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Part I

Introduction



Notation

Data Xobs observed.

Model with parameter vector λ.

Have prior distribution for λ, density π(λ).

Aim: infer (approximate) posterior distribution λ|Xobs.



Example ABC algorithm (Rejection Sampling)

1 Propose parameters λ from prior density π(λ)

2 Simulate data Xsim given λ

3 If d(Xsim,Xobs) < ε accept the proposal

4 Repeat

d(·, ·) is a distance metric (e.g. Euclidean distance).

ε > 0 is a tuning parameter – trades approximation error
against computational error.

Accepted proposals have distribution λ|d(Xsim,Xobs) < ε

Usual to define d in terms of lower-dimensional summaries
S(X ); so d(Xsim,Xobs) = d(S(Xsim),S(Xobs)).

Ideal is S(·) a set of sufficient statistics.



Aim of Talk

Rejection sampling ABC method is inefficient. Various alternatives
have been proposed (e.g. MCMC or SMC).
We instead focus on:

How to choose summary statistics?

How to choose distance metric d?

Is the “cut-off” acceptance rule the best choice?

Implementation uses MCMC – but ideas apply to any ABC
method.



Part II

Intuition



Mixture Representation of Posterio

Assume we accept simulated data xsim with probability
α(xsim, xobs). The resulting ABC posterior is

πABC(λ) ∝
∫
π(λ)p(xsim|λ)α(xsim, xobs)dxsim

=

∫
π(λ|xsim)β(xsim)dxsim

where

β(xsim) =
π(xsim)α(xsim, xobs)∫

π(xsim)α(xsim, xobs)dxsim
.

So ABC posterior is a continuous mixture of true posteriors. β is
likely to be dominated by α (for small acceptance probabilities).



Minimising Posterior Variance

Standard result gives ABC posterior variance as

VarABC(λ) = E(Var(λ|Xsim)) + Var(E(λ|Xsim)).

where on the RHS mean and variance is with respect to β(xsim).

This suggests it is natural to choose α(xsim, xobs) to “minimise”:

Var(E(λ|Xsim)),

subject to some average acceptance probability.



Intuition: Approach

It seems reasonable to focus on acceptance probabilities that
are symmetric.

Consider the case where overall acceptance probability is
small. This will correspond to accepted data being close to
the observed data.

Look at “minimising” Var(E(λ|Xsim)) for fixed acceptance
probability of rejection sampling method.



Main Idea

For some p × n matrix D,

E(λ|X ) ≈ E(λ|Xobs) + D[X − Xobs], and thus

Var(E(λ|Xsim)) ≈ Eβ([X − Xobs]DDT [X − Xobs]T ).

To minimise the sum of the individual variances: acceptance based
on

[X − Xobs]TDTD[X − Xobs] < ε

Let S(X ) = DX , then this is equivalent to

[S(X )− S(Xobs)]T [S(X )− S(Xobs)] < ε,



Intuition from Result

Ideally parameters should be uncorrelated and have similar scales.
Then:

Should have one summary statistic per parameter.

Calculation of summary statistic requires calculation of D:
which is output of (local?)-linear regression.

Cut-off acceptance rule appears best.

Diagnostics for this approach would be to test the validity of
the linear model approximation.

[Note there is a big hole in any formal proof from this argument.]



Part III

Proposed Methodology / Example Application



Proposed Methodology
Overview

Have a preliminary run of ABC to obtain a region of high
posterior probability.

Simulate parameters from this region, and data for each
parameter value. Use this Linear Regression on this simulated
data to generate summary statistics (one per parameter).

Consider adding extra data – such as powers – to give a
better linear fit.

Illustrate with an example.

We have other theoretical results which support these suggestions.



g -and-k Example
Background 1

Allingham et al investigate ‘quantile distributions’

Distributions defined by their inverse cdf: F−1(x)

A quantile distribution may not have easily available
likelihood, but can be simulated by inversion

Simulate u ∼ U(0, 1)
Calculate F−1(u)

ABC is a natural method of inference



g -and-k Example
Background 2

A particular quantile distribution is the g -and-k distribution:

F−1(x) = A + B
(

1 + c 1−exp(−gz(x)
1+exp(−gz(x)

)
(1 + z(x)2)kz(x)

z(x) is the xth quantile of the N(0, 1) distribution

A and B are location and scale parameters

g and k parameters control skewness and kurtosis

Final parameter c is usually fixed as 0.8

Allingham et al propose this as a flexible distribution with
small number of parameters



g -and-k Example
Application

Allingham et al applied ABC analysis to the following problem

Illustration rather than real application

Sample of 10, 000 independent g -and-k draws made

Parameters A = 3, B = 1, g = 2, k = 0.5 and c = 0.8

This used as observed data

Parameter c taken as known

Others to be estimated

Uniform prior on region [0, 10]4



g -and-k Example
Analysis of Allingham et al

Each simulated data set has 10,000 simulated values

Allingham et al calculated the order statistics

and used these as the summary statistics

i.e. 10, 000 summary statistics (all of the data)

Analysis used:

ABC-MCMC algorithm
Euclidean distance metric
Cut-off acceptance rule

We replicated this analysis and used it as a preliminary run



g -and-k Example
Construction of summary statistics

Output of the preliminary run gives an approximate posterior

Used to create a training distribution for parameter values

Large set of training parameter values sampled from this

For each training parameter value

Data simulated from the g -and-k distribution
Order statistics calculated

Regressions performed for each parameter

Training parameter values as responses
Simulated order statistics as covariates



g -and-k Example
Construction of summary statistics - issues

10,000 covariates caused computational difficulties

Pick a subset of covariates – percentiles – and do regression
for these

Also included powers of these percentiles.

Parameters related to higher moments, so using powers as
covariates is natural.



g -and-k Example
Main run - ABC setup

Transition density was Normal with variance matrix based on
preliminary run output variance

ε chosen to give acceptance rate roughly 1%

10,000 iterations performed in each run

Output thinned to reduce autocorrelation

Results based on 500 output points for each method



g -and-k Example
Results I
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g -and-k Example
Results II

Method Regression (percentile) Regression (full) Allingham et al
Time for ABC run(s) 46.9 5193.7 4807.1

ε used 0.11 0.14 13.3
Acceptance rate 1.01% 0.98% 0.88%

A std dev 0.049 0.061 0.083
B std dev 0.053 0.079 0.068
g std dev 0.094 0.439 2.560
k std dev 0.058 0.124 0.043

Regression summary statistics perform better

Using powers of data improves performance

Percentile case has speed improvement



Part IV

Comparison with Beaumont et al.



Comparison with Beaumont et al.

There are links with the method of Beaumont et al.

We use linear-regression on the complete data to choose
summary statistics. These then used within ABC.

Beaumont et al. use ABC, then apply a linear regression
correction to get parameter estimate.

In applications, they assume a small number of summary
statistics have been chosen. Results in Blum (2009) suggest
the method performs poorly as the number of summary
statistics increases.



Empirical Comparison: Toy example

We have iid normal data X1, . . . ,Xp where X1,X2,X3 have
mean log λ; and the other data values are uninformative.

Can calculate the true posterior analytically.

For a range of values of p we simulate 100 data sets,
implement each ABC method, and calculate the increase in
mean square error.

Compare ABC, ABC with Beaumont et al. correction, and our
approach.

Implementation such that CPU cost of all methods were the
same. [So higher acceptance probability in our approach.]



Results
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Part V

Conclusion



Summary

“Theoretical” results motivate a semi-automatic way of
deriving summary statistics, which uses linear regression.

Approach supported emprically for the application of
Allingham et al.

Important link with work of Beaumont et al.

Other Results

Looked at other ways of constructing summary statistics –
none work better than Linear Regression.

Similar improvement over published work on a genetics
example.
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