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We consider a finite set of sites S = {1,--- ,n}.
At each site 1 € S, we observe x; € X; where X is a finite set of states.

We also consider an undirected graph G: the sites ¢ and i are said neigh-

. . . ./
bours, if there is a vertex between ¢ and ¢ .

A clique c is a subset of & where all elements are mutual neighbours

We denote by C the set of all cliques of the undirected graph G.
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Gibbs Random Fields (GRFs) are probabilistic models associated with

densities

f<x>—;exp{—v<x>}exp{ S Ulx }

ceC

where U(x) = > ..o Uc(x) is the potential and Z is the corresponding

normalising constant

Z=>_ exp{ZUC(X)} .

xeX ceC

If the density f of a Markov Random Field (MRF) is everywhere positive,
then the Hammersley-Clifford theorem establishes that there exists a GRF
representation of this MRF
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We consider here GRF with potential U(x) = —0" S(x) where 6 € R? is
a scale parameter, S(-) is a function taking values in RP.

S(x) is defined on the cliques of the neighbourhood system in that S(x) =

ZCEC SC (X) .

In that case, we have

1

f(x]0) = 7 exp{6"S(x)},

the normalising constant Zg now depends on the scale parameter 6.
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GRF are used to model the dependency within spatially correlated data,

with applications in epidemiology and image analysis, among others

They often use a Potts model defined by a sufficient statistic S taking
values in R in that
S(x) = Zﬂ{xi:aﬁi/} :
il ~i
where ) ., . indicates that the summation is taken over all the neighbour

pairs.

X; ={1,--- K}, K = 2 corresponding to the Ising model, and 6 is a

scalar.

S(-) monitors the number of identical neighbours over X.
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In most realistic settings, the summation

Zg =Y exp{6'S(x)}

involves too many terms to be manageable.

Selecting a model with sufficient statistic Sy versus a model with sufficient
statistics 57 relies on the Bayes factor

B, () = [ exp{0F 500}/ Za,0mo(d60) /

/ GXp{OriFSl (X)}/Zel,ﬂﬁ (d01)

This quantity is not easily computable.
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For a fixed neighbourhood or model, the unavailability of Zg complicates

inference on the scale parameter 6.

The difficulty is increased manifold when several neighbourhood struc-

tures are under comparison.

We propose a procedure based on an ABC algorithm aimed at selecting

a model.

We consider the toy example of an iid sequence |with trivial neighbour-
hood structure| tested against a Markov chain model [with nearest neigh-

bour structure].
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In a model choice perspective, we face M Gibbs random fields in compe-

tition.

Each model m is associated with sufficient statistic S, (0 < m < M —1),
i.e. with corresponding likelihood

fm(X|9m) = exXp {H;Frzsm(x)} /ng,m y

where 0, € ©,, and Zy,_ ,, is the unknown normalising constant.

The choice between those models is driven by the posterior probabilities
of the models.
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We consider an extended parameter space © = U%:_&{m} X O,, that
includes the model index M,

We define a prior distribution on the model index 7(M = m) as well as
a prior distribution on the parameter conditional on the value m of the
model index, 7,,(0,,), defined on the parameter space O,,.

The computational target is thus the model posterior probability
P(M = mlx) o / P (x[6m )T (61 By (M = 1)
Om

the marginal of the posterior distribution on (M, fg,...,0y/_1) given x.
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If S(x) is a sufficient statistic for the joint parameters (M, g, ...,0p_1),

P(M = m|x) = P(M = m|S(x)).

Each model has its own sufficient statistic S,,(+).

Then, for each model, the vector of statistics S(-) = (So(-),...,Spm—1(*))
is obviously sufficient.
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We have shown that the statistic S(x) is also sufficient for the joint pa-
rameters (M, 0, ...,0p_1).

That the concatenation of the sufficient statistics of each model is also a

sufficient statistic for the joint parameters is a property that is specific to
Gibbs random field models.

When we consider M models from generic exponential families, this prop-

erty of the concatenated sufficient statistic rarely holds.

ABC in Paris, 26/06/2009 Page 11



ABC algorithm for model choice (ABC-MC)

Generate m* from the prior m1(M = m).
Generate 07 . from the prior m,,«(-).
Generate x* from the model f,,+(:|0%,+).

Compute the distance p(S(x"), S(x*)).

ok W b=

Accept (0% .,m*) if p(S(x"), S(x*)) < ¢, otherwise, start again in 1.
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Simulating a data set x* from f,,,«(:|6},+) at step 3 is non-trivial for GRF's

It is often possible to use a Gibbs sampler updating one clique at a time

conditional on the others.

This algorithm results in an approximate generation from the joint pos-

terior distribution

7 {(M,00,...,00_1)p(S(x°), S(x*)) < e} .

When it is possible to achieve ¢ = 0, the algorithm is exact since S is a

sufficient statistic.
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Once a sample of N values of (6”,,,m"*) (1 < i < N) is generated from
this algorithm, a standard Monte Carlo approximation of the posterior
probabilities is provided by the empirical frequencies of visits to the model,
namely

P(M = m|x°) = #{m"* = m} /N,

where #{m** = m} denotes the number of simulated m"*’s equal to m.
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_ P(M = mg|x%) 71(M = my)
P(M — m1|XO) 7T(./\/l — mo)

BF iy /m,y (X7)

_ oy _ H{m™ =mo}  m(M =m)
BFmo/ml(X ) - ﬁ{mz* — ml} % 7'('(./\/[ = mO) ’

This estimate is only defined when ${m"* = m;} # 0.

To bypass this difficulty, the substitute

BE oy (<) = A = o) T2 =)

1+ {m* = my) . (M = my)

is particularly interesting because we can evaluate its bias.
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We set Ng = ${m** = mg} and N; = #{m"™* = m;}.

If 7{(M = m;1) = 71(M = my), then Ny is a binomial B(N, p) random
variable with probability p = (1 + BF,,, /m, (x"))~" and

1 N +2
— BF,, ;.. (x°) + — 1—p)N+L.
| = P )+ Sy~ Sy

N,
E|YoF1
N, +1

The bias of BF , /m, (x°) is {1 — (N +2)(1 — p)N+1}/(N + 1)p, which

goes to zero as [N goes to infinity.

BF mo/m, (X©) can be seen as the ratio of the posterior means on the model
probabilities under a Dir(1,---,1) prior.
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BF o /ml(xo) suffers from a large variance when BF,,, /ml(xo) is very

large since.

When P(M = my|x°) is very small, ${m** = m;} is most often equal to

Zero.
We can used a reweighting scheme.

If the choice of m* in the ABC algorithm is driven by the probability
distribution P(M = my) = 0 = 1 — P(M = myg) rather than by 7(M =
m1) = 1 — 7(M = myg), the value of #{m** = m} can be increased and
later corrected by considering instead

= 1+ H{m™ =me} 0

BF 0y = . .
mo /m1 (X°) 14+ g{m™ =mq} : 1—op
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Two step ABC:

If a first run of the ABC algorithm exhibits a very large value of
BF o /m, (x°), the estimate BF,,,, /m, (x") produced by a second run with

0 X 1/1@)(/\/1 = mq|x")

will be more stable than the original BF mo fma (X2).
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Results on a toy example:

Our first example compares an iid Bernoulli model with a two-state first-

order Markov chain.

Both models are special cases of GRF', the first one with a trivial neigh-
bourhood structure and the other one with a nearest neighbourhood struc-

fure.

Furthermore, the normalising constant Zy_ ., can be computed in closed
form, as well as the posterior probabilities of both models.
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We consider a sequence x = (x1,..,x,) of binary variables. Under
model M = 0, the GRF representation of the Bernoulli distribution

B(exp(6y)/{1 + exp(fy)}) is

fo(x]0p) = exp (90 > I, 1}> /{1 + exp(fo) }

For 6y ~ U(—5,5), the posterior probability of this model is available
since the marginal when Sy(x) = sg (sg # 0) is given by

1 30_1 SO . 1 (_1)80—1—1{3
L 1 4+ PVk—ntl _ (1 4 o—B)k—n+1]
10“)( k )n—l—k (1+e) (1+e™) ]
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Model M =1 is chosen as a Markov chain.

We assume a uniform distribution on z; and

fi1(x]01) = %exp (91 Zﬂ{xix¢1}> /{1 + exp(61)}" 1.
1=2

For 6; ~ U(0,6), the posterior probability of this model is once again
available, the likelihood being of the same form as when M = 0.
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We simulated 2,000 datasets x = (1, -+ ,x,) with n = 100 under each

model, using parameters simulated from the priors.

For each of those 2,000 datasets x", the ABC-MC algorithm was run
for 4 x 10% loops, meaning that 4 x 10° sets (m*, 6% .,x*) were exactly

simulated from the joint distribution.

A random number of those were accepted when S(x*) = S(x°). (In the

worst case scenario, the number of acceptances was 12!)
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Figure 1: (left) Comparison of the true P(M = 0|x°) with P(M = 0[x°)
over 2,000 simulated sequences and 4 x 10° proposals from the prior. The
red line is the diagonal. (right) Same comparison when using a tolerance

e corresponding to the 1% quantile on the distances.
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Figure 2: (left) Comparison of the true BFp, /m, (x°) with El\Tmo/ml (xY)
(in logarithmic scales) over 2,000 simulated sequences and 4 x 10° propos-
als from the prior. The red line is the diagonal. (right) Same comparison

when using a tolerance corresponding to the 1% quantile on the distances.
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