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Introduction



Notation

m Data X, observed.
m Model with parameter vector .
m Have prior distribution for A, density m(\).

m Aim: infer (approximate) posterior distribution A\|Xsps.



Example ABC algorithm (Rejection Sampling)

EENE

Propose parameters A from prior density m(\)
Simulate data X given A

If d(Xsim, Xobs) < € accept the proposal
Repeat

d(-,-) is a distance metric (e.g. Euclidean distance).

€ > 0 is a tuning parameter — trades approximation error
against computational error.

Accepted proposals have distribution A\|d(Xsim, Xobs) < €

Usual to define d in terms of lower-dimensional summaries
S(X), SO d(XsimaXobs) = d(S(Xsim)a S()<obs))-
Ideal is S(-) a set of sufficient statistics.



Aim of Talk

Rejection sampling ABC method is inefficient. Various alternatives
have been proposed (e.g. MCMC or SMC).
We instead focus on:

m How to choose summary statistics?
m How to choose distance metric d?
m Is the “cut-off” acceptance rule the best choice?

Implementation uses MCMC — but ideas apply to any ABC
method.
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Mixture Representation of Posterio

Assume we accept simulated data xg;,,, with probability
a(x, Xsim> obs)' The resulting ABC posterior is

maBcN) x| TOPLiimNa i Xabs i

= / (A Xgim ) B (Xsim ) 9Xsim

where
Blxgim) = 7 (Xsim)(Xsim> obs)
J 7(Xsim)(Xsim> Xobs)dXsim
So ABC posterior is a continuous mixture of true posteriors. 3 is
likely to be dominated by « (for small acceptance probabilities).




Minimising Posterior Variance

Standard result gives ABC posterior variance as
Varagc(A) = E(Var()\|Xsim)) + Var(E()\|Xsim)).

where on the RHS mean and variance is with respect to 3(Xgjy)-

This suggests it is natural to choose a(xgjm, Xghs) to “minimise”:
Var(E()\|Xsim)),

subject to some average acceptance probability.



Intuition: Approach

m |t seems reasonable to focus on acceptance probabilities that
are symmetric.

m Consider the case where overall acceptance probability is
small. This will correspond to accepted data being close to
the observed data.

m Look at “minimising” Var(E(A|Xg;y,)) for fixed acceptance
probability of rejection sampling method.



Main ldea

For some p x n matrix D,
E(AIX) = E(A|Xgps) + DX — X,psl, and thus

Var(E(A Xgim)) = Es([X — Xope] DDT[X — Xgpe] 7).

To minimise the sum of the individual variances: acceptance based

on
[X — Xops) " DT DIX — X pel < €

Let S(X) = DX, then this is equivalent to

[S(X) - 5( obs)] [S(X) ( obs)] <€



Intuition from Result

Ideally parameters should be uncorrelated and have similar scales.
Then:

m Should have one summary statistic per parameter.

m Calculation of summary statistic requires calculation of D:
which is output of (local?)-linear regression.

m Cut-off acceptance rule appears best.

m Diagnostics for this approach would be to test the validity of
the linear model approximation.

[Note there is a big hole in any formal proof from this argument.]
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Proposed Methodology / Example Application



Proposed Methodology

Overview

m Have a preliminary run of ABC to obtain a region of high
posterior probability.

m Simulate parameters from this region, and data for each
parameter value. Use this Linear Regression on this simulated
data to generate summary statistics (one per parameter).

m Consider adding extra data — such as powers — to give a
better linear fit.

m lllustrate with an example.

We have other theoretical results which support these suggestions.



g-and-k Example

Background 1

m Allingham et al investigate ‘quantile distributions’
m Distributions defined by their inverse cdf: F~1(x)

m A quantile distribution may not have easily available
likelihood, but can be simulated by inversion
m Simulate u ~ U(0,1)
m Calculate F~1(u)

m ABC is a natural method of inference



g-and-k Example

Background 2

A particular quantile distribution is the

Fx) = A+ B (1+ c22EE00) (1+ 2(x)%)F2(x)

z(x) is the xth quantile of the N(0, 1) distribution
A and B are location and scale parameters
g and k parameters control skewness and kurtosis

Final parameter c is usually fixed as 0.8

Allingham et al propose this as a flexible distribution with
small number of parameters



g-and-k Example

Application

Allingham et al applied ABC analysis to the following problem
m lllustration rather than real application

Sample of 10,000 independent g-and-k draws made
m Parameters A=3, B=1,g=2,k=05and c=0.8

This used as observed data

n
m Parameter ¢ taken as known
m Others to be estimated

m

Uniform prior on region [0, 10]*



g-and-k Example

Analysis of Allingham et al

Each simulated data set has 10,000 simulated values

Allingham et al calculated the order statistics

and used these as the summary statistics
m i.e. 10,000 summary statistics (all of the data)
m Analysis used:

m ABC-MCMC algorithm
m Euclidean distance metric
m Cut-off acceptance rule

m We replicated this analysis and used it as a preliminary run



g-and-k Example

Construction of summary statistics

Output of the preliminary run gives an approximate posterior

|
m Used to create a training distribution for parameter values
m Large set of training parameter values sampled from this
m For each training parameter value

m Data simulated from the g-and-k distribution
m Order statistics calculated

Regressions performed for each parameter

m Training parameter values as responses
m Simulated order statistics as covariates



g-and-k Example

Construction of summary statistics - issues

m 10,000 covariates caused computational difficulties

m Pick a subset of covariates — percentiles — and do regression
for these

m Also included powers of these percentiles.

m Parameters related to higher moments, so using powers as
covariates is natural.



g-and-k Example

Main run - ABC setup

Transition density was Normal with variance matrix based on
preliminary run output variance

€ chosen to give acceptance rate roughly 1%
10,000 iterations performed in each run

Output thinned to reduce autocorrelation

Results based on 500 output points for each method



g-and-k Example

Results |

m Black = regression
(percentile)

& i
N /
o 4

m Green = regression

(full)

A

m Vertical lines = true
parameter values

m Density estimates of marginal ABC output (after thinning)
m n.b. g poorly identified by original method



g-and-k Example

Results 1l

Method | Regression (percentile) Regression (full) Allingham et al
Time for ABC run(s) 46.9 5193.7 4807.1
€ used 0.11 0.14 13.3
Acceptance rate 1.01% 0.98% 0.88%
A std dev 0.049 0.061 0.083
B std dev 0.053 0.079 0.068
g std dev 0.094 0.439 2.560
k std dev 0.058 0.124 0.043

m Regression summary statistics perform better
m Using powers of data improves performance

m Percentile case has speed improvement
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Comparison with Beaumont et al.



Comparison with Beaumont et al.

m There are links with the method of Beaumont et al.

m We use linear-regression on the complete data to choose
summary statistics. These then used within ABC.

m Beaumont et al. use ABC, then apply a linear regression
correction to get parameter estimate.

m In applications, they assume a small number of summary
statistics have been chosen. Results in Blum (2009) suggest
the method performs poorly as the number of summary
statistics increases.



Empirical Comparison: Toy example

m We have iid normal data Xi,..., X, where X, X5, X3 have
mean log \; and the other data values are uninformative.

m Can calculate the true posterior analytically.

m For a range of values of p we simulate 100 data sets,

implement each ABC method, and calculate the increase in
mean square error.

m Compare ABC, ABC with Beaumont et al. correction, and our
approach.

m Implementation such that CPU cost of all methods were the
same. [So higher acceptance probability in our approach.]
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Part V

Conclusion



Summary

m “Theoretical” results motivate a semi-automatic way of
deriving summary statistics, which uses linear regression.

m Approach supported emprically for the application of
Allingham et al.

m Important link with work of Beaumont et al.

Other Results

m Looked at other ways of constructing summary statistics —
none work better than Linear Regression.

m Similar improvement over published work on a genetics
example.
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