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Introduction and Motivation

• Approximate Bayesian computation (ABC) has proved useful
for complex models in which the likelihood function is difficult
or expensive to obtain.

• Hierarchical Bayesian models pose a problem for ABC because
the number of summary statistics potentially grows with the
number of exchangeable units (replicates) at the lower level of
the hierarchy.

• This study develops a method for performing hierarchical
Bayesian analysis using ABC that is practical for a very large
number of summary statistics.



Applications of Hierarchical models in
Genetics

• Modelling variability in mutation rate among loci (Yang,
1993).

• Modelling positive selection through a variable substitution
model (dN/dS models: Yang and Nielsen, 1998; Wilson and
McVean, 2006).

• Modelling local selection through a variable migration rate
model (Beaumont and Balding, 2004).

• Modelling assignment of individuals to populations (Structure:
Pritchard et al., 2000)



Some Notation
We denote by α the vector of hyper-parameters in the model.

For the ith unit/replicate (e.g. locus) there is a vector of observations
(Xi ), and (unobserved) parameter vectors κi and λi , giving the
matrices:

• X = (X1, . . . ,XL)
• κ = (κ1, . . . , κL)
• λ = (λ1, . . . , λL)

Here, we treat λi as a parameter of interest, and κi as a nuisance
parameter (e.g. genealogy.)

We denote by X0 the “real” observations, in contrast to simulated
observations X .

To avoid too many subscripts, depending on context, Xk , κk , λk , αk

refers to the kth simulated instance of X , κ, λ, α .



Bayesian hierarchical models

The likelihood function for our model is

p (X |κ, λ) =
L∏

i=1

p(Xi |κi , λi ). (1)

with prior

p(α, κ, λ) =

[
L∏

i=1

p(κi , λi |α)

]
p(α). (2)

Because of conditional independence, the posterior distribution
(shown here marginal to the nuisance parameter κ), factorises as

p(α, λ|X ) =

[
L∏

i=1

p(λi |Xi , α)

]
p(α|X ). (3)



Bayesian hierarchical models

Now, focusing attention on a single locus i , the hyper-parameter α
and the locus-specific parameter λi have the joint posterior density

p(α, λi |X ) = p(λi |Xi , α)p(α|X ). (4)

This factorisation suggests that we need to use two distinct types
of summary statistics in our approximate Bayesian computation:

• symmetric summary statistics, which are (symmetric)
functions of all the loci together (e.g. means, higher
moments,. . .), S(X ) = S(X1, . . . ,XL);

• unit-specific summary statistics, U(Xi ).



Bayes sufficiency

Ideally, we want the summary statistic S(X ) to satisfy the
condition

p(ω|X ) = p(ω|S(X )), (5)

at all points ω (in the parameter space), for all priors p(ω).

In this case, the summary statistic S(X ) is sufficient in the sense of
Kolmogorov (1942) [3]. In other words, the summary statistic
S(X ) is Bayes sufficient.



Marginal sufficiency
Ideally, we want the statistics S(X ) and U(Xi ) to satisfy the condition

p(α, λi |X ) = p(λi |U(Xi ), α)p(α|S(X )), (6)

at all points (α, λi ) (in a section of the parameter space), for the
chosen prior (or family of priors). We want this factorisation to hold
exactly, or at least as an adequate approximation.

In the terminology of marginal sufficiency introduced by Raiffa and
Schlaifer (1961) [4] (see also Basu 1977 [1]), this tells us that:

• The summary statistic S(X ) is marginally sufficient for the
parameter α;

• The summary statistic (S(X ),U(Xi )) is marginally sufficient for
the locus-specific parameter λi .

with respect to the chosen prior (or family of priors).



Single step algorithm

For k = 1 to k = N iterations:

(i) sample (Ak ,Kk ,Λk) from the prior p(κ, λ|α)p(α);

(ii) simulate data Xk (at L loci) from p(Xk |Kk ,Λk);

For locus i = 1 to i = L:

(iii) Compute (Ak ,Λk,i , S(Xk),U(Xk,i )).

(iv) Condition on S(X ) = S(X0) and U(Xi ) = U(X0,i ) using ABC,
to obtain a sample of observations (A∗k ,Λ

∗
k,i ) from

p(α, λi |S(X0),U(X0,i )).



Practical Issue

Storage space problems.

• We need to store NL multiplied by number of items in U(Xi ).

• E.g. for 103 loci, 10 summary statistics per locus, 106

iterations, 8 bytes per number we have 80Gb of storage (as a
binary file, or in computer memory).

• Therefore there is a problem with scaling up.



A two step algorithm: more efficient, but
only approximate

step 1 Use ABC to obtain a sample of observations A∗k from

p(α|S(X0)) ≈ p(α|X0).

step 2 For locus i = 1 to i = L, obtain a sample of observations
(A∗∗k ,Λ

∗
k,i ) from an approximation to p(λi |X0,i , α)p(α|X0) by

doing the following:

(i) resampling A∗∗
k from the observations A∗

k generated in step 1.
(ii) sampling (K∗∗

k,i ,Λ
∗∗
k,i ) from the conditional prior p(κi , λi |A∗∗

k );
(iii) simulating data Xk,i (at locus i only) from p(Xk,i |K∗∗

k,i ,Λ
∗∗
k,i );

(iv) Marginalise observations to (A∗∗
k ,Λ

∗∗
k,i ,U(Xk,i )).

(v) Condition on U(Xi ) = U(X0,i ) using ABC.



Step 1

For k = 1 to k = N iterations:

(i) sample (Ak ,Kk ,Λk) from the prior p(κ, λ|α)p(α);

(ii) simulate data Xk (at L loci) from p(Xk |Kk ,Λk);

(iii) Marginalise by mapping observations (Ak ,Kk ,Λk ,Xk) to
(Ak , S(Xk))).

(iv) Condition on S(X ) = S(X0) using ABC, to obtain a sample of
observations A∗k from

p(α|S(X0)) ≈ p(α|X0),



Step 2
For locus i = 1 to i = L:

• For k = 1 to k = N iterations:

(i) sample A∗∗
k from p(α|f (X0)) ≈ p(α|X0) by resampling from

the observations A∗
k generated in step 1.

(ii) sample (K∗∗
k,i ,Λ

∗∗
k,i ) from the conditional prior p(κi , λi |A∗∗

k );

(iii) simulate data Xk,i (at locus i only) from p(Xk,i |K∗∗
k,i ,Λ

∗∗
k,i );

(iv) Marginalise by mapping observations (A∗∗
k ,K

∗∗
k,i ,Λ

∗∗
k,i ,Xk,i ) to

(A∗∗
k ,Λ

∗∗
k,i ,U(Xk,i )).

(v) Condition on U(Xi ) = U(X0,i ) using ABC, to obtain a sample
of observations (A∗∗∗k ,Λ∗∗∗k,i ) from an approximation to
p(λi |X0,i , α)p(α|X0).



Advantages and disadvantages

• Lower storage requirement.
The two step algorithm requires less storage — by a factor of
1/L in comparison with one step algorithm.

• Less writing to disk or to files.
The two step algorithm requires less disk-writing,
time — by a factor of 1/L in comparison with one step
algorithm.

• More simulation.
Computational cost of two step algorithm is twice as high as
one step algorithm:



The two step algorithm involves an
approximation

This approximation is in addition to the approximation involved in
conditional density estimation (using some ABC method) on
summary statistics rather than on complete data. So, to simplify
the explanation of this additional approximation, we will assume
that we are performing ABC on complete data.
Now in the two step algorithm we have a sample from

p(x ′i , λi |α)p(α|x = X0),

then we condition on x ′i = X0,i . This gives us a sample of
observations (A∗∗k ,Λ

∗∗
k,i ) from

p(x ′i = X0,i , λi |α)p(α|x = X0)

p(x ′i = X0,i |x = X0)
.



The approximation

If we modify the two step algorithm so that we sample from
p(α|x−i = X0,−i ) at step 1 (instead of p(α|x = X0)), then we have
a sample from

p(xi , λi |α)p(α|x−i = X0,−i ),

then we condition on x ′i = X0,i . This gives us a sample of
observations (A∗∗k ,Λ

∗∗
k,i ) from

p(xi = X0,i , λi |α)p(α|x−i = X0,−i )

p(xi = X0,i |x−i = X0,−i )
= p(λi , α|x = X0)

instead of
p(x ′i = X0,i , λi |α)p(α|x = X0)

p(x ′i = X0,i |x = X0)



Further details

p(xi , λi |α)p(α|x−i )

p(xi |x−i )

=
p(xi , λi |α)p(α|x−i )

p(xi |α)
· p(xi |α)p(α|x−i )

p(xi |x−i )

=p(λi |xi , α)p(α|x)

=p(λi , α|x).



Justification for the approximation
So, we have a modified algorithm which generates a sample of
observations (A∗∗∗k ,Λ∗∗∗k,i ) from the exact marginal posterior

p(λi |X0,i , α)p(α|X0).

But the only difference between our two step algorithm, and this
modified algorithm is how we generated the observations A∗k at step 1.

Now, when the number of loci L is large, we expect to have:

p(α|X0,−i ) ≈ p(α|X0,−i ,X0,i )

= p(α|X0).

So, when the number of loci L is large, our two step algorithm differs
very little form this modified algorithm. (But we have replaced the
data by summary statistics, in the ABC.)



Application to inferring selection
Genetic model



Application to inferring selection
Model parameters

Parameter Description Prior distribution

µM mean scaled migration rate across popu-
lations

N(a1, b1)

σM standard deviation of scaled migration
rate across populations

N(a2, b2)

ρs probability that a locus is under selection β(a3, b3)
µθ mean mutation rate across loci N(a4, b4)
σθ standard deviation of mutation rate

across loci
N(a5, b5)

θi scaled mutation rate of the ith locus Log10-N(µθ, σθ)
Si indicator that is 0 if the ith locus is neu-

tral and 1 if it is selected
B(ρs)

Mij migration rate of the ith locus in popula-
tion j

...



Application to inferring selection
Approximation

We use the approximation of Petry (1982) that local selection at
linked sites gives rise to the same distribution of gene frequencies
as a neutral locus with reduced migration rate.

Each locus and each deme has scaled migration rate Mij = 2Nmij ,
where

Mij =

{
Mnj if Si = 0

Msij if Si = 1

with
Mnj ∼ Log10-N(µM , σM)

and
Msij ∼ β(x/Mnj ; a6, b6)/Mnj

⇒ Msij < Mnj



Example

• 600 individuals
• 6 subpopulations
• 50 microsatellites
• 5 under selection

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

0.80 0.85 0.90

0.
05

0.
10

0.
15

0.
20

H

F
S

T

●

●

●

●

●



Example



Example
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ABC vs BayesFST
ROC curves

Average false positive rate
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Analysis of Chimpanzee data

• 64 individuals
• 309 microsatellites
• 3 populations

• Western
• Central
• Eastern



Analysis of Chimpanzee data



Analysis of Chimpanzee data



Software

The abcselection software is available from the authors on
demand at eric.bazin@cirad.fr
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Summary Statistics
locus-specific summary statistics

For each locus:

• Observed probability of non-identity in state of gene copies
between populations, HB (Weir and Cockerham, 1984)

• Weir and Cockerhams estimator of FST
• Log variance in allele length between populations (Slatkin,

1995; Rousset, 1996).
• RST (Slatkin, 1995; Rousset, 1996)
• Variance in W&C FST estimated for individual alleles

(microsatellite lengths).
• Proportion of pairwise comparisons between populations in

which an allele is observed in at least one of the populations.
• Variance of within-population W&C estimator of FST (Weir

and Hill, 2002).
• Variance of within-population RST.

8 summary statistics



Summary Statistics (continued)
symmetric summary statistics

To infer hyperparameters:

• The mean over loci of 8 summary statistics above.

• Variance over loci of 8 summary statistics above.

• Skew over loci of 8 summary statistics above.

• Kurtosis over loci of 8 summary statistics above.

• Covariance over loci of all 28 pairs of summary statistics.

60 summary statistics.



Analysis of European data

• 160 individuals
• 783 microsatellites
• 8 populations

• Orcadian
• Adygei
• Russian
• Basque
• French
• Italian
• Sardinian
• Tuscan



Analysis of European data
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Analysis of European data
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The model

The likelihood function for our model has the form

p (X |κ, λ, α) =
L∏

i=1

p(Xi |κi , λi , α), (7)

where X = (X1, . . . ,XL), Xi = Xij , and
α = (Mn1 , . . . ,MnD

, ρs , µM , σM , µθ, σθ).
The locus-specific parameters are (κi , λi ) = (θi ,Mi1, . . . ,MiD , Si ).
Here we choose to treat the Si as the parameter of interest, so we
define κi = (θi ,Mi1, . . . ,MiD) and λi = Si .
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