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Abstract

These three discussions, including one jointly written with Judith
Rousseau and one written jointly with Gilles Celeux, Florence Forbes
and Mike Titterington, are associated with three papers related to
Bayesian model choice. This area of Bayesian statistics is still the
object of intense and antagonistic debates and our vision of the field
is reflected by these three texts.
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Intrinsic credible regions: On objective

Bayesian approach to interval estimation

by José Miguel Bernardo

A discussion [published by TEST]
Judith Rousseau and Christian P. Robert

CEREMADE, Université Paris Dauphine and CREST, INSEE

In this paper, José Miguel Bernardo presents a unified and structured
objective approach to (decisional) statistical inference, based on information
theoretic ideas he has used previously to define reference priors. He focusses
here on the estimation of credible regions, keeping those values of the pa-
rameter that are the least costly rather than the most probable, as in HPD
regions. This is an interesting and novel approach to an efficient construc-
tion of credible regions when lacking a decision-theoretic basis. As noted in
Casella et al. (1993a,b) (see also Robert, 2001, Section 5.5.3, for a review),
the classical decision-theoretic approaches to credible regions are quite be-
hind their counterpart for point estimation and testing and incorporating
loss perspectives in credible sets was then suggested in Robert and Casella
(1994).

1 On invariance: link with HPD regions

A possible drawback of HPD regions, in particular in objective contexts, is
their lack of invariance under re-parameterization as was pointed out by José
Miguel Bernardo. Obviously, HPD regions are defined in terms of a volume-
under-fixed-coverage loss and they do minimize the volume among q-credible
regions. The lack of invariance hence stems from the lack of invariance in
the definition of the volume, which is based on the Lebesgue measure for the
considered parametrization θ. Therefore, simply considering a different type
of volume based on an invariant measure would result in an HPD region that
is invariant under reparameterization. A natural invariant measure in this
setup is Jeffreys’ measure, due to its geometric and information interpreta-
tions (among others). The resulting HPD region is thus constructed as the
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region C that minimizes

∫

C

√

i(θ)dθ, u.c. P π[C|X] ≥ q. (1)

This region also corresponds to the transform of the (usual) HPD region
constructed using the reference parametrization as defined by José Miguel
Bernardo.

Note that, in the above construction, there is absolutely no need in having
the prior be Jeffreys prior and this construction could be used in (partially)
informative setups. It is also interesting to note that, in regular cases, the
above HPD region is asymptotically equivalent to the intrinsic credible region
of José Miguel Bernardo. Which of both approaches is the most appealing
is probably a question of taste or depends on how they will be used.

On a more philosophical basis, we think that invariance is less compelling
an argument for (credible) regions than for point estimations. Indeed, while
it is difficult to sell to a customer that the estimator of h(θ) is not necessarily
the transform h(θ̂) of the estimator θ̂ of θ, the transform of a crebible region
does remain a credible region, even though it is not always the optimal region.
Moreover, invariance under reparameterization should be weighted against
shape poor modifications. Indeed, if we impose that the credible region Ch

on h(θ) is the transform by h of the credible region Cid on θ, we get exposed
to strange shapes for less regular functions h! For instance, if the transform h
is not monotonic (but still one-to-one), it is possible to obtain the transform
of a credible interval as a collection of several disjoint intervals, always a
puzzling feature! Connexity (and maybe to some extent convexity) should
be part of the constraints on a credible region.

2 Asymptotic coverage : matching proper-

ties

Under regularity properties, the HPD region defined by (1) is a second order
matching region for any smooth prior π, in the sense that its frequentist
coverage is equal to its posterior coverage to the order O(n−1). Third order
coverage does not necessarily apply for Jeffreys’ prior, though (see Datta
and Mukerjee, 2004 or Rousseau, 1997). As José Miguel Bernardo’s intrinsic
credible region is asymptotically equivalent to the HPD region defined by (1)
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there is a chance that second order matching is satisfied, which would explain
the good small sample properties mentioned in the paper. In particular, the
perturbation due to using the intrinsic loss, compared to using the posterior
density, is of order O(n−1), so second order asymptotics should be the same
between (1) and the intrinsic credible region.

Investing further the higher order matching properties of this credible
region would be worthwhile though. Regarding the discrete case, how-
ever, things are more complicated than what was mentioned by José Miguel
Bernardo since there is usually no matching to orders higher than O(n−1/2)
or sometimes o(n−1/2) for higher dimensional cases. Whether reference pos-
terior q-credible regions provide the best available solution for this particular
problem is somehow doubtful as there are many criteria which could reason-
ably be considered for comparing credible regions or their approximations in
the discrete case, see Brown et al. (2002).

3 Computations

Adopting this approach to credible set construction obviously makes life
harder than computing HPD regions: while HPD regions do simply require
the derivation of a posterior level ̺ for the set {θ : π(θ|x) ≥ ̺} to have cov-
erage q, an intrinsic credible set involves the intrinsic loss—not easily com-
puted outside exponential families—, the posterior intrinsic loss—possibly
integrated over a large dimensional space—, the posterior coverage of the
corresponding region and at last the bound on d(θ|x) that garantees q cov-
erage. In large dimensional settings or outside expential frameworks, the
tasks simply seems too formidable to be contemplated, especially given that
standard numerical features like convexification cannot be taken for granted
since the credible region is not necessarily convex or even connected.
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Deviance Information Criteria

for Missing Data Models:

A rejoinder [published by Bayesian Analysis]
G. Celeux1, F. Forbes2, C.P. Robert3 and D.M. Titterington4

1INRIA FUTURS, Orsay, 2INRIA Rhône-Alpes, Grenoble
3CREST and CEREMADE, Université Paris Dauphine,

and 4Department of Mathematics and Statistics, University of Glasgow

We are grateful to all discussants for their comments and to the editor Rob
Kass for initiating this discussion. Rather than addressing each discussion
separately, we identify several themes of interest and contention among the
discussants that we now develop separately.

1 Foundations of DIC

A theme common to all discussions is that DIC is so far more of a plausible
(?) measure of complexity than a well-grounded criterion. We completely
agree with this perspective and even share the more radical prognosis of
Meng and Vaida that DIC may simply lack a theoretical foundation. Indeed,
there are deeper concerns with DIC than just that of a definition in the miss-
ing data case. In this regard, we do agree with Carlin that our “casework”
analysis cannot solve the problem of defining a proper DIC for missing data
and even less in general. Therefore, Carlin’s point that “authors do not re-
fer at all to any derivation, nor to any subsequent interpretation of model
complexity” is both true and meaningless: if DIC as originally defined is a
universal way of evaluating model fit or model complexity, it should also ap-
ply in the missing data setting and we showed here that it clearly does not.
The main conclusion of our paper is thus that DIC lacks a natural gener-
alisation outside exponential families or, alternatively, that it happened to
work within exponential families while lacking a true theoretical foundation.
Similarly, regarding Meng and Vaida’s criticisms about our proposal of an
almost tautological emphasis, we (obviously!) cannot agree: in the paper,
we are considering models that can be fruitfully regarded as missing data
models, that is models for which there is a many to one mapping linking the
complete data and the observed data.
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Some discussants attempt to provide alternatives that could establish
theoretical foundations for DIC. For instance, van der Linde focusses on
DIC as an approximate estimated loss, in the same way that BIC is an
approximate log Bayes factor, even though she is obviously less critical of
DIC in exponential families. She seems to envisage our developments as the
result of various approximations. (The sentence “the purpose of a model
[is] independent of the sampling scheme” remains a mystery to us.) In that
perspective, we could wonder what is the whole point of producing such
criteria. If the approximation (of a posterior loss?) cannot be evaluated, we
should then consider other models in which no approximation is required and
then check the appropriateness of each approximation... Further, while using
true loss functions is usually sensible (Celeux et al., 2000), it remains to be
seen which loss functions correspond to each of the DICi’s, if any. (In this
regard, DIC2 could be described in a sense as being a more robust version of
the basic DIC1.) This obviously does not relate to the hair(y) loss mentioned
by Meng and Vaida!

The very idea of loss function is nonetheless very central to the debate,
since DIC appears as a portmanteau substitute for well-defined loss functions.
While debating about DIC, we are so far forgetting a central issue, namely
what we plan to do with the output of a model comparison exercise. In fact,
there is a “dark history” of Bayesian model assessment waiting to be told, in
that almost all attempts have stepped outside Bayesian boundaries in order
to evaluate the fit of a model. These attempts include that of Robert and
Rousseau (2002) and involve p-values that are not strictly Bayesian, or that
are not evaluated via a Bayesian perspective. We can therefore truly wonder
whether or not it is possible to compare or even to define model complexity
within the Bayesian paradigm. At a näıve level, an obvious answer is that we
cannot, since we cannot look at a model without standing outside this model.
At another level, however, we could answer positively, since tools like Bayes
factors and even BIC are already available. But this is not really a less näıve
answer! Plummer’s alternative is thus interesting in this respect as (a) it does
not depend on parameterisation and (b) it is a quantity that can be evaluated
a posteriori. Its main drawbacks are that it does not necessarily relate to
the original problem, and also that it uses the replica distribution rather
than the predictive distribution, which has been advocated in Bayesdom
as paramount; see for example van der Linde’s discussion or Robert and
Rousseau (2002). Also, this only defines a particular type of complexity (or
of true dimension) but it does not allow for the comparison of models.
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2 Complexity and focus

As noted in Plummer’s discussion, an interesting point in Spiegelhalter et al.
(2002) is the concept of focus. Missing data models clearly give rise to dif-
ferent types of focus, as stressed by both van der Linde and Meng and Vaida
(Sections 4 and 5). This feature makes a big difference with ordinary models
since possible focusses for missing data models are multifaceted and (much)
more numerous than those of standard models, assuming that we do not
introduce an articial level of completion!

We thus appreciate the different focusses proposed by Plummer, although
they only apply in simple problems: as the hierarchy becomes more and more
complex, the number of possible focusses simply explodes. They highlight
the complexity of the notion of ... complexity rather than truly solving the
problem. Indeed, Plummer’s empirical results are rather unhelpful, seeming;y
not behaving satisfactorily as K increases. For instance, in Plummer’s Figure
1, we could introduce a fourth focus where (µ, τ) would come down at the
level of Z, even if this may be a completely artificial represention.

In the case of mixtures, this has the interesting effect of reminding us
of the very different nature of p compared with both other parameters. As
already stated in Celeux et al. (2000), some natural loss functions for mixture
estimation simply omit the parameter p if for instance allocation is taken
into account. There is therefore is something delicate and indefinite about
p. Note that in Table 2 of Plummer the expected pD is strikingly close to
2K (excluding p then), except for K = 3, 4. The last column of Table 3 in
Plummer’s discussion is also intriguing: pD and DIC move in such a non-
monotonic way that the argument about a simple-and-good-enough model
vs. a complex-but-better-fitting model is far from convincing.

To answer van der Linde’s question, the complexity of a predictive den-
sity is for us the complexity of the underlying model, since the degree(s) of
complexity (in the posterior distribution) has been integrated out in the cal-
culation of the predictive. (Think for instance of model averaging which is a
proper Bayes solution: the weighted sum of predictive densities of different
complexities has no well-defined complexity.) We also fail to see how DIC
has brought a “quantification of the reduction of model complexity due to the
information in a prior”, although this would suggest using instead Meng and
Vaida’s posterior version.

A question raised when reading the discussion is whether or not the nui-
sance parameters in a model are appropriately treated by DIC. In a sense,
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this is another type of problem where the definitions of pD and DIC are un-
clear, the missing data taking the place of the nuisance parameters. Section 5
of Meng and Vaida’s discussion as well as Plummer take alternative positions
on that problem, and there are possibly many more others.

3 Plug-in estimates

Without going so far as to agree fully with Dawid’s complete dismissal of
DIC in his discussion of Spiegelhalter et al. (2002), we concede that using
a plug-in estimate disqualifies the technique from being properly Bayesian.
In the case of mixture models, the problem runs deeper since there is not
even a clear-cut estimate without an associated loss function. (This difficulty
with DIC is stressed both by Meng and Vaida and by Plummer.) If we want
to keep using DIC, it seems that the Bayes estimate of the density is more
appropriate for reasons stated in the original paper. If instead we use the
predictive then another term should replace the plug-in.

Carlin’s suggestion of replacing a plug-in degree of freedom by its poste-
rior distribution is obviously most appealing from a Bayesian point of view,
even though the implementation of this principle in a unified methodology
may also be “a few years away”.

The way Plummer defines pD is also sensible and the numerical illustra-
tions for the galaxy benchmark dataset are of interest. However, for focus
F3, the decrease in DIC for K ≥ 5 is hard to explain: it could be related to
numerical imprecision when deriving its pD proposal. (We take the opportu-
nity to address here Carlin’s last comment about MCMC convergence. While
we completely agree that non-identifiable settings are usually welcomed in
terms of MCMC convergence, we are rather confident that our sampler has
converged within the number of simulations we ran and thus that the exotic
behaviour of some DICi’s is not the result of lack of convergence.)

A puzzling part of Meng and Vaida’s discussion is their Section 6, where
they happily start mixing even further Bayesian and frequentist tools and
objects! The fact that the (more convincing) posterior equivalent of pD is
not working as well is indeed quite intriguing although Plummer somehow
gives the hint of an answer in his first paragraph, namely that there are
many ways of decomposing a joint distribution into f(y|θ)f(θ), just as the
number of missing data representations are infinite. First note that using
the posterior instead of the likelihood in DIC is nominally Bayesian but
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not truly Bayesian as the concept is still frequentist. (The fact that pB
D is

constant in the example is not a difficulty per se: after all this really is a one-
parameter problem and it is difficult to look at it otherwise.) There is also
the issue that incorporating the prior into the complexity measure confounds
the complexity due to the model with the complexity due to the prior and
this is very confusing when different models are being compared because we
need to use one prior for each model. The final part of Meng and Vaida’s
Section 6 also makes limited sense (to us at least) because of its systematic
alternation between [OR intermingling of?] Bayes and non-Bayes rules and
concepts. The only conclusion we could derive from this part is that ad hoc
criteria can breed even more criteria with seemingly the same validity, which
is not necessarily the conclusion expected by the authors...

4 Missing data specifics

For missing data models and in particular for the mixture model, several
discussants (Carlin, Meng and Vaida, Plummer) seem to prefer DIC7 when
the focus emphasizes the ability of the model to classify the observed data
accurately into groups because, as noted by Carlin, this criterion treats Z and
θ symmetrically. However, a potential default of DIC7 is that it treats the
missing data as parameters. Thus, the number of parameters to be estimated
grows to infinity with the sample size for many models including the mixture
model. Moreover, it can be remarked that in full Bayesian approaches of the
mixture model (see Marin et al., 2004, for a recent survey) the Z are not
treated as parameters (with a prior distribution) but as missing data. In
this context, our favorite criterion remains DIC4 even though this criterion
is not invariant to the choice of Z, as noted in the paper and as stressed by
Plummer. In our opinion, this problem is essentially formal: when the focus
is on imputing values for the missing data, the choice of Z does not suffer
from any ambiguity from a practical point of view.

The point of the last section of Plummer’s discussion about the missing or
arbitrary function of the data Y was altogether missed by us, although it also
replicates a statement in Spiegelhalter et al. (2002). We indeed have trouble
in understanding why f(y, z|θ) is not defined exactly. Is this problem deeper
than a mere measure-theoretic subtlety? We would also take issue with the
last paragraph of this discussion in that we are not completely convinced
that we should use any of the DIC’s we examined!
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5 Conclusion

It seems to us that, if DIC is to ‘work’ in general then the basic approach,
in other words DIC1 (or arguably DIC2), should produce satisfactory re-
sults, since this is Spiegelhalter et al.’s (2002) criterion. In this paper, we
have highlighted in some detail the problems in applying DIC beyond the
exponential family case. Our goal was not to find a ‘cure-all’, so that the ex-
istence of a generally-applicable measure remains an open question. In other
words, the definition of a deviance information criterion, albeit immensely
desirable, remains ad hoc at this stage and is not even close to being a well-
defined ideal criterion or the solution of a well-defined optimisation problem.
There is thus a need to reappraise its properties or to start afresh with a new
deviance information criterion based on decision theoretic grounds.
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On the frequentist and Bayesian approaches to hypothesis testing

by Eĺıas Moreno and F. Javier Girón

A discussion [published by SORT]
Christian P. Robert1

CEREMADE, Université Paris Dauphine and CREST, INSEE, Paris

1 Warning

While the authors have made a great job of exposing the advantages of using
Bayes factors for hypothesis testing (compared with classical solutions like
UMP tests or p-values) and should be congratulated for a new review paper
on the objective Bayes approach to testing, let me first take the oratory
precaution to state that I will play here devil’s advocate by arguing that
objective Bayesian theory has not yet reached a satisfactory position with
regards to hypothesis testing. (Obviously, I do not consider the p-values as
valid answers either, but I will not discuss their shortcomings here since they
are already discussed in Robert, 2001, Chapter 6.)

2 Bayes solutions

Even though the authors mention the standard Bayes solution against a
classical 0−1 loss at the beginning of their paper, they evacuate quite forcibly
this solution in favour of alternative albeit less well-defined procedures. This
is quite unfortunate in that this is the only Bayesian solution to the testing
problem if one wants to come up with a “yes/no” answer. (Whether or not
this is a good decisional setup is another story, as discussed below, but this is
often the type of answers required from statisticians!) Indeed, a Bayes factor,
a posterior probability or even a p-value may be used in a decision process
but they are intrinsically not decision-theoretic procedures. This is also why
I regret the early dismissal of the likelihood ratio: when both hypotheses are
simple, the likelihood ratio (or rather the comparison of the likelihood ratio

1Discussion written during a visit to the Department of Statistics, University of Florida,
Gainesville. The author is grateful to the organisers of the 8th Winter Statistics Conference
and in particular to George Casella and to Jim Hobert for their hospitality.
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with a certain bound c) is a Bayes rule, no matter the value of c. When at
least one hypothesis is composite, the likelihood ratio is no longer Bayes, but
if we follow the asymptotic arguments of the authors, it can be taken as a
first order approximation in some situations.

Why, thus, is there a problem with the Bayes solution, especially when
considering it is consistent? The main point is that consistency is a very weak
criterion, because a Bayes rule can choose to accept the null hypothesis when
the likelihood ratio (or the ratio of marginals) is above about any bound,
depending on the prior model. Is this bad or wrong? Formally speaking,
this is completely acceptable as the range of Bayes rules usually covers the
range of (admissible) possible answers. This only starts looking bad when
one seeks a universal or common answer or, in other words, an “objective”
procedure. Always from a Bayesian point of view, this universal perspective
can be disputed as non-Bayesian, because of excluding all prior inputs.

I am afraid that it may be the case that the inconsistencies discussed
below are simply beacons that signal the impossibility of Bayesian non-
informative or objective procedures. (The fact that these procedures exist
for estimation problems simply is a reflection on the smoother topological
structure of estimation setups.) Or, more radicaly, it may be argued that
the whole approach to testing as a {0, 1} problem is flawed in that the true
consequences of a decision are not properly modeled. (Hence the common
confusion bewtween scientific hypothesis testing—as in is the age of the Uni-
verse larger than 13 billion years?—and model choice—as in how close to the
family of probit models is the true model?)

It indeed seems to me that model choice calls for a completely different
decisional approach that integrates both the complexity of the models under
comparison and the consequences of choosing one model rather than another.
Since the authors are not adopting this perspective in variable selection, they
have to ressort to cascades of Bayesian tests without properly evaluating the
consequences of this repetition of tests. There is for instance no uncertainty
evaluation on the ranking and the selection of the most likely model. Nor is
the sequence of decisions evaluated sequentialy or conditionaly. Model choice
is in fact much more an estimation problem for the difference between the true
model and an hypothetic collection of models than a testing model. Methods
based on function divergences (Robert, 2001, Chapter 7) should thus be
prefered as they ascertain the different consequences of picking the “wrong”
model, even though complexity summaries like AIC, BIC or DIC are standing
far away from the Bayesian paradigm. I tend to agree with the authors that a
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Bayesian approach is more likely to account automatically for the complexity
of a model than frequentist and likelihood perspectives but I also think that
a more thorough assessment of the consequences of model choice should be
undertaken, rather than trusting blindly a dimension-free Bayes factor. In
this regard, the recent paper by Yong (2005) is quite illuminating in that
it exposes the conflict between model selection and parameter estimation,
establishing in particular that model averaging (Raftery, 1996) cannot reach
optimal convergence rates.

Note at last that under a completely different decision-theoretic perspec-
tive, namely when losses of the type (δ − IH0

(θ))2 are used, the posterior
probabilities are themselves Bayes rules (Robert, 2001) and that there exist
cases where p-values are admissible as truncations of Bayes rules (Hwang
et al., 1992). Although these are rather formal results, I think they are still
worth mentioning.

3 Inconsistencies

If we now turn to the alternative solutions provided in the paper, there is a
lot to be said against Bayes factors, pseudo-Bayes factors and intrinsic priors.

First, as stated above, the Bayes factor is not even on the same scale as the
Bayes solution given that it is dimension free. The authors often switch back
and forth between Bayes factors and posterior probabilities. But doing this
implies the choice of a particular prior ratio π(H0)/π(H1) = 1, a choice that
is never discussed in the paper, while being paramount for the comparison
with the p-values. In particular, there is no clear reason why π(H0) = 1/2
should be considered as a “non-informative” solution (Robert, 1993). In some
instances, intrinsic priors are associated with unbalanced prior weights π(H0)
and π(H1) for example. If the complexity of the model under hypothesis H0

is much higher than under hypothesis H1, the prior weight of H0 could be
lowered as an consequence of Occam’s razor rule. (A personnal aside: I never
really understood the need to call for this rule. In fact, while being interesting
from an epistemiological point of view, Occam’s key sentence Pluralitas non
est ponenda sine neccesitate does not constitute an operational principle and
about anything can be justified on this vague sentence.)

If we now turn to pseudo-Bayes factors, they seem to cumulate the short-
comings of Bayes factors and of pseudos! While providing a workable solution
to the impossibility of using improper σ-finite measures under both hypothe-
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ses, they are suffering from a high level of adhocquery that is reflected by
the myriad of versions found in the literature (as discussed in Robert, 2001,
Chapter 6). Pseudo-Bayes are clever mathematical constructs but they do
not enjoy the same justifications as true Bayes factors. While I do not think
that the (minor) criticism by the authors that “the arithmetic intrinsic Bayes
factor (...) reuses the sample observations” is particularly true [many gen-
uine Bayes procedures appear as weighted sums of averages on part of the
data, think for instance of mixtures of distributions], both the lack of sym-
metry between H0 and H1 and the possible difficulty in defining acceptable
subsamples and minimal sample sizes maintain the pseudo-Bayes factors at
a considerable distance from genuine Bayesian inference.

The construction of the intrinsic prior proposed in the review is clever
and reminiscent of Pérez and Berger (2002). Note that this prior can also be
written as

πI
1
(θ1) =

∫

πI(θ1|θ0)π
N
0

(dθ0) =

∫

Eθ0
[πN

1
(θ1|X)]πN

0
(dθ0) ,

a representation which somehow is more intuitive, apparently works for
nonnested models, but also exposes the limitation of the device. Indeed,
once θ0 is integrated out in the above equation, we are faced with a new
improper prior and the mathematical result that

BI
10

(x) =

∫

f(x|θ1)π
I(dθ1|θ0)π

N
0

(dθ0)
∫

f(x|θ0)π
N
0

(dθ0)

does not depend on the normalising constant of πN
0

does not translate so
easily to the ratio

BI
10

(x) =

∫

f(x|θ1)π
I
1
(dθ1)

∫

f(x|θ0)πN
0

(dθ0)
,

although they are mathematicaly the same. In other words, were we given
πI

1
and πN

0
separately as in a regular improper prior hypothesis testing we

would not know how to normalise both priors. (This is a dilemna common
to missing data problems: while the density of the observables can be writ-
ten as a marginal of another distribution, the dummy variables used in the
marginalisation have no specific meaning.)

We also note that the proposed solution is not symmetric in (H0, H1),
which is a drawback shared by most pseudo-Bayes procedures. In addition,
when more than two hypotheses are in competition, this approach requires
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either a change of priors for each pair of hypotheses or the subjective choice
of a reference hypothesis H0 under which all other intrinsic priors are con-
structed.

The authors mention several times that having no moment is a “nice
property to be expected from an objective prior”. This is rather peculiar a
remark since the lack of moments must depend on the parameterisation of the
model: if we use a bounded parameterisation, the corresponding parameter
will have finite moments. To continue about puzzling remarks, I do not
understand the point about the one-to-one relationship between p-values and
posterior probabilities: both quantities depend on the same (multinomial)
sufficient statistic but since there is no one-to-one relationship between the
p-value and the sufficient statistic, this does not seem possible.

4 Conclusions and perspectives

This paper provides a (partial) summary of the large literature on the com-
parison between frequentist (restricted to p-values) and Bayesian (restricted
to Bayes factors), but it may constitutes too restricted a vision of the chal-
lenges met by both approaches in both hypothesis testing and model com-
parison. To find that p-values do not provide the same numerical answer
than posterior probabilities or Bayes factors is not a fundamental difficulty
in that they are not to be treated as similar objects.

On the one hand, I definitely acknowledge the urgent need for objective
Bayes procedures in testing problems and do not want to disparage the past
work led by the authors and others on this topic. On the other hand, there
currently exist much more pressing challenges in hypothesis testing, for in-
stance with the emergence of massively multiple tests in Genomics (Genovese
and Wasserman, 2002) and in other fields. Even in the case of model selec-
tion, the complexity (or the combinatorics) of the decision space often pre-
vents a perfect exploration and new tools are necessary to ascertain whether
or not important models and situations are not forgotten. About ten years
ago (Madigan and Raftery, 1994), model averaging appeared as a potentially
rich tool for handling multiple models simultaneously. While this is not a
panacea, in that it does not directly allow for pruning in a large collection
of models and may lead to subefficiencies (Yong, 2005), this direction should
not either be abandoned altogether.
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