero. This bound formalizes the idea described in the end of the previous
paragraph, that the energy of the signal carried by the frequencies around 2j disappears
after a number of scattering step proportional to j.

• It holds for a much more general class of wavelets that Theorem 5.1. In particular, it does
not require the wavelets to be analytical. It notably applies to Morlet wavelets, and also

144

0 20 40 60 80 100 120

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

(a) (b) (c) (d)

Figure 5.2: Illustration of the shift towards low frequencies due to the modulus. (a) f ? ψj

(real part) (b) f̂ ? ψj (in modulus) (c) |f ? ψj| (d) ̂|f ? ψj|. Observe that f̂ ? ψj and ̂|f ? ψj|
are localized on frequency bands of the same width, but that, for ̂|f ? ψj|, the band is centered
around 0, and thus globally lower in frequency.

to compactly-supported wavelets like Selesnick wavelets [Selesnick, 2001], two important
choices for practical applications. The wavelets have to satisfy three simple conditions,
which will be commented after the statement of the theorem.

For any a > 0, we denote by χa the Gaussian function:

∀t ∈ R χa(t) =
√
πa exp

(
− (πa)2 t2

)
whose Fourier transform satisfies:

∀ω ∈ R χ̂a(ω) = exp(−(ω/a)2)

Theorem 5.2. Let (ψj)j∈Z be a family of wavelets. We assume the following Littlewood-Paley
inequality to be satisfied:

∀ω ∈ R
1

2

∑
j∈Z

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ 1 (5.4)

We also assume that:
∀j ∈ Z, ω > 0 |ψ̂j(−ω)| ≤ |ψ̂j(ω)| (5.5)

and, for any ω, the inequality is strict for at least one value of j.
Finally, we assume that, for some ε > 0:

ψ̂(ω) = O(|ω|1+ε) (5.6)

when ω → 0.

145

Then, for any J ∈ Z, there exist r > 0, a > 1 such that, for all n ≥ 2 and f ∈ L2(R,R):∑
p∈PJ ,|p|=n

||U [p]f ||22 ≤ ||f ||22 − ||f ? χran||22 =

∫
R
|f̂(ω)|2

(
1− |χ̂ran(ω)|2

)
dω (5.7)

Before turning to the proof of this theorem, let us briefly comment the conditions (5.4), (5.5)
and (5.6).

The Littlewood-Paley inequality (5.4) is equivalent to the fact that the wavelet transform is
contractive over L2(R,R). Without a condition of this kind, the wavelet transform can amplify
some frequencies of the initial signal, and the energy contained in the long paths of length n will
not necessarily decrease when n increases.

The condition (5.5) describes the fact that, although they do not need to be analytical,
the wavelets must give more weight to the positive frequencies than to the negative ones. If
this condition is not met, the phenomenon of energy shift towards the low frequencies may not
happen. This is in particular the case if the wavelets are real.

The condition (5.6) states that the wavelets have a bit more than one zero momentum. It is
necessary for our proof, but it is not clear whether the theorem stays true without it or not.

5.3 Principle of the proof

The proof proceeds by iteration over n.

In this paragraph, we show that, if a is close enough to 1, the fact that the property holds for
n implies that it also holds for n+ 1. The initialization, for n = 2, relies on the same principle,
but is more technical; it is done in the paragraph 5.5.3.

Lemma 5.3. For any j ∈ Z, x ∈ R∗+, δj ∈ R:

|| |f ? ψj| ? χx||22 ≥ ||f ? ψj ? (χxe
2πiδj .)||22 =

∫
R
|f̂(ω)|2|ψ̂j(ω)|2|χ̂x(ω − δj)|2dω

This lemma is already present in [Mallat, 2012]. For sake of completeness, we prove it again in
the paragraph 5.5.1.

If the property (5.7) holds for n ≥ 2, then:

∑
p∈PJ ,|p|=n+1

||U [p]f ||22 =
∑
j≤J

 ∑
p∈PJ ,|p|=n

||U [j, p]f ||22

146

=
∑
j≤J

 ∑
p∈PJ ,|p|=n

||U [p]
(
|f ? ψj|

)
||22

≤
∑
j≤J

(
|| |f ? ψj| ||22 − || |f ? ψj| ? χran||22

)
(5.8)

By Lemma 5.3, for any choice of (δj)j≤J :∑
p∈PJ ,|p|=n+1

||U [p]f ||22 ≤
∑
j≤J

(
||f ? ψj||22 − ||f ? ψj ? (χrane

2πiδj)||22
)

=

∫
R
|f̂(ω)|2

(∑
j≤J

|ψ̂j(ω)|2(1− |χ̂ran(ω − δj)|2)

)
dω

We symmetrize the expression, by taking into account the fact that f is real, so |f̂(ω)| = |f̂(−ω)|:∑
p∈PJ ,|p|=n+1

||U [p]f ||22 ≤
∫
R
|f̂(ω)|2 × 1

2

(∑
j≤J

|ψ̂j(ω)|2(1− |χ̂ran(ω − δj)|2)

+|ψ̂j(−ω)|2(1− |χ̂ran(−ω − δj)|2)

)
dω

To conclude, it is thus sufficient to show that, if the δj’s are well-chosen, then:

1

2

(∑
j≤J

|ψ̂j(ω)|2(1− |χ̂ran(ω − δj)|2) + |ψ̂j(−ω)|2(1− |χ̂ran(−ω − δj)|2)

)
≤ 1− |χ̂arn+1(ω)|2 (∀ω ∈ R)

which is a direct consequence of the next lemma, proven in the paragraph 5.5.2.

Lemma 5.4. For any x > 0, if a > 1 is close enough to 1, then there exist (δj)j≤J such that:

∀ω ∈ R
1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− |χ̂x(ω − δj)|2)

+
∑
j∈Z

|ψ̂j(−ω)|2(1− |χ̂x(−ω − δj)|2)

)
≤ 1− |χ̂ax(ω)|2

The proof is summarized in Figure 5.3.

147

Inductive hypothesis: the energy contained in the paths of length n + 1 beginning by j is at
most the energy of f ? ψj, multiplied by a high-pass filter (Equation (5.8)).

∑
|p|=n
||U [j, p]f ||22 ≤

∫
−1 −0.5 0 0.5 1

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×

−1 −0.5 0 0.5 1
x 10

4

0

0.5

1

1.5

×

−1 −0.5 0 0.5 1
x 10

4

0

0.2

0.4

0.6

0.8

1

|f̂ |2 |ψ̂j|2 1− |χ̂arn|2

Because of the modulus around f ? ψj, the high-pass filter can be arbitrarily shifted in frequency.

∑
|p|=n
||U [j, p]f ||22 ≤

∫
−1 −0.5 0 0.5 1

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×

−1 −0.5 0 0.5 1
x 10

4

0

0.5

1

1.5

×

−1 −0.5 0 0.5 1
x 10

4

0

0.2

0.4

0.6

0.8

1

|f̂ |2 |ψ̂j|2 1− |χ̂arn(.− δj)|2

=

∫
−1 −0.5 0 0.5 1

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×

−1 −0.5 0 0.5 1
x 10

4

0

0.5

1

1.5

|f̂ |2 |ψ̂j|2(1− |χ̂arn(.− δj)|2)

We consider real signals so we can symmetrize the filter.

=

∫
−1 −0.5 0 0.5 1

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×

−1 −0.5 0 0.5 1
x 10

4

0

0.2

0.4

0.6

0.8

1

|f̂ |2 1
2

(
|ψ̂j |2(1− |χ̂arn(.− δj)|2) + |ψ̂j(−.)|2(1− |χ̂arn(−.− δj)|2)

)
Summing over j gives:

∑
|p|=n+1

||U [p]f ||22 ≤
∫

−1 −0.5 0 0.5 1
x 10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×

−1 −0.5 0 0.5 1
x 10

4

0

0.2

0.4

0.6

0.8

1

|f̂ |2 ∑
j≤J

1
2

(
|ψ̂j |2(1− |χ̂arn(.− δj)|2) + |ψ̂j(−.)|2(1− |χ̂arn(−.− δj)|2)

)
≤
∫

|f̂ |2 × 1− |χ̂arn+1|2 (shown in red)

Figure 5.3: Schematic summary of the proof of Theorem 5.2
148

5.4 Adaptation of the theorem to stationary processes

In what follows, X is a real-valued stationary stochastic process, with continuous and inte-
grable autocovariance RX .

The scattering transform of X is defined in the same way as for elements of L2(R):

U [ø]X = X

∀n ≥ 1, (j1, ..., jn) ∈ Zn U [(j1, ..., jn)]X = |U [(j1, ..., jn−1)]X ? ψjn|
∀p ∈ PJ SJ [p]f = U [p]f ? φJ

The results proven for the deterministic wavelet transform tend to be also valid for stationary
processes, if one replaces the squared L2-norms by the expectations of the squared modulus. In
particular, Theorem 5.2 can be adapted to the case of stationary processes.

Theorem 5.5. Let (ψj)j∈Z be a family of wavelets, satisfying the same conditions (5.4), (5.5)
and (5.6) as in Theorem 5.2.

Then, for any J ∈ Z, there exist r > 0, a > 1 such that, for all n ≥ 2 and f ∈ L2(R,R):∑
p∈PJ ,|p|=n

E(|U [p]X|22) ≤ E(|X|2)− E(|X ? χran|2) =

∫
R
R̂X(ω)(1− |χ̂ran(ω)|2)dω

The proof of this theorem is exactly the same as the one of Theorem 5.2. The only lines to be
modified are the ones where we use the fact that the Fourier transform is an isometry of L2(R).
We use instead the property according to which, for any stationary process with continuous and
integrable autocovariance RY , and for any h ∈ L1 ∩ L2(R):

E(|Y ? h|2) = |E(Y ? h)|2 +

∫
R
|ĥ(ω)|2R̂Y (ω)dω

=

∣∣∣∣E(Y)×
∫
R
h(s)ds

∣∣∣∣2 +

∫
R
|ĥ(ω)|2R̂Y (ω)dω

5.5 Proof of Lemmas

5.5.1 Proof of Lemma 5.3

Lemma (5.3). For any j ∈ Z, x ∈ R∗+, δj ∈ R:

|| |f ? ψj| ? χx||22 ≥ ||f ? ψj ? (χxe
2πiδj .)||22 =

∫
R
|f̂(ω)|2|ψ̂j(ω)|2|χ̂x(ω − δj)|2dω

149

Proof. For any t, because χx is a positive function:

|f ? ψj| ? χx(t) = |(f ? ψj)e−2πiδj .| ? χx(t)
= |(f ? ψj)e−2πiδj .| ? |χx|(t)
≥ |((f ? ψj)e−2πiδj .) ? χx(t)|
= |e−2πiδjt

(
f ? ψj ? (χx ? e

2πiδj .)
)
(t)|

= |f ? ψj ? (χx ? e
2πiδj .)(t)|

This implies the inequality. The equality is a consequence of the unitarity of the Fourier trans-
form.

5.5.2 Proof of Lemma 5.4

Lemma (5.4). For any x > 0, if a > 1 is close enough to 1, then there exist (δj)j≤J such that:

∀ω ∈ R
1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− |χ̂x(ω − δj)|2)

+
∑
j∈Z

|ψ̂j(−ω)|2(1− |χ̂x(−ω − δj)|2)

)
≤ 1− |χ̂ax(ω)|2

Proof. We are going to look for δj’s of the form δj = δ2−j.

1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− |χ̂x(ω − δ2−j)|2) +
∑
j∈Z

|ψ̂j(−ω)|2(1− |χ̂x(−ω − δ2−j)|2)

)

=
1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− e2
(
−ω

2

x2
+ 2δω2−j

x2
− δ

22−2j

x2

)
) +

∑
j∈Z

|ψ̂j(−ω)|2(1− e2
(
−ω

2

x2
− 2δω2−j

x2
− δ

22−2j

x2

)
)

)
Let us define:

∀ω ∈ R∗ S(ω) =
1

2

(∑
j∈Z

|ψ̂j(ω)|2 +
∑
j∈Z

|ψ̂j(−ω)|2
)

This function is never 0 if ω 6= 0: if ω > 0, there exist j such that |ψ̂j(ω)| > |ψ̂j(−ω)| ≥ 0 so
S(ω) > 0; as S is even, we also have S(ω) > 0 if ω < 0.

The function y → 1− e2
(
−ω

2

x2
+y

)
is concave so, for any ω 6= 0:

1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− e2
(
−ω

2

x2
+ 2δω2−j

x2
− δ

22−2j

x2

)
) +

∑
j∈Z

|ψ̂j(−ω)|2(1− e2
(
−ω

2

x2
− 2δω2−j

x2
− δ

22−2j

x2

)
)

)

150

= S(ω)
∑
j∈Z

1
2
|ψ̂j(ω)|2

S(ω)
(1− e2

(
−ω

2

x2
+ 2δω2−j

x2
− δ

22−2j

x2

)
) +

∑
j∈Z

1
2
|ψ̂j(−ω)|2

S(ω)
(1− e2

(
−ω

2

x2
− 2δω2−j

x2
− δ

22−2j

x2

)
)

≤ S(ω)

(
1− exp

(
2

(
−ω

2

x2
+
∑
j∈Z

1
2
|ψ̂j(ω)|2

S(ω)

(
2δω2−j

x2
− δ22−2j

x2

)

+
∑
j∈Z

1
2
|ψ̂j(−ω)|2

S(ω)

(
−2δω2−j

x2
− δ22−2j

x2

))))

= S(ω)

(
1− exp

(
2

(
−ω

2

x2
+

2δω

x2
F1(ω)− δ2

x2
F2(ω)

)))
(5.9)

if we set:

F1(ω) =
∑
j∈Z

(
1

2

|ψ̂j(ω)|2 − |ψ̂j(−ω)|2

S(ω)

)
2−j

F2(ω) =
∑
j∈Z

(
1

2

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

S(ω)

)
2−2j

The functions F1 and F2 are both continuous. Indeed, for any j, ψ̂j is continuous, because
ψ ∈ L1(R). The function S is also continuous, and lower-bounded by a strictly positive con-
stant. Finally, the sums converge uniformly on every compact subset of R, because of the
assumption (5.6). This implies the continuity.

Because of the hypothesis (5.5), F1(ω) > 0 when ω > 0. Moreover, for any ω > 0, F1(2ω) =
2F1(ω). By a compacity argument, there exist c > 0 such that:

∀ω > 0 F1(ω) ≥ cω

which, as F1 is odd, implies:
∀ω ∈ R ωF1(ω) ≥ cω2 (5.10)

Similarly, there exist C > 0 such that:

∀ω ∈ R F2(ω) ≤ Cω2 (5.11)

By combining (5.10) and (5.11) with (5.9), we get that, for all ω 6= 0:

1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− |χ̂x(ω − δ2−j)|2) +
∑
j∈Z

|ψ̂j(−ω)|2(1− |χ̂x(−ω − δ2−j)|2)

)

151

≤ S(ω)

(
1− exp

(
−2

ω2

x2
(1− 2cδ + Cδ2)

))
If we take δ = c/C, this yields, for any a such that 1 < a ≤ 1√

1−c2/C
:

1

2

(∑
j∈Z

|ψ̂j(ω)|2(1− |χ̂x(ω − δ2−j)|2) +
∑
j∈Z

|ψ̂j(−ω)|2(1− |χ̂x(−ω − δ2−j)|2)

)

≤ S(ω)

(
1− exp

(
−2

ω2

x2

(
1− c2

C

)))
≤ S(ω)

(
1− exp

(
−2

ω2

(ax)2

))
≤ 1− exp

(
−2

ω2

(ax)2

)
= 1− |χ̂ax(ω)|2

The bound S(ω) ≤ 1 comes from the Littlewood-Paley inequality (5.4).
The inequalities are also true for ω = 0 because all terms are then equal to zero.

5.5.3 Initialization

In this paragraph, we prove that Theorem 5.2 holds for n = 2. More precisely, we prove that,
for any a > 1, there exist r > 0 such that Equation (5.7) is valid for n = 2.

Proof. For any real-valued function g ∈ L2(R):

∑
j≤J

||g ? ψj||22 =

∫
R
|ĝ(ω)|2

(∑
j≤J

|ψ̂j(ω)|2
)
dω

=

∫
R
|ĝ(ω)|2

(
1

2

∑
j≤J

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2
)
dω (5.12)

If the following inequality held, for some r > 0, a > 1:

1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ 1− |χ̂ra(ω)|2

then Theorem 5.2 would be valid for n = 1 and it could be proven for n = 2 in the exact same
way as in Section 5.3. Unfortunately, this inequality is not necessarily valid (in particular, it is
never the case if the wavelet transform is unitary and the wavelets are band-limited).

152

The next lemma (proven at the end of the paragraph) nevertheless shows that the inequality
is satisfied, if one allows the Gaussian function to be replaced by a more general function.

Lemma 5.6. There exist a real-valued positive function φ ∈ L1 ∩ L2(R) such that:

|φ̂(ω)|2 = 1−O(ω2) when ω → 0 (5.13)

and:

∀ω ∈ R
1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ 1− |φ̂(ω)|2 (5.14)

The rest of the proof consists in showing how to adapt Section 5.3, when the Gaussian
function has been replaced by the φ of the lemma.

Because of (5.12), with φ defined as in Lemma 5.6, we have, for any real-valued function
g ∈ L2(R): ∑

j≤J

||g ? ψj||22 ≤
∫
R
|ĝ(ω)|2(1− |φ̂(ω)|2)

= ||g||22 − ||g ? φ||22

So: ∑
p∈PJ ,|p|=2

||U [p]f ||22 =
∑
j1≤J

∑
j2≤J

|| ||f ? ψj1| ? ψj2| ||22

≤
∑
j≤J

||f ? ψj||22 − || |f ? ψj| ? φ||22 (5.15)

Lemma 5.3 is still true when χx is replaced by φ, because the only property of χx which is really
needed is its positivity. So for any δ ∈ R:

∀j ∈ Z || |f ? ψj| ? φ||22 ≥
∫
R
|f̂(ω)|2|ψ̂j(ω)|2|φ̂(ω − δ)|2dω

In Section 5.3, we used this same inequality, with a different δ for each value of j. Here, we do
not need δ to vary as a function of j; however, we will need to consider different values of δ and
to average the inequalities over these different values.

If we combine the last inequality with (5.15), we obtain:

∀δ ∈ R
∑

p∈PJ ,|p|=2

||U [p]f ||22 ≤
∫
R
|f̂(ω)|2(1− |φ̂(ω − δ)|2)

(∑
j≤J

|ψ̂j(ω)|2
)
dω

153

As it holds for any δ ∈ R, we have, for any positive c ∈ L1(R) whose integral over R is 1:

∑
p∈PJ ,|p|=2

||U [p]f ||22 ≤
∫
R
c(δ)

∫
R
|f̂(ω)|2(1− |φ̂(ω − δ)|2)

(∑
j≤J

|ψ̂j(ω)|2
)
dωdδ

≤
∫
R
|f̂(ω)|2(1− |φ̂|2 ? c(ω))

(∑
j≤J

|ψ̂j(ω)|2
)
dω

We limit ourselves to the case where c is even. As |φ̂|2 is also even, the last inequality yields, by
using the fact that f is real:

∑
p∈PJ ,|p|=2

||U [p]f ||22 ≤
∫
R
|f̂(ω)|2(1− |φ̂|2 ? c(ω))× 1

2

(∑
j≤J

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2
)
dω

The conclusion comes from a last lemma, proven at the end of the paragraph.

Lemma 5.7. If we take c(δ) = 1√
π

exp(−δ2), then there exists x > 0 such that:

∀ω ∈ R (1− |φ̂|2 ? c(ω))× 1

2

(∑
j≤J

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2
)
≤ 1− |χ̂x(ω)|2

We now give the proofs of Lemmas 5.6 and 5.7.

Proof of Lemma 5.6. Let γ : R→ R be any even, rapidly decreasing and band-limited function
such that

∫
R γ

2 = 1. We set φ0 = γ2. This is also an even, rapidly decreasing and band-limited
function.

Because
∫
R γ

2 = 1, we have φ̂0(0) = 1. As φ0 is even, φ̂′0(0) = 0. But the second derivative

is strictly negative: φ̂′′0(0) = −(2π)2
∫
R t

2φ0(t)dt < 0. We deduce from these relations that there
exists α > 0 such that:

|φ̂0(ω)|2 = 1− αω2 + o(ω2) when ω → 0 (5.16)

Let us show that, for M large enough, φ : t→M−1φ0(M−1t) satisfies the desired properties. By
construction, it is a real-valued positive function. It is rapidly decreasing, so φ ∈ L1 ∩ L2(R).
The property (5.13) holds; only the inequality (5.14) is left to prove.

Because of Equation (5.16) and because φ̂0 is compactly-supported, there exists α̃ > 0 such
that for all ω ∈ Supp(φ̂0):

|φ̂0(ω)|2 ≤ 1− α̃ω2

154

By the assumption (5.6), |ψ̂(ω)| = O(|ω|1+ε) when ω → 0, for some ε > 0. This implies that:

1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
= o(ω2) when ω → 0

Because this sum is moreover bounded by 1 on all R, there exists A > 0 such that:

∀ω ∈ R
1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ Aω2

If M ≥
√
A/α̃, then, on the support of φ̂:

|φ̂(ω)|2 +
1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
= |φ̂0(Mω)|2 +

1

2

∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ 1− α̃M2ω2 + Aω2

≤ 1

Outside the support of φ̂, the inequality is also true, because of the Littlewood-Paley condi-
tion (5.4). So Equation (5.14) holds.

Proof of Lemma 5.7. Let us define:

F (ω) = (1− |φ̂|2 ? c(ω))× 1

2

(∑
j≤J

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2
)

We are going to prove that F has the following three properties:

1. ∀ω ∈ R, F (ω) < 1

2. F (ω) = O(ω2) when ω → 0

3. There exists x > 0 such that F (ω) ≤ 1− |χ̂x(ω)|2 if |ω| is large enough.

These three properties imply that F is bounded by 1− |χ̂x|2 on all R, for x small enough. This
assertion relies on a compacity argument; as it is relatively straightforward, we do not prove it.

The first property is an immediate consequence of the Littlewood-Paley inequality (5.4) and
of the fact that |φ̂|2 ? c > 0 over R.

155

The second one is a consequence of a fact that has been explained in the proof of Lemma 5.6:

1

2

(∑
j≤J

|ψ̂j(ω)|2 + |ψ̂j(−ω)|2
)

= o(ω2) when ω → 0

For the last one, we remark that, for any ω ∈ R such that ω ≥ 1:

|φ̂|2 ? c(ω) =

∫
R
|φ̂(δ)|2c(ω − δ)dδ

≥
∫ 1

0

|φ̂(δ)|2c(ω − δ)dδ

≥ c(ω)

∫ 1

0

|φ̂(δ)|2dδ

As all the functions are even, this is also true for ω ≤ −1. So when |ω| is large enough:

|φ̂|2 ? c(ω) ≥ 1√
π

exp(−ω2)

(∫ 1

0

|φ̂(δ)|2dδ
)
≥ exp(−2ω2) = |χ̂1(ω)|2

This proves the third property and concludes.

156

Chapter 6

Generalized scattering

In this last chapter, we define a generalization of the scattering transform for stationary
processes, by keeping the structure in cascade described in Section 5.1 but replacing the wavelet
transform by arbitrary linear functions.

The resulting operator takes as input a random process X0 and, from it, defines a sequence
of processes by the iterative application of the following operation:

Xn → Xn+1 = |WnXn − E(WnXn)| (6.1)

where the Wn are arbitrary linear operators and |.| denotes the pointwise modulus. The scat-
tering coefficients are, by definition, the E(WnX) for n ∈ N.

The interest of this generalized scattering is to offer a mathematical framework for the theo-
retical analysis of deep neural networks. Indeed, it models the architecture of a neural network,
with the modulus used as non-linearity.

The first questions that arise are again: for a given choice of Wn, what information does
the generalized scattering preserve about the input process? What do scattering coefficients say
about the regularity of the input process? Which processes have the same scattering coefficients?
For neural networks, these questions have been empirically studied in [Simonyan et al., 2014;
Mahendran and Vedaldi, 2015; Dosovitskiy and Brox, 2015].

In the future, we would also be interested in studying the learning of the linear operators
Wn. Indeed, while, in the regular scattering, the Wn are fixed (they represent the wavelet
transform), they can here be learned from the data. We are especially interested in unsupervised
learning: how to adapt the Wn to the law of the input random process, so that the resulting
scattering operator yields a relevant representation of realizations of this process? The question
of unsupervised learning has attracted a great deal of attention in the last ten years [Bengio
et al., 2013]. On large-scale datasets, it tends to be supplanted by purely supervised learning
[Russakovsky et al., 2015], but it is competitive when labeled data is less abundant or does not

157

have a clear spatial or temporal structure [Sermanet et al., 2013; Chen et al., 2014]. It could
possibly be further improved.

In this chapter, we focus on the first body of questions, and describe a few properties of
the initial process that can be retrieved from the scattering coefficients. In finite dimension, we
prove that the scattering operator preserves the norm when the Wn are unitary (Theorem 6.2).
We study in more detail the one-dimensional case, where all the Xn take their values in R. We
show that the scattering coefficients characterize the tail of the distribution of X0 (Theorem 6.4),
but not necessarily the distribution in the low values.

In Section 6.1, we define the generalized scattering, and explain its link with the regular
scattering. In Section 6.2, we prove the energy preservation theorem. Section 6.3 is devoted to
the one-dimensional case. We conclude with numerical experiments in Section 6.4.

The first two sections of this chapter come from [Mallat and Waldspurger, 2013].

6.1 Definition of the generalized scattering

In this paragraph, we explain the generalization of the regular scattering as defined in [Mallat,
2012] which leads to the definition that we are going to study.

We consider a finite-dimensional version of the regular scattering, where signals are of finite
dimension N and we use only a finite number J of wavelets. This is the setting of all concrete
applications.

The scattering of a stationary processX0 is written as the following sequence of computations:

X0 ∈ RN

∀n ≥ 0 Xn+1 = |WnXn| ∈ (RN)J
n+1

where Wn is the wavelet transform operator:

Wn : (gs)1≤s≤Jn ∈ (RN)J
n → (gs ? ψj)1≤s≤Jn,1≤j≤J ∈ (CN)J

n+1

and the scattering coefficients are the AnXn, n ∈ N, where An is the averaging operator:

An : (gs)1≤s≤Jn ∈ (RN)J
n → (gs ? φJ)1≤s≤Jn ∈ (RN)J

n

When J is large enough, gs ? φJ is approximately the spatial mean of gs:

∀s, ∀k = 1, ..., N (gs ? φJ)k ≈
1

N

N∑
l=1

(gs)l
def
= mean(gs)

158

If X is a sufficiently ergodic stationary process, then the spatial mean is an approximation of
the expectation:

∀k = 1, ..., N mean(gs) ≈ E((gs)k)

So the scattering coefficients are approximately the set of E(Xn), n ∈ N.
If the wavelets have been well-chosen, the wavelet transform has the set of constant signals

as kernel, and it is unitary on the set of signals with mean zero. So:

Xn+1 = |WnXn| = |Wn(Xn −mean(Xn))| ≈ |Wn(Xn − E(Xn))|

And we arrive at Definition (6.1).

We summarize this definition. Let an increasing sequence (Nn)n∈N of integers be fixed. For
each n, let Wn : RNn → RNn+1 be a linear unitary operator. Starting from a random process X0,
taking its values in RN0 , we iteratively define:

Xn+1 = |Wn(Xn − E(Xn))| (6.2)

The scattering coefficients of X0 are defined as {E(Xn)}n∈N.

6.2 Energy preservation

6.2.1 One-dimensional case

We shall prove an energy preservation result. To simplify the exposition of the proof, we
begin with the one-dimensional case: X0 is a real-valued random variable, with finite second-
order moment.

In dimension 1, there are only two unitary operators: Id or −Id. The modulus removes the
sign, so the generalized scattering reduces to:

∀n ≥ 0 Xn+1 = |Xn − E(Xn)|

From the definition, we immediately see that:

∀n ≥ 0 E(X2
n+1) = E(X2

n)− E(Xn)2

So, for any N ≥ 0:

E(X2
0)− E(X2

N) =
N−1∑
n=0

E(Xn)2 (6.3)

Our first result is that this equality goes to the limit N → +∞: the l2-norm of the sequence of
scattering coefficients (E(Xn))n∈N is the norm of X0.

159

Theorem 6.1. Let X0 be such that E(||X0||2) < +∞. Then:

E(X2
0) =

+∞∑
n=0

E(Xn)2

Proof. From Equation (6.3), it is enough to show that E(X2
n) goes to zero when n goes to infinity.

This equation also implies that E(Xn)→ 0 when n→ +∞.
For any n ≥ 1, Xn is positive. So if the Xn’s were uniformly bounded by a constant M > 0,

we would have, when n→ +∞:(
E(Xn)→ 0

)
⇒

(
E(X2

n) ≤ME(Xn)→ 0
)

Here, the processes Xn may not be uniformly bounded. However, they are uniformly bounded
on an event of arbitrarily small probability.

Indeed, let us fix any M > E(X2
0).

For any n ≥ 1, Xn ≥ 0 so:

X2
n+1 = |Xn − E(Xn)|2 ≤ X2

n + E(Xn)2

which implies (using Equation (6.3) for the second inequality):

∀n ≥ 1, X2
n ≤ X2

1 +
n−1∑
s=1

E(Xs)
2 ≤ X2

1 + E(X0)2 ≤ X2
1 +M2

We thus have the inclusion, for any n ≥ 1:

{X1 ≤M} ⊂ {Xn ≤
√

2M}

and:

E(X2
n) = E(X2

n1Xn≤
√

2M) + E(X2
n1Xn>

√
2M)

≤
√

2ME(Xn1Xn≤
√

2M) + E((X2
1 +M2)1Xn>

√
2M)

≤
√

2ME(Xn) + E((X2
1 +M2)1X1>M)

≤
√

2ME(Xn) + 2E(X2
1 1X1>M)

Because E(Xn)→ 0 when n→ +∞:

lim sup
n→∞

E(X2
n) ≤ 2E(X2

1 1X1>M)

Letting M go to infinity proves:

E(X2
n)→ 0 when n→ +∞

160

6.2.2 Generalization to higher dimensions

We now remove the assumption of dimension one and return to the generalized scattering as
defined in Equation (6.2):

Xn+1 = |Wn(Xn − E(Xn))|

Theorem 6.2. Let X0 be such that E(||X0||2) < +∞. Then:

E(||X0||2) =
+∞∑
n=0

||E(Xn)||2

Proof. The proof follows the one of Theorem 6.1.
We first remark that, for any n ∈ N:

E(||Xn+1||2) = E(||Wn(Xn − E(Xn))||2)

= E(||Xn − E(Xn)||2)

= E(||Xn||2)− ||E(Xn)||2

which implies a formula analog to Equation (6.3):

∀N ≥ 0 E(||X0||2)− E(||XN ||2) =
N−1∑
n=0

||E(Xn)||2

To prove the theorem, it suffices to show that E(||Xn||2) → 0 when n → +∞. We temporarily
admit a lemma:

Lemma 6.3. E(||Xn||)→ 0 when n→ +∞

From this lemma, we can deduce the result. As the reasoning is the same as in the one-
dimensional case, we only review its main steps.

We start by fixing M > E(||X0||2). For any n ≥ 1:

||Xn||2 ≤ ||X1||2 +M2

from which we deduce:

E(||Xn||2) ≤
√

2ME(||Xn||) + 2E(||X2
1 ||1||X1||>M)

Letting n then M go to infinity yields:

E(||Xn||2)→ 0 when n→ +∞

This is what was needed; only Lemma 6.3 is left to show.

161

Proof of Lemma 6.3. We deduce the convergence E(||Xn||) → 0 from the weaker convergence
||E(Xn)|| → 0, which comes from Equation (6.2.2). The proof relies on a compacity argument,
and strongly uses the fact that X0 takes its values in a finite-dimensional space.

For any z ∈ RN0 and a > 0, we denote by B(z, a) the set {z′ ∈ RN0 s.t. ||z′ − z|| < a}.
Let us fix M > E(||X0||2), and ε > 0. Let z1, ..., zS be a finite number of elements of RN0

such that:

B(0,M) ⊂
S⋃
s=1

B(zs, ε)

We iteratively define:

φ0 : Id : RN0 → RN0

∀n ≥ 0, φn+1 : x ∈ RN0 → |Wn(φn(x)− E(Xn))| ∈ RNn+1

so that, for any n ∈ N, Xn = φn(X0).
These applications are all 1-Lipschitz: they are compositions of 1-Lipschitz operators. So if

we denote by α : RN0 → {z1, ..., zs} any measurable function such that ||z − α(z)|| < ε for any
z ∈ B(0,M), we have:

E(||Xn||) = E(||Xn||1||X0||<M) + E(||Xn||1||X0||≥M)

= E(||φn(X0)||1||X0||<M) + E(||Xn||1||X0||≥M)

≤ E
((
||φn(α(X0))||+ ||φn(α(X0))− φn(X0)||

)
1||X0||<M

)
+ E(||Xn||1||X0||≥M)

≤ E
((
||φn(α(X0))||+ ||α(X0)−X0||

)
1||X0||<M

)
+ E(||Xn||1||X0||≥M)

≤ E(||φn(α(X0))||1||X0||<M) + E(||Xn||1||X0||≥M) + ε

=
S∑
s=1

||φn(zs)||P (||X0|| < M and α(X0) = zs) + E(||Xn||1||X0||≥M) + ε

=
S∑
s=1

||E(φn(zs)1||X0||<M and α(X0)=zs
)||+ E(||Xn||1||X0||≥M) + ε

≤
S∑
s=1

||E(φn(X0)1||X0||<M and α(X0)=zs
)||+ E(||Xn||1||X0||≥M) + 2ε

≤
S∑
s=1

||E(φn(X0)1||X0||<M and α(X0)=zs
)||+

√
5E(||X0||1||X0||≥M) + 2ε

where the last inequality comes from the fact that ||X1||2 = ||X0 − E(X0)||2 ≤ 2||X0||2 +
2||E(X0)||2 ≤ 2||X0||2 + 2M , so ||Xn||2 ≤ ||X1||2 +M ≤ 2||X0||2 + 3M , and the one before from
the fact that φn is 1-Lipschitz.

162

Moreover, for any n ≥ 1, using the positivity of the coordinates of Xn:

||E(Xn)|| ≥ ||E(Xn1||X0||<M)||
= ||E(φn(X0)1||X0||<M)||

=

∣∣∣∣∣
∣∣∣∣∣
S∑
s=1

E(φn(X0)1||X0||<M and α(X0)=zs
)

∣∣∣∣∣
∣∣∣∣∣

≥ 1√
S

S∑
s=1

||E(φn(X0)1||X0||<M and α(X0)=zs
)||

As ||E(Xn)|| → 0 when n→ +∞, this result implies:

S∑
s=1

||E(φn(X0)1||X0||<M and α(X0)=zs
)|| → 0 when n→ +∞

⇒ lim sup
n

E(||Xn||) ≤
√

5E(||X0||1||X0||≥M) + 2ε

Letting M and ε go respectively to +∞ and 0 implies:

E(||Xn||)→ 0 when n→ +∞

6.3 Characterization of the distribution tail

In this section, we focus on the one-dimensional case:

∀n ≥ 0 Xn+1 = |Xn − E(Xn)|

We assume that the process X0 takes only positive values and is not almost surely bounded. We
show that the sequence of generalized scattering coefficients (E(Xn))n∈N precisely describes the
distribution tail of X0.

We will not tackle the subject under this point of view, but it is somewhat related to the prob-
lem of estimating a probability density function from samples of the corresponding distribution
[Scott, 2015; Antoniadis, 1997].

We define:
f : R+ → R+

y → E((X0 − y)1X0≥y)
(6.4)

163

0 1 2 3 4 5
0

1

2

3

4

φ0

0 1 2 3 4 5
0

1

2

3

4

S1

φ1

0 1 2 3 4 5
0

1

2

3

4

S2

φ2

0 1 2 3 4 5
0

1

2

3

4

S3

φ3

Figure 6.1: The functions φ0, φ1, φ2, φ3, for a Laplacian probability distribution p(x) = e−x1x≥0.

This decreasing function fully characterizes the distribution of X0. The next theorem shows
that the knowledge of (E(Xn))n∈N gives an equivalent of this function in +∞. So the scattering
coefficients precisely describe the distribution of X0 in the high values, although they do not
uniquely determine the law of X0.

Theorem 6.4. When n→ +∞, if X0 takes positive values and is not almost surely bounded:

E(Xn) ∼ 2f

(
n−1∑
s=0

E(Xs)

)

The sequence (E(Xn))n∈N thus provides an equivalent of f at infinity, because
∑n−1

s=0 E(Xs)
goes to infinity with n (it is proven at the beginning of Paragraph 6.3.4).

6.3.1 Proof

To simplify the notations, we set:

∀n ∈ N Sn =
n−1∑
s=0

E(Xs)

We iteratively define:

φ0 = Id : R+ → R+

∀n ≥ 0 φn+1 : x ∈ R+ → |φn(x)− E(Xn)| ∈ R+

By definition, we have Xn = φn(X0), and in particular E(Xn) = E(φn(X0)).
Figure 6.1 illustrates this definition. For n large enough, we see that φn has two distinct parts:

on [0;Sn], it is an oscillating function with small values and, on [Sn; +∞[, we have φn(x) = x−Sn

164

(this is proven by iteration over n). The value of E(Xn) is the sum of the expectations of these
two parts:

E(Xn) = E(φn(X0)) = E(φn(X0)1X0≤Sn) + E(φn(X0)1X0>Sn)

Informally, at infinity, these two terms balance each other, so when n goes to +∞:

E(Xn) ∼ 2E(φn(X0)1X0>Sn) = 2E((X0 − Sn)1X0>Sn) = 2f(Sn)

To rigorously prove this equivalence, we begin with upper and lower bounds for E(Xn). We
define:

∀n ≥ 0 mn = max
x∈[0;Sn]

φn(x)

The next lemma is proven in Paragraph 6.3.2.

Lemma 6.5. For any n ≥ 1:

2f(Sn) ≤ E(Xn) ≤ 2f(Sn) + 2 max(0,mn−1 − E(Xn−1)) (6.5)

To establish Theorem 6.4, we have to bound the error term 2 max(0,mn−1 − E(Xn−1)).
We first list a few useful properties, which can be directly deduced from the definitions. Their

detailed proof is in Paragraph 6.3.3.

Lemma 6.6. For all n ≥ 0:

mn+1 = max(mn − E(Xn),E(Xn)) (6.6)

and:
E(Xn+1) ≤ 2E(Xn) (6.7)

Moreover, if E(Xn) ≥ E(Xn+1), then:

E(Xn+2) ≤ E(Xn+1)

(
2− E(Xn+1)

E(Xn)

)
(6.8)

If E(Xn) ≤ E(Xn+1), then:

E(Xn+1) ≥ E(Xn+2) ≥ E(Xn+1)

(
E(Xn+1)

E(Xn)
− 1

)
(6.9)

and:

E(Xn+3) ≤ E(Xn+1)− (E(Xn+1)− E(Xn+2))

(
E(Xn+1)

E(Xn)
− E(Xn+2)

E(Xn+1)

)
(6.10)

In any case, the above properties imply:

E(Xn+2) ≤ max (E(Xn),E(Xn+1)) (6.11)

165

These properties do not directly show that the error term 2 max(0,mn−1 − E(Xn−1)) of
Lemma 6.5 is small. However, they allow to show that there are infinitely large values for which
it is small.

Lemma 6.7. Let c ∈]0; 1/2[be fixed. There exists an extraction φ : N→ N such that:

∀n ≥ 1 max(0,mφ(n)−1 − E(Xφ(n)−1)) < cE(Xφ(n)) and mφ(n)+1 = E(Xφ(n))

The proof of this lemma is in Paragraph 6.3.4. We immediately rewrite it under a more
practical form:

Corollary 6.8. Let α > 2 be fixed. There exists an extraction φ : N→ N such that:

∀n ≥ 1 E(Xφ(n)) ≤ αf(Sφ(n)) and mφ(n)+1 = E(Xφ(n))

Proof of Corollary 6.8. If we use the extraction of Lemma 6.7 for a value of c such that 2
1−c ≤ α,

then, for any n ≥ 1, from Lemma 6.5:

E(Xφ(n)) ≤ 2f(Sφ(n)) + max(0,mφ(n)−1 − E(Xφ(n)−1))

≤ 2f(Sφ(n)) + cE(Xφ(n))

⇒ E(Xφ(n)) ≤
2

1− c
f(Sφ(n)) ≤ αf(Sφ(n))

Using again the properties of Lemma 6.6, we can show that, for n large enough, if n satisfies
the equation of Corollary 6.8, then so does n+ 2. It is proven in Paragraph 6.3.5.

Lemma 6.9. Let α ∈]2; 5/2[be fixed. For any n large enough, if:

E(Xn) ≤ αf(Sn) and mn+1 = E(Xn)

then:
E(Xn+2) ≤ αf(Sn+2) and mn+3 = E(Xn+2)

Combining this lemma and Corollary 6.8, we obtain that, for all α > 2:

E(X2n) ≤ αf(S2n) and m2n+1 = E(X2n) for all n large enough
or E(X2n+1) ≤ αf(S2n+1) and m2n+2 = E(X2n+1) for all n large enough

As α can take any value larger than 2 and, by Lemma 6.5, E(Xn) ≥ 2f(Sn) for all n:

E(X2n) ∼ 2f(S2n) and m2n+1 = E(X2n) when n goes to infinity
or E(X2n+1) ∼ 2f(S2n+1) and m2n+2 = E(X2n+1) when n goes to infinity

Let us for example assume that we are in the first case: E(X2n) ∼ 2f(S2n). A final lemma,
proven in Paragraph 6.3.6, concludes.

166

Lemma 6.10.

If E(X2n) ∼ 2f(S2n) and m2n+1 = E(X2n) when n goes to infinity,
then E(X2n+1) ∼ 2f(S2n+1) when n goes to infinity

6.3.2 Proof of Lemma 6.5

Proof of Lemma 6.5. For any n ≥ 1, when x ≥ 0:

φn−1(x) + φn(x) = φn−1(x) + |φn−1(x)− E(Xn−1)|
= E(Xn−1) + 2(φn−1(x)− E(Xn−1))1φn−1(x)>E(Xn−1)

= E(Xn−1) + 2(x− Sn)1x≥Sn + 2(φn−1(x)− E(Xn−1))1x<Sn and φn−1(x)>E(Xn−1)

When x ∈ [Sn−1;Sn]:
φn−1(x) = x− Sn−1 ≤ Sn − Sn−1 = E(Xn−1)

So x < Sn and φn−1(x) > E(Xn−1) actually imply x < Sn−1. Consequently, because, by definition
of mn−1, φn−1(x) ≤ mn−1 on [0;Sn−1]:

0 ≤ 2(φn−1(x)− E(Xn−1))1x<Sn and φn−1(x)>E(Xn−1) ≤ 2 max(0,mn−1 − E(Xn−1))

From the first equality of the proof, this means:

E(Xn−1) + 2(x− Sn)1x≥Sn ≤ φn−1(x) + φn(x)

≤ E(Xn−1) + 2(x− Sn)1x≥Sn + 2 max(0,mn−1 − E(Xn−1))

Replacing x by X0 and taking the expectation gives:

2f(Sn) ≤ E(Xn) ≤ 2f(Sn) + 2 max(0,mn−1 − E(Xn−1)) (6.5)

6.3.3 Proof of Lemma 6.6

Proof of Lemma 6.6.
Equation (6.6): for any x ∈ [0;Sn]:

φn+1(x) = |φn(x)− E(Xn)|
= max(φn(x)− E(Xn),E(Xn)− φn(x))

≤ max(mn − E(Xn),E(Xn))

167

For any x ∈ [Sn;Sn+1]:

φn+1(x) = |x− Sn − E(Xn)| = |X − Sn+1| = Sn+1 − x ≤ Sn+1 − Sn = E(Xn)

So:
mn+1 = max

x∈[0;Sn+1]
φn+1(x) ≤ max(mn − E(Xn),E(Xn))

Moreover, if x ∈ [0;Sn] is such that φn(x) = mn, then φn+1(x) = |mn − E(Xn)| ≥ mn − E(Xn),
so mn+1 ≥ mn − E(Xn).

As φn+1(Sn) = Sn+1 − Sn = E(Xn), we also have mn+1 ≥ E(Xn). So:

mn+1 = max(mn − E(Xn),E(Xn)) (6.6)

Equation (6.7): for any n, Xn only takes positive values.

E(Xn+1) = E(|Xn − E(Xn)|) ≤ E(|Xn|+ |E(Xn)|) = E(Xn) + E(Xn) = 2E(Xn) (6.7)

Equation (6.8): we remark that, if E(Xn) ≥ E(Xn+1), then:

∀x ∈ R+ ||x− E(Xn)| − E(Xn+1)| ≤ E(Xn+1)

E(Xn)
x+

(
1− E(Xn+1)

E(Xn)

)
|x− E(Xn)| (6.12)

Indeed, the functions on both sides of the inequality are affine on the following intervals:

[0;E(Xn)− E(Xn+1)] [E(Xn)− E(Xn+1);E(Xn)]

[E(Xn);E(Xn) + E(Xn+1)] [E(Xn) + E(Xn+1); +∞[

On the last interval, both functions have a slope equal to 1. So to prove the inequality, it suffices
to verify that it holds at the junction points:

0 E(Xn)− E(Xn+1) E(Xn) E(Xn) + E(Xn+1)

which can be done by a simple computation.
Replacing x by Xn in (6.12), then taking the expectation yields:

E(Xn+2) = E(||Xn − E(Xn)| − E(Xn+1)|)

≤ E(Xn+1)

E(Xn)
E(Xn) +

(
1− E(Xn+1)

E(Xn)

)
E(|Xn − E(Xn)|)

= E(Xn+1)

(
2− E(Xn+1)

E(Xn)

)
(6.8)

168

Equation (6.9): this proof is similar to the previous one.

If E(Xn) ≤ E(Xn+1), then:

∀x ∈ R+ ||x− E(Xn)| − E(Xn+1)| ≥ α + βx+ γ|x− E(Xn)|

where we have set:

α = −E(Xn) β = 1− E(Xn+1)

E(Xn)
γ =

E(Xn+1)

E(Xn)

By the same reasoning as in the proof of Equation (6.8), this inequality is true because the
two functions involved have a slope equal to 1 at infinity, and because the inequality holds in
0,E(Xn) and E(Xn) + E(Xn+1).

If we replace x by Xn and take the expectation:

E(Xn+2) ≥ α + βE(Xn) + γE(Xn+1) = E(Xn+1)

(
E(Xn+1)

E(Xn)
− 1

)
(6.13)

The proof of the other inequality is easier. By the triangular inequality:

∀x ∈ R+ ||x− E(Xn)| − E(Xn+1)| = ||x− E(Xn)| − | − E(Xn+1)||
≤ |x− E(Xn) + E(Xn+1)|
= x+ E(Xn+1)− E(Xn)

If we replace x by Xn and take the expectation:

E(Xn+2) ≤ E(Xn+1)

So:

E(Xn+1) ≥ E(Xn+2) ≥ E(Xn+1)

(
E(Xn+1)

E(Xn)
− 1

)
(6.9)

Equation (6.10): if E(Xn) ≤ E(Xn+1), then, by the previous equation, E(Xn+2) ≤ E(Xn+1).
Moreover:

E(Xn+2) ≥ E(Xn+1)

(
E(Xn+1)

E(Xn)
− 1

)
= E(Xn+1)− E(Xn) +

1

E(Xn)
(E(Xn+1)− E(Xn))2

≥ E(Xn+1)− E(Xn)

169

It allows us to show the following inequality:

∀x ∈ R+ |||x−E(Xn)|−E(Xn+1)|−E(Xn+2)| ≤ α+βx+γ|x−E(Xn)|+δ||x−E(Xn)|−E(Xn+1)|

where:

α = (E(Xn+1)− E(Xn+2))

(
E(Xn)

E(Xn+1)
− 1

)
β = (E(Xn+1)− E(Xn+2))

(
1

E(Xn)
− 1

E(Xn+1)

)
γ = 1−

(
E(Xn+1)− E(Xn+2)

E(Xn)

)
δ =

E(Xn+1)− E(Xn+2)

E(Xn+1)

By the same argument as in the proofs of Equations (6.8) and (6.9), it suffices to remark that
the functions on both sides of the inequality have a slope equal to 1 at infinity and to check the
inequality at points:

0 E(Xn)− E(Xn+1) + E(Xn+2) E(Xn) E(Xn) + E(Xn+1)− E(Xn+2)

E(Xn) + E(Xn+1) E(Xn) + E(Xn+1) + E(Xn+2)

which can be done by a simple computation.
Replacing x by Xn and computing the expectation gives:

E(Xn+3) ≤ α + βE(Xn) + γE(Xn+1) + δE(Xn+2)

= E(Xn+1)− (E(Xn+1)− E(Xn+2))

(
E(Xn+1)

E(Xn)
− E(Xn+2)

E(Xn+1)

)
(6.10)

Equation (6.11): if E(Xn) ≤ E(Xn+1), then, by Equation (6.9):

E(Xn+2) ≤ E(Xn+1) ≤ max(E(Xn),E(Xn+1))

If E(Xn) > E(Xn+1), then, by Equation (6.8):

E(Xn+2) ≤ E(Xn+1)

(
2− E(Xn+1)

E(Xn)

)
= E(Xn)

(
1−

(
1− E(Xn+1)

E(Xn)

)2
)

≤ E(Xn)

≤ max(E(Xn),E(Xn+1))

So in any case:
E(Xn+2) ≤ max(E(Xn),E(Xn+1)) (6.11)

170

6.3.4 Proof of Lemma 6.7

Proof of Lemma 6.7. We need to show that there exist arbitrarily large values of n for which
the following equation holds:

max(0,mn−1 − E(Xn−1)) < cE(Xn) and mn+1 = E(Xn)

By contradiction, we assume that there exists N ∈ N such that the equation is never satisfied
when n ≥ N . It means that, for all n ≥ N :

max(0,mn−1 − E(Xn−1)) ≥ cE(Xn) or mn+1 6= E(Xn) (6.14)

We will show that: ∑
n≥N

E(Xn) < +∞ (6.15)

This is absurd because then, Sn =
∑n−1

k=0 E(Xk) converges to a finite limit L. By continuity,
f(Sn) → f(L) so, from Lemma 6.5, E(Xn) ≥ 2f(Sn) ≥ 2f(L) for all n ≥ 1. So E(Xn) is lower
bounded by a strictly positive constant and Equation (6.15) does not hold.

We distinguish the values of n, depending on which of the following two properties they
satisfy:

P1(n) : mn = E(Xn−1)

P2(n) : mn = mn−1 − E(Xn−1)

The following assertions are true; they are proven at the end of the proof.

(1) If n ≥ N and P1(n), P1(n+ 1), then:

E(Xn+1) ≤ (1− c2)E(Xn−1) (Property (1))

(2) If n ≤ n′ and P1(n), P2(n+ 1), ..., P2(n′), then:

E(Xn−1) ≥ E(Xn) + E(Xn+1) + ...+ E(Xn′−1) (Property (2))

These properties imply that there exists C > 0 such that, for any n, n′, n′′ with N ≤ n < n′ < n′′:

If P1(n), ..., P1(n′ − 1), P2(n′), ..., P2(n′′ − 1) then
n′′−2∑
k=n−1

E(Xk) ≤ CE(Xn−1) (6.16)

171

Indeed, because of Property (1), for any k ≥ 0:

If n+ 2k − 1 < n′ then E(Xn+2k−1) ≤ (1− c2)kE(Xn−1)
If n+ 2k < n′ then E(Xn+2k) ≤ (1− c2)kE(Xn)

(6.17)

So:

n′−1∑
k=n−1

E(Xk) ≤ (E(Xn−1) + E(Xn))×
(
1 + (1− c2) + (1− c2)2 + ...

)
≤ 1

c2
(E(Xn−1) + E(Xn))

≤ 3

c2
E(Xn−1)

For the last inequality, we have used Equation (6.7) of Lemma 6.6.
Because of Property (2):

n′′−2∑
k=n′

E(Xk) ≤ E(Xn′−2)

From relations (6.17), E(Xn′−2) ≤ E(Xn−1) or E(Xn′−2) ≤ E(Xn) (depending on the parity of
n′ − n). So in any case, from Equation (6.7) of Lemma 6.6:

E(Xn′−2) ≤ 2E(Xn−1) ⇒
n′′−2∑
k=n′

E(Xk) ≤ 2E(Xn−1)

and:
n′′−2∑
k=n−1

E(Xk) ≤
(

2 +
3

c2

)
E(Xn−1)

which proves Equation (6.16).
If P1(n) is satisfied for all n large enough, then, by Property (1), (E(Xn))n∈N decays geomet-

rically and
∑

n≥N E(Xn) < +∞. On the other hand, if P2(n) is satisfied for all n large enough,
then, by Property (2), we also have

∑
n≥N E(Xn) < +∞. We can thus assume that there exist

arbitrarily large values of n such that P1(n) holds, and arbitrarily large values such that P2(n)
holds.

Even if we have to replace N by a larger integer, we can assume that P1(N) holds.
We define the sequence of integers (ns)s∈N∗ such that n1 = N and:

P1(n1) P1(n1 + 1) . . . P1(n2 − 1) P2(n2) . . . P2(n3 − 1) P1(n3) . . .

172

From Equation (6.16):

∑
n≥N−1

E(Xn) =
∑
s≥0

n2s+3−2∑
k=n2s+1−1

E(Xk) ≤ C
∑
s≥0

E(Xn2s+1−1)

So the proof is over if we show that
∑

s≥0 E(Xn2s+1) < +∞. This is a consequence of the
following equation:

E(Xn2s+3−1) ≤ 25

32
E(Xn2s+1−1) (6.18)

The proof of this equation is done at the end of the paragraph.

Proof of the properties (1) and (2).
Property (1): we begin with the case where P1(n+ 2) holds.

In this case, by definition of P1(n+ 2), mn+2 = E(Xn+1) so, by Equation (6.14):

max(0,mn − E(Xn)) ≥ cE(Xn+1)

As P1(n) holds, mn = E(Xn−1), so:

E(Xn−1)− E(Xn) ≥ cE(Xn+1)

As E(Xn+1) is positive, this equation in particular implies E(Xn−1) ≥ E(Xn) so, by Equa-
tion (6.8) Lemma 6.6:

E(Xn+1) ≤ E(Xn)

(
2− E(Xn)

E(Xn−1)

)
Combining the last two equations:

E(Xn+1) ≤ min

(
1

c
(E(Xn−1)− E(Xn)),E(Xn)

(
2− E(Xn)

E(Xn−1)

))
Computing the maximum of the right side when E(Xn) varies in [0;E(Xn−1)] yields:

E(Xn+1) ≤ E(Xn−1)

(
1 +

1

2c
− 1

2c

√
1 + 4c2

)
Using the inequality c < 1/2 and the fact that, for any positive x,

√
1 + x ≥ 1 + x/2− x2/8, we

obtain:

E(Xn+1) ≤ E(Xn−1)(1− c+ c3)

≤ E(Xn−1)(1− c2)

173

Let us now handle the case where P1(n+2) does not hold. From Equation (6.6) of Lemma 6.6,
it means that E(Xn+1) < mn+1 − E(Xn+1), so E(Xn+1) < mn+1/2 = E(Xn)/2.

If E(Xn) ≤ E(Xn−1), then:

E(Xn+1) ≤ E(Xn)

2
≤ E(Xn−1)

2
≤ (1− c2)E(Xn−1)

If E(Xn) > E(Xn−1), then, from Equation (6.9) of Lemma 6.6:

E(Xn+1) ≥ E(Xn)

(
E(Xn)

E(Xn−1)
− 1

)
As we have seen that E(Xn+1) < E(Xn)/2:

E(Xn)

2
≥ E(Xn)

(
E(Xn)

E(Xn−1)
− 1

)
⇐⇒ E(Xn) ≤ 3

2
E(Xn−1)

So, as c < 1/2:

E(Xn+1) <
E(Xn)

2
≤ 3

4
E(Xn−1) ≤ (1− c2)E(Xn−1)

Property (2): because P1(n), P2(n+ 1), ..., P2(n′),

mn = E(Xn−1)

mn+1 = mn − E(Xn) = E(Xn−1)− E(Xn)

...

mn′ = E(Xn−1)− E(Xn)− ...− E(Xn′−1)

The result follows from the fact that mn′ = max(E(Xn′−1),mn′−1−E(Xn′−1)) is always positive.

Proof of Equation (6.18). We divide the proof in three cases:

1. n2s+2 − n2s+1 odd or E(Xn2s+2−2) ≤ E(Xn2s+2−3)

2. n2s+3 = n2s+2 + 1, n2s+2 − n2s+1 even and E(Xn2s+2−2) > E(Xn2s+2−3)

3. n2s+3 ≥ n2s+2 + 2, n2s+2 − n2s+1 even and E(Xn2s+2−2) > E(Xn2s+2−3)

174

Case 1: n2s+2 − n2s+1 odd or E(Xn2s+2−2) ≤ E(Xn2s+2−3)
We begin with showing the inequality E(Xn2s+3−1) ≤ 3

4
E(Xn2s+2−2).

If n2s+3 ≥ n2s+2 + 2, we actually have:

E(Xn2s+3−1) ≤ 2

3
E(Xn2s+2−2)

Indeed, we use Property (2) for n = n2s+2 − 1 and n′ = n2s+3 − 1:

E(Xn2s+2−2) ≥ E(Xn2s+2−1) + ...+ E(Xn2s+3−2)

In particular:
E(Xn2s+2−2) ≥ E(Xn2s+3−3) + E(Xn2s+3−2) (6.19)

If E(Xn2s+3−3) ≤ E(Xn2s+3−2) then, from Equation (6.9), E(Xn2s+3−1) ≤ E(Xn2s+3−2). As, more-
over, 2E(Xn2s+3−3) ≥ E(Xn2s+3−2) (Equation (6.7)):

E(Xn2s+2−2) ≥ 3

2
E(Xn2s+3−2) ≥ 3

2
E(Xn2s+3−1)

⇒ E(Xn2s+3−1) ≤ 2

3
E(Xn2s+2−2)

If, on the other hand, E(Xn2s+3−3) > E(Xn2s+3−2), then, by Equation (6.11):

E(Xn2s+3−1) ≤ E(Xn2s+3−3)

Then Equation (6.19), combined with the fact that E(Xn2s+3−1) ≤ 2E(Xn2s+3−2) yields:

E(Xn2s+2−2) ≥ E(Xn2s+3−1)

(
1 +

1

2

)
⇒ E(Xn2s+3−1) ≤ 2

3
E(Xn2s+2−2)

If n2s+3 = n2s+2 + 1, then E(Xn2s+2−1) ≤ mn2s+2−1/2 = E(Xn2s+2−2)/2, because P2(n2s+2)
holds and mn2s+2 = max(E(Xn2s+2−1),mn2s+2−1 − E(Xn2s+2−1)). From Equation (6.8):

E(Xn2s+3−1) = E(Xn2s+2) ≤ E(Xn2s+2−1)

(
2−

E(Xn2s+2−1)

E(Xn2s+2−2)

)
This upper bound is increasing in E(Xn2s+2−1) over [0;E(Xn2s+2−2)/2], so:

E(Xn2s+3−1) ≤ 1

2

(
2− 1

2

)
E(Xn2s+2−2) =

3

4
E(Xn2s+2−2)

175

In either case, we have, as announced:

E(Xn2s+3−1) ≤ 3

4
E(Xn2s+2−2)

If n2s+2 − n2s+1 is odd, Property (1) implies:

E(Xn2s+2−2) ≤ (1− c2)(n2s+2−n2s+1−1)/2E(Xn2s+1−1) ≤ E(Xn2s+1−1)

Combining the previous two equations:

E(Xn2s+3−1) ≤ 3

4
E(Xn2s+1−1) ≤ 25

32
E(Xn2s+1−1)

If n2s+2 − n2s+1 is even but E(Xn2s+2−2) ≤ E(Xn2s+2−3), then, again by Property (1):

E(Xn2s+2−2) ≤ E(Xn2s+2−3) ≤ (1− c2)(n2s+2−n2s+1−2)/2E(Xn2s+1−1) ≤ E(Xn2s+1−1)

so we reach again the same conclusion:

E(Xn2s+3−1) ≤ 3

4
E(Xn2s+1−1) ≤ 25

32
E(Xn2s+1−1)

Case 2: n2s+3 = n2s+2 + 1, n2s+2 − n2s+1 even and E(Xn2s+2−2) > E(Xn2s+2−3)
Because P1(n2s+2−1) and P2(n2s+2) hold, and because mn2s+2 = max(E(Xn2s+2−1),mn2s+2−1−

E(Xn2s+2−1)):

E(Xn2s+2−1) ≤ 1

2
mn2s+2−1 =

1

2
E(Xn2s+2−2)

As E(Xn2s+2−2) > E(Xns+2−3), Equation (6.10) of Lemma 6.6 implies that:

E(Xn2s+3−1) = E(Xn2s+2)

≤ E(Xn2s+2−2)− (E(Xn2s+2−2)− E(Xn2s+2−1))

(
E(Xn2s+2−2)

E(Xns+2−3)
−

E(Xn2s+2−1)

E(Xn2s+2−2)

)
This upper bound is increasing in E(Xn2s+2−1) on [0;E(Xn2s+2−2)/2]: it can be seen by computing
the derivative and using the fact that:

E(Xn2s+2−2)− E(Xn2s+2−1) ≥ 1

2
E(Xn2s+2−2) > 0

and
E(Xn2s+2−2)

E(Xns+2−3)
−

E(Xn2s+2−1)

E(Xn2s+2−2)
> 1− 1

2
=

1

2
> 0

176

So, in the upper bound, we can replace E(Xn2s+2−1) by E(Xn2s+2−2)/2 and get:

E(Xn2s+3−1) ≤ E(Xn2s+2−2)− 1

2
E(Xn2s+2−2)

(
E(Xn2s+2−2)

E(Xns+2−3)
− 1

2

)
=

E(Xn2s+2−2)

2

(
5

2
−

E(Xn2s+2−2)

E(Xns+2−3)

)
When E(Xn2s+2−2) varies, the upper bound attains its maximum in E(Xn2s+2−2) = 5

4
E(Xn2s+2−3),

which yields:

E(Xn2s+3−1) ≤ 25

32
E(Xn2s+2−3)

By Property (1), as n2s+2 − n2s+1 is even:

E(Xn2s+3−1) ≤ 25

32
E(Xn2s+2−3) ≤ 25

32
(1− c2)(n2s+2−n2s+1−2)/2E(Xn2s+1−1) ≤ 25

32
E(Xn2s+1−1)

Case 3: n2s+3 ≥ n2s+2 + 2, n2s+2 − n2s+1 even and E(Xn2s+2−2) > E(Xn2s+2−3)
As P1(n2s+2 − 1) holds, mn2s+2−1 = E(Xn2s+2−2). For any n = n2s+2, ..., n2s+3 − 1, P2(n) holds
so, as mn = max(E(Xn−1),mn − E(Xn−1)):

mn = mn−1 − E(Xn−1) and E(Xn−1) ≤ 1

2
mn−1

By iteration:

mn = E(Xn2s+2−2)− E(Xn2s+2−1)− ...− E(Xn−1)

E(Xn−1) ≤ 1

2

(
E(Xn2s+2−2)− E(Xn2s+2−1)− ...− E(Xn−2)

)
In particular:

E(Xn2s+3−3) ≤ 1

2
E(Xn2s+2−2)

E(Xn2s+3−2) ≤ 1

2
E(Xn2s+2−2)

From Equation (6.11) of Lemma 6.6:

E(Xn2s+3−1) ≤ max
(
E(Xn2s+3−3),E(Xn2s+3−2)

)
≤ 1

2
E(Xn2s+2−2) (6.20)

Now we show that:

E(Xn2s+2−2) ≤ 3

2
E(Xn2s+2−3)

177

Indeed, by the same reasoning as above, as P1(n2s+2 − 1) and P2(n2s+2) hold:

E(Xn2s+2−1) ≤ 1

2
mn2s+2−1 =

1

2
E(Xn2s+2−2)

But, as E(Xn2s+2−2) > E(Xn2s+2−3), from this equation and Equation (6.9) of Lemma 6.6:

1

2
E(Xn2s+2−2) ≥ E(Xn2s+2−1) ≥ E(Xn2s+2−2)

(
E(Xn2s+2−2)

E(Xn2s+2−3)
− 1

)
⇒ E(Xn2s+2−2) ≤ 3

2
E(Xn2s+2−3)

Combining this with (6.20) yields:

E(Xn2s+3−1) ≤ 3

4
E(Xn2s+2−3)

From Property (1), as n2s+2 − n2s+1 is even:

E(Xn2s+3−1) ≤ 3

4
E(Xn2s+2−3)

≤ 3

4
(1− c2)(n2s+2−n2s+1−2)/2E(Xn2s+1−1)

≤ 3

4
E(Xn2s+1−1)

≤ 25

32
E(Xn2s+1−1)

6.3.5 Proof of Lemma 6.9

Proof of Lemma 6.9. We first remark that, if E(Xn) ≤ αf(Sn), then:

f(Sn+2)

f(Sn)
is arbitrarily close to 1 when n→ +∞ (6.21)

Indeed, Sn+2 − Sn = E(Xn) + E(Xn+1) ≤ 3E(Xn) by Equation (6.7) of Lemma 6.6. If E(Xn) ≤
αf(Sn), then:

Sn+2 − Sn ≤ 3αf(Sn)

The derivative of f goes to zero at infinity, so:

f(Sn+2)− f(Sn) = o(Sn+2 − Sn) = o(f(Sn))

178

which implies Equation (6.21).

We fix x ∈]0; 1/2− 1/α[and divide the proof in three cases.

First case: E(Xn+1) ≤ E(Xn)(1− x)
Then, from Equation (6.8) of Lemma 6.6:

E(Xn+2) ≤ E(Xn+1)

(
2− E(Xn+1)

E(Xn)

)
This bound is increasing in E(Xn+1) over]−∞;E(Xn)[so:

E(Xn+2) ≤ (1− x)E(Xn)

(
2− (1− x)E(Xn)

E(Xn)

)
= (1− x2)E(Xn)

≤ α(1− x2)f(Sn)

We get:
E(Xn+2)

f(Sn+2)
≤ α(1− x2)

f(Sn)

f(Sn+2)

so, by Equation (6.21), if n is large enough:

E(Xn+2)

f(Sn+2)
≤ α

We must also prove that mn+3 = E(Xn+2). By Lemma 6.5:

E(Xn+2) ≥ 2f(Sn+2)

= 2f(Sn)
f(Sn+2)

f(Sn)

≥ E(Xn)
2

α

f(Sn+2)

f(Sn)

For n large enough, from Equation (6.21) and the fact that α < 4, we conclude that:

E(Xn+2) ≥ 1

2
E(Xn) ≥ 1

2
mn+2

Indeed, by assumption, mn+1 = E(Xn). As E(Xn+1) ≤ E(Xn), it implies that mn+2 =
max(E(Xn+1),mn−1 − E(Xn+1)) ≤ E(Xn).

179

As mn+3 = max(E(Xn+2),mn+2 − E(Xn+2)), we deduce from the last equation that:

mn+3 = E(Xn+2)

Second case: E(Xn)(1− x) < E(Xn+1) ≤ E(Xn).
From Lemma 6.5:

E(Xn+2) ≤ 2f(Sn+2) + 2 max(0,mn+1 − E(Xn+1))

= 2f(Sn+2) + 2(E(Xn)− E(Xn+1))

≤ 2f(Sn+2) + 2xE(Xn)

≤ 2f(Sn) + 2xαf(Sn)

So:
E(Xn+2)

f(Sn+2)
≤ 2(1 + αx)

f(Sn)

f(Sn+2)

We have chosen x < 1
2
− 1

α
, so that 2(1 + αx) < α. From Equation (6.21), this implies, for n

large enough:
E(Xn+2)

f(Sn+2)
≤ α

The proof that mn+3 = E(Xn+2) is identical to the one done in the first case.

Third case: E(Xn+1) > E(Xn)
From Lemma 6.5:

E(Xn+2) = 2f(Sn+2) ≤ αf(Sn+2)

because max(0,mn+1 − E(Xn+1)) = max(0,E(Xn)− E(Xn+1)) = 0.
Let us show that mn+3 = E(Xn+2).
As mn+1 = E(Xn) and E(Xn+1) > E(Xn), we have mn+2 = max(E(Xn+1),mn+1−E(Xn+1)) =

E(Xn+1).
From Equation (6.9) of Lemma 6.6:

E(Xn+2) ≥ E(Xn+1)

(
E(Xn+1)

E(Xn)
− 1

)
By solving a polynomial equation of degree 2, we see that it implies:

E(Xn+1) ≤ E(Xn)

2
+

√
E(Xn)

(
E(Xn+2) +

E(Xn)

4

)

180

Using E(Xn) ≤ αf(Sn) and E(Xn+2) = 2f(Sn+2) ≤ 2f(Sn) yields:

mn+2 = E(Xn+1) ≤
(
α

2
+

√
α
(

2 +
α

4

))
f(Sn)

If α < 5/2, then α
2

+
√
α
(
2 + α

4

)
< 4. Combining this with Equation (6.21) and the fact that

E(Xn+2) = 2f(Sn+2) gives, for all n large enough:

mn+2

E(Xn+2)
< 2

As mn+3 = max(E(Xn+2),mn+2 − E(Xn+2)), it implies that mn+3 = E(Xn+2).

6.3.6 Proof of Lemma 6.10

Proof of Lemma 6.10. We assume that E(X2n) ∼ 2f(S2n) when n goes to +∞ and that, for all
n large enough:

m2n+1 = E(X2n)

We must show that E(X2n+1) ∼ 2f(S2n+1).
As in the proof of Lemma 6.9, we see that E(X2n) ∼ 2f(S2n) implies:

f(Sn) ∼ f(Sn+1) when n→ +∞

From Equation (6.7) of Lemma 6.6, E(X2n+1) ≤ 2E(X2n) for any n ≥ 1. Combining this with
E(X2n) ∼ 2f(S2n) ∼ 2f(S2n+1) yields:

lim sup
n→+∞

E(X2n+1)

f(S2n+1)
≤ 4

We define:

M = lim sup
n→+∞

E(X2n+1)

f(S2n+1)
≤ 4

and show that M = 2. As, from Lemma 6.5, E(X2n+1) ≥ 2f(S2n+1), it implies E(X2n+1) ∼
2f(S2n+1).

We first find an upper bound for E(X2n+1)/f(S2n+1) as a function of E(X2n−1)/f(S2n−1). We
distinguish two cases.

First case: E(X2n−1) > E(X2n)

181

Then, from Equation (6.8) of Lemma 6.6:

E(X2n+1) ≤ E(X2n)

(
2− E(X2n)

E(X2n−1)

)
The upper bound is increasing in E(X2n−1). By definition of M , for all M ′ > M , E(X2n−1) <
M ′f(S2n−1) when n is large enough. So, for n large enough:

E(X2n+1) ≤ E(X2n)

(
2− E(X2n)

M ′f(S2n−1)

)
∼ 4f(S2n+1)

(
1− 1

M ′

)
We used the fact that E(X2n) ∼ 2f(S2n) ∼ 2f(S2n−1) ∼ 2f(S2n+1).

As this inequality holds for any M ′ > M , we obtain:

lim sup
n→+∞, E(X2n−1)>E(X2n)

E(X2n+1)

f(S2n+1)
≤ 4

(
1− 1

M

)
(6.22)

Second case: E(X2n−1) ≤ E(X2n).
By assumption, for n large enough, m2n−1 = E(X2(n−1)). As E(X2(n−1)) ∼ 2f(S2(n−1)) ∼
2f(S2n−1), the following inequality holds for all n large enough:

E(X2n−1) ≥ 2f(S2n−1) ≥ m2n−1

2

As m2n = max(E(X2n−1),m2n−1−E(X2n−1)), we must have m2n = E(X2n−1). So m2n−E(X2n) =
E(X2n−1)− E(X2n) ≤ 0 and, by Lemma 6.5:

E(X2n+1)

f(S2n+1)
= 2 (6.23)

We can now conclude. If we combine Equations (6.22) and (6.23), we obtain:

lim sup
n→+∞

E(X2n+1)

f(S2n+1)
≤ max

(
2, 4

(
1− 1

M

))
A simple computation shows that, if M > 2, then this upper bound is strictly smaller than M ,
which is a contradiction with the definition of M . So M = 2.

182

6.4 Numerical illustrations

6.4.1 Characterization of the distribution tail

We perform numerical experiments for two different choices of X0. The first process X0

follows a Laplace law, with a probability density function equal to:

p(x) = e−x1x≥0

The second process follows a variant of a Pareto law:

p(x) =
8

7

(
1

1 + |x− 1|

)3

For each of these two choices, we plot the density function p on Figure 6.2 (graphs (a) and (c)).
We also plot the first pairs (E(Xn), Sn), with Sn defined as in the last section:

Sn =
n−1∑
k=0

E(Xk)

These pairs correspond to the red crosses of graphs (b) and (d). They are displayed along with
the function 2f , where is f defined as in Equation (6.4):

f : R+ → R+

y → E((X0 − y)1X0≥y)
(6.4)

As stated by Theorem 6.4:
E(Xn) ∼ 2f(Sn)

In our two examples, the convergence of E(Xn)/(2f(Sn)) towards 1 seems fast. From n = 5, it
is difficult to distinguish E(Xn) from 2f(Sn). In both cases, the sequence (E(Xn))n∈N provides
a very precise estimation of f in the high values.

We remark that, although (E(Xn))n∈N precisely characterizes the distribution tail of X0, it
conveys a much less precise information about the distribution at small values.

In particular, the sequence (E(Xn))n∈N does not uniquely determine the law of X0. An
example of two different processes associated to the same sequence (E(Xn))n∈N is shown on
Figure 6.3.

183

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.5

1

1.5

2

(a) (b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

(c) (d)

Figure 6.2:
(a) Laplace probability density function p(x) = e−x1x≥0

(b) Function 2f , with f defined as in Equation (6.4), and the pairs (Sn,E(Xn)) for n = 0, ..., 69
(c) Pareto-like probability density function p(x) = (8/7)(1 + |x− 1|)−31x≥0

(d) Function 2f , and the pairs (Sn,E(Xn)) for n = 0, ..., 10

184

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure 6.3: Two probability density functions associated to the same sequence (E(Xn))n∈N

6.4.2 Probability distribution of Xn

When the initial process X0 admits a probability density function, so do the Xn; we denote
by pn their density function. In Figure 6.4 is displayed p10, the probability density function of
X10, for the Pareto-like distribution.

It is discontinuous, although the initial probability density function is continuous over R+.
Indeed, the iterative definition Xn+1 = |Xn − E(Xn)| does not preserve the continuity of the
density function.

In general, we observe that the density function pn presents two peaks, one around zero and
the other one around E(Xn). The mass of each peak converges to 1/2 when n goes to infinity.
The tail of pn, on the other hand, is equal to:

pn(x) = p0(x+ Sn) when x & E(Xn)

For the Pareto-like distribution, the two parts of p10 are respectively shown on graphs (a) and
(b) of Figure 6.4.

185

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

E(X10)

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

(a) (b)

Figure 6.4: For the Pareto-like distribution, probability density function of X10

(a) around zero (b) for large values (Note the change of scale between the two graphs.)

186

Conclusion: relation with learned deep
representations and future work

In this thesis, we have studied the modulus of the wavelet transform. We have seen that this
operator produces a representation of audio signals which is both discriminative (two signals that
are different for a human person have different representations) and stable to transformations
which a person can not hear (multiplication by a slow-varying phase in the time-frequency
domain). In chapters 5 and 6, we have moreover seen how it could be used to construct deep
representations.

Thanks to these properties, the modulus of the wavelet transform is a crucial tool for the
analysis of audio signals. In audio processing, almost all representations used to analyze or
classify sounds rely on the modulus of a time-frequency transform (spectrogram or scalogram,
often under the form of mel-frequency cepstral coefficients). In recent works, the modulus of
the wavelet transform is sometimes followed by sophisticated additional transformations [Hinton
et al., 2012]. However, it is always the starting point of the representation.

The goal of this conclusion is to explain why the situation is somewhat similar in image
processing, although it may be less obvious, and to describe future directions of research.

In image processing, time-frequency representations have also been the cause of important
successes, with in particular descriptors like SIFT [Lowe, 1999] or HOG [Dalal and Triggs,
2005]. However, a recent and very successful trend in image processing consists in learning deep
representations from end to end, using raw pixels as inputs [Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015; Szegedy et al., 2015]. In this case, no modulus of wavelet transform is
explicitly computed.

Nevertheless, it is known that part of filters in the first layer of a neural network spontaneously
tend to resemble Gabor filters, responding to particular orientations and scales [Zeiler and Fergus,
2014]. So they are the same filters as in a wavelet transform, and they are also followed by a
non-linearity, even if it is not exactly a modulus. Indeed, we are going to see that, at least in
AlexNet [Krizhevsky et al., 2012], the first half of the first convolutional layer is essentially the
modulus of a wavelet transform.

187

This observation is coherent with the results of [Yosinski et al., 2014], suggesting that the first
layers of a neural network are relatively universal: they do not depend much on the dataset on
which the representation has been learned. It is also in line with [Perronnin and Larlus, 2015],
who show that replacing the first layers of a neural network by more traditional descriptors
(Fisher vectors) simplifies the learning, while retaining a high classification accuracy.

In the first paragraph of this conclusion, we compare the filters of the first layer of AlexNet
with the ones of a wavelet transform. In the second paragraph, we discuss the non-linearity. We
conclude with preliminary remarks on the second layer.

The images are generated with Caffe [Jia et al., 2014]. We use the version of AlexNet
implemented in Caffe, which slightly differs from the original one.

First convolutional layer

AlexNet contains eight layers. The first five are convolutional, and the last three fully-
connected. At the first layer, there are 96 filters, of size 3 × 11 × 11. The first dimension
corresponds to the three color channels of the input image, while the second and third dimensions
are spatial. The 96 filters are displayed in color on Figure 7.1.

In the implementation of AlexNet, due to memory constraints, the filters of each convolutional
layer are split in two halves, stored on different GPUs. There is no communication between the
two GPUs, except in the third convolutional layer and in the fully-connected ones. Even if this
is not imposed by the architecture, the first GPU tends to learn black-and-white filters, while
the second one learns colored filters.

Here, we focus our analysis on the black-and-white filters, that is, the first 48 ones. They
are displayed on Figure 7.2 (a). Except for numbers 11, 25, 43, 46 and 47, these filters have
zero-mean and present oscillating patterns, with distinct orientations. They are similar to filters
of a two-dimensional wavelet transform.

As shown in Figure 7.2 (b), their Fourier transforms are very well-localized in frequency.
The distribution of characteristic frequencies in the plane is shown on Figure 7.3. It is relatively
uniform across the different orientations. However, it is logarithmic in scale: the three circular
rings of figure 7.3 (obtained one from each other by dilations of factor 2) contain approximately
the same number of frequencies. This is the same distribution as in the case of a wavelet
transform.

Figure 7.2 (c) shows, for each of the 48 filters, its closest approximation in a frame of real
Gabor wavelets. Except for filters 11, 25, 43, 46 and 47, the approximation is good.

188

Figure 7.1: The 92 filters of the first layer of AlexNet. Each filter has size 3× 11× 11.

(a) (b) (c)

Figure 7.2: (a) the 48 first filters of the first layer of AlexNet (normalized for a better visibility)
(b) their Fourier transform (amplitude only) (c) their approximation in a frame of Gabor wavelets

189

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

15 filters

19 filters

14 filters

Figure 7.3: Distribution of characteristic frequencies, for the filters of Figure 7.2. The frequencies
have been normalized so as to fit in the square [−1; 1]× [−1; 1]. The blue circles divide the space
in three dyadic frequential rings; the number of frequencies in each ring is indicated on the right.

Non-linearity

In AlexNet (as in most deep networks), the filters are real-valued. This is a priori an impor-
tant difference with the complex wavelet transforms used throughout this thesis. Moreover, the
non-linearity used in AlexNet is a Rectified Linear Unit (ReLU: x → max(0, x)), followed by a
max-pooling; it is not a modulus.

However, depending on the choice some parameters, the combination “real wavelet transform
+ ReLU + max-pooling” can produce coefficients very similar to the ones obtained with a
complex wavelet transform followed by a modulus.

Indeed, if ψ is a complex-valued wavelet, sufficiently localized in frequency, with characteristic
frequency ν ∈ R2, then, for each real-valued function f , the convolved function f ? ψ is of the
form:

f ? ψ(x) ≈ f0(x)ei〈ν,x〉 (x ∈ R2)

where f0 is low-frequency.
So:

|f ? ψ(x)| = |f0(x)| (x ∈ R2) (7.1)

If one replaces the complex wavelet ψ by its real part Re (ψ) = (ψ + ψ)/2, then, because f is
real-valued:

f ? Re (ψ)(x) = Re (f ? ψ)(x)

= Re (f0(x)ei〈ν,x〉)

190

As f0 is a low-frequency function, it can be considered approximately constant in the neighbor-
hood of each point x0: f0(x) ≈ |f0(x0)|eiφ0 , where φ0 is a phase depending on x0. So:

f ? Re (ψ)(x) ≈ Re (|f0(x0)|ei(φ0+〈ν,x〉)) = |f0(x0)| cos(φ0 + 〈ν, x〉)

Combining with ReLU and max-pooling yields:

max-pool(ReLU(f ? Re (ψ)))(x) ≈ max
||y−x||1≤M

(
max

(
0, |f0(x0)| cos(φ0 + 〈ν, y〉)

))
= |f0(x0)| max

||y−x||1≤M

(
max

(
0, cos(φ0 + 〈ν, y〉)

))
where M is the spatial extent of the max-pooling.
If 2M is larger than the period of the cosine function, 2π/||ν||2, then the cosine always reaches
1 on the set {||y − x||1 ≤M}, whatever the value of x is. So:

max-pool(ReLU(f ? Re (ψ)))(x) ≈ |f0(x0)| (7.2)

which is exactly Equation (7.1).

This reasoning seems to apply for AlexNet. Figure 7.4 (a) displays, for the input image
shown in (c), the coefficients returned by AlexNet after the first max-pooling layer (for the first
48 channels). In subfigure (b) are displayed the same coefficients, where the real filters have been
replaced by complex ones, and the combination of ReLU and max-pooling has been replaced by
a modulus. The coefficients in (a) and (b) are not exactly identical, but all the same very similar.
In particular, in each case, the non-negligible coefficients are located in the same channels, at
the same spatial position.

Second layer

At the second layer, there are 256 filters. Again, we focus on the first half. Each filter has
dimensions 48×5×5. The first dimension corresponds to the indexes of the 48 first filters of the
first layer. As first-layer filters are localized in the frequency domain, it can be seen a frequential
index. The second and third dimensions are spatial variables.

As for the first layer, we would like to describe the transformation performed by these filters
in terms of a simple operator like the wavelet transform. This question is still unsolved for us;
in this last paragraph, we limit ourselves to preliminary considerations. The key point is to
understand the interaction between frequential and spatial variables.

To partially overcome the difficulty raised by the three-dimensionality of filters, a possible
approach is to use the fact that most filters at this layer can be written as a linear combination

191

(a) (b) (c)

Figure 7.4: (a) Coefficients after the first max-pooling step (b) Same coefficients, where real filters
have been converted to analytic ones and the max-pooling has been replaced by a modulus (c)
Input image (source: Antoine Letarte, http://commons.wikimedia.org/wiki/File:Polar_

bear_headshot_2011.jpg)

of a small number of filters that are separable in space and frequency variables:

ψν,k,l =
S∑
s=1

ψs,freqν ψs,spatk,l ν = 1, ..., 48 k, l = 1, ..., 5

The integer S is small, typically of the order 5. This observation is not new; it has in partic-
ular been used to reduce the computational time needed to solve classification tasks with deep
networks [Jaderberg et al., 2014].

Although S is in general not equal to 1, the first term of the decomposition, ψ1,freq
ν ψ1,spat

k,l ,
already gives an idea of the operations performed by second-layer filters.

The spatial components ψ1,spat are displayed on Figure 7.5. They fall into two categories:
zero-mean filters which again tend to look like wavelets (subfigure (a)) and filters with non-zero
mean, the majority of which seem to perform local averages (subfigure(b)).

The frequential components ψ1,freq
ν are shown on Figure 7.6. Each component is seen as a

function from R2 to R: to a point (x, y) ∈ R2 we associate the value ψ1,freq
ν , for ν the index of

the first-layer filter whose characteristic frequency is the closest to (x, y).
Some filters are almost constant; they seem to perform averages in the frequential domain

(last filter of the fifth row or second filter of the third row). Others, in polar coordinates (ρ, θ),
do not vary much in r but present oscillations in θ (sixth filter of the first row or third filter of
the seventh row). These filters are similar to the ones of the second-layer of scattering networks
used for image analysis: in these networks, the second layer is a joint wavelet transform in both
spatial and frequential variables (which allows to achieve invariance or stability to the action

192

http://commons.wikimedia.org/wiki/File:Polar_bear_headshot_2011.jpg
http://commons.wikimedia.org/wiki/File:Polar_bear_headshot_2011.jpg

(a) (b)

Figure 7.5: Spatial components for the filters of the second layer of AlexNet. (a) with zero mean
(b) with non-zero mean

193

Figure 7.6: Frequential components for the filters of the second layer of AlexNet. Each compo-
nent is pictured as a function from the frequency plane R2 to R.

of the rotation group) [Sifre and Mallat, 2013; Oyallon and Mallat, 2015]. There are also more
complicated shapes.

Future work will consist in precisely analyzing these second-layer filters, and see to what ex-
tent they can be replaced by operators with simple analytic expressions. We can then determine
what information it brings on the geometric properties of images that deep networks implicitly
use, and see if it suggests possible ways to improve the first layers of deep representations.

194

Contents

1 Introduction 5
1.1 Phase retrieval problems . 6

1.1.1 Theoretical issues . 6
1.1.2 Algorithms . 8
1.1.3 A general phase retrieval algorithm, PhaseCut (chapter 2) 10

1.2 Phase retrieval for the wavelet transform . 11
1.2.1 Wavelet transform modulus . 11
1.2.2 Interest of the phase retrieval problem 12
1.2.3 Phase retrieval for the Cauchy wavelet transform (chapter 3) 14
1.2.4 Phase retrieval for wavelet transforms: a non-convex algorithm (chapter 4) 15

1.3 Scattering transforms . 16
1.3.1 Definition of scattering . 16
1.3.2 Success and open question . 17
1.3.3 Exponential decay of scattering coefficients (chapter 5) 19
1.3.4 Generalized scattering (chapter 6) . 19

2 A general phase retrieval algorithm, PhaseCut 21
Notations . 22

2.1 Phase recovery . 23
2.1.1 Greedy optimization in the signal . 23
2.1.2 Splitting phase and amplitude variables 24
2.1.3 Greedy optimization in phase . 25
2.1.4 Complex MaxCut . 26

2.2 Algorithms . 28
2.2.1 Interior point methods . 28
2.2.2 First-order methods . 28
2.2.3 Block coordinate descent . 29
2.2.4 Initialization & randomization . 31

195

2.2.5 Approximation bounds . 31
2.2.6 Exploiting structure . 31

2.3 Matrix completion & exact recovery conditions 33
2.3.1 Weak formulation . 34
2.3.2 Phase recovery as a projection . 34
2.3.3 Tightness of the semidefinite relaxation 36
2.3.4 Stability in the presence of noise . 39
2.3.5 Perturbation results . 41
2.3.6 Complexity comparisons . 41
2.3.7 Greedy refinement . 43
2.3.8 Sparsity . 43

2.4 Numerical results . 44
2.4.1 Oversampled Fourier transform . 44
2.4.2 Multiple random illumination filters . 46
2.4.3 Wavelet transform . 47
2.4.4 Impact of trace minimization . 49
2.4.5 Reconstruction in the presence of noise 49

2.5 Technical lemmas . 53

3 Phase retrieval for the Cauchy wavelet transform 57
Notations . 58

3.1 Uniqueness of the reconstruction for Cauchy wavelets 59
3.1.1 Definition of the wavelet transform; comparison with Fourier 59
3.1.2 Uniqueness theorem for Cauchy wavelets 61
3.1.3 Discrete case . 64
3.1.4 Proof of Theorem 3.1 . 68

3.2 Weak stability of the reconstruction . 71
3.2.1 Definitions . 71
3.2.2 Weak stability theorem . 72

3.3 The reconstruction is not uniformly continuous 73
3.3.1 A simple example . 74
3.3.2 A wider class of instabilities . 76

3.4 Local stability result . 77
3.4.1 Main principle . 77
3.4.2 Case a = 2 . 78
3.4.3 Case a < 2 . 80

3.5 Numerical experiments . 82
3.5.1 Description of the algorithm . 83

196

3.5.2 Input signals . 84
3.5.3 Noise . 85
3.5.4 Results . 85

3.6 Technical lemmas . 89
3.6.1 Lemmas of the proof of Theorem 3.1 . 89
3.6.2 Lemmas of the proof of Theorem 3.11 93
3.6.3 Proof of Theorem 3.17 . 95
3.6.4 Proof of Theorem 3.18 . 99
3.6.5 Bounds for holomorphic functions . 107

4 Phase retrieval for wavelet transforms: a non-convex algorithm 111
Definitions and assumptions . 112
4.1 Reformulation of the phase retrieval problem . 113

4.1.1 Introduction of auxiliary wavelets and reformulation 114
4.1.2 Phase propagation across scales . 116
4.1.3 Local optimization of approximate solutions 116

4.2 Description of the algorithm . 117
4.2.1 Organization of the algorithm . 117
4.2.2 Reconstruction by exhaustive search for small problems 118
4.2.3 Error correction . 119

4.3 Multiscale versus non-multiscale . 120
4.3.1 Advantages of the multiscale reconstruction 122
4.3.2 Multiscale Gerchberg-Saxton . 122

4.4 Numerical results . 123
4.4.1 Experimental setting . 124
4.4.2 Results . 125
4.4.3 Stability of the reconstruction . 132
4.4.4 Influence of the parameters . 134

4.5 Proof of Lemmas 4.4 and 4.2 . 137
4.5.1 Proof of Lemma 4.4 . 137
4.5.2 Proof of Lemma 4.2 . 138

5 Exponential decay of scattering coefficients 140
5.1 The scattering transform . 141

5.1.1 Definition . 141
5.1.2 Norm preservation and energy propagation 142

5.2 Theorem statement . 144
5.3 Principle of the proof . 146

197

5.4 Adaptation of the theorem to stationary processes 149
5.5 Proof of Lemmas . 149

5.5.1 Proof of Lemma 5.3 . 149
5.5.2 Proof of Lemma 5.4 . 150
5.5.3 Initialization . 152

6 Generalized scattering 157
6.1 Definition of the generalized scattering . 158
6.2 Energy preservation . 159

6.2.1 One-dimensional case . 159
6.2.2 Generalization to higher dimensions . 161

6.3 Characterization of the distribution tail . 163
6.3.1 Proof . 164
6.3.2 Proof of Lemma 6.5 . 167
6.3.3 Proof of Lemma 6.6 . 167
6.3.4 Proof of Lemma 6.7 . 171
6.3.5 Proof of Lemma 6.9 . 178
6.3.6 Proof of Lemma 6.10 . 181

6.4 Numerical illustrations . 183
6.4.1 Characterization of the distribution tail 183
6.4.2 Probability distribution of Xn . 185

Conclusion: relation with learned deep representations and future work 187
First convolutional layer . 188
Non-linearity . 190
Second layer . 191

198

Bibliography

K. Achan, S. T. Roweis, and B. J. Frey. Probabilistic inference of speech signals from phaseless
spectrograms. In Advances in Neural Information Processing Systems 16, pages 1393–1400,
2004.

E. J. Akutowicz. On the determination of the phase of a Fourier integral, I. Transactions of the
American Mathematical Society, 83(1):179–192, 1956.

E. J. Akutowicz. On the determination of the phase of a Fourier integral, II. Proceedings of the
American Mathematical Society, 8(2):234–238, 1957.

B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon. Phase retrieval with polarization.
SIAM Journal on Imaging Sciences, 7:35–66, 2013.

J. Andén and S. Mallat. Multiscale scattering for audio classification. In Proceedings of the
International Society of Music Information Retrieval 2011 Conference, 2011.

S. Andreys and P. Jaming. Zak transform and non-uniqueness in an extension of pauli’s phase
retrieval problem. Preprint, 2015. https://hal.archives-ouvertes.fr/hal-01103583v1.

A. Antoniadis. Wavelets in statistics: a review. Journal of the Italian Statistical Society, 6(2):
97–144, 1997.

R. Balan and Y. Wang. Invertibility and robustness of phaseless reconstruction. Applied and
Computational Harmonic Analysis, 38(3):469–488, 2015.

R. Balan, P. Casazza, and D. Edidin. On signal reconstruction without noisy phase. Applied
and Computational Harmonic Analysis, 20:345–356, 2006.

A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson. Saving phase: Injectivity and stability
for phase retrieval. Applied and Computational Harmonic Analysis, 37(1):106–125, 2014.

R. Barakat and G. Newsam. Necessary conditions for a unique solution to two-dimensional phase
recovery. Journal of Mathematical Physics, 25(11):3190–3193, 1984.

199

H. H. Bauschke, P. L. Combettes, and D. R. Luke. Phase retrieval, error reduction algorithm, and
fienup variants: a view from convex optimization. Journal of the Optical Society of America,
19:1334–1345, 2002.

S. Becker, E. J. Candès, and M. Grant. Tfocs v1.1. User guide, 2012.

A. Ben-Tal and A. S. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. Society for Industrial and Applied Mathematics, 2001.

A. Ben-tal, A. Nemirovski, and C. Roos. Extended matrix cube theorems with applications to
mu-theory in control. Mathematics of Operations Research, 28(3):497–523, 2003.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied
Mathematics. Princeton University Press, 2009.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: a review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828, 2013.

D. Bertsekas. Nonlinear programming. Athena scientific, 1998.

R. Bhatia. Matrix analysis, volume 169. Springer Verlag, 1997.

B. G. Bodmann and N. Hammen. Stable phase retrieval with low-redundancy frames. Advances
in Computational Mathematics, 41(2):317–331, 2014.

J. Bouvrie and T. Ezzat. An incremental algorihtm for signal reconstruction from stft magnitude.
In International conference on spoken language processing, 2006.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

J. Bruna. Scattering representations for recognition. PhD thesis, École Polytechnique, Palaiseau,
2013.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1872–1886, 2013a.

J. Bruna and S. Mallat. Audio texture synthesis with scattering moments. Preprint, 2013b.
http://arxiv.org/abs/1311.0407.

J. Bruna, S. Mallat, E. Bacry, and J.-F. Muzy. Intermittent process analysis with scattering
moments. Annals of Statistics, 43(1):323–351, 2015.

200

O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy, and J. F. van der Veen.
Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles
across microfluidic channels. Acta Crystallographica Section A, 63(4):306–314, 2007.

E. J. Candès and X. Li. Solving quadratic equations via phaselift when there are about as many
equations as unknowns. Foundations of Computational Mathematics, 14(5):1017–1026, 2014.

E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 9(6):717–772, 2009.

E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix comple-
tion. SIAM Journal on Imaging Sciences, 6(1):199–225, 2011.

E. J. Candès, T. Strohmer, and V. Voroninski. Phaselift: exact and stable signal recovery from
magnitude measurements via convex programming. Communications in Pure and Applied
Mathematics, 66(8):1241–1274, 2013.

E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction patterns.
Applied and Computational Harmonic Analysis, 39(2):277–299, 2015.

E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: theory and
algorithms. IEEE Transactions of Information Theory, 61(4):1985–2007, 2015.

A. Chai, M. Moscoso, and G. Papanicolaou. Array imaging using intensity-only measurements.
Inverse Problems, 27(1), 2011.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12(6):805–849, 2012.

X. Chen, X. Cheng, and S. Mallat. Unsupervised deep haar scattering on graphs. In Avances
in Neural Information Processing Systems 25, pages 1709–1717, 2014.

A. Cohen. Ondelettes et traitement numérique du signal. Recherches en mathématiques ap-
pliquées. Masson, 1992.

A. Conca, D. Edidin, M. Hering, and C. Vinzant. Algebraic characterization of injectivity in
phase retrieval. Applied and Computational Harmonic Analysis, 32(2):346–356, 2015.

J. C. Dainty and J. R. Fienup. Phase retrieval and image reconstruction for astronomy. In
H. Stark, editor, Image recovery: theory and application, pages 231–275. Academic Press,
1987.

201

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In The IEEE
Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance
selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.

I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.

C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical
Programming, 62(3):557–574, 1993.

L. Demanet and P. Hand. Stable optimizationless recovery from phaseless linear measurements.
Journal of Fourier Analysis and Applications, 20(1):199–221, 2012.

R. A. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decompositions. American
Journal of Mathematics, 114(4):737–785, 1992.

A. Dosovitskiy and T. Brox. Inverting convolutional networks with convolutional networks.
Technical report, , 2015. http://arxiv.org/abs/1506.02753.

Y. C. Eldar, P. Sidorenko, D. G. Mixon, S. Barel, and O. Cohen. Sparse phase retrieval from
short-time fourier measurements. IEEE Signal Processing Letters, 22(5):638–642, 2015.

M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristic for matrix rank minimization with
applications to hankel and euclidean distance matrices. American Control Conference, 3:
2156–2162, 2003.

J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–2769, 1982.

F. Fogel, I. Waldspurger, and A. d’Aspremont. Phase retrieval for imaging problems. to appear
in Mathematical programming computation, 2013.

John B. Garnett. Bounded analytic functions. Academic Press, 1981.

R. Gerchberg and W. Saxton. A practical algorithm for the determination of phase from image
and diffraction plane pictures. Optik, 35:237–246, 1972.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–
1145, 1995.

M. X. Goemans and D. P. Williamson. Approximation algorithms for max-3-cut and other
problems via complex semidefinite programming. Journal of Computer and System Sciences,
68(2):442 – 470, 2004.

202

D. Griffin and J. S. Lim. Signal estimation from modified short-time fourier transform. IEEE
Transactions on Acoustics, Speech and Signal Processing, 32:236–243, 1984.

D. Gross, F. Krahmer, and R. Kueng. A partial derandomization of PhaseLift using spherical
designs. Journal of Fourier Analysis and Applications, 21(2):229–266, 2015a.

D. Gross, F. Krahmer, and R. Kueng. Improved recovery guarantees for phase retrieval from
coded diffraction patterns. To appear in Applied and Computational Harmonic Analysis,
2015b.

M. H. Hayes. The reconstruction of a multidimensional sequence from the phase or magnitude
of its fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30
(2):140–154, 1982.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6(2):342–361, 1996.

G. Hinton, L. Deng, D. Yu, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. S. G.
Dahl, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition.
IEEE Signal Processing Magazine, 29(6):82–97, 2012.

M. Hirn, N. Poilvert, and S. Mallat. Quantum energy regression using scattering
transforms. Submitted to the International Conference on Machine Learning, 2015.
http://arxiv.org/abs/1502.02077.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with
low rank expansions. In British Machine Vision Conference, 2014.

P. Jaming. Uniqueness results in an extension of pauli’s phase retrieval problem. Applied and
Computational Harmonic Analysis, 37:413–441, 2014.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell. Caffe: convolutional architecture for fast feature embedding. In Proceedings of the
ACM International Conference on Multimedia, pages 675–678, 2014.

N. El Karoui and A. d’Aspremont. Second-order accurate distributed eigenvector computation
for extremely large matrices. Electronical Journal of Statistics, 4, 2010.

T. Kato. Perturbation theory for linear operators. Springer, 1995.

M. Kisialiou and Z.-Q. Luo. Probabilistic analysis of semidefinite relaxation for binary quadratic
minimization. SIAM Journal on Optimization, 20(4):1906–1922, 2010.

203

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pages 1097–1105,
2012.

W. Kryloff. On functions which are regular in a half-plane. Matematicheskii Sbornik, 6, 1939.

X. Li and V. Voroninski. Sparse signal recovery from quadratic measurements via convex pro-
gramming. SIAM Journal on Mathematical Analysis, 45(5):3019–3033, 2013.

L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM
Journal on Optimization, 1(2):166–190, 1991.

D. G. Lowe. Object recognition from local scale-invariant features. In International Conference
on Computer Vision, pages 1150–1157, 1999.

Z.-Q. Luo, X. Luo, and M. Kisialiou. An efficient quasi-maximum likelihood decoder for PSK
signals. In International Conference on Acoustics, Speech, and Signal Processing, pages 561–
564, 2003.

A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In
The IEEE Conference on Computer Vision and Pattern Recognition, pages 5188–5196, 2015.

S. Mallat. A wavelet tour of signal processing. The Sparse Way. Third Edition. Elsevier, 2009.

S. Mallat. Group invariant scattering. Communications in Pure and Applied Mathematics, 65
(10):1331–1398, 2012.

S. Mallat and I. Waldspurger. Deep learning by scattering. Preprint, 2013.
http://arxiv.org/abs/1306.5532.

S. Mallat and I. Waldspurger. Phase retrieval for the cauchy wavelet transform. to appear in
the Journal of Fourier Analysis and Applications, 2014.

J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. Extending x-ray crystallography to allow the
imaging of noncrystalline materials, cells, and single protein complexes. Annual Review of
Physical Chemistry, 59:387–410, 2008.

R. P. Millane. Phase retrieval in cristallography and optics. Journal of Optical Society of America
A, 7(3):394–411, 1990.

M. L. Moravec, J. K. Romberg, and R. G. Baraniuk. Compressive phase retrieval. In Wavelets
XII in SPIE International Symposium on Optical Science and Technology, 2007.

204

S. H. Nawab, T. F. Quatieri, and J. S. Lim. Signal reconstruction from short-time fourier
transform magnitude. IEEE Transactions on Acoustics, Speech, and Signal Processing, pages
986–998, 1983.

Y. Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization Meth-
ods and Software, 9(1-3):141–160, 1998.

Y. Nesterov. Smoothing technique and its applications in semidefinite optimization. Mathemat-
ical Programming, 110(2):245–259, 2007.

P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization. In
Advances in Neural Information Processing Systems 26, pages 1796–2804, 2013.

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation,
pages 773–782, 1980.

E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification. In The IEEE
Conference on Computer Vision and Pattern Recognition, pages 2865–2873, 2015.

F. Perronnin and D. Larlus. Fisher vectors meet neural networks: a hybrid classification ar-
chitecture. In The IEEE Conference on Computer Vision and Pattern Recognition, pages
3743–3752, 2015.

J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli. Phase retrieval for sparse signals: uniqueness
conditions. Preprint, 2013. http://arxiv.org/abs/1308.3058.

J.-C. Risset and D. L. Wessel. Exploration of timbre by analysis and synthesis. In D. Deutsch,
editor, The psychology of music, pages 113–169. Academic Press, 1999.

W. Rudin. Real and complex analysis, third edition. McGraw-Hill International Editions, 1987.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision (IJCV), pages 1–42, 2015.

J. L. C. Sanz. Mathematical considerations for the problem of fourier transform phase retrieval
from magnitude. SIAM Journal on Applied Mathematics, 45(4):651–664, 1985.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd Edition.
Wiley, 2015.

205

I. W. Selesnick. Hilbert transform pairs of wavelet bases. IEEE Signal Processing Letters, 8,
2001.

P. Sermanet, K. Kavukcuogly, S. Chintala, and Y. LeCun. Pedestrian detection with unsuper-
vised multi-stage feature learning. In The IEEE Conference on Computer Vision and Pattern
Recognition, pages 3626–3633, 2013.

Y. Shechtman, A. Szameit, E. Osherovic, E. Bullkich, H. Dana, S. Gazit, S. Shoham,
M. Zibulevsky, I. Yavneh, E. B. Kley, Y. C. Eldar, O. Cohen, and M. Segev. Sparsity-based
single-shot sub-wavelength coherent diffractive imaging. In Frontiers in Optics 2011/Laser
Science XXVII, 2011.

N. Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and System Sciences,
25, 1987.

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture dis-
crimination. In The IEEE Conference on Computer Vision and Pattern Recognition, pages
1233–1240, 2013.

L. Sifre, J. Andén, M. Kapoko, E. Oyallon, and V. Lostanlen. Scatnet v0.2. Software, 2013.
http://www.di.ens.fr/data/software/scatnet/.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In International Conference on Learning Representations, 2015.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutionnal networks: visualis-
ing image classification models and saliency maps. In International Conference on Learning
Representations Workshop, 2014.

A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and
Computational Harmonic Analysis, 30(1):20–36, 2011.

A. M.-C. So. Probabilistic analysis of the semidefinite relaxation detector in digital communi-
cations. In Proceedings of the 21st annual ACM-SIAM Symposium on Discrete Algorithms,
pages 698–711, 2010.

A. M.-C. So and Y. Ye. Probabilistic analysis of semidefinite relaxation detectors for multiple-
input, multiple-output. In D. P. Palomar and Y. C. Eldar, editors, Convex optimization in
signal processing and applications. Cambridge University Press, 2010.

A. M.-C. So, J. Zhang, and Y. Ye. On approximating complex quadratic optimization problems
via semidefinite programming relaxations. Mathematical Programming, 110(1):93–110, 2007.

206

G. W. Stewart. Matrix algorithms, Volume II: eigensystems. SIAM, 2001.

G. W. Stewart and J. Sun. Matrix perturbation theory. Academic Press, 1990.

N. Sturmel and L. Daudet. Signal reconstruction from STFT magnitude: a state of the art. In
Proceedings of the 14th international conference on digital audio effects, pages 375–386, 2011.

D. L. Sun and J. O. Smith. Estimating a signal from a magnitude spectrogram via convex
optimization. In Audio Engineering Society 133rd Convention, 2012.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In The IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–9, 2015.

K. C. Toh, M. J. Todd, and T. H. Tutuncu. Sdpt3 - a MATLAB software package for semidefinite
programming. Optimization Methods and Software, 11:545–581, 1999.

T. Virtanen. Monaural sound source separation by nonnegative matrix factorization with tem-
poral continuity and sparseness criteria. IEEE Transactions on Audio, Speech, and Language
Processing, 15(3):1066–1074, 2007.

V. Voroninski. A comparison between the phaselift and phasecut algorithms. Working paper,
2012.

I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, maxcut and complex semidefi-
nite programming. Mathematical Programming, 149(1-2):47–81, 2015.

A. Walther. The question of phase retrieval in optics. Optica Acta, 10(1):41–49, 1963.

Z. Wen, D. Goldfarb, and K. Scheinberg. Block coordinate descent methods for semidefinite
programming. In Handbook on semidefinite, conic and polynomial optimization, pages 533–
564. Springer, 2012.

X. Yang, K. Wang, and S. A. Shamma. Auditory representations of acoustic signals. IEEE
Transactions on Information Theory, 38(2):824–839, 1992.

E. A. Yildirim. An interior-point perspective on sensitivity analysis in semidefinite programming.
Mathematics of Operations Research, 28(4):649–676, 2003.

E. A. Yildirim and M. Todd. Sensitivity analysis in linear programming and semidefinite pro-
gramming using interior-point methods. Mathematical Programming, 90(2):229–261, 2001.

207

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems 27, pages 3320–3328, 2014.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proceed-
ings of the European Conference on Computer Vision, pages 818–833, 2014.

S. Zhang and Y. Huang. Complex quadratic optimization and semidefinite programming. SIAM
Journal on Optimization, 16(3):871–890, 2006.

208

	Introduction
	Phase retrieval problems
	Theoretical issues
	Algorithms
	A general phase retrieval algorithm, PhaseCut (chapter 2)

	Phase retrieval for the wavelet transform
	Wavelet transform modulus
	Interest of the phase retrieval problem
	Phase retrieval for the Cauchy wavelet transform (chapter 3)
	Phase retrieval for wavelet transforms: a non-convex algorithm (chapter 4)

	Scattering transforms
	Definition of scattering
	Success and open question
	Exponential decay of scattering coefficients (chapter 5)
	Generalized scattering (chapter 6)

	A general phase retrieval algorithm, PhaseCut
	Notations
	Phase recovery
	Greedy optimization in the signal
	Splitting phase and amplitude variables
	Greedy optimization in phase
	Complex MaxCut

	Algorithms
	Interior point methods
	First-order methods
	Block coordinate descent
	Initialization & randomization
	Approximation bounds
	Exploiting structure

	Matrix completion & exact recovery conditions
	Weak formulation
	Phase recovery as a projection
	Tightness of the semidefinite relaxation
	Stability in the presence of noise
	Perturbation results
	Complexity comparisons
	Greedy refinement
	Sparsity

	Numerical results
	Oversampled Fourier transform
	Multiple random illumination filters
	Wavelet transform
	Impact of trace minimization
	Reconstruction in the presence of noise

	Technical lemmas

	Phase retrieval for the Cauchy wavelet transform
	Notations
	Uniqueness of the reconstruction for Cauchy wavelets
	Definition of the wavelet transform; comparison with Fourier
	Uniqueness theorem for Cauchy wavelets
	Discrete case
	Proof of Theorem 3.1

	Weak stability of the reconstruction
	Definitions
	Weak stability theorem

	The reconstruction is not uniformly continuous
	A simple example
	A wider class of instabilities

	Local stability result
	Main principle
	Case bold0mu mumu a=2a=22005/06/28 ver: 1.3 subfig packagea=2a=2a=2a=2
	Case bold0mu mumu a<2a<22005/06/28 ver: 1.3 subfig packagea<2a<2a<2a<2

	Numerical experiments
	Description of the algorithm
	Input signals
	Noise
	Results

	Technical lemmas
	Lemmas of the proof of Theorem 3.1
	Lemmas of the proof of Theorem 3.11
	Proof of Theorem 3.17
	Proof of Theorem 3.18
	Bounds for holomorphic functions

	Phase retrieval for wavelet transforms: a non-convex algorithm
	Definitions and assumptions
	Reformulation of the phase retrieval problem
	Introduction of auxiliary wavelets and reformulation
	Phase propagation across scales
	Local optimization of approximate solutions

	Description of the algorithm
	Organization of the algorithm
	Reconstruction by exhaustive search for small problems
	Error correction

	Multiscale versus non-multiscale
	Advantages of the multiscale reconstruction
	Multiscale Gerchberg-Saxton

	Numerical results
	Experimental setting
	Results
	Stability of the reconstruction
	Influence of the parameters

	Proof of Lemmas 4.4 and 4.2
	Proof of Lemma 4.4
	Proof of Lemma 4.2

	Exponential decay of scattering coefficients
	The scattering transform
	Definition
	Norm preservation and energy propagation

	Theorem statement
	Principle of the proof
	Adaptation of the theorem to stationary processes
	Proof of Lemmas
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Initialization

	Generalized scattering
	Definition of the generalized scattering
	Energy preservation
	One-dimensional case
	Generalization to higher dimensions

	Characterization of the distribution tail
	Proof
	Proof of Lemma 6.5
	Proof of Lemma 6.6
	Proof of Lemma 6.7
	Proof of Lemma 6.9
	Proof of Lemma 6.10

	Numerical illustrations
	Characterization of the distribution tail
	Probability distribution of bold0mu mumu XnXn2005/06/28 ver: 1.3 subfig packageXnXnXnXn

	Conclusion: relation with learned deep representations and future work
	First convolutional layer
	Non-linearity
	Second layer

