
5. As we saw, for model Mγ, the corresponding backprojection prior for
full model M is:

β̃γ = (XT
γ Xγ)

−1XT
γ Xβ̃ (1)

with β̃ is the prior mean of β in M. The prior distribution for β̃γ in the
first level G-prior setting should not be simply partition in a (Xγ, X−γ) way.
Instead, using the projection matrix P = (XT

γ Xγ)
−1XT

γ X, we have:

βγ|γ, σ2 ∼ Nqγ+1(β̃γ, Σ̃) (2)

where

Σ̃ = Pcσ2(XT X)−1P T = cσ2(XT
γ Xγ)

−1XT
γ [X(XT X)−1XT ]Xγ(X

T
γ Xγ)

−1.
(3)

This is different from the prior variance cσ2(XT
γ Xγ)

−1. This is equivalent to
shrink your original variance hyperparameter by a fact of hat matrix H =
X(XT X)−1XT .

By orthogonal design assumption: XT
γ X−γ = XT

−γXγ = 0, and expanding

Σ̃, we can easily derive:

Σ̃ = cσ2(XT
γ Xγ)

−1(Hγ + H−γ) (4)

where Hγ = Xγ(X
T
γ Xγ)

−1XT
γ and H−γ = X−γ(X

T
−γX−γ)

−1XT
−γ, i.e. hat

matrix of corresponding blocks.
An important notice is that if assuming X = (Xγ, X−γ) is an orthogonal

design then we have

Σ̃ = cσ2(XT
γ Xγ)

−1(Hγ + H−γ)

= cσ2(XT
γ Xγ)

which exactly what you got in the book. However, in general case where
orthogonal design is not applicable, then dependency between Xγ and X−γ

may be introduced. In this more general settings, Zellner’s G-prior should
be exactly as Eq.(1).

Cosequently, the joint prior, marginal density of y and γ are all not in-
correct in the rest of Section 3.5.2.

To mitigate the unclearness, we could just assume the orthogonal design
without loss of generality to a wider settings. This assumption, however,
would be proper for comparing just a nested small model to the full model.
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For the model selection issue, e.g. using stochastic search, this orthogonal
design would probably harm for further inference! (You have to assume
orthogonality for every possible model partition!) Hence, I think, more for-
mally, presenting the general results to the readers is a better idea.
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