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Preface

The warning could not have been meant for the place
where it could only be found after approach.

—Joseph Conrad, Heart of Darkness

This solution manual was initially intended for instructors using the book,
so that they could entirely rely on the exercises to provide graded homeworks.
However, due to repeated criticisms and to requests from readers, as well as
to the fact that some exercises were stepping stones for following sections and
to the lack of evidence that the exercises were indeed used to set homeworks,
we came to realise (albeit late in the day!) that some solutions were needed
by some (self-study or not) readers. From there, the move to make the whole
set of solutions available to all readers was a rather natural step. Especially
when contemplating the incoming revision of Bayesian Core towards a Use R!
oriented version, with an attempt at reducing the math complexity, another
reproach found in some of the published criticisms. Therefore, lo and behold!,
by popular request, the solution manual is now available for free use and
duplication by anyone, not only by instructors, on the book webpage as well
as on Springer Verlag’s website.

However, there is a caveat to the opening of the manual to all: since this
solution manual was first intended (and written) for instructors, some self-
study readers may come to the realisation that the solutions provided here
are too sketchy for them because the way we wrote those solutions assumes
some minimal familiarity with the maths, the probability theory and with the
statistics behind the arguments. There is unfortunately a limit to the time
and to the efforts we can put in this solution manual and studying Bayesian
Core requires some prerequisites in maths (such as matrix algebra and Rie-
mann integrals), in probability theory (such as the use of joint and conditional
densities) and some bases of statistics (such as the notions of inference, suf-
ficiency and confidence sets) that we cannot cover here. Casella and Berger
(2001) is a good reference in case a reader is lost with the “basic” concepts
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or sketchy math derivations. Indeed, we also came to realise that describing
the book as“self-contained” was a dangerous add as readers were naturally
inclined to always relate this term to their current state of knowledge, a bias
resulting in inappropriate expectations. (For instance, some students unfortu-
nately came to one of our short courses with no previous exposure to standard
distributions like the t or the gamma distributions.)

We obviously welcome comments and questions on possibly erroneous so-
lutions, as well as suggestions for more elegant or more complete solutions:
since this manual is distributed both freely and independently from the book,
it can be updated and corrected [almost] in real time! Note however that the R
codes given in the following pages are not optimised because we prefer to use
simple and understandable codes, rather than condensed and efficient codes,
both for time constraints (this manual took about a whole week of August
2007 to complete) and for pedagogical purposes: the readers must be able to
grasp the meaning of the R code with a minimum of effort since R program-
ming is not supposed to be an obligatory entry to the book. In this respect,
using R replaces the pseudo-code found in other books since it can be im-
plemented as such but does not restrict understanding. Therefore, if you find
better [meaning, more efficient/faster] codes than those provided along those
pages, we would be glad to hear from you, but that does not mean that we will
automatically substitute your R code for the current one, because readability
is also an important factor.

Sceaux, France,October 24, 2009
Christian P. Robert
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User’s Manual

Exercise 1.1 Given a function g on R, state the two basic conditions for g to be
a probability density function (pdf) with respect to the Lebesgue measure. Recall
the definition of the cumulative distribution function (cdf) associated with g and
that of the quantile function of g.

If g is integrable with respect to the Lebesgue measure, g is a pdf if and only
if

1. g is non-negative, g(x) ≥ 0
2. g integrates to 1, ∫

R
g(x) dx = 1 .

Exercise 1.2 If (x1, x2) is a normal N2((µ1, µ2), Σ) random vector, with

Σ =
(
σ2 ωστ
ωστ τ2

)
,

recall the conditions on (ω, σ, τ) for Σ to be a (nonsingular) covariance matrix.
Under those conditions, derive the conditional distribution of x2 given x1.

The matrix Σ is a covariance matrix if

1. Σ is symmetric and this is the case;
2. Σ is semi-definite positive, i.e. , for every x ∈ R2, xTΣx ≥ 0, or, for every

(x1, x2),

σ2x2
1 + 2ωστx1x2 + τ2x2

2 = (σx1 + ωτx2)2 + τ2x2
2(1− ω2) ≥ 0 .
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A necessary condition for Σ to be positive semi-definite is that det(Σ) =
σ2τ2(1− ω2) ≥ 0, which is equivalent to |ω| ≤ 1.

In that case, xTΣx ≥ 0. The matrix Σ is furthermore nonsingular if det(Σ) >
0, which is equivalent to |ω| < 1.

Under those conditions, the conditional distribution of x2 given x1 is de-
fined by

f(x2|x1) ∝ exp
{

(x1 − µ1 x2 − µ2)Σ−1

(
x1 − µ1

x2 − µ2

)
/2
}

∝ exp
{

(x1 − µ1 x2 − µ2)
(

τ2 −ωστ
−ωστ σ2

)(
x1 − µ1

x2 − µ2

)
/2det(Σ)

}
∝ exp

{
σ2(x2 − µ2)2 − 2ωστ(x1 − µ1)(x2 − µ2)/2det(Σ)

}
∝ exp

{
σ2

σ2τ2(1− ω2)

(
x2 − µ2 − ωτ

x1 − µ1

σ

)2

/2

}
Therefore,

x2|x1 ∼ N

(
µ2 + ωτ

x1 − µ1

σ
, τ2(1− ω2)

)
.

Exercise 1.3 Test the help() command on the functions seq(), sample(),
and order(). (Hint: start with help().)

Just type

> help()
> help(seq)
> help(sample)
> help(order)

and try illustrations like

> x=seq(1,500,10)
> y=sample(x,10,rep=T)
> z=order(y)

Exercise 1.4 Study the properties of the R function lm() using simulated data
as in

> x=rnorm(20)
> y=3*x+5+rnorm(20,sd=0.3)
> reslm=lm(y~x)
> summary(reslm)
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Generating the normal vectors x and y and calling the linear regression func-
tion lm leads to

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.7459 -0.2216 0.1535 0.2130 0.8989

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.02530 0.10283 48.87 <2e-16 ***
x 2.98314 0.09628 30.98 <2e-16 ***
---
Sig. code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4098 on 18 degrees of freedom
Multiple R-Squared: 0.9816, Adjusted R-squared: 0.9806
F-statistic: 960 on 1 and 18 DF, p-value: < 2.2e-16

Therefore, in this experiment, the regression coefficients (α, β) in E[y|x] =
α+βx are estimated by maximum likelihood as α̂ = 2.98 and β̂ = 5.03, while
they are α = 3 and β = 5 in the simulated dataset.

Exercise 1.5 Of the R functions you have met so far, check which ones are
written in R by simply typing their name without parentheses, as in mean or var.

Since

> mean
function (x, ...)
UseMethod("mean")
<environment: namespace:base>

and

> var
function (x, y = NULL, na.rm = FALSE, use)
{

if (missing(use))
use <- if (na.rm)

"complete.obs"
else "all.obs"

na.method <- pmatch(use, c("all.obs", "complete.obs",
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"pairwise.complete.obs"))
if (is.data.frame(x))

x <- as.matrix(x)
else stopifnot(is.atomic(x))
if (is.data.frame(y))

y <- as.matrix(y)
else stopifnot(is.atomic(y))
.Internal(cov(x, y, na.method, FALSE))

}
<environment: namespace:stats>

we can deduce that the first function is written in C, while the second function
is written in R.
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Exercise 2.1 Check your current knowledge of the normal N (µ, σ2) distribu-
tion by writing down its density function and computing its first four moments.

The density of the normal N (µ, σ2) distribution is given by

ϕ(x|µ, σ) =
1√
2πσ

exp
{
−(x− µ)2/2σ2

}
and, if X ∼ N (µ, σ2),

E[X] = µ+
∫ +∞

−∞

x− µ√
2πσ

exp
{
−(x− µ)2/2σ2

}
dx

= µ+
σ√
2π

∫ +∞

−∞
y exp−y2/2dy

= µ+
σ√
2π

[− exp−y2/2]y=+∞
y=−∞

= µ ,

then, using one integration by parts,

E[(X − µ)2] =
∫ +∞

−∞

y2

√
2πσ

exp−y2/2σ2dy

= σ2

∫ +∞

−∞

z2

√
2π

exp−z2/2 dz

=
σ2

√
2π

[−z exp−z2/2]z=+∞
z=−∞ + σ2

∫ +∞

−∞

1√
2π

exp−z2/2 dz

= σ2 ,
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exploiting the fact that (x− µ)3 exp
{
−(x− µ)2/2σ2

}
is asymmetric wrt the

vertical axis x = µ,

E[(X − µ)3] =
∫ +∞

−∞

y3

√
2πσ

exp−y2/2σ2dy = 0

and, using once again one integration by parts,

E[(X − µ)4] =
σ4

√
2π

∫ +∞

−∞
z4 exp−z2/2 dz

=
σ4

√
2π

[−z3 exp−z2/2]z=+∞
z=−∞ + σ4

∫ +∞

−∞

3z2

√
2π

exp−z2/2 dz

= 3σ4 .

Thus, the four first (centered) moments of the normal N (µ, σ2) distribution
are µ, σ2, 0 and 3σ4.

Exercise 2.2 Before exiting to the next page, think of datasets that could be, or
could not be, classified as normal. In each case, describe your reason for proposing
or rejecting a normal modeling.

A good illustration of the opposition between normal and nonnormal mod-
elings can be found in insurrance claims: for minor damages, the histogram
of the data (or of its log-transform) is approximately normal, while, for the
highest claims, the tail is very heavy and cannot be modeled by a normal
distribution (but rather by an extreme value distribution). Take for instance
http://www.statsci.org/data/general/carinsuk.html

Exercise 2.3 Reproduce the histogram of Figure 2.1 and the subsequent analy-
sis conducted in this chapter for the relative changes in reported larcenies relative
to the 1995 figures, using the 90cntycr.wk1 file available on the Webpage of the
book.

A new datafile must be created out of the file 90cntycr.wk1. Then, plotting
an histogram and doing inference on this dataset follows from the directions
provided within the chapter.

Exercise 2.4 By creating random subwindows of the region plotted in Figure
2.2, represent the histograms of these subsamples and examine whether they
strongly differ or not. Pay attention to the possible influence of the few “bright
spots” on the image.
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While a “random subwindow” is not anything clearly defined, we can cre-
ate a 800× 800 matrix by
> cmb=matrix(scan("CMBdata"),nrow=800)

and define random subregions by

> cmb1=cmb[sample(1:100,1):sample(101:300,1),
sample(50:150,1):sample(401:600,1)]
> cmb2=cmb[sample(701:750,1):sample(751:800,1),

sample(650:750,1):sample(751:800,1)]

Comparing the histograms can then be done as

> hist(cmb1,proba=T,xlim=range(cmb))
> par(new=T)
> hist(cmb2,proba=T,xlim=range(cmb))

or, more elaborately, through nonparametric density estimates

> cnp1=density(cmb1,ad=3) # Smooth out the bandwith
> cnp2=density(cmb2,ad=3) # Smooth out the bandwith
> plot(cnp1,xlim=range(cmb),type="l",lwd=2,col="tomato3",

main="comparison")
> lines(cnp2,lty=5,col="steelblue4",lwd=2)

which leads to Figure 2.1. In that case, both subsamples are roughly normal
but with different parameters.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

comparison

N = 76436   Bandwidth = 0.01717

De
ns

ity

Fig. 2.1. Comparison of two density estimates for two random subregions.

Exercise 2.5 Show that (2.2) can be derived by first setting θ as a random
variable with density function π and then D conditionally on θ as distributed
from `(θ|D).
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If π(θ) is the density of the marginal distribution of θ and then `(θ|D) the
density of the conditional distribution of D given θ, the density of the joint
distribution of θ and of D is given by

`(θ|D)π(θ) .

Therefore, Bayes’s theorem simply is the derivation of the density of the con-
ditional distribution of θ given D from this joint density.

Exercise 2.6 Show that the minimization (in θ̂(D)) of the expectation

E[L(θ, θ̂))|D ]—that is, of the expectation of the quadratic loss function under
the distribution with density π(θ|D)—produces the posterior expectation as the

solution in θ̂.

Since

E[L(θ, θ̂))|D ] = E[||θ − θ̂||2|D ]

= E[(θ − θ̂)T(θ − θ̂)|D ]

= E[||θ||2 − 2θTθ̂ + ||θ̂||2|D ]

= E[||θ||2|D ]− 2θ̂TE[θ|D ] + ||θ̂||2

= E[||θ||2|D ]− ||E[θ|D ]||2 + ||E[θ|D ]− θ̂||2 ,

minimising E[L(θ, θ̂))|D ] is equivalent to minimising ||E[θ|D ]− θ̂||2 and hence
the solution is

θ̂ = E[θ|D ] .

Exercise 2.7 Show that the normal, binomial, geometric, Poisson, and expo-
nential distributions are all exponential families.

For each of those families of distributions, it is enough to achieve the
standard form of exponential families

fθ(y) = h(y) exp {θ ·R(y)− Ψ(θ)} , (2.1)

as defined in the book.
In the normal N (θ, 1) case,

fθ(y) =
1√
2π

exp
1
2
{
−y2 + 2yθ − θ2

}
and so it fits the representation (2.1) with R(y) = y, h(y) = exp(−y2/2)/

√
2π

and Ψ(θ) = θ2/2.
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In the binomial B(n, p) case,

fp(y) =
(
n

y

)
exp {y log(p) + (n− y) log(1− p)} , y ∈ {0, 1, . . . , n} ,

and it also fits the representation (2.1) with θ = log(p/(1 − p)), R(y) = y,
h(y) =

(
n
y

)
and Ψ(θ) = −n log(1 + eθ).

In the geometric G (p) case [corresponding to the number of failures before
a success],

fp(y) = exp {y log(1− p) + log(p)} , y = 0, 1, . . . ,

and it also fits the representation (2.1) with θ = log(1−p), R(y) = y, h(y) = 1
and Ψ(θ) = − log(1− eθ).

In the Poisson P(λ) case,

fλ(y) =
1
y!

exp {y log(λ)− λ}

and it also fits the representation (2.1) with θ = log(λ), R(y) = y, h(y) = 1/y!
and Ψ(θ) = exp(θ).

In the exponential E xp(λ) case,

fλ(y) = exp {−λy + log(λ)}

and it also fits the representation (2.1) with θ = λ, R(y) = −y, h(y) = 1 and
Ψ(θ) = − log(θ).

Exercise 2.8 Show that, for an exponential family, Ψ(θ) is defined by the con-
straint that fθ is a probability density and that the expectation of this distribution
can be written as ∂Ψ(θ)/∂θ, the vector of the derivatives of Ψ(θ) with respect
to the components of θ.

Using the representation (2.1),∫
fθ(y) dy =

∫
h(y) exp {θ ·R(y)− Ψ(θ)} dy = 1

implies that Ψ(θ) is uniquely defined by∫
h(y) exp {θ ·R(y)} dy =

∫
h(y) dy exp {Ψ(θ)} .

When considering the expectation of R(Y ),
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Eθ[R(Y )] =
∫
R(y)h(y) exp {θ ·R(y)− Ψ(θ)} dy

=
∫

∂

∂θ
{θ ·R(y)}h(y) exp {θ ·R(y)− Ψ(θ)} dy

=
∫

∂

∂θ
{θ ·R(y)− Ψ(θ) + Ψ(θ)}h(y) exp {θ ·R(y)− Ψ(θ)} dy

=
∂Ψ(θ)
∂θ

∫
h(y) exp {θ ·R(y)− Ψ(θ)} dy

+
∫
h(y)

∂

∂θ
[exp {θ ·R(y)− Ψ(θ)}] dy

=
∂Ψ(θ)
∂θ

× 1 +
∂

∂θ

{∫
h(y) exp {θ ·R(y)− Ψ(θ)} dy

}
=
∂Ψ(θ)
∂θ

.

Exercise 2.9 Show that the updated hyperparameters in (2.5) are given by

ξ′(y) = ξ +R(y) , λ′(y) = λ+ 1 .

Find the corresponding expressions for π(θ|ξ, λ, y1, . . . , yn).

If we start with

fθ(y) = h(y) exp {θ ·R(y)− Ψ(θ)} , and π(θ|ξ, λ) ∝ exp {θ · ξ − λΨ(θ)} ,

Bayes theorem implies that

π(θ|ξ, λ, y) ∝ fθ(y)π(θ|ξ, λ)
∝ exp {θ ·R(y)− Ψ(θ)} exp {θ · ξ − λΨ(θ)}
= exp {θ · [R(y) + ξ]− (λ+ 1)Ψ(θ)} .

Therefore,
ξ′(y) = ξ +R(y) , λ′(y) = λ+ 1 .

Similarly,

π(θ|ξ, λ, y1, . . . , yn) ∝
n∏
i=1

fθ(yi)π(θ|ξ, λ)

∝ exp

{
n∑
i=1

[θ ·R(yi)− Ψ(θ)]

}
exp {θ · ξ − λΨ(θ)}

= exp

{
θ · [

n∑
i=1

R(yi) + ξ]− (λ+ n)Ψ(θ)

}
.
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Therefore,

ξ′(y1, . . . , yn) = ξ +
n∑
i=1

R(yi) , λ′(y1, . . . , yn) = λ+ n .

Exercise 2.10 erive the posterior distribution for an iid sample D =
(y1, . . . , yn) from N (θ, 1) and show that it only depends on the sufficient statistic
y =

∑n
i=1 yi/n.

Since (see Exercice 2.7)

fθ(y) =
1√
2π

exp
1
2
{
−y2 + 2yθ − θ2

}
fits the representation (2.1) with R(y) = y, h(y) = exp(−y2/2)/

√
2π and

Ψ(θ) = θ2/2, a conjugate prior is

π(θ|ξ, λ) ∝ exp
1
2
{

2ξθ − λθ2
}
,

which is equivalent to a N (ξ/λ, 1/λ) prior distribution. Following the updat-
ing formula given in Exercice 2.9, the posterior distribution is a

N (ξ′(y1, . . . , yn)/λ′(y1, . . . , yn), 1/λ′(y1, . . . , yn))

distribution, i.e.

µ|y1, . . . , yn ∼ N

(
ξ + ny

λ+ n
,

1
λ+ n

)
.

It obviously only depends on the sufficient statistics y.

Exercise 2.11 Give the range of values of the posterior mean (2.6) as the pair
(λ, λ−1ξ) varies over R+ × R.

While
λ−1

1 + λ−1
≤ 1 ,

the fact that ξ can take any value implies that this posterior mean has an un-
restricted range, which can be seen as a drawback of this conjugate modeling.
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Exercise 2.12 A Weibull distribution W (α, β, γ) is defined as the power trans-
form of a gamma G (α, β) distribution: if X ∼ W (α, β, γ), then Xγ ∼ G (α, β).
Show that, when γ is known, W (α, β, γ) is an exponential family but that it is
not an exponential family when γ is unknown.

The Weibull random variable X has the density

γαβ

Γ (β)
x(β+1)γ−1 e−x

γα ,

since the Jacobian of the change of variables y = xγ is γxγ−1. So, checking
the representation (2.1) leads to

f(x|α, β, γ) =
γαβ

Γ (β)
exp {[(β + 1)γ − 1] log(x)− αxγ} ,

with R(x) = (γ log(x),−xγ), θ = (β, α) and Ψ(θ) = logΓ (β)− log γαβ .
If γ is unknown, the term xγα in the exponential part makes it impossible

to recover the representation (2.1).

Exercise 2.13 Show that, when the prior on θ = (µ, σ2) is N (ξ, σ2/λµ) ×
I G (λσ, α), the marginal prior on µ is a Student’s t distribution
T (2λσ, ξ, α/λµλσ) (see Example 2.3 below for the definition of a Student’s
t density). Give the corresponding marginal prior on σ2. For an iid sample
D = (x1, . . . , xn) from N (µ, σ2), derive the parameters of the posterior dis-
tribution of (µ, σ2).

Since the joint prior distribution of (µ, σ2) is

π(µ, σ2) ∝ (σ2)−λσ−1−1/2 exp
−1
2σ2

{
λµ(µ− ξ)2 + 2α

}
(given that the Jacobian of the change of variable ω = σ−2 is ω−2), integrating
out σ2 leads to

π(µ) ∝
∫ ∞

0

(σ2)−λσ−3/2 exp
−1
2σ2

{
λµ(µ− ξ)2 + 2α

}
dσ2

∝
∫ ∞

0

ωλσ−1/2 exp
−ω
2
{
λµ(µ− ξ)2 + 2α

}
dω

∝
{
λµ(µ− ξ)2 + 2α

}−λσ−1/2

∝
{

1 +
λσλµ(µ− ξ)2

2λσα

}− 2λσ+1
2

,
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which is the proper density of a Student’s t distribution T (2λσ, ξ, α/λµλσ).
By definition of the joint prior on (µ, σ2), the marginal prior on σ2 is a

inverse gamma I G (λσ, α) distribution.
The joint posterior distribution of (µ, σ2) is

π((µ, σ2)|D) ∝ (σ2)−λσ(D) exp
{
−
(
λµ(D)(µ− ξ(D))2 + α(D)

)
/2σ2

}
,

with

λσ(D) = λσ + 3/2 + n/2 ,
λµ(D) = λµ + n ,

ξ(D) = (λµξ + nx)/λµ(D) ,

α(D) = 2α+
λµ(D)
nλµ

(x− ξ)2 + s2(D) .

This is the product of a marginal inverse gamma

I G (λσ(D)− 3/2, α(D)/2)

distribution on σ2 by a conditional normal

N
(
ξ(D), σ2/λµ(D)

)
on µ. (Hence, we do get a conjugate prior.) Integrating out σ2 leads to

π(µ|D) ∝
∫ ∞

0

(σ2)−λσ(D) exp
{
−
(
λµ(D)(µ− ξ(D))2 + α(D)

)
/2σ2

}
dσ2

∝
∫ ∞

0

ωλσ(D)−2 exp
{
−
(
λµ(D)(µ− ξ(D))2 + α(D)

)
ω/2

}
dω

∝
(
λµ(D)(µ− ξ(D))2 + α(D)

)−(λσ(D)−1)
,

which is the generic form of a Student’s t distribution.

Exercise 2.14 Show that, for location and scale models, Jeffreys’ prior is given
by πJ(θ) = 1 and πJ(θ) = 1/θ, respectively.

In the case of a location model, f(y|θ) = p(y − θ), the Fisher information
matrix of a location model is given by

I(θ) = Eθ

[
∂ log p(Y − θ)

∂θ

T
∂ log p(Y − θ)

∂θ

]

=
∫ [

∂p(y − θ)
∂θ

]T [
∂p(y − θ)

∂θ

] /
p(y − θ) dy

=
∫ [

∂p(z)
∂z

]T [
∂p(z)
∂z

] /
p(z) dz
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it is indeed constant in θ. Therefore the determinant of I(θ) is also constant
and Jeffreys’ prior can be chosen as πJ(θ) = 1 [or any other constant as long
as the parameter space is not compact].

In the case of a scale model, if y ∼ f(y/θ)/θ, a change of variable from
y to z = log(y) [if y > 0] implies that η = log(θ) is a location parameter for
z. Therefore, the Jacobian transform of πJ(η) = 1 is πJ(θ) = 1/θ. When y
can take both negative and positive values, a transform of y into z = log(|y|)
leads to the same result.

Exercise 2.15 In the case of an exponential family, derive Jeffreys’ prior in terms
of the Hessian matrix of Ψ(θ), i.e. the matrix of second derivatives of Ψ(θ).

Using the representation (2.1)

log fθ(y) = log h(y) + θ ·R(y)− Ψ(θ) ,

we get
∂2

∂θ∂θT
log fθ(y) = −∂

2Ψ(θ)
∂θ∂θT

and therefore the Fisher information matrix is the Hessian matrix of Ψ(θ),
H(θ). This implies that πJ(θ) = detH(θ).

Exercise 2.16 Show that, when π(θ) is a probability density, (2.8) necessarily
holds for all datasets D .

Given that π(θ) is a (true) probability density and that the likelihood
`(θ|D) is also a (true) probability density in D that can be interpreted as a
conditional density, the product

π(θ)`(θ|D)

is a true joint probability density for (θ,D). The above integral therefore
defines the marginal density of D , which is always defined.

Exercise 2.17 Try to devise a parameterized model and an improper prior such
that, no matter the sample size, the posterior distribution does not exist. (If you
cannot find such a case, wait until Chapter 6.)

It is sufficient to find a function of the parameter θ that goes to infinity
faster than the likelihood goes to 0, no matter what the sample size is. For
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instance, take π(θ) ∝ exp θ2 for a Cauchy C (θ, 1) model. Then, for a sample
of size n, the likelihood goes to 0 as θ−2n and it cannot beat the exponential
increase in the prior.

Exercise 2.18 Show that, under the loss La0,a1 , the Bayes estimator associated
with a prior π is given by

δπ(x) =

{
1 if Pπ(θ ∈ Θ0|x) > a1

/
a0 + a1,

0 otherwise.

The posterior expected loss is

E [La0,a1(θ, d)|x] =

{
a0 P

π(θ ∈ Θ0|x) if d = 0 ,
a1 P

π(θ ∈ Θ1|x) if d = 1 ,

thus the decision minimising this posterior loss is d = 1 when a1 P
π(θ ∈

Θ1|x) < a0 P
π(θ ∈ Θ0|x), i.e.

a1(1− Pπ(θ ∈ Θ0|x)) < a0 P
π(θ ∈ Θ0|x) ,

and d = 0 otherwise.

Exercise 2.19 When θ ∈ {θ0, θ1}, show that the Bayesian procedure only de-
pends on the ratio %0fθ0(x)/(1− %0)fθ1(x), where %0 is the prior weight on θ0.

In this special case, π puts a point mass of %0 on θ0 and of (1− %0) on θ1.
Therefore,

Pπ(θ = θ0|x) =
%0 fθ0(x)

%0 fθ0(x) + (1− %0) fθ1(x)

=
1

1 + (1− %0) fθ1(x)/(1− %0) fθ1(x)
,

which only depends on the ratio %0fθ0(x)/(1− %0)fθ1(x).

Exercise 2.20 Show that the limit of the posterior probability Pπ(µ < 0|x)
when ξ goes to 0 and τ goes to ∞ is Φ(−x/σ).
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Since

Pπ(µ < 0|x) = Φ (−ξ(x)/ω)

= Φ

(
σ2ξ + τ2x

σ2 + τ2

√
σ2 + τ2

σ2τ2

)

= Φ

(
σ2ξ + τ2x

√
σ2 + τ2

√
σ2τ2

)
,

when ξ goes to 0 and τ goes to ∞, the ratio

σ2ξ + τ2x
√
σ2 + τ2

√
σ2τ2

goes to

lim
τ→∞

τ2x
√
σ2 + τ2

√
σ2τ2

= lim
τ→∞

τ2x

τ2σ
=
x

σ
.

Exercise 2.21 We recall that the normalizing constant for a Student’s
T (ν, µ, σ2) distribution is

Γ ((ν + 1)/2)/Γ (ν/2)
σ
√
νπ

.

Give the value of the integral in the denominator of Bπ10 above.

We have

(µ− x̄)2 + (µ− ȳ)2 = 2
(
µ− x̄+ ȳ

2

)2

+
(x̄− ȳ)2

2

and thus ∫ [
(µ− x̄)2 + (µ− ȳ)2 + S2

]−n
dµ

= 2−n
∫ [(

µ− x̄+ ȳ

2

)2

+
(x̄− ȳ)2

4
+
S2

2

]−n
dµ

= (2σ2)−n
∫ [

1 +
(
µ− x̄+ ȳ

2

)2 /
σ2ν

]−(ν+1)/2

dµ ,

where ν = 2n− 1 and

σ2 =

[(
x̄− ȳ

2

)2

+
S2

2

]/
(2n− 1) .
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Therefore, ∫ [
(µ− x̄)2 + (µ− ȳ)2 + S2

]−n
dµ

= (2σ2)−n
σ
√
νπ

Γ ((ν + 1)/2)/Γ (ν/2)

=
√
νπ

2nσ2n−1Γ ((ν + 1)/2)/Γ (ν/2)

=
(2n− 1)2n−1

√
νπ

2n
[(
x̄−ȳ

2

)2
+ S2

2

]2n−1

Γ ((ν + 1)/2)/Γ (ν/2)
.

Note that this expression is used later in the simplified devivation of Bπ01

without the term (2n−1)2n−1
√
νπ/2nΓ ((ν+ 1)/2)/Γ (ν/2) because this term

appears in both the numerator and the denominator.

Exercise 2.22 Approximate Bπ01 by a Monte Carlo experiment where ξ is simu-
lated from a Student’s t distribution with mean (x̄+ȳ)/2 and appropriate variance,
and the integrand is proportional to exp−ξ2/2. Compare the precision of the re-
sulting estimator with the above Monte Carlo approximation based on the normal
simulation.

The integral of interest in Bπ01 is∫ [
(2ξ + x̄− ȳ)2/2 + S2

]−n+1/2
e−ξ

2/2 dξ/
√

2π

=
(
S2
)−n+1/2

∫
exp−ξ2/2√

2π

[
4(n− 1)(ξ − (ȳ − x̄)/2)2

(2n− 2)S2
+ 1
]−n+1/2

dξ

=
(
S2
)−n+1/2

∫
exp−ξ2/2√

2π

[
(ξ − (ȳ − x̄)/2)2

νσ2
+ 1
]−(ν+1)/2

dξ

= C

∫
exp−ξ2/2√

2π
t(ξ|µ, σ, ν) dξ ,

where t(ξ|µ, σ, ν) is the density of the Student’s T (ν, µ, σ2) distribution with
parameters ν = 2n − 2, µ = (ȳ − x̄)/2, and σ2 = S2/4(n − 1), and C is the
constant

C =
(
S2
)−n+1/2

/
Γ ((ν + 1)/2)/Γ (ν/2)

σ
√
νπ

.

Therefore, we can simulate a sample ξ1, . . . , ξn from the T (ν, µ, σ2) distribu-
tion and approximate the above integral by the average

C

n

n∑
i=1

exp−ξ2
i /2√

2π
,
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using an R program like

n=100
N=1000000
nu=2*n-2
barx=.088
bary=.1078
mu=.5*(bary-barx)
stwo=.00875
sigma=sqrt(.5*stwo/nu)
C=log(stwo)*(-n+.5)+log(sigma*sqrt(nu*pi))+
lgamma(.5*nu)-lgamma(.5*nu+.5)

# T simulation
xis=rt(n=N,df=nu)*sigma + mu
B01=-log(cumsum(dnorm(xis))/(1:N))
B01=exp( (-n+.5)*log(.5*(barx-bary)^2+stwo)+B01-C )

# Normal simulation
xis=rnorm(N)
C01=cumsum((stwo+.5*(2*xis+barx-bary)^2)^(-n+.5))/(1:N)
C01=((.5*(barx-bary)^2+stwo)^(-n+.5))/C01

# Comparison of the cumulated averages
plot(C01[seq(1,N,l=1000)],type="l",col="tomato2",lwd=2,

ylim=c(20,30),xlab=expression(N/100),ylab=expression(1/B[10]))
lines(B01[seq(1,N,l=1000)],col="steelblue3",lwd=2,lty=5)

As shown on Figure 2.2, the precision of the estimator based on the T (ν, µ, σ2)
simulation is immensely superior to the precision of the estimator based on
a normal sample: they both converge to the same value 23.42, but with very
different variances.

Exercise 2.23 Discuss what happens to the importance sampling approximation
when the support of g is larger than the support of γ.

If the support of γ, Sγ , is smaller than the support of g, the representation

I =
∫

h(x)g(x)
γ(x)

γ(x) dx

is not valid and the importance sampling approximation evaluates instead the
integral
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Fig. 2.2. Comparison of two approximations of the Bayes factor B01 based on 106

simulations.

∫
Sγ

h(x)g(x)
γ(x)

γ(x) dx.

Exercise 2.24 Show that the importance weights of Example 2.2 have infinite
variance.

The importance weight is

exp
{

(θ − µ)2/2
} n∏
i=1

[1 + (xi − θ)2]−1

with θ ∼ N (µ, σ2). While its expectation is finite—it would be equal to 1
were we to use the right normalising constants—, the expectation of its square
is not: ∫

exp
{

(θ − µ)2/2
} n∏
i=1

[1 + (xi − θ)2]−2 dθ =∞ ,

due to the dominance of the exponential term over the polynomial term.

Exercise 2.25 Show that, when γ is the normal N (0, ν/(ν − 2)) density, the
ratio

f2
ν (x)
γ(x)

∝ ex
2(ν−2)/2ν

[1 + x2/ν](ν+1)

does not have a finite integral. What does this imply about the variance of the
importance weights?
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This is more or less a special case of Exercise 2.24, with again the exponen-
tial term dominating the polynomial term, no matter what the value of ν > 2
is. The importance weights have no variance. When running an experiment
like the following one

nu=c(3,5,10,100,1000,10000)
N=length(nu)
T=1000

nors=rnorm(T)
par(mfrow=c(2,N/2),mar=c(4,2,4,1))

for (nnu in nu){

y=sqrt(nnu/(nnu-2))*nors
isw=dt(y,df=nnu)/dnorm(y)

hist(log(isw),prob=T,col="wheat4",nclass=T/20)
}

the output in Figure 2.3 shows that the value of ν still matters very much in
the distribution of the weights. When ν is small, the probability to get very
large weights is much higher than with large ν’s, and the dispersion decreases
with ν.

df=3

log(w)
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Fig. 2.3. Distributions of the log-importance weights for a normal importance
distribution against a Student’s t target for several values of ν.



2 Normal Models 21

Exercise 2.26 Given two model densities f1(D |θ) and f2(D |θ) with the
same parameter θ and corresponding priors densities π1(θ) and π2(θ), denote
π̃1(θ|D) = f1(D |θ)π1(θ) and π̃2(θ|D) = f2(D |θ)π2(θ), and show that the Bayes
factor corresponding to the comparison of both models satisfies

Bπ12 =

∫
π̃1(θ|D)α(θ)π2(θ|D)dθ∫
π̃2(θ|D)α(θ)π1(θ|D)dθ

for every positive function α and deduce that

n1

n2∑
i=1

π̃1(θ2i|D)α(θ2i)
/
n2

n1∑
i=1

π̃2(θ1i|D)α(θ1i)

is a convergent approximation of the Bayes factor Bπ12 when θji ∼ πj(θ|D)
(i = 1, 2, j = 1, . . . , nj).

The missing normalising constants in π̃1(θ|D) and π̃2(θ|D) are the marginal
densities m1(D) and m2(D), in the sense that (i = 1, 2)

πi(θ|D) = π̃i(θ|D)/mi(D) .

Therefore, ∫
π̃1(θ|D)α(θ)π2(θ|D)dθ∫
π̃2(θ|D)α(θ)π1(θ|D)dθ

=

∫
m1(D)π1(θ|D)α(θ)π2(θ|D)dθ∫
m2(D)pi1(θ|D)α(θ)π2(θ|D)dθ

=
m1(D)
m2(D)

= Bπ12

and α is irrelevant for the computation of the ratio of integrals.
A Monte Carlo implementation of this remark is to represent each integral

in the ratio as an expectation under π2(θ|D) and π1(θ|D) respectively. Simu-
lations θji’s from both posteriors then produce convergent estimators of the
corresponding integrals. This method is called bridge sampling and the choice
of α is relevant in the variance of the corresponding estimator.
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Exercise 2.27 Show that, when n goes to infinity and when the prior has an
unlimited support, the predictive distribution converges to the exact (sampling)
distribution of xn+1.

This property follows from the fact that the posterior distribution con-
verges to a Dirac mass at the true value θ? of the parameter when n goes to
infinity [under some regularity conditions on both π and f(x|θ), as well as
identifiability constraints]. Therefore,∫

f(xn+1|θ)π(θ|Dn) dθ

converges to f(xn+1|θ?).

Exercise 2.28 Show that, when X is distributed from an increasing and con-
tinuous cdf F , F (X) has a uniform distribution.

If F is increasing and continuous, it is invertible and we have

P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u ,

when 0 ≤ u ≤ 1. This demonstrates that F (X) is uniformely distributed and
this property can be exploited for simulation purposes when F is available in
closed form.
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Regression and Variable Selection

Exercise 3.1 Show that the matrix X is of full rank if and only if the matrix
XTX is invertible (where XT denotes the transpose of the matrix X, which can
produced in R using the t(X) command). Deduce that this cannot happen when
k + 1 > n.

The matrix X is a (n, k + 1) matrix. It is of full rank if the k + 1 columns
of X induce a subspace of Rn of dimension (k + 1), or, in other words, if
those columns are linearly independent: there exists no solution to Xγ = 0n
other than γ = 0n, where 0k+1 denotes the (k + 1)-dimensional vector made
of 0’s. If XTX is invertible, then Xγ = 0n implies XTXγ = XT0n = 0k+1

and thus γ = (XTX)−10k+1 = 0k+1, therefore X is of full rank. If XTX is
not invertible, there exist vectors β and γ 6= β such that XTXβ = XTXγ,
i.e. XTX(β − γ) = 0k+1. This implies that ||X(β − γ)||2 = 0 and hence
X(β − γ) = 0n for β − γ 6= 0k+1, thus X is not of full rank.

Obviously, the matrix (k + 1, k + 1) matrix XTX cannot be invertible if
k + 1 > n since the columns of X are then necessarily linearly dependent.

Exercise 3.2 Show that solving the minimization program above requires solv-
ing the system of equations (XTX)β = XTy. Check that this can be done via
the R command

> solve(t(X)%*%(X),t(X)%*%y)

If we decompose (y −Xβ)T(y −Xβ) as

yTy − 2yTXβ + βTXTXβ



24 3 Regression and Variable Selection

and differentiate this expression in β, we obtain the equation

−2yTX + 2βTXTX = 0k+1 ,

i.e.
(XTX)β = XTy

by transposing the above.
As can be checked via help(solve), solve(A,b) is the R function that

solves the linear equation system Ax = b. Defining X and y from caterpillar,
we get

> solve(t(X)%*%X,t(X)%*%y)

[,1]
rep(1, 33) 10.998412367
V1 -0.004430805
V2 -0.053830053
V3 0.067939357
V4 -1.293636435
V5 0.231636755
V6 -0.356799738
V7 -0.237469094
V8 0.181060170
V9 -1.285316143
V10 -0.433105521

which [obviously] gives the same result as the call to the linear regression
function lm():

> lm(y~X-1)

Call:
lm(formula = y ~ X - 1)

Coefficients:
Xrep(1, 33) XV1 XV2 XV3 XV4 XV5
10.998412 -0.004431 -0.053830 0.067939 -1.29363 0.23163

XV6 XV7 XV8 XV9 XV10
-0.356800 -0.237469 0.181060 -1.285316 -0.43310

Note the use of the -1 in the formula y~X-1 that eliminates the intercept
already contained in X.

Exercise 3.3 Show that V(β̂|σ2, X) = σ2(XTX)−1.
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Since β̂ = (XTX)−1XTy is a linear transform of y ∼ N (Xβ, σ2In), we
have

β̂ ∼ N
(
(XTX)−1XTXβ, σ2(XTX)−1XTX(XTX)−1

)
,

i.e.
β̂ ∼ N

(
β, σ2(XTX)−1

)
.

Exercise 3.4 Taking advantage of the matrix identities(
M +XTX

)−1
= M−1 −M−1

(
M−1 + (XTX)−1

)−1
M−1

= (XTX)−1 − (XTX)−1
(
M−1 + (XTX)−1

)−1
(XTX)−1

and

XTX(M +XTX)−1M =
(
M−1(M +XTX)(XTX)−1

)−1

=
(
M−1 + (XTX)−1

)−1
,

establish that (3.3) and (3.4) are the correct posterior distributions.

Starting from the prior distribution

β|σ2, X ∼ Nk+1(β̃, σ2M−1) , σ2|X ∼ I G (a, b) ,

the posterior distribution is

π(β, σ2|β̂, s2, X) ∝ σ−k−1−2a−2−n exp
−1
2σ2

{
(β − β̃)TM(β − β̃)

+(β − β̂)T(XTX)(β − β̂) + s2 + 2b
}

= σ−k−n−2a−3 exp
−1
2σ2

{
βT(M +XTX)β − 2βT(Mβ̃ +XTXβ̂)

+β̃TMβ̃ + β̂T(XTX)β̂ + s2 + 2b
}

= σ−k−n−2a−3 exp
−1
2σ2

{
(β − E[β|y,X])T(M +XTX)(β − E[β|y,X])

+βTMβ̃ + β̂T(XTX)β̂ − E[β|y,X]T(M +XTX)E[β|y,X] + s2 + 2b
}

with
E[β|y,X] = (M +XTX)−1(Mβ̃ +XTXβ̂) .

Therefore, (3.3) is the conditional posterior distribution of β given σ2. Inte-
grating out β leads to
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π(σ2|β̂, s2, X) ∝ σ−n−2a−2 exp
−1
2σ2

{
βTMβ̃ + β̂T(XTX)β̂

−E[β|y,X]T(M +XTX)E[β|y,X] + s2 + 2b
}

= σ−n−2a−2 exp
−1
2σ2

{
βTMβ̃ + β̂T(XTX)β̂ + s2 + 2b

−(Mβ̃ +XTXβ̂)T(M +XTX)−1(Mβ̃ +XTXβ̂)
}

Using the first matrix identity, we get that

(Mβ̃+XTXβ̂)T
(
M +XTX

)−1
(Mβ̃ +XTXβ̂)

= β̃TMβ̃ − β̃T
(
M−1 + (XTX)−1

)−1
β̃

+ β̂T(XTX)β̂ − β̂T
(
M−1 + (XTX)−1

)−1
β̂

+ 2β̂T(XTX)
(
M +XTX

)−1
Mβ̃

= β̃TMβ̃ + β̂T(XTX)β̂

− (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

by virtue of the second identity. Therefore,

π(σ2|β̂, s2, X) ∝ σ−n−2a−2 exp
−1
2σ2

{
(β̃ − β̂)T

(
M−1

+(XTX)−1
)−1

(β̃ − β̂) + s2 + 2b
}

which is the distribution (3.4).

Exercise 3.5 Give a (1− α) HPD region on β based on (3.6).

As indicated just before this exercise,

β|y, X ∼ Tk+1

(
n+ 2a, µ̂, Σ̂

)
.

This means that

π(β|y, X) ∝ 1
2

{
1 +

(β − µ̂)TΣ̂−1(β − µ̂)
n+ 2a

}(n+2a+k+1)

and therefore that an HPD region is of the form

Hα =
{
β; , (β − µ̂)TΣ̂−1(β − µ̂) ≤ kα

}
,

where kα is determined by the coverage probability α.
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Now, (β − µ̂)TΣ̂−1(β − µ̂) has the same distribution as ||z||2 when
z ∼ Tk+1(n + 2a, 0, Ik+1). This distribution is Fisher’s F(k + 1, n + 2a) dis-
tribution, which means that the bound kα is determined by the quantiles of
this distribution.

Exercise 3.6 The regression model can also be used in a predictive sense:
for a given (m, k + 1) explanatory matrix X̃, the corresponding outcome ỹ
can be inferred through the predictive distribution π(ỹ|σ2,y, X, X̃). Show that
π(ỹ|σ2,y, X, X̃) is a Gaussian density with mean

E[ỹ|σ2,y, X, X̃] = E[E(ỹ|β, σ2,y, X, X̃)|σ2,y, X, X̃]
= E[X̃β|σ2,y, X, X̃]

= X̃(M +XTX)−1(XTXβ̂ +Mβ̃)

and covariance matrix

V(ỹ|σ2,y, X̃)x = E[V(ỹ|β, σ2,y, X, X̃)|σ2,y, X, X̃]
+V(E[ỹ|β, σ2,y, X, X̃]|σ2,y, X, X̃)

= E[σ2Im|σ2,y, X, X̃] + V(X̃β|σ2,y, X, X̃)
= σ2(Im + X̃(M +XTX)−1X̃T) .

Deduce that

ỹ|y, X, X̃ ∼ Tm

(
n+ 2a, X̃(M +XTX)−1(XTXβ̂ +Mβ̃),

2b+ s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1 (β̃ − β̂)
n+ 2a

×
{
Im + X̃(M +XTX)−1X̃T

})
.

Since
ỹ|X̃, β, σ ∼ N

(
X̃β, σ2Im

)
and since the posterior distribution of β conditional on σ is given by (3.3), we
have that

ỹ|y, X, X̃, σ ∼ N
(
X̃E[β|σ2,y, X], σ2Im + X̃var(β|y, X, σ)X̃T

)
,

with mean X̃(M + XTX)−1(XTXβ̂ + Mβ̃), as shown by the derivation of
Exercise 3.4. The variance is equal to σ2

(
Im + X̃(M +XTX)−1X̃T

)
.

Integrating σ2 against the posterior distribution (3.4) means that
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π(ỹ|y, X, X̃) ∝
∫ ∞

0

σ−m−n−2a−1 exp
−1
2σ2

{
2b+ s2+

(β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂) + (ỹ − E[ỹ|σ2,y, X, X̃])T(Im

+X̃(M +XTX)−1X̃T)−1(β̃ − β̂)(ỹ − E[ỹ|σ2,y, X, X̃])T
}

dσ2

∝
{

2b+ s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂) + (ỹ

−E[ỹ|σ2,y, X, X̃])T(Im + X̃(M +XTX)−1X̃T)−1(β̃ − β̂)(ỹ

−E[ỹ|σ2,y, X, X̃])T
}−(m+n+2a)/2

which corresponds to a Student’s T distribution with (n + 2a) degrees of
freedom, a location parameter equal to E[ỹ|σ2,y, X, X̃] [that does not depend
on σ] and a scale parameter equal to{

2b+ s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

}
×
[
Im + X̃(M +XTX)−1X̃T

]
/(n+ 2a) .

Exercise 3.7 Show that the marginal distribution of y associated with (3.3)
and (3.4) is given by

y|X ∼ Tn

(
2a,Xβ̃,

b

a
(In +XM−1XT)

)
.

This is a direct consequence of Exercise 3.6 when replacing (ỹ, X̃) with
(y, X) and (y, X) with the empty set. This is indeed equivalent to take m = n,
n = 0, X = 0, s2 = 0 and

(β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂) = 0

in the previous exercice.

Exercise 3.8 Given the null hypothesis H0 : Rβ = 0, where R is a (q, p) matrix
of rank q, show that the restricted model on y given X can be represented as

y|β0, σ
2
0 , X0

H0∼ Nn

(
X0β0, σ

2
0In
)

where X0 is a (n, k − q) matrix and β0 is a (k − q) dimensional vector. (Hint:
Give the form of X0 and β0 in terms of X and β.) Under the hypothesis specific

prior β0|H0, σ
2
0 ∼ Nk−q

(
β̃0, σ

2(M0)−1
)

and σ2
0 |H0 ∼ I G (a0, b0), construct

the Bayes factor associated with the test of H0.
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When Rβ = 0, β satisfies q independent linear constraints, which means
that q coordinates of β can be represented as linear combinations of the (k−q)
others, denoted by β0, e.g.

βi1 = sT
i1β0, . . . , βiq = sT

iqβ0 ,

where i1 < · · · < i− q are the above coordinates. This implies that

Xβ = X

 sT
1

· · ·
sT
q

β0 = X0β0 ,

where si is either one of the above linear coefficients or contains 0 except
for a single 1. Therefore, when H0 holds, the expectation of y conditional
on X can be written as X0β0 where X0 is a (n, k − q) matrix and β0 is a
(k − q) dimensional vector. (Actually, there is an infinite number of ways to
write E[y|X] in this format.) The change from σ to σ0 is purely notational to
indicate that the variance σ2

0 is associated with another model.
If we set a conjugate prior on (β0, σ0), the result of Exercise 3.7 also applies

for this (sub-)model, in the sense that the marginal distribution of y for this
model is

y|X0 ∼ Tn

(
2a0, X0β̃0,

b0
a0

(In +X0M
−1
0 XT

0 )
)
.

Therefore, the Bayes factor for testing H0 can be written in closed form as

B01 =
Γ ((2a0 + n)/2)/Γ (2a0/2)

/
σ
√

2a0(b0/a0)n/2|In +X0M
−1
0 XT

0 |1/2

Γ ((2a+ n)/2)/Γ (2a/2)
/
σ
√

2a(b/a)n/2|In +XM−1XT|1/2

×

{
1 + (y −X0β̃0)T(In +X0M

−1
0 XT

0 )−1(y −X0β̃0)/2b0
}−(2a0+n)/2

{
1 + (y −Xβ̃)T(In +XM−1XT)−1(y −Xβ̃)/2b

}−(2a+n)/2

Note that, in this case, the normalising constants matter because they differ
under H0 and under the alternative.

Exercise 3.9 Show that

β|y, X ∼ Tk+1

(
n,

c

c+ 1

(
β̃

c
+ β̂

)
,

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂))
n(c+ 1)

(XTX)−1

)
.
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Since

β|σ2,y, X ∼ Nk+1

(
c

c+ 1
(β̃/c+ β̂),

σ2c

c+ 1
(XTX)−1

)
,

σ2|y, X ∼ IG
(
n

2
,
s2

2
+

1
2(c+ 1)

(β̃ − β̂)TXTX(β̃ − β̂)
)
,

we have that√
c+ 1
c

[
XTX

]1/2 {
β − c

c+ 1
(β̃/c+ β̂)

}
∼ Nk+1

(
0, σ2In

)
,

with [
s2 +

1
(c+ 1)

(β̃ − β̂)TXTX(β̃ − β̂)
]
/σ2 ∼ χ2

n ,

which is the definition of the Student’s

Tk+1

(
n,

c

c+ 1

(
β̃

c
+ β̂

)
,
c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c+ 1))

n(c+ 1)
(XTX)−1

)
distribution.

Exercise 3.10 Show that π(ỹ|σ2,y, X, X̃) is a Gaussian density.

Conditional on σ2, there is no difference with the setting of Exercise 3.6
since the only difference in using Zellner’s G-prior compared with the conju-
gate priors is in the use of the noninformative prior π(σ2|X) ∝ σ−2. Therefore,
this is a consequence of Exercise 3.6.

Exercise 3.11 The posterior predictive distribution is obtained by integration
over the marginal posterior distribution of σ2. Derive π(ỹ|y, X, X̃).

Once more, integrating the normal distribution over the inverse gamma
random variable σ2 produces a Student’s T distribution. Since

σ2|y, X ∼ IG
(
n

2
,
s2

2
+

1
2(c+ 1)

(β̃ − β̂)TXTX(β̃ − β̂)
)

under Zellner’s G-prior, the predictive distribution is a

ỹ|y, X, X̃ ∼ Tk+1

(
n, X̃

β̃ + cβ̂

c+ 1
,
c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c+ 1))

n(c+ 1)

×
{
Im +

c

c+ 1
X̃(XTX)−1X̃T

})
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distribution.

Exercise 3.12 Give a joint (1− α) HPD region on β.

Since we have (Exercise 3.9)

β|y, X ∼ Tk+1

(
n,

c

c+ 1

(
β̃

c
+ β̂

)
,

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂))
n(c+ 1)

(XTX)−1

)
,

with

Σ̂ =
c(s2 + (β̃ − β̂)TXTX(β̃ − β̂))

n(c+ 1)
(XTX)−1 ,

an HPD region is of the form

Hα =
{
β; , (β − µ̂)TΣ̂−1(β − µ̂) ≤ kα

}
,

where kα is determined by the coverage probability α and

µ̂ =
c

c+ 1

(
β̃

c
+ β̂

)
, Σ̂ =

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂))
n(c+ 1)

(XTX)−1 .

As in Exercise 3.5, the distribution of (β− µ̂)TΣ̂−1(β− µ̂) is a Fisher’s F(k+
1, n) distribution.

Exercise 3.13 Show that the matrix (In + cX(XTX)−1XT) has 1 and c + 1
as eigenvalues. (Hint: Show that the eigenvectors associated with c + 1 are of
the form Xβ and that the eigenvectors associated with 1 are those orthogonal
to X, i.e. z’s such that XTz = 0.) Deduce that the determinant of the matrix
(In + cX(XTX)−1XT) is indeed (c+ 1)(k+1)/2.

Given the hint, this is somehow obvious:

(In + cX(XTX)−1XT)Xβ = Xβ + cX(XTX)−1XTXβ = (c+ 1)Xβ
(In + cX(XTX)−1XT)z = z + cX(XTX)−1XTz = z

for all β’s in Rk+1 and all z’s orthogonal to X. Since the addition of those
two subspaces generates a vector space of dimension n, this defines the whole
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set of eigenvectors for both eigenvalues. And since the vector subspace gen-
erated by X is of dimension (k + 1), this means that the determinant of
(In + cX(XTX)−1XT) is (c+ 1)k+1 × 1n−k−1.

Exercise 3.14 Derive the marginal posterior distribution of β for this model.

The joint posterior is given by

β|σ2,y, X ∼ Nk+1

(
β̂, σ2(XTX)−1

)
,

σ2|y, X ∼ I G ((n− k − 1)/2, s2/2).

Therefore,

β|y, X ∼ Tk+1

(
n− k − 1, β̂,

s2

n− k − 1
(XTX)−1

)
by the same argument as in the previous exercises.

Exercise 3.15 Show that the marginal posterior distribution of βi (1 ≤ i ≤ k)
is a T1(n−k−1, β̂i, ω(i,i)s

2/(n−k−1)) distribution. (Hint: Recall that ω(i,i) =
(XTX)−1

(i,i).)

The argument is straightforward: since β|σ2,y, X ∼ Nk+1

(
β̂, σ2(XTX)−1

)
,

βi|σ2,y, X ∼ N
(
β̂i, σ

2ω(i,i)

)
. Integrating out σ2 as in the previous exercise

leads to
βi|σ2,y, X ∼ T1(n− k − 1, β̂i, ω(i,i)s

2/(n− k − 1)) .

Exercise 3.16 Give the predictive distribution of ỹ, the m dimensional vector
corresponding to the (m, k) matrix of explanatory variables X̃.

This predictive can be derived from Exercise 3.6. Indeed, Jeffreys’ prior
is nothing but a special case of conjugate prior with a = b = 0. Therefore,
Exercise 3.6 implies that, in this limiting case,

ỹ|y, X, X̃ ∼ Tm

(
n, X̃(M +XTX)−1(XTXβ̂ +Mβ̃),

s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1 (β̃ − β̂)
n

×
{
Im + X̃(M +XTX)−1X̃T

})
.



3 Regression and Variable Selection 33

Exercise 3.17 When using the prior distribution π(c) = 1/c2, compare the
results with Table 3.6.

In the file #3.txt provided on the Webpage, it suffices to replace cc^(-1)
with cc^(-2) : for instance, the point estimate of β is now

> facto=sum(cc/(cc+1)*cc^(-2)*(cc+1)^(-11/2)*
+ (t(y)%*%y-cc/(cc+1)*t(y)%*%P%*%y)^(-33/2))/
+ sum(cc^(-2)*(cc+1)^(-11/2)*(t(y)%*%y-cc/
+ (cc+1)*t(y)%*%P%*%y)^(-33/2))
> facto*betahat

[,1]
[1,] 8.506662193
[2,] -0.003426982
[3,] -0.041634562
[4,] 0.052547326
[5,] -1.000556061
[6,] 0.179158187
[7,] -0.275964816
[8,] -0.183669178
[9,] 0.140040003

[10,] -0.994120776
[11,] -0.334983109

Exercise 3.18 Show that both series (3.10) and (3.11) converge.

Given that

f(y|X, c) ∝ (c+ 1)−(k+1)/2

[
yTy − c

c+ 1
yTX(XTX)−1XTy

]−n/2
≈ c−(k+1)/2

[
yTy − yTX(XTX)−1XTy

]−n/2
when c goes to ∞, the main term in the series goes to 0 as a o(c−(k+3)/2) and
the series converges.

Obviously, if the first series converges, then so does the second series.

Exercise 3.19 Give the predictive distribution of ỹ, the m-dimensional vector
corresponding to the (m, k) matrix of explanatory variables X̃.
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Fig. 3.1. Support of the uniform distribution.

The predictive of ỹ given y, X, X̃ is then the weighted average of the
predictives given y, X, X̃ and c:

π(ỹ|y, X, X̃) ∝
∞∑
c=1

π(ỹ|y, X, X̃, c)f(y|X, c) c−1

where π(ỹ|y, X, X̃, c) is the Student’s T distribution obtained in Exercise
3.11.

Exercise 3.20 If (x1, x2) is distributed from the uniform distribution on{
(x1, x2); (x1 − 1)2 + (x2 − 1)2 ≤ 1

}
∪
{

(x1, x2); (x1 + 1)2 + (x2 + 1)2 ≤ 1
}
,

show that the Gibbs sampler does not produce an irreducible chain. For this dis-
tribution, find an alternative Gibbs sampler that works. (Hint: Consider a rotation
of the coordinate axes.)

The support of this uniform distribution is made of two disks with re-
spective centers (−1,−1) and (1, 1), and with radius 1. This support is not
connected (see Figure 3.1) and conditioning on x1 < 0 means that the con-
ditional distribution of x2 is U (−1 −

√
1− x2

1,−1 +
√

1− x2
1, thus cannot

produce a value in [0, 1]. Similarly, when simulating the next value of x1, it
necessarily remains negative. The Gibbs sampler thus produces two types of
chains, depending on whether or not it is started from the negative disk. If
we now consider the Gibbs sampler for the new parameterisation
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y1 = x1 + x2, y2 = x2 − x1 ,

conditioning on y1 produces a uniform distribution on the union of a negative
and of a positive interval. Therefore, one iteration of the Gibbs sampler is
sufficient to jump [with positive probability] from one disk to the other one.

Exercise 3.21 If a joint density g(y1, y2) corresponds to the conditional distri-
butions g1(y1|y2) and g2(y2|y1), show that it is given by

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

If the joint density g(y1, y2) exists, then

g(y1, y2) = g1(y1)g2(y2|y1)

= g2(y2)g1(y1|y2)

where g1 and g2 denote the densities of the marginal distributions of y1 and
y2, respectively. Thus,

g1(y1) =
g1(y1|y2)
g2(y2|y1)

g2(y2)

∝ g1(y1|y2)
g2(y2|y1)

,

as a function of y1 [g2(y2) is irrelevant]. Since g1 is a density,

g1(y1) =
g1(y1|y2)
g2(y2|y1)

/∫
g1(u|y2)
g2(y2|u)

du

and

g(y1, y2) = g1(y1|y2)
/∫

g1(u|y2)
g2(y2|u)

du .

Since y1 and y2 play symmetric roles in this derivation, the symmetric version
also holds.

Exercise 3.22 Check that the starting value of µ in the setting of Example
3.2 has no influence on the output of the above Gibbs sampler after N = 1000
iterations.

The core of the Gibbs program is
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> mu = rnorm(1,sum(x*omega)/sum(omega+.05),
+ sqrt(1/(.05+2*sum(omega)))
> omega = rexp(2,1+(x-mu)^2)

which needs to be iterated N = 1000 times to produce a Gibbs N -sample from
π(µ|D). A R program evaluating the [lack of] influence of the starting value
µ(0) will thus need to compare histograms of µ(1000)’s for different starting
values. It therefore requires three loops:

x=c(3.2,-1.5) # observations
mu0=seq(-10,10,length=20) # starting values
muk=rep(0,250)

par(mfrow=c(5,4),mar=c(4,2,4,1)) # multiple histograms

for (i in 1:20){

for (t in 1:250){

mu=mu0[i]
for (iter in 1:1000){

omega = rexp(2,1+(x-mu)^2)
mu = rnorm(1,sum(x*omega)/sum(omega+.05),

sqrt(1/(.05+2*sum(omega))))
}
muk[t]=mu

}
hist(muk,proba=T,col="wheat",main=paste(mu0[i]))

}

Be warned that the use of this triple loop induces a long wait on most ma-
chines!

Exercise 3.23 In the setup of Section 3.5.3, show that

π(γ|y, X) ∝
∞∑
c=1

c−1(c+ 1)−(qγ+1)/2
[
yTy−

c

c+ 1
yTXγ

(
XT
γXγ

)−1
XT
γ y
]−n/2

and that the series converges. If π(c) ∝ c−α, find which values of α lead to a
proper posterior.
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We can take advantage of Section 3.5.2: when c is fixed in Zellner’s infor-
mative G-prior and β̃γ = 0qγ+1 for all γ’s,

π(γ|y, X, c) ∝ (c+ 1)−(qγ+1)/2

[
yTy − c

c+ 1
yTXγ

(
XT
γXγ

)−1
XT
γ y

]−n/2
,

thus

π(γ, c|y, X, c) ∝ c−1(c+1)−(qγ+1)/2

[
yTy − c

c+ 1
yTXγ

(
XT
γXγ

)−1
XT
γ y

]−n/2
.

and

π(γ|y, X) =
∞∑
c=1

π(γ, c|y, X, c)

∝
∞∑
c=1

c−1(c+ 1)−(qγ+1)/2

[
yTy − c

c+ 1
yTXγ

(
XT
γXγ

)−1
XT
γ y

]−n/2
.

For π(c) ∝ c−α, the series

∞∑
c=1

c−α(c+ 1)−(qγ+1)/2

[
yTy − c

c+ 1
yTXγ

(
XT
γXγ

)−1
XT
γ y

]−n/2
converges if and only if, for all γ’s,

α+
qγ + 1

2
> 1 ,

which is equivalent to 2α + qγ > 1. Since min(qγ) = 0, the constraint for
propriety of the posterior is

α > 1/2 .
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Generalized Linear Models

Exercise 4.1 For bank, derive the maximum likelihood estimates of β0 and β1

found in the previous analysis. Using Jeffreys prior on the parameters (β0, β1, σ
2)

of the linear regression model, compute the corresponding posterior expectation
of (β0, β1).

The code is provided in the file #4.txt on the Webpage. If the bank dataset
is not available, it can be downloaded from the Webpage and the following
code can be used:

bank=matrix(scan("bank"),byrow=T,ncol=5)
y=as.vector(bank[,5])
X=cbind(rep(1,200),as.vector(bank[,1]),as.vector(bank[,2]),

as.vector(bank[,3]),as.vector(bank[,4]))
summary(lm(y~X[,5]))

which produces the output [leading to eqn. (4.1) in the book]:

> summary(lm(y~X[,5]))

Call:
lm(formula = y ~ X[, 5])

Residuals:
Min 1Q Median 3Q Max

-0.76320 -0.21860 -0.06228 0.18322 1.04046

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.02282 0.14932 -13.55 <2e-16 ***
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X[, 5] 0.26789 0.01567 17.09 <2e-16 ***
---
Sig. codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1

Residual standard error: 0.3194 on 198 degrees of freedom
Multiple R-Squared: 0.596, Adjusted R-squared: 0.594
F-statistic: 292.2 on 1 and 198 DF, p-value: < 2.2e-16

As shown in Exercise 3.14, the [marginal] posterior in β associated with
the Jeffreys prior is

β|y, X ∼ Tk+1

(
n− k − 1, β̂,

s2

n− k − 1
(XTX)−1

)
so the posterior expectation of (β0, β1) is again β̂.

Exercise 4.2 Show that, in the setting of Example 4.1, the statistic
∑n
i=1 yi x

i

is sufficient when conditioning on the xi’s (1 ≤ i ≤ n) and give the corresponding
family of conjugate priors.

Since the likelihood is

exp

{
n∑
i=1

yi xiTβ

}/ n∏
i=1

[
1 + exp(xiTβ)

]
= exp

{
n∑
i=1

[
yi xi

]T
β

}/ n∏
i=1

[
1 + exp(xiTβ)

]
,

it depends on the observations (y1, . . . , yn) only through the sum
∑n
i=1 yi x

i

which is thus a sufficient statistic in this conditional sense.
The family of priors (ξ ∈ Rk , λ > 0)

π(β|ξ, λ) ∝ exp
{
ξTβ

}/ n∏
i=1

[
1 + exp(xiTβ)

]λ
,

is obviously conjugate. The corresponding posterior is

π

(
β

∣∣∣∣∣ξ +
n∑
i=1

yi xi, λ+ 1

)
,

whose drawback is to have λ updated in λ+ 1 rather than λ+ n as in other
conjugate settings. This is due to the fact that the prior is itself conditional
on X and therefore on n.
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Exercise 4.3 Show that the logarithmic link is the canonical link function in
the case of the Poisson regression model.

The likelihood of the Poisson regression model is

`(β|y, X) =
n∏
i=1

(
1
yi!

)
exp

{
yi xiTβ − exp(xiTβ)

}
=

n∏
i=1

1
yi!

exp {yi log(µi)− µi} ,

so log(µi) = xiTβ and the logarithmic link is indeed the canonical link func-
tion.

Exercise 4.4 Suppose y1, . . . , yk are independent Poisson P(µi) random vari-

ables. Show that, conditional on n =
∑k
i=1 yi,

y = (y1, . . . , yk) ∼Mk(n;α1, . . . , αk)

and determine the αi’s.

The joint distribution of y is

f(y|µ1, . . . , µk) =
k∏
i=1

(
µyii
yi!

)
exp

{
−

k∑
i=1

µi

}
,

while n =
∑k
i=1 yi ∼ P(

∑k
i=1 µi) [which can be established using the mo-

ment generating function of the P(µ) distribution]. Therefore, the conditional
distribution of y given n is

f(y|µ1, . . . , µk, n) =

∏k
i=1

(
µ
yi
i

yi!

)
exp

{
−
∑k
i=1 µi

}
[
Pk
i=1 µi]

n

n! exp
{
−
∑k
i=1 µi

} In

(
k∑
i=1

yi

)

=
n!∏k
i=1 yi!

k∏
i=1

(
µi∑k
i=1 µi

)yi
In

(
k∑
i=1

yi

)
,

which is the pdf of the Mk(n;α1, . . . , αk) distribution, with

αi =
µi∑k
j=1 µj

, i = 1, . . . , k .
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This conditional representation is a standard property used in the sta-
tistical analysis of contingency tables (Section 4.5): when the margins are
random, the cells are Poisson while, when the margins are fixed, the cells are
multinomial.

Exercise 4.5 Show that the detailed balance equation also holds for the Boltz-
mann acceptance probability

ρ(x, y) =
π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
.

The detailed balance equation is

π(x)q(x, y)ρ(x, y) = π(y)q(y, x)ρ(y, x) .

Therefore, in the case of the Boltzmann acceptance probability

π(x)q(x, y)ρ(x, y) = π(x)q(x, y)
π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)

=
π(x)q(x, y)π(y)q(y, x)
π(y)q(y, x) + π(x)q(x, y)

= π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x) + π(x)q(x, y)
= π(y)q(y, x)ρ(y, x) .

Note that this property also holds for the generalized Boltzmann acceptance
probability

ρ(x, y) =
π(y)q(y, x)α(x, y)

π(y)q(y, x)α(x, y) + π(x)q(x, y)α(y, x)
,

where α(x, y) is an arbitrary positive function.

Exercise 4.6 For π the density of an inverse normal distribution with parameters
θ1 = 3/2 and θ2 = 2,

π(x) ∝ x−3/2 exp(−3/2x− 2/x)Ix>0,

write down and implement an independence MH sampler with a Gamma proposal
with parameters (α, β) = (4/3, 1) and (α, β) = (0.5

√
4/3, 0.5).

A R possible code for running an independence Metropolis–Hastings sam-
pler in this setting is as follows:
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# target density
target=function(x,the1=1.5,the2=2){
x^(-the1)*exp(-the1*x-the2/x)
}

al=4/3
bet=1

# initial value
mcmc=rep(1,1000)

for (t in 2:1000){

y = rgamma(1,shape=al,rate=bet)
if (runif(1)<target(y)*dgamma(mcmc[t-1],shape=al,rate=bet)/

(target(mcmc[t-1])*dgamma(y,shape=al,rate=bet)))
mcmc[t]=y
else
mcmc[t]=mcmc[t-1]

}

# plots
par(mfrow=c(2,1),mar=c(4,2,2,1))
res=hist(mcmc,freq=F,nclass=55,prob=T,col="grey56",
ylab="",main="")

lines(seq(0.01,4,length=500),valpi*max(res$int)/max(valpi),
lwd=2,col="sienna2")

plot(mcmc,type="l",col="steelblue2",lwd=2)

The output of this code is illustrated on Figure 4.1 and shows a reasonable
fit of the target by the histogram and a proper mixing behaviour. Out of the
1000 iterations in this example, 600 corresponded to an acceptance of the
Gamma random variable. (Note that to plot the density on the same scale as
the histogram, we resorted to a trick on the maxima of the histogram and of
the density.)

Exercise 4.7 Estimate the mean of a G a(4.3, 6.2) random variable using

1. direct sampling from the distribution via R command
> x=rgamma(n,4.3,rate=6.2)

2. Metropolis–Hastings with a G a(4, 7) proposal distribution;
3. Metropolis–Hastings with a G a(5, 6) proposal distribution.

In each case, monitor the convergence of the cumulated average.
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Fig. 4.1. Output of an MCMC simulation of the inverse normal distribution.

Both independence Metropolis–Hastings samplers can be implemented via
an R code like

al=4.3
bet=6.2

mcmc=rep(1,1000)
for (t in 2:1000){

mcmc[,t]=mcmc[,t-1]
y = rgamma(500,4,rate=7)
if (runif(1)< dgamma(y,al,rate=bet)*dgamma(mcmc[t-1],4,rate=7)/

(dgamma(mcmc[t-1],al,rate=bet)*dgamma(y,4,rate=7))){
mcmc[t]=y
}

}
aver=cumsum(mcmc)/1:1000

When comparing those samplers, their variability can only be evaluated
through repeated calls to the above code, in order to produce a range of out-
puts for the three methods. For instance, one can define a matrix of cumulated
averages aver=matrix(0,250,1000) and take the range of the cumulated av-
erages over the 250 repetitions as in ranj=apply(aver,1,range), leading to
something similar to Figure 4.2. The complete code for one of the ranges is

al=4.3
bet=6.2
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mcmc=matrix(1,ncol=1000,nrow=500)
for (t in 2:1000){
mcmc[,t]=mcmc[,t-1]
y = rgamma(500,4,rate=7)
valid=(runif(500)<dgamma(y,al,rate=bet)*
dgamma(mcmc[i,t-1],4,rate=7)/(dgamma(mcmc[,t-1],al,rate=bet)*
dgamma(y,4,rate=7)))

mcmc[valid,t]=y[valid]
}

aver2=apply(mcmc,1,cumsum)
aver2=t(aver2/(1:1000))
ranj2=apply(aver2,2,range)
plot(ranj2[1,],type="l",ylim=range(ranj2),ylab="")
polygon(c(1:1000,1000:1),c(ranj2[2,],rev(ranj2[1,])))

which removes the Monte Carlo loop over the 500 replications by running the
simulations in parallel. We can notice on Figure 4.2 that, while the output
from the third sampler is quite similar with the output from the iid sampler
[since we use the same scale on the y axis], the Metropolis–Hastings algorithm
based on the G a(4, 7) proposal is rather biased, which may indicate a difficulty
in converging to the stationary distribution. This is somehow an expected
problem, in the sense that the ratio target-over-proposal is proportional to
x0.3 exp(0.8x), which is explosive at both x = 0 and x =∞.

Fig. 4.2. Range of three samplers for the approximation of the G a(4.3, 6.2) mean:
(left) iid; (center) G a(4, 7) proposal; (right) G a(5, 6) proposal.
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Exercise 4.8 Consider x1, x2 and x3 iid C (θ, 1), and π(θ) ∝ exp(−θ2/100).
Show that the posterior distribution of θ, π(θ|x1, x2, x3), is proportional to

exp(−θ2/100)[(1 + (θ − x1)2)(1 + (θ − x2)2)(1 + (θ − x3)2)]−1 (4.1)

and that it is trimodal when x1 = 0, x2 = 5 and x3 = 9. Using a random walk
based on the Cauchy distribution C (0, σ2), estimate the posterior mean of θ using
different values of σ2. In each case, monitor the convergence.

The function (4.1) appears as the product of the prior by the three densities
f(xi|θ). The trimodality of the posterior can be checked on a graph when
plotting the function (4.1).

A random walk Metropolis–Hastings algorithm can be coded as follows

x=c(0,5,9)
# target
targ=function(y){
dnorm(y,sd=sqrt(50))*dt(y-x[1],df=1)*
dt(y-x[2],df=1)*dt(y-x[3],df=1)

}

# Checking trimodality
plot(seq(-2,15,length=250),
targ(seq(-2,15,length=250)),type="l")

sigma=c(.001,.05,1)*9 # different scales
N=100000 # number of mcmc iterations

mcmc=matrix(mean(x),ncol=3,nrow=N)
for (t in 2:N){

mcmc[t,]=mcmc[t-1,]
y=mcmc[t,]+sigma*rt(3,1) # rnorm(3)
valid=(runif(3)<targ(y)/targ(mcmc[t-1,]))
mcmc[t,valid]=y[valid]
}

The comparison of the three cumulated averages is given in Figure 4.3 and
shows that, for the Cauchy noise, both large scales are acceptable while the
smallest scale slows down the convergence properties of the chain. For the
normal noise, these features are exacerbated in the sense that the smallest
scale does not produce convergence for the number of iterations under study
[the blue curve leaves the window of observation], the medium scale induces
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some variability and it is only the largest scale that gives an acceptable ap-
proximation to the mean of the distribution (4.1).

0e+00 4e+04 8e+04

3.0
3.5

4.0
4.5

5.0

iterations

0e+00 4e+04 8e+04

3.0
3.5

4.0
4.5

5.0
iterations

cum
ula

ted
 av

era
ge

Fig. 4.3. Comparison of the three scale factors σ = .009 (blue), σ = .45 (gold) and
σ = 9 (brown), when using a Cauchy noise (left) and a normal noise (right).

Exercise 4.9 Rerun the experiment of Example 4.4 using instead a mixture of
five random walks with variances σ = 0.01, 0.1, 1, 10, 100, and equal weights, and
compare its output with the output of Figure 4.3.

The original code is provided in the files #4.R and #4.txt on the webpage.
The modification of the hm1 function is as follows:

hmi=function(n,x0,sigma2)
{
x=rep(x0,n)

for (i in 2:n){

x[i]=x[i-1]
y=rnorm(1,x[i-1],sqrt(sample(sigma2,1)))
if (runif(1)<dnorm(y)/dnorm(x[i-1]))
x[i]=y

}
x
}
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Note that picking the variance at random does not modify the random walk
structure of the proposal, which is then a mixture of normal distributions all
centered in x(t−1). The output compares with Figure 4.3 [from the book] but
the histogram is not as smooth and the autocorrelations are higher, which
can be easily explained by the fact that using a whole range of scales induces
inefficiencies in that the poor scales are chosen for “nothing” from time to
time.

Fig. 4.4. Simulation of a N (0, 1) target with a normal mixture: top: sequence of
10, 000 iterations subsampled at every 10-th iteration; middle: histogram of the 2, 000
last iterations compared with the target density; bottom: empirical autocorrelations
using R function plot.acf.

Exercise 4.10 Find conditions on the observed pairs (xi, yi) for the posterior
distribution above to be proper.

This distribution is proper (i.e. well-defined) if the integral

I =
∫ n∏

i=1

Φ(xiTβ)yi
[
1− Φ(xiTβ)

]1−yi dβ

is finite. If we introduce the latent variable behind Φ(xiTβ), we get by Fubini
that

I =
∫ n∏

i=1

ϕ(zi)
∫
{β ;xiTβ)≷zi , i=1,...,n}

dβ dz1 · · · dzn ,
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where xiTβ ≷ zi means that the inequality is xiTβ < zi if yi = 1 and xiTβ < zi
otherwise. Therefore, the inner integral is finite if and only if the set

P =
{
β ; xiTβ ≷ zi , i = 1, . . . , n

}
is compact. The fact that the whole integral I is finite follows from the fact
that the volume of the polyhedron defined by P grows like |zi|k when zi goes to
infinity. This is however a rather less than explicit constraint on the (xi, yi)’s!

Exercise 4.11 Include an intercept in the probit analysis of bank and run the
corresponding version of Algorithm 4.2 to discuss whether or not the posterior
variance of the intercept is high

We simply need to add a column of 1’s to the matrix X, as for instance in

> X=as.matrix(cbind(rep(1,dim(X)[1]),X))

and then use the code provided in the file #4.txt, i.e.

flatprobit=hmflatprobit(10000,y,X,1)
par(mfrow=c(5,3),mar=1+c(1.5,1.5,1.5,1.5))
for (i in 1:5){
plot(flatprobit[,i],type="l",xlab="Iterations",
ylab=expression(beta[i]))

hist(flatprobit[1001:10000,i],nclass=50,prob=T,main="",
xlab=expression(beta[i]))

acf(flatprobit[1001:10000,i],lag=1000,main="",
ylab="Autocorrelation",ci=F)

}

which produces the analysis of bank with an intercept factor. Figure 4.5 gives
the equivalent to Figure 4.4 [in the book]. The intercept β0 has a posterior
variance equal to 7558.3, but this must be put in perspective in that the
covariates of bank are taking their values in the magnitude of 100 for the
three first covariates and of 10 for the last covariate. The covariance of xi1β1

is therefore of order 7000 as well. A noticeable difference with Figure 4.4 [in the
book] is that, with the inclusion of the intercept, the range of β1’s supported
by the posterior is now negative.

Exercise 4.12 Using the latent variable representation of Example 4.2, intro-
duce zi|β ∼ N

(
xiTβ, 1

)
(1 ≤ i ≤ n) such that yi = Bzi≤0. Deduce that

zi|yi, β ∼
{

N+

(
xiTβ, 1, 0

)
if yi = 1

N−
(
xiTβ, 1, 0

)
if yi = 0 (4.2)
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Fig. 4.5. bank: estimation of the probit coefficients [including one intercept β0] via
Algorithm 4.2 and a flat prior. Left: βi’s (i = 0, . . . , 4); center: histogram over the
last 9, 000 iterations; right: auto-correlation over the last 9, 000 iterations.

where N+ (µ, 1, 0) and N− (µ, 1, 0) are the normal distributions with mean µ and
variance 1 that are left-truncated and right-truncated at 0, respectively. Check
that those distributions can be simulated using the R commands

> xp=qnorm(runif(1)*pnorm(mu)+pnorm(-mu))+mu
> xm=qnorm(runif(1)*pnorm(-mu))+mu

Under the flat prior π(β) ∝ 1, show that

β|y, z ∼ Nk

(
(XTX)−1XTz, (XTX)−1

)
,
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where z = (z1, . . . , zn) and derive the corresponding Gibbs sampler, sometimes
called the Albert–Chib sampler. (Hint: A good starting point is the maximum
likelihood estimate of β.) Compare the application to bank with the output in
Figure 4.4. (Note: Account for computing time differences.)

If zi|β ∼ N
(
xiTβ, 1

)
is a latent [unobserved] variable, it can be related

to yi via the function
yi = Izi≤0 ,

since P (yi = 1) = P (zi ≥ 0) = 1 − Φ
(
−xiTβ

)
= Φ

(
xiTβ

)
. The conditional

distribution of zi given yi is then a constrained normal distribution: if yi = 1,
zi ≤ 0 and therefore

zi|yi = 1, β ∼ N+

(
xiTβ, 1, 0

)
.

(The symmetric case is obvious.)
The command qnorm(runif(1)*pnorm(mu)+pnorm(-mu))+mu is a simple

application of the inverse cdf transform principle given in Exercise 2.28: the
cdf of the N+ (µ, 1, 0) distribution is

F (x) =
Φ(x− µ)− Φ(−µ)

Φ(µ)
.

If we condition on both z and y [the conjunction of which is defined as the
“completed model”], the yi’s get irrelevant and we are back to a linear regres-
sion model, for which the posterior distribution under a flat prior is given in
Section 3.3.1 and is indeed Nk

(
(XTX)−1XTz, (XTX)−1

)
.

This closed-form representation justifies the introduction of the latent vari-
able z in the simulation process and leads to the Gibbs sampler that simulates
β given z and z given β and y as in (4.2). The R code of this sampler is avail-
able in the file #4.R as the function gibbsprobit. The output of this function
is represented on Figure 4.6. Note that the output is somehow smoother than
on Figure 4.5. (This does not mean that the Gibbs sampler is converging faster
but rather than its component-wise modification of the Markov chain induces
slow moves and smooth transitions.)

When comparing the computing times, the increase due to the simulation
of the zi’s is not noticeable: for the bank dataset, using the codes provided
in #4.txt require 27s and 26s over 10, 000 iterations for hmflatprobit and
gibbsprobit. respectively.

Exercise 4.13 Find conditions on
∑
i yi and on

∑
i(1 − yi) for the posterior

distribution defined by (4.3) to be proper.
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Fig. 4.6. bank: estimation of the probit coefficients [including one intercept β0] by
a Gibbs sampler 4.2 under a flat prior. Left: βi’s (i = 0, . . . , 4); center: histogram
over the last 9, 000 iterations; right: auto-correlation over the last 9, 000 iterations.

There is little difference with Exercise 4.10 because the additional term(
βT(XTX)β

)−(2k−1)/4 is creating a problem only when β goes to 0. This dif-
ficulty is however superficial since the power in ||Xβ||(2k−1)/2 is small enough
to be controlled by the power in ||Xβ||k−1 in an appropriate polar change of
variables. Nonetheless, this is the main reason why we need a π(σ2) ∝ σ−3/2

prior rather than the traditional π(σ2) ∝ σ−2 which is not controlled in β = 0.
(This is the limiting case, in the sense that the posterior is well-defined for
π(σ2) ∝ σ−2+ε for all ε > 0.)
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Exercise 4.14 For bank, compute the Bayes factor associated with the null
hypothesis H0 : β2 = β3 = 0.

The Bayes factor is given by

Bπ01 =
π−k/2Γ ((2k − 1)/4)

π−(k−2)/2Γ{(2k − 5)/4}

×
∫ (
βT(XTX)β

)−(2k−1)/4∏n
i=1 Φ(xiTβ)yi

[
1− Φ(xiTβ)

]1−yi dβ∫ {
(β0)T(XT

0 X0)β0
}−(2k−5)/4∏n

i=1 Φ(xiT0 β0)yi
[
1− Φ(xiT0 β0)

]1−yi dβ0
.

For its approximation, we can use simulation from a multivariate normal as
suggested in the book or even better from a multivariate T : a direct adapta-
tion from the code in #4.txt is

noinfprobit=hmnoinfprobit(10000,y,X,1)

library(mnormt)

mkprob=apply(noinfprobit,2,mean)
vkprob=var(noinfprobit)
simk=rmvnorm(100000,mkprob,2*vkprob)
usk=probitnoinflpost(simk,y,X)-
dmnorm(simk,mkprob,2*vkprob,log=TRUE)

noinfprobit0=hmnoinfprobit(10000,y,X[,c(1,4)],1)
mk0=apply(noinfprobit0,2,mean)
vk0=var(noinfprobit0)
simk0=rmvnorm(100000,mk0,2*vk0)
usk0=probitnoinflpost(simk0,y,X[,c(1,4)])-
dmnorm(simk0,mk0,2*vk0,log=TRUE)

bf0probit=mean(exp(usk))/mean(exp(usk0))

(If a multivariate T is used, the dmnorm function must be replaced with
the density of the multivariate T .) The value contained in bf0probit is
67.74, which is thus an approximation to Bπ10 [since we divide the approx-
imate marginal under the full model with the approximate marginal under
the restricted model]. Therefore, H0 is quite unlikely to hold, even though, in-
dependently, the Bayes factors associated with the componentwise hypotheses
H2

0 : β2 = 0 and H3
0 : β3 = 0 support those hypotheses.

Exercise 4.15 Compute the Jacobian |∂p1 · · · ∂pk
/
∂β1 · · · ∂βk| and deduce

that the transform of the prior density π(p1, . . . , pk) in the prior density above is
correct.
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Since pi = Φ(x̃iTβ), we have

∂

∂βj
pi =

∂

∂βj
Φ(x̃iTβ) = xijϕ(x̃iTβ) ,

which means that the Jacobian J is the determinant of the matrix made of X̃
multiplied by ϕ(x̃iTβ) on each row. Therefore,

J =
k∏
i=1

ϕ(x̃iTβ)|X| .

(Note that this is a very special case where X̃ is a square matrix, hence |X̃|
is well-defined.) Since |X̃| does not depend on β, it does need to appear in
π(β), i.e.

π(β) ∝
k∏
i=1

Φ(x̃iTβ)Kigi−1
[
1− Φ(x̃iTβ)

]Ki(1−gi)−1
ϕ(x̃iTβ) .

Exercise 4.16 In the case of the logit model, i.e. when pi = exp x̃iTβ
/
{1 +

exp x̃iTβ} (1 ≤ i ≤ k), derive the prior distribution on β associated with the
prior (4.5) on (p1, . . . , pk).

The only difference with Exercise 4.15 is in the use of a logistic density,
hence both the Jacobian and the probabilities are modified:

π(β) ∝
k∏
i=1

exp({Kigi − 1}x̃iTβ)

{1 + exp(x̃iTβ)}Ki−2

exp(x̃iTβ)

{1 + exp(x̃iTβ)}2

=

exp

(
n∑
i=1

Kigix̃iTβ

)
k∏
i=1

{
1 + exp(x̃iTβ)

}Ki .

Exercise 4.17 Examine whether or not the sufficient conditions for propriety of
the posterior distribution found in Exercise 4.13 for the probit model are the same
for the logit model.

There is little difference with Exercises 4.10 and 4.13 because the only
change is [again] in the use of a logistic density, which has asymptotics similar
to the normal density. The problem at β = 0 is solved in the same manner.



4 Generalized Linear Models 55

Exercise 4.18 For bank and the logit model, compute the Bayes factor associ-
ated with the null hypothesis H0 : β2 = β3 = 0 and compare its value with the
value obtained for the probit model in Exercise 4.14.

This is very similar to Exercise 4.14, except that the parameters are now
estimated for the logit model. The code is provided in file #4.txt as

# noninformative prior and random walk HM sample
noinflogit=hmnoinflogit(10000,y,X,1)

# log-marginal under full model
mklog=apply(noinflogit,2,mean)
vklog=var(noinflogit)
simk=rmnorm(100000,mklog,2*vklog)
usk=logitnoinflpost(simk,y,X)-
dmnorm(simk,mklog,2*vklog,log=TRUE)

# noninformative prior and random walk HM sample
# for restricted model
noinflogit0=hmnoinflogit(10000,y,X[,c(1,4)],1)

# log-marginal under restricted model
mk0=apply(noinflogit0,2,mean)
vk0=var(noinflogit0)
simk0=rmnorm(100000,mk0,2*vk0)
usk0=logitnoinflpost(simk0,y,X[,c(1,4)])-
dmnorm(simk0,mk0,2*vk0,log=TRUE)

bf0logit=mean(exp(usk))/mean(exp(usk0))

The value of bf0logit is 127.2, which, as an approximation to Bπ10, argues
rather strongly against the null hypothesis H0. It thus leads to the same con-
clusion as in the probit model of Exercise 4.14, except that the numerical value
is almost twice as large. Note that, once again, the Bayes factors associated
with the componentwise hypotheses H2

0 : β2 = 0 and H3
0 : β3 = 0 support

those hypotheses.

Exercise 4.19 In the case of a 2 × 2 contingency table with fixed total count
n = n11 + n12 + n21 + n22, we denote by θ11, θ12, θ21, θ22 the corresponding
probabilities. If the prior on those probabilities is a Dirichlet D4(1/2, . . . , 1/2),
give the corresponding marginal distributions of α = θ11 + θ12 and of β = θ11 +
θ21. Deduce the associated Bayes factor if H0 is the hypothesis of independence



56 4 Generalized Linear Models

between the factors and if the priors on the margin probabilities α and β are those
derived above.

A very handy representation of the Dirichlet Dk(δ1, . . . , δk) distribution is

(ξ1, . . . , ξk)
ξ1 + . . .+ ξk)

∼ Dk(δ1, . . . , δk) when ξi ∼ G a(δi, 1) , i = 1, . . . , k .

Therefore, if

(θ11, θ12, θ21, θ22) =
(ξ11, ξ12, ξ21, ξ22)

ξ11 + ξ12 + ξ21 + ξ22
, ξij

iid∼ G a(1/2, 1) ,

then

(θ11 + θ12, θ21 + θ22) =
(ξ11 + ξ12, ξ21 + ξ22)
ξ11 + ξ12 + ξ21 + ξ22

,

and
(ξ11 + ξ12), (ξ21 + ξ22) iid∼ G a(1, 1)

implies that α is a Be(1, 1) random variable, that is, a uniform U (01, ) vari-
able. The same applies to β. (Note that α and β are dependent in this repre-
sentation.)

Since the likelihood under the full model is multinomial,

`(θ|T ) =
(

n

n11 n12 n21

)
θn11

11 θn12
12 θn21

21 θn22
22 ,

where T denotes the contingency table [or the dataset {n11, n12, n21, n22}],
the [full model] marginal is

m(T ) =

(
n

n11 n12 n21

)
π2

∫
θ
n11−1/2
11 θ

n12−1/2
12 θ

n21−1/2
21 θ

n22−1/2
22 dθ

=

(
n

n11 n12 n21

)
π2

∏
i,j

Γ (nij + 1/2)

Γ (n+ 2)

=

(
n

n11 n12 n21

)
π2

∏
i,j

Γ (nij + 1/2)

(n+ 1)!

=
1

(n+ 1)π2

∏
i,j

Γ (nij + 1/2)
Γ (nij + 1)

,

where the π2 term comes from Γ (1/2) =
√
π.

In the restricted model, θ11 is replaced with αβ, θ12 by α(1 − β), and so
on. Therefore, the likelihood under the restricted model is the product
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n

n1·

)
αn1·(1− α)n−n1· ×

(
n

n·1

)
βn·1(1− β)n−n·1 ,

where n1· = n11 +n12 and n·1 = n11 +n21, and the restricted marginal under
uniform priors on both α and β is

m0(T ) =
(
n

n1·

)(
n

n·1

) ∫ 1

0

αn1·(1− α)n−n1· dα
∫ 1

0

βn·1(1− β)n−n·1 dβ

=
(
n

n1·

)(
n

n·1

)
(n1· + 1)!(n− n1· + 1)!

(n+ 2)!
(n·1 + 1)!(n− n·1 + 1)!

(n+ 2)!

=
(n1· + 1)(n− n1· + 1)

(n+ 2)(n+ 1)
(n·1 + 1)(n− n·1 + 1)

(n+ 2)(n+ 1)
.

The Bayes factor Bπ01 is then the ratio m0(T )/m(T ).

Exercise 4.20 Given a contingency table with four categorical variables, deter-
mine the number of submodels to consider.

Note that the numbers of classes for the different variables do not matter
since, when building a non-saturated submodel, a variable is in or out. There
are

1. 24 single-factor models [including the zero-factor model];
2. (26 − 1) two-factor models [since there are

(
4
2

)
= 6 ways of picking a pair

of variables out of 4 and since the complete single-factor model is already
treated];

3. (24 − 1) three-factor models.

Thus, if we exclude the saturated model, there are 26 + 25 − 2 = 94 different
submodels.

Exercise 4.21 Find sufficient conditions on (y, X) for this posterior distribution
proportional to be proper.

First, as in Exercise 4.13, the term
(
βT(XTX)β

)−(2k−1)/4 is not a major
problem when β goes to 0, since it is controlled by the power in the Jacobian
||Xβ||k−1 in an adapted polar change of variables. Moreover, if the matrix X
of regressors is of full rank k, then, when βj (j = 1, . . . , k) goes to ±∞, there
exists at least one 1 ≤ i ≤ n such that xiTβ goes to either +∞ or −∞. In the
former case, the whole exponential term goes to 0, while, in the later case, it
depends on yi. For instance, if all yi’s are equal to 1, the above quantity is
integrable.
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Exercise 5.1 Show that the posterior distribution π(N |n+) given by (5.1) while
associated with an improper prior, is defined for all values of n+. Show that the
normalization factor of (5.1) is n+ ∨ 1 and deduce that the posterior median
is equal to 2(n+ ∨ 1). Discuss the relevance of this estimator and show that it
corresponds to a Bayes estimate of p equal to 1/2.

Since the main term of the series is equivalent to N−2, the series converges.
The posterior distribution can thus be normalised. Moreover,

∞∑
i=n0

1
i(i+ 1)

=
∞∑
i=n0

(
1
i
− 1
i+ 1

)
=

1
n0
− 1
n0 + 1

+
1

n0 + 1
− 1
n0 + 2

+ . . .

=
1
n0

.

Therefore, the normalisation factor is available in closed form and is equal to
n+∨1. The posterior median is the value N? such that π(N ≥ N?|n+) = 1/2,
i.e.

∞∑
i=N?

1
i(i+ 1)

=
1
2

1
n+ ∨ 1

=
1
N?

,

which implies that N? = 2(n+ ∨ 1). This estimator is rather intuitive in that
E[n+|N, p] = pN : since the expectation of p is 1/2, E[n+|N ] = N/2 and
N? = 2n+ is a moment estimator of N .
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Exercise 5.2 Under the prior π(N, p) ∝ N−1, derive the marginal posterior
density of N in the case where n+

1 ∼ B(N, p) and where k − 1 iid observations

n+
2 , . . . , n

+
k

iid∼ B(n+
1 , p)

are observed (the later are in fact recaptures). Apply to the sample

(n+
1 , n

+
2 , . . . , n

+
11) = (32, 20, 8, 5, 1, 2, 0, 2, 1, 1, 0) ,

which describes a series of tag recoveries over 11 years.

In that case, if we denote n+
· = n+

1 + · · ·+n+
k the total number of captures,

the marginal posterior density of N is

π(N |n+
1 , . . . , n

+
k ) ∝ N !

(N − n+
1 )!

N−1IN≥n+
1∫ 1

0

pn
+
1 +···+n+

k (1− p)N−n
+
1 +(n1+−n+

2 +···+n+
1 −n

+
k dp

∝ (N − 1)!
(N − n+

1 )!
IN≥n+

1

∫ 1

0

pn
+
· (1− p)N+kn+

1 −n
+
· dp

∝ (N − 1)!
(N − n+

1 )!
(N + kn+

1 − n+
· )!

(N + kn+
1 + 1)!

IN≥n+
1 ∨1 ,

which does not simplify any further. Note that the binomial coefficients(
n+

1

n+
j

)
(j ≥ 2)

are irrelevant for the posterior of N since they only depend on the data.
The R code corresponding to this model is as follows:

n1=32
ndo=sum(32,20,8,5,1,2,0,2,1,1,0)

# unnormalised posterior
post=function(N){

exp(lfactorial(N-1)+lfactorial(N+11*n1-ndo)-
lfactorial(N-n1)-lfactorial(N+11*n1+1))
}

# normalising constant and
# posterior mean
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posv=post((n1:10000))

cons=sum(posv)
pmean=sum((n1:10000)*posv)/cons
pmedi=sum(cumsum(posv)<.5*cons)

The posterior mean is therefore equal to 282.4, while the posterior median is
243. Note that a crude analysis estimating p by p̂ = (n+

2 + . . .+n11)/(10n+
1 ) =

0.125 and N by n+
1 /p̂ would produce the value N̂ = 256.

Exercise 5.3 For the two-stage capture-recapture model, show that the distri-
bution of m2 conditional on both samples sizes n1 and n2 is given by (5.2) and
does not depend on p. Deduce the expectation E[m2|n1, n2, N ].

Since
n1 ∼ B(N, p) , m2|n1 ∼ B(n1, p)

and
n2 −m2|n1,m2 ∼ B(N − n1, p) ,

the conditional distribution of m2 is given by

f(m2|n1, n2) ∝
(
n1

m2

)
pm2(1− p)n1−m2

(
N − n1

n2 −m2

)
pn2−m2(1− p)N−n1−n2+m2

∝
(
n1

m2

)(
N − n1

n2 −m2

)
pm2+n2−m2(1− p)n1−m2+N−n1−n2+m2

∝
(
n1

m2

)(
N − n1

n2 −m2

)
∝
(
n1
m2

)(
N−n1
n2−m2

)(
N
n2

) ,

which is the hypergeometric H (N,n2, n1/N) distribution. Obviously, this
distribution does not depend on p and its expectation is

E[m2|n1, n2] =
n1n2

N
.

Exercise 5.4 In order to determine the number N of buses in a town, a capture–
recapture strategy goes as follows. We observe n1 = 20 buses during the first day
and keep track of their identifying numbers. Then we repeat the experiment the
following day by recording the number of buses that have already been spotted
on the previous day, say m2 = 5, out of the n2 = 30 buses observed the second
day. For the Darroch model, give the posterior expectation of N under the prior
π(N) = 1/N .
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Using the derivations of the book, we have that

π(N |n1, n2,m2) ∝ 1
N

(
N

n+

)
B(nc + 1, 2N − nc + 1)IN≥n+

∝ (N − 1)!
(N − n+)!

(2N − nc)!
(2N + 1)!

IN≥n+

with n+ = 45 and nc = 50. For n+ = 45 and nc = 50, the posterior mean
[obtained by an R code very similar to the one of Exercise 5.2] is equal to
130.91.

Exercise 5.5 Show that the maximum likelihood estimator of N for the Darroch
model is N̂ = n1/ (m2/n2) and deduce that it is not defined when m2 = 0.

The likelihood for the Darroch model is proportional to

`(N) =
(N − n1)!
(N − n2)!

(N − n+)!
N !

IN≥n+ .

Since
`(N + 1)
`(N)

=
(N + 1− n1)(N + 1− n2)

(N + 1− n+)(N + 1)
≥ 1

for

(N + 1)2 − (N + 1)(n1 + n2) + n1n2 ≥ (N + 1)2 − (N + 1)n+

(N + 1)(n1 + n2 − n+) ≥ n1n2

(N + 1) ≤ n1n2

m2
,

the likelihood is increasing for N ≤ n1n2/m2 and decreasing for N ≥
n1n2/m2. Thus N̂ = n1n2/m2 is the maximum likelihood estimator [assum-
ing this quantity is an integer]. If m2 = 0, the likelihood is increasing with N
and therefore there is no maximum likelihood estimator.

Exercise 5.6 Give the likelihood of the extension of Darroch’s model when
the capture–recapture experiments are repeated K times with capture sizes and
recapture observations nk (1 ≤ k ≤ K) and mk (2 ≤ k ≤ K), respectively. (Hint:
Exhibit first the two-dimensional sufficient statistic associated with this model.)

When extending the two-stage capture-recapture model to a K-stage
model, we observe K capture episodes, with ni ∼ B(N, p) (1 ≤ i ≤ K),
and K − 1 recaptures,
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mi|n1, n2,m2, . . . , ni−1,mi−1, ni ∼H (N,ni, n1 + n2 −m2 + · · · −mi−1) .

The likelihood is therefore

K∏
i=1

(
N

ni

)
pni(1− p)N−ni

K∏
i=2

(
n1−m2+···−mi−1

mi

)(
N−n1+···+mi−1

ni−mi

)(
N
ni

)
∝ N !

(N !− n+)!
pn

c

(1− p)KN−n
c

,

where n+ = n1 −m2 + · · · −mK is the number of captured individuals and
where nc = n1 + · · ·+ nK is the number of captures. These two statistics are
thus sufficient for the K-stage capture-recapture model.

Exercise 5.7 Give both conditional posterior distributions in the case n+ = 0.

When n+ = 0, there is no capture at all during both capture episodes.
The likelihood is thus (1 − p)2N and, under the prior π(N, p) = 1/N , the
conditional posterior distributions of p and N are

p|N,n+ = 0 ∼ Be(1, 2N + 1) ,

N |p, n+ = 0 ∼ (1− p)2N

N
.

That the joint distribution π(N, p|n+ = 0) exists is ensured by the fact that
π(N |n+ = 0) ∝ 1/N(2N + 1), associated with a converging series.

Exercise 5.8 Show that, when the prior on N is a P(λ) distribution, the con-
ditional posterior on N − n+ is P(λ(1− p)2).

The posterior distribution of (N, p) associated with the informative prior
π(N, p) = λNe−λ/N ! is proportional to

N !
(N − n+)!N !

λN pn
c

(1− p)2N−nc IN≥n+ .

The corresponding conditional on N is thus proportional to

λN

(N − n+)!
pn

c

(1− p)2N−nc IN≥n+ ∝ λN−n
+

(N − n+)!
pn

c

(1− p)2N−nc IN≥n+

which corresponds to a Poisson P(λ(1− p)2) distribution on N − n+.
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Exercise 5.9 An extension of the T -stage capture-recapture model is to
consider that the capture of an individual modifies its probability of
being captured from p to q for future captures. Give the likelihood
`(N, p, q|n1, n2,m2 . . . , nT ,mT ).

When extending the T -stage capture-recapture model with different prob-
abilities of being captured and recaptured, after the first capture episode,
where n1 ∼ B(N, p), we observe T − 1 new captures (i = 2, . . . , T )

ni −mi|n1, n2,m2, . . . , ni−1,mi−1 ∼ B(N − n1 − n2 +m2 + . . .+mi−1, p) ,

and T − 1 recaptures (i = 2, . . . , T ),

mi|n1, n2,m2, . . . , ni−1,mi−1 ∼ B(n1 + n2 −m2 + . . .−mi−1, q) .

The likelihood is therefore(
N

n1

)
pn1(1− p)N−n1

T∏
i=2

(
N − n1 + . . .−mi−1

ni −mi

)
pni−mi(1− p)N−n1+...+mi

×
T∏
i=2

(
n1 + n2 − . . .−mi−1

mi

)
qmi(1− q)n1+...−mi

∝ N !
(N − n+)!

pn
+

(1− p)TN−n
∗
qm

+
(1− q)n

∗−n1 ,

where n+ = n1 −m2 + · · · −mT is the number of captured individuals,

n∗ = Tn1 +
T∑
j=2

(T − j + 1)(nj −mj)

and where m+ = m1+· · ·+mT is the number of recaptures. The four statistics
(n1, n

+, n∗,m+) are thus sufficient for this version of the T -stage capture-
recapture model.

Exercise 5.10 Another extension of the 2-stage capture-recapture model is to
allow for mark losses. If we introduce q as the probability of losing the mark, r as
the probability of recovering a lost mark and k as the number of recovered lost
marks, give the associated likelihood `(N, p, q, r|n1, n2,m2, k).

There is an extra-difficulty in this extension in that it contains a latent
variable: let us denote by z the number of tagged individuals that have lost
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their mark. Then z ∼ B(n1, q) is not observed, while k ∼ B(z, r) is observed.
Were we to observe (n1, n2,m2, k, z), the [completed] likelihood would be

`?(N, p, q, r|n1, n2,m2, k, z) =
(
N

n1

)
pn1(1− p)N−n1

(
n1

z

)
qz(1− q)n1−z

×
(
z

k

)
rk(1− r)z−k

(
n1 − z
m2

)
pm2(1− p)n1−z−m2

×
(
N − n1 + z

n2 −m2

)
pn2−m2(1− p)N−n1+z−n2+m2 ,

since, for the second round, the population gets partitioned into individuals
that keep their tag and are/are not recaptured, those that loose their tag
and are/are not recaptured, and those that are captured for the first time.
Obviously, it is not possible to distinguish between the two last categories.
Since z is not known, the [observed] likelihood is obtained by summation over
z:

`(N, p, q, r|n1, n2,m2, k) ∝ N !
(N − n1)!

pn1+n2(1− p)2N−n1−n2

n1−m2∑
z=k∨N−n1−n2+m2

(
n1

z

)(
n1 − z
m2

)
×
(
N − n1 + z

n2 −m2

)
qz(1− q)n1−z rk(1− r)z−k .

Note that, while a proportionality sign is acceptable for the computation of the
likelihood, the terms depending on z must be kept within the sum to obtain
the correct expression for the distribution of the observations. A simplified
version is thus

`(N, p, q, r|n1, n2,m2, k) ∝ N !
(N − n1)!

pn1+n2(1− p)2N−n1−n2 qn1(r/(1− r))k

n1−m2∑
z=k∨N−n1−n2+m2

(N − n1 + z)![q(1− r)/(1− q)]z

z!(n1 − z −m2)!(N − n1 − n2 +m2 + z)!
,

but there is no close-form solution for the summation over z.

Exercise 5.11 Reproduce the analysis of eurodip when switching the prior from
π(N, p) ∝ λN/N ! to π(N, p) ∝ N−1.

The main purpose of this exercise is to modify the code of the function
gibbs1 in the file #5.R on the webpage, since the marginal posterior distri-
bution of N is given in the book as
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π(N |n+, nc) ∝ (N − 1)!
(N − n+)!

(TN − nc)!
(TN + 1)!

IN≥n+∨1 .

(The conditional posterior distribution of p does not change.) This distribution
being non-standard, it makes direct simulation awkward and we prefer to use
a Metropolis-Hastings step, using a modified version of the previous Poisson
conditional as proposal q(N ′|N, p). We thus simulate

N? − n+ ∼P
(
N (t−1)(1− p(t−1))T

)
and accept this value with probability

π(N?|n+, nc)
π(N (t−1)|n+, nc)

q(N (t−1)|N?, p(t−1))
q(N?|N (t−1), p(t−1))

∧ 1 .

The corresponding modified R function is

gibbs11=function(nsimu,T,nplus,nc)
{
# conditional posterior
rati=function(N){
lfactorial(N-1)+lfactorial(T*N-nc)-
lfactorial(N-nplus)-lfactorial(T*N+1)

}

N=rep(0,nsimu)
p=rep(0,nsimu)

N[1]=2*nplus
p[1]=rbeta(1,nc+1,T*N[1]-nc+1)
for (i in 2:nsimu){

# MH step on N
N[i]=N[i-1]
prop=nplus+rpois(1,N[i-1]*(1-p[i-1])^T)
if (log(runif(1))<rati(prop)-rati(N[i])+

dpois(N[i-1]-nplus,prop*(1-p[i-1])^T,log=T)-
dpois(prop-nplus,N[i-1]*(1-p[i-1])^T,log=T))

N[i]=prop
p[i]=rbeta(1,nc+1,T*N[i]-nc+1)
}

list(N=N,p=p)
}

The output of this program is given in Figure 5.1.
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Fig. 5.1. eurodip: MCMC simulation under the prior π(N, p) ∝ N−1.

Exercise 5.12 Show that the conditional distribution of r1 is indeed propor-
tional to the product (5.4).

The joint distribution of D∗ = (n1, c2, c3, r1, r2) is given in the book as(
N

n1

)
pn1(1− p)N−n1

(
n1

r1

)
qr1(1− q)n1−r1

(
n1 − r1

c2

)
pc2(1− p)n1−r1−c2

×
(
n1 − r1

r2

)
qr2(1− q)n1−r1−r2

(
n1 − r1 − r2

c3

)
pc3(1− p)n1−r1−r2−c3 .

Therefore, if we only keep the terms depending on r1, we indeed recover

1
r1!(n1 − r1)!

qr1(1− q)n1−r1 (n1 − r1)!
(n1 − r1 − c2)!

(1− p)n1−r1−c2

× (n1 − r1)!
(n1 − r1 − r2)!

(1− q)n1−r1−r2 (n1 − r1 − r2)!
(n1 − r1 − r2 − c3)!

(1− p)n1−r1−r2−c3

∝ (n1 − r1)!
r1!(n1 − r1 − c2)!(n1 − r1 − r2 − c3)!

{
q

(1− q)2(1− p)2

}r1
∝
(
n1 − c2
r1

)(
n1 − r1

r2 + c3

) {
q

(1− q)2(1− p)2

}r1
,

under the constraint that r1 ≤ min(n1, n1−r2, n1−r2−c3, n1−c2) = min(n1−
r2 − c3, n1 − c2).
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Exercise 5.13 Show that r2 can be integrated out in the above joint distribution
and leads to the following distribution on r1:

π(r1|p, q, n1, c2, c3) ∝ (n1 − r1)!(n1 − r1 − c3)!
r1!(n1 − r1 − c2)!

(5.1)

×
(

q

(1− p)(1− q)[q + (1− p)(1− q)]

)r1
.

Compare the computational cost of a Gibbs sampler based on this approach with
a Gibbs sampler using the full conditionals.

Following the decomposition of the likelihood in the previous exercise, the
terms depending on r2 are

1
r2!(n1 − r1 − r2)!

(
q

(1− p)(1− q)

}r2 (n1 − r1 − r2)!
(n1 − r1 − r2 − c3)!

=
1

r2!(n1 − r1 − r2 − c3)!

(
q

(1− p)(1− q)

}r2
.

If we sum over 0 ≤ r2 ≤ n1 − r1 − c3, we get

1
(n1 − r1 − c3)!

n1−r1−c3∑
k=0

(
n1 − r1 − c3

k

)(
q

(1− p)(1− q)

}k
=
{

1 +
q

(1− p)(1− q)

}n1−r1−c3

that we can agregate with the remaining terms in r1

(n− r1)!
r1!(n1 − r1 − c2)!

{
q

(1− q)2(1− p)2

}r1
to recover (5.1).

Given that a Gibbs sampler using the full conditionals is simulating from
standard distributions while a Gibbs sampler based on this approach requires
the simulation of this non-standard distribution on r1, it appears that one
iteration of the latter is more time-consuming than for the former.

Exercise 5.14 Show that the likelihood associated with an open population can
be written as

`(N, p|D∗) =
∑

(εit,δit)it

T∏
t=1

N∏
i=1

qεitεi(t−1)
(1− qεi(t−1))

1−εit

× p(1−εit)δit(1− p)(1−εit)(1−δit) ,
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where q0 = q, q1 = 1, and δit and εit are the capture and exit indicators,
respectively. Derive the order of complexity of this likelihood, that is, the number
of elementary operations necessary to compute it.

This is an alternative representation of the model where each individual
capture and life history is considered explicitely. This is also the approach
adopted for the Arnason-Schwarz model of Section 5.5. We can thus define
the history of individual 1 ≤ i ≤ N as a pair of sequences (εit) and (δit),
where εit = 1 at the exit time t and forever after. For the model given at
the beginning of Section 5.3, there are n1 δi1’s equal to 1, r1 εi1’s equal to 1,
c2 δi2’s equal to 1 among the i’s for which δi1 = 1 and so on. If we do not
account for these constraints, the likelihood is of order O(3NT ) [there are three
possible cases for the pair (εit, δit) since δit = 0 if εit = 1]. Accounting for the
constraints on the total number of δit’s equal to 1 increases the complexity of
the computation.

Exercise 5.15 Show that, for M > 0, if g is replaced with Mg in S and if
(X,U) is uniformly distributed on S , the marginal distribution of X is still g.
Deduce that the density g only needs to be known up to a normalizing constant.

The set
S = {(x, u) : 0 < u < Mg(x)}

has a surface equal toM . Therefore, the uniform distribution on S has density
1/M and the marginal of X is given by∫

I(0,Mg(x))
1
M

du =
Mg(x)
M

= g(x) .

This implies that uniform simulation in S provides an output from g no mat-
ter what the constant M is. In other words, g does not need to be normalised.

Exercise 5.16 For the function g(x) = (1+sin2(x))(2+cos4(4x)) exp[−x4{1+
sin6(x)}] on [0, 2π], examine the feasibility of running a uniform sampler on the
associated set S .

The function g is non-standard but it is bounded [from above] by the
function g(x) = 6 exp[−x4] since both cos and sin are bounded by 1 or even
g(x) = 6. Simulating uniformly over the set S associated with g can thus be
achieved by simulating uniformly over the set S associated with g until the
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output falls within the set S associated with g. This is the basis of accept-
reject algorithms.

Exercise 5.17 Show that the probability of acceptance in Step 2 of Algorithm
5.2 is 1/M , and that the number of trials until a variable is accepted has a
geometric distribution with parameter 1/M . Conclude that the expected number
of trials per simulation is M .

The probability that U ≤ g(X)/(Mf(X)) is the probability that a uniform
draw in the set

S = {(x, u) : 0 < u < Mg(x)}

falls into the subset

S0 = {(x, u) : 0 < u < f(x)}.

The surfaces of S and S0 being M and 1, respectively, the probability to fall
into S0 is 1/M .

Since steps 1. and 2. of Algorithm 5.2 are repeated independently, each
round has a probability 1/M of success and the rounds are repeated till the
first success. The number of rounds is therefore a geometric random variable
with parameter 1/M and expectation M .

Exercise 5.18 For the conditional distribution of αt derived from (5.3), con-
struct an Accept-Reject algorithm based on a normal bounding density f and
study its performances for N = 53, nt = 38, µt = −0.5, and σ2 = 3.

That the target is only known up to a constant is not a problem, as demon-
strated in Exercise 5.15. To find a bound on π(αt|N,nt) [up to a constant],
we just have to notice that

(1 + eαt)−N < e−Nαt

and therefore
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(1 + eαt)−N exp
{
αtnt −

1
2σ2

(αt − µt)2

}
≤ exp

{
αt(nt −N)− 1

2σ2
(αt − µt)2

}
= exp

{
− α2

t

2σ2
+ 2

αt
2σ2

(µt − σ2(N − nt))−
µ2
t

2σ2

}
=

1√
2πσ

exp
{
− 1

2σ2
(αt − µt + σ2(N − nt))2

}
×
√

2πσ exp
{
− 1

2σ2
(µ2
t − [µt − σ2(N − nt)]2)

}
.

The upper bound thus involves a normal N (µt−σ2(N −nt), σ2) distribution
and the corresponding constant. The R code associated with this decomposi-
tion is

# constants
N=53
nt=38
mut=-.5
sig2=3
sig=sqrt(sig2)

# log target
ta=function(x){
-N*log(1+exp(x))+x*nt-(x-mut)^2/(2*sig2)
}

#bounding constant
bmean=mut-sig2*(N-nt)
uc=0.5*log(2*pi*sig2)+(bmean^2-mut^2)/(2*sig2)

prop=rnorm(1,sd=sig)+bmean
ratio=ta(prop)-uc-dnorm(prop,mean=bmean,sd=sig,log=T)

while (log(runif(1))>ratio){

prop=rnorm(1,sd=sig)+bmean
ratio=ta(prop)-uc-dnorm(prop,mean=bmean,sd=sig,log=T)
}

The performances of this algorithm degenerate very rapidly when N − nt is
[even moderately] large.
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Exercise 5.19 When uniform simulation on S is impossible, construct a Gibbs
sampler based on the conditional distributions of u and x. (Hint: Show that both
conditionals are uniform distributions.) This special case of the Gibbs sampler is
called the slice sampler (see Robert and Casella, 2004, Chapter 8). Apply to the
distribution of Exercise 5.16.

Since the joint distribution of (X,U) has the constant density

t(x, u) = I0≤u≤g(x) ,

the conditional distribution of U given X = x is U (0, g(x)) and the condi-
tional distribution of X given U = u is U ({x; g(x) ≥ u}), which is uniform
over the set of highest values of g. Both conditionals are therefore uniform
and this special Gibbs sampler is called the slice sampler. In some settings,
inverting the condition g(x) ≥ u may prove formidable!

If we take the case of Exercise 5.16 and of g(x) = exp(−x4), the set
{x; g(x) ≥ u} is equal to

{x; g(x) ≥ u} =
{
x;x ≤ (− log(x))1/4

}
,

which thus produces a closed-form solution.

Exercise 5.20 Reproduce the above analysis for the marginal distribution of r1

computed in Exercise 5.13.

The only change in the codes provided in #5.R deals with seuil, called by
ardipper, and with gibbs2 where the simulation of r2 is no longer required.

Exercise 5.21 Show that, given a mean and a 95% confidence interval in [0, 1],
there exists at most one beta distribution B(a, b) with such a mean and confidence
interval.

If 0 < m < 1 is the mean m = a/(a + b) of a beta Be(a, b) distribution,
then this distribution is necessarily a beta Be(αm,α(1 − m)) distribution,
with α > 0. For a given confidence interval [`, u], with 0 < ` < m < u < 1, we
have that

lim
α→0

∫ u

`

Γ (α)
Γ (αm)Γ (α(1−m)

xαm−1(1− x)α(1−m)−1 dx = 0

[since, when α goes to zero, the mass of the beta Be(αm,α(1−m)) distribution
gets more and more concentrated around 0 and 1, with masses (1 −m) and
m, respectively] and
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lim
α→∞

∫ u

`

Γ (α)
Γ (αm)Γ (α(1−m))

xαm−1(1− x)α(1−m)−1 dx = 1

[this is easily established using the gamma representation introduced in Ex-
ercise 4.19 and the law of large numbers]. Therefore, due to the continuity [in
α] of the coverage probability, there must exist one value of α such that

B(`, u|α,m) =
∫ u

`

Γ (α)
Γ (αm)Γ (α(1−m)

xαm−1(1− x)α(1−m)−1 dx = 0.9 .

Figure 5.2 illustrates this property by plotting B(`, u|α,m) for ` = 0.1, u =
0.6, m = 0.4 and α varying from 0.1 to 50.
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Fig. 5.2. Coverage of the interval (`, u) = (0.1, 0.6) by a Be(0.4α, 0.6α) distribution
when α varies.

Exercise 5.22 Show that groups of consecutive unknown locations are indepen-
dent of one another, conditional on the observations. Devise a way to simulate
these groups by blocks rather than one at a time, that is, using the joint posterior
distributions of the groups rather than the full conditional distributions of the
states.

As will become clearer in Chapter 7, the Arnason-Schwarz model is a very
special case of [partly] hidden Markov chain: the locations z(i,t) of an indi-
vidual i along time constitute a Markov chain that is only observed at times
t when the individual is captured. Whether or not z(i,t) is observed has no
relevance on the fact that, given z(i,t), (z(i,t−1), z(i,t−2), . . .) is independent
from (z(i,t+1), z(i,t+2), . . .). Therefore, conditioning on any time t and on the
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corresponding value of z(i,t) makes the past and the future locations indepen-
dent. In particular, conditioning on the observed locations makes the blocks
of unobserved locations in-between independent.

Those blocks could therefore be generated independently and parallely,
an alternative which would then speed up the Gibbs sampler compared with
the implementation in Algorithm 5.3. In addition, this would bring additional
freedom in the choice of the proposals for the simulation of the different blocks
and thus could further increase efficiency.



6

Mixture Models

Exercise 6.1 Show that a mixture of Bernoulli distributions is again a Bernoulli
distribution. Extend this to the case of multinomial distributions.

By definition, if

x ∼
k∑
i=1

piB(qi) ,

then x only takes the values 0 and 1 with probabilities

k∑
i=1

pi(1− qi) = 1−
k∑
i=1

piqi and
k∑
i=1

piqi ,

respectively. This mixture is thus a Bernoulli distribution

B

(
k∑
i=1

piqi

)
.

When considering a mixture of multinomial distributions,

x ∼
k∑
i=1

piMk(qi) ,

with qi = (qi1, . . . , qik), x takes the values 1 ≤ j ≤ k with probabilities

k∑
i=1

piqij

and therefore this defines a multinomial distribution. This means that a mix-
ture of multinomial distributions cannot be identifiable unless some restric-
tions are set upon its parameters.
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Exercise 6.2 Show that the number of nonnegative integer solutions of the
decomposition of n into k parts such that n1 + . . .+ nk = n is equal to

r =
(
n+ k − 1

n

)
.

Deduce that the number of partition sets is of order O(nk−1).

This is a usual combinatoric result, detailed for instance in Feller (1970).
A way to show that r is the solution is to use the “bottomless box” trick:
consider a box with k cases and n identical balls to put into those cases. If we
remove the bottom of the box, one allocation of the n balls is represented by
a sequence of balls (O) and of case separations (|) or, equivalently, of 0’s and
1’s, of which there are n and k − 1 respectively [since the box itself does not
count, we have to remove the extreme separations]. Picking n positions out of
n+ (k − 1) is exactly r.

This value is thus the number of “partitions” of an n sample into k groups
[we write “partitions” and not partitions because, strictly speaking, all sets
of a partition are non-empty]. Since(

n+ k − 1
n

)
=

(n+ k − 1)!
n!(k − 1)!

≈ nk−1

(k − 1)!
,

when n� k, there is indeed an order O(nk−1) of partitions.

Exercise 6.3 For a mixture of two normal distributions with all parameters un-
known,

pN (µ1, σ
2
1) + (1− p)N (µ2, σ

2
2) ,

and for the prior distribution (j = 1, 2)

µj |σj ∼ N (ξj , σ2
i /nj) , σ2

j ∼ I G (νj/2, s2
j/2) , p ∼ Be(α, β) ,

show that
p|x, z ∼ Be(α+ `1, β + `2),

µj |σj ,x, z ∼ N

(
ξ1(z),

σ2
j

nj + `j

)
, σ2

j |x, z ∼ I G ((νj + `j)/2, sj(z)/2)

where `j is the number of zi equal to j, x̄j(z) and ŝj(z) are the empirical mean
and variance for the subsample with zi equal to j, and

ξj(z) =
njξj + `j x̄j(z)

nj + `j
, sj(z) = s2

j + ŝ2
j (z) +

nj`j
nj + `j

(ξj − x̄j(z))2 .

Compute the corresponding weight ω(z).
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If the latent (or missing) variable z is introduced, the joint distribution of
(x, z) [equal to the completed likelihood] decomposes into

n∏
i=1

pzi f(xi|θzi) =
2∏
j=1

∏
i;zi=j

pj f(xi|θj)

∝
k∏
j=1

p
`j
j

∏
i;zi=j

e−(xi−µj)2/2σ2
j

σj
, (6.1)

where p1 = p and p2 = (1−p). Therefore, using the conjugate priors proposed
in the question, we have a decomposition of the posterior distribution of the
parameters given (x, z) in

p`1+α−1(1− p)`2+β−1
2∏
j=1

e−(xi−µj)2/2σ2
j

σj
π(µj , σ2

j ) .

This implies that p|x, z ∼ Be(α + `1, β + `2) and that the posterior distri-
butions of the pairs (µj , σ2

j ) are the posterior distributions associated with
the normal observations allocated (via the zi’s) to the corresponding compo-
nent. The values of the hyperparameters are therefore those already found in
Chapter 2 (see, e.g., eqn. (4.6) and Exercise 2.13).

The weight ω(z) is the marginal [posterior] distribution of z, since

π(θ, p|x) =
∑
z

ω(z)π(θ, p|x, z) .

Therefore, if p1 = p and p2 = 1− p,

ω(z) ∝
∫ 2∏

j=1

p
`j
j

∏
i;zi=j

e−(xi−µj)2/2σ2
j

σj
π(θ, p) dθdp

∝ Γ (α+ `1)Γ (β + `2)
Γ (α+ β + n)∫ 2∏
j=1

exp

[
−1
2σ2

j

{
(nj + `j)(µj − ξj(z))2 + sj(z)

}]
σ
−`j−νj−3
j dθ

∝ Γ (α+ `1)Γ (β + `2)
Γ (α+ β + n)

2∏
j=1

Γ ((`j + νj)/2)(sj(z)/2)(νj+`j)/2√
nj + `j

and the proportionality factor can be derived by summing up the rhs over all
z’s. (There are 2n terms in this sum.)

Exercise 6.4 For the normal mixture model of Exercise 6.3, compute the func-
tion Q(θ0, θ) and derive both steps of the EM algorithm. Apply this algorithm to
a simulated dataset and test the influence of the starting point θ0.
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Starting from the representation (6.1) above,

log `(θ, p|x, z) =
n∑
i=1

{I1(zi) log(p f(xi|θ1) + I2(zi) log((1− p) f(xi|θ2)} ,

which implies that

Q{(θ(t),p(t)), (θ, p)} = E(θ(t),p(t)) [log `(θ, p|x, z)|x]

=
n∑
i=1

{
P(θ(t),p(t)) (zi = 1|x) log(p f(xi|θ1)

+P(θ(t),p(t)) (zi = 2|x) log((1− p) f(xi|θ2)
}

= log(p/σ1)
n∑
i=1

P(θ(t),p(t)) (zi = 1|x)

+ log((1− p)/σ2)
n∑
i=1

P(θ(t),p(t)) (zi = 2|x)

−
n∑
i=1

P(θ(t),p(t)) (zi = 1|x)
(xi − µ1)2

2σ2
1

−
n∑
i=1

P(θ(t),p(t)) (zi = 2|x)
(xi − µ2)2

2σ2
2

.

If we maximise this function in p, we get that

p(t+1) =
1
n

n∑
i=1

P(θ(t),p(t)) (zi = 1|x)

=
1
n

n∑
i=1

p(t)f(xi|θ(t)
1 )

p(t)f(xi|θ(t)
1 ) + (1− p(t))f(xi|θ(t)

2 )

while maximising in (µj , σj) (j = 1, 2) leads to

µ
(t+1)
j =

n∑
i=1

P(θ(t),p(t)) (zi = j|x)xi

/ n∑
i=1

P(θ(t),p(t)) (zi = j|x)

=
1

np
(t+1)
j

n∑
i=1

xip
(t)
j f(xi|θ(t)

j )

p(t)f(xi|θ(t)
1 ) + (1− p(t))f(xi|θ(t)

2 )
,

σ
2(t+1)
j =

n∑
i=1

P(θ(t),p(t)) (zi = j|x) (xi − µ(t+1)
j )2

/ n∑
i=1

P(θ(t),p(t)) (zi = j|x)

=
1

np
(t+1)
j

n∑
i=1

[
xi − µ(t+1)

j

]2
p

(t)
j f(xi|θ(t)

j )

p(t)f(xi|θ(t)
1 ) + (1− p(t))f(xi|θ(t)

2 )
,
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where p(t)
1 = p(t) and p

(t)
2 = (1− p(t)).

A possible implementation of this algorithm in R is given below:

# simulation of the dataset
n=324
tz=sample(1:2,n,prob=c(.4,.6),rep=T)
tt=c(0,3.5)
ts=sqrt(c(1.1,0.8))
x=rnorm(n,mean=tt[tz],sd=ts[tz])

para=matrix(0,ncol=50,nrow=5)
likem=rep(0,50)

# initial values chosen at random
para[,1]=c(runif(1),mean(x)+2*rnorm(2)*sd(x),rexp(2)*var(x))
likem[1]=sum(log( para[1,1]*dnorm(x,mean=para[2,1],
sd=sqrt(para[4,1]))+(1-para[1,1])*dnorm(x,mean=para[3,1],
sd=sqrt(para[5,1])) ))

# 50 EM steps
for (em in 2:50){

# E step
postprob=1/( 1+(1-para[1,em-1])*dnorm(x,mean=para[3,em-1],
sd=sqrt(para[5,em-1]))/( para[1,em-1]*dnorm(x,
mean=para[2,em-1],sd=sqrt(para[4,em-1]))) )

# M step
para[1,em]=mean(postprob)
para[2,em]=mean(x*postprob)/para[1,em]
para[3,em]=mean(x*(1-postprob))/(1-para[1,em])
para[4,em]=mean((x-para[2,em])^2*postprob)/para[1,em]
para[5,em]=mean((x-para[3,em])^2*(1-postprob))/(1-para[1,em])

# value of the likelihood
likem[em]=sum(log(para[1,em]*dnorm(x,mean=para[2,em],
sd=sqrt(para[4,em]))+(1-para[1,em])*dnorm(x,mean=para[3,em],
sd=sqrt(para[5,em])) ))

}

Figure 6.1 represents the increase in the log-likelihoods along EM iterations
for 20 different starting points [and the same dataset x]. While most starting
points lead to the same value of the log-likelihood after 50 iterations, one
starting point induces a different convergence behaviour.
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Fig. 6.1. Increase of the log-likelihood along EM iterations for 20 different starting
points.

Exercise 6.5 Show that the θj ’s in model (6.2) are dependent on each other
given (only) x.

The likelihood associated with model (6.2) being

`(θ, p|x) =
n∏
i=1

 k∑
j=1

pj f(xi|θj)

 ,
it is clear that the posterior distribution will not factorise as a product of
functions of the different parameters. It is only given (x, z) that the θj ’s are
independent.

Exercise 6.6 Construct and test the Gibbs sampler associated with the (ξ, µ0)
parameterization of (6.3) when µ1 = µ0 − ξ and µ2 = µ0 + ξ.

The simulation of the zi’s is unchanged [since it does not depend on the
parameterisation of the components. The conditional distribution of (ξ, µ0)
given (x, z) is

π(ξ, µ0|x, z) ∝ exp
−1
2

{∑
zi=1

(xi − µ0 + ξ)2 +
∑
zi=2

(xi − µ0 − ξ)2

}
.
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Therefore, ξ and µ0 are not independent given (x, z), with

µ0|ξ,x, z ∼ N

(
nx+ (`1 − `2)ξ

n
,

1
n

)
,

ξ|µ0,x, z ∼ N

(∑
zi=2(xi − µ0)−

∑
zi=1(xi − µ0)

n
,

1
n

)
The implementation of this Gibbs sampler is therefore a simple modifica-

tion of the code given in #6.R on the webpage: the MCMC loop is now

for (t in 2:Nsim){

# allocation
fact=.3*sqrt(exp(gu1^2-gu2^2))/.7
probs=1/(1+fact*exp(sampl*(gu2-gu1)))
zeds=(runif(N)<probs)

# Gibbs sampling
mu0=rnorm(1)/sqrt(N)+(sum(sampl)+xi*(sum(zeds==1)
-sum(zeds==0)))/N

xi=rnorm(1)/sqrt(N)+(sum(sampl[zeds==0]-mu0)
-sum(sampl[zeds==1]-mu0))/N

# reparameterisation
gu1=mu0-xi
gu2=mu0+xi
muz[t,]=(c(gu1,gu2))

}

If we run repeatedly this algorithm, the Markov chain produced is highly
dependent on the starting value and remains captive of local modes, as illus-
trated on Figure 6.2. This reparameterisation thus seems less robust than the
original parameterisation.

Exercise 6.7 Give the ratio corresponding to (6.7) when the parameter of inter-
est is in [0, 1] and the random walk proposal is on the logit transform log θ/(1−θ).

Since
∂

∂θ
log [θ/(1− θ)] =

1
θ

+
1

1− θ)
=

1
θ(1− θ)

,

the Metropolis–Hastings acceptance ratio for the logit transformed random
walk is
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Fig. 6.2. Influence of the starting value on the convergence of the Gibbs sampler
associated with the location parameterisation of the mean mixture (10, 000 itera-
tions).



6 Mixture Models 83

π(θ̃j)

π(θ(t−1)
j )

θ̃j(1− θ̃j)
θ

(t−1)
j (1− θ(t−1)

j )
∧ 1 .

Exercise 6.8 Show that, if an exchangeable prior π is used on the vector of
weights (p1, . . . , pk), then, necessarily, Eπ[pj ] = 1/k and, if the prior on the
other parameters (θ1, . . . , θk) is also exchangeable, then Eπ[pj |x1, . . . , xn] = 1/k
for all j’s.

If
π(p1, . . . , pk) = π(pσ(1), . . . , pσ(k))

for any permutation σ ∈ Sk, then

Eπ[pj ] =
∫
pjπ(p1, . . . , pj , . . . , pk) dp =

∫
pjπ(pj , . . . , p1, . . . , pk) dp = Eπ[p1] .

Given that
∑k
j=1 pj = 1, this implies Eπ[pj ] = 1/k.

When both the likelihood and the prior are exchangeable in (pj , θj), the
same result applies to the posterior distribution.

Exercise 6.9 Show that running an MCMC algorithm with target π(θ|x)γ will
increase the proximity to the MAP estimate when γ > 1 is large. Discuss the
modifications required in Algorithm 6.2.to achieve simulation from π(θ|x)γ when
γ ∈ N∗.

The power distribution πγ(θ) ∝ π(θ)γ shares the same modes as π, but the
global mode gets more and more mass as γ increases. If θ? is the global mode of
π [and of πγ ], then {π(θ)/π(θ?)}γ goes to 0 as γ goes to∞ for all θ’s different
from θ?. Moreover, for any 0 < α < 1, if we define the α neighbourhood Nα

of θ? as the set of θ’s such that π(θ) ≥ απ(θ?), then πγ(Nα) converges to 1
as γ goes to ∞.

The idea behind simulated annealing is that, first, the distribution πγ(θ) ∝
π(θ)γ is more concentrated around its main mode than π(θ) if γ is large and,
second, that it is not necessary to simulate a whole sample from π(θ), then a
whole sample from π(θ)2 and so on to achieve a convergent approximation of
the MAP estimate. Increasing γ slowly enough along iterations leads to the
same result with a much smaller computing requirement.

When considering the application of this idea to a mean mixture as (6.3)
[in the book], the modification of Algorithm 6.2 is rather immediate: since
we need to simulate from π(θ, p|x)γ [up to a normalising constant], this is
equivalent to simulate from `(θ, p|x)γ × π(θ, p)γ . This means that, since the
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prior is [normal] conjugate, the prior hyperparameter λ is modified into γλ
and that the likelihood is to be completed γ times rather than once, i.e.

`(θ, p|x)γ =
(∫

f(x, z|θ, p) dz
)γ

=
γ∏
j=1

∫
f(x, zj |θ, p) dzj .

Using this duplication trick, the annealed version of Algorithm 6.2 writes as

Algorithm Annealed Mean Mixture Gibbs Sampler
Initialization. Choose µ

(0)
1 and µ

(0)
2 ,

Iteration t (t ≥ 1).

1. For i = 1, . . . , n, j = 1, . . . , γ, generate z
(t)
ij from

P (zij = 1) ∝ p exp
{
−1

2

(
xi − µ(t−1)

1

)2
}

P (zij = 2) ∝ (1− p) exp
{
−1

2

(
xi − µ(t−1)

2

)2
}

2. Compute

` =
γ∑
j=1

n∑
i=1

I
z
(t)
ij =1

and x̄u (z) =
γ∑
j=1

n∑
i=1

I
z
(t)
ij =u

xi

3. Generate µ
(t)
1 from N

(
γλδ + barx1 (z)

γλ+ `
,

1
γλ+ `

)
4. Generate µ

(t)
2 from N

(
γλδ + x̄2 (z)
γλ+ γn− `

,
1

γλ+ γn− `

)
.

This additional level of completion means that the Markov chain will have
difficulties to move around, compared with the original Gibbs sampling algo-
rithm. While closer visits to the global mode are guaranteed in theory, they
may require many more simulations in practice.

Exercise 6.10 In the setting of the mean mixture (6.3), run an MCMC simula-
tion experiment to compare the influence of a N (0, 100) and of a N (0, 10000)
prior on (µ1, µ2) on a sample of 500 observations.

This is straightforward in that the code in #6.R simply needs to be modi-
fied from
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# Gibbs samplin
gu1=rnorm(1)/sqrt(.1+length(zeds[zeds==1]))+
(sum(sampl[zeds==1]))/(.1+length(zeds[zeds==1]))

gu2=rnorm(1)/sqrt(.1+length(zeds[zeds==0]))+
(sum(sampl[zeds==0]))/(.1+length(zeds[zeds==0]))

to

# Gibbs samplin
gu1=rnorm(1)/sqrt(.01+length(zeds[zeds==1]))+
(sum(sampl[zeds==1]))/(.01+length(zeds[zeds==1]))

gu2=rnorm(1)/sqrt(.01+length(zeds[zeds==0]))+
(sum(sampl[zeds==0]))/(.01+length(zeds[zeds==0]))

for the N (0, 100) prior and to

# Gibbs samplin
gu1=rnorm(1)/sqrt(.0001+length(zeds[zeds==1]))+
(sum(sampl[zeds==1]))/(.0001+length(zeds[zeds==1]))

gu2=rnorm(1)/sqrt(.0001+length(zeds[zeds==0]))+
(sum(sampl[zeds==0]))/(.0001+length(zeds[zeds==0]))

for the N (0, 104) prior. While we do not reproduce the results here, it appears
that the sampler associated with the N (0, 104) prior has a higher probability
to escape the dubious mode.

Exercise 6.11 Show that, for a normal mixture 0.5 N (0, 1) + 0.5 N (µ, σ2),
the likelihood is unbounded. Exhibit this feature by plotting the likelihood of a
simulated sample, using the R image procedure.

This follows from the decomposition of the likelihood

`(θ|x) =
n∏
i=1

 2∑
j=1

0.5 f(xi|θj)

 ,
into a sum [over all partitions] of the terms

n∏
i=1

f(xi|θzi) =
∏
i;zi=1

ϕ(xi)
∏
i;zi=2

ϕ{(xi − µ)/σ}
σ

.

In exactly n of those 2n partitions, a single observation is allocated to the
second component, i.e. there is a single i such that zi = 2. For those particular
partitions, if we choose µ = xi, the second product reduces to 1/σ which is
not bounded when σ goes to 0. Since the observed likelihood is the sume of
all those terms, it is bounded from below by terms that are unbounded and
therefore it is unbounded.

An R code illustrating this behaviour is
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# Sample construction
N=100
sampl=rnorm(N)+(runif(N)<.3)*2.7

# Grid
mu=seq(-2.5,5.5,length=250)
sig=rev(1/seq(.001,.01,length=250)) # inverse variance
mo1=mu%*%t(rep(1,length=length(sig)))
mo2=(rep(1,length=length(mu)))%*%t(sig)
ca1=-0.5*mo1^2*mo2
ca2=mo1*mo2
ca3=sqrt(mo2)
ca4=0.5*(1-mo2)

# Likelihood surface
like=0*mo1
for (i in 1:N)
like=like+log(1+exp(ca1+sampl[i]*ca2+sampl[i]^2*ca4)*ca3)

like=like-min(like)

sig=rev(1/sig)
image(mu,sig,like,xlab=expression(mu),
ylab=expression(sigma^2),col=heat.colors(250))

contour(mu,sig,like,add=T,nlevels=50)

and Figure 6.3 exhibits the characteristic stripes of an explosive likelihood as
σ approaches 0 for values of µ close to the values of the sample.

Exercise 6.12 Show that the ratio (6.8) goes to 1 when α goes to 0 when the
proposal q is a random walk. Describe the average behavior of this ratio in the
case of an independent proposal.

This is obvious since, when the proposal is a random walk [without
reparameterisation], the ratio q(θ,p|θ′,p′)/q(θ′,p′|θ,p) is equal to 1. The
Metropolis–Hastings ratio thus reduces to the ratio of the targets to the power
α, which [a.e.] converges to 1 as α goes to 0.

In the case of an independent proposal,(
π(θ′,p′|x)
π(θ,p|x)

)α
q(θ,p)
q(θ′,p′)

∧ 1

is equivalent to q(θ,p)/q(θ′,p′) and therefore does not converge to 1. This
situation can however be avoided by picking qα rather than q, in which case
the ratio once more converges to 1 as α goes to 0.
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Fig. 6.3. Illustration of an unbounded mixture likelihood.

Exercise 6.13 If one needs to use importance sampling weights, show that
the simultaneous choice of several powers α requires the computation of the
normalizing constant of πα.

If samples (θiα)i from several tempered versions πα of π are to be
used simultaneously, the importance weights associated with those samples
π(θiα)/πα(θiα) require the computation of the normalizing constants, which
is most often impossible. This difficulty explains the appeal of the “pumping
mechanism” of Algorithm 6.5, which cancels the need for normalizing con-
stants by using the same πα twice, once in the numerator and once in the
denominator (see Exercice 6.14).

Exercise 6.14 Check that Algorithm 6.5 does not require the normalizing con-
stants of the παi ’s and show that π is the corresponding stationary distribution.

Since the acceptance probability

min

{
1,
πα1(x(t))
π(x(t))

· · ·
παp(x(t)

p−1)

παp−1(x(t)
p−1)

παp−1(x(t)
p )

παp(x(t)
p )

· · ·
π(x(t)

2p−1)

πα1(x(t)
2p−1)

}
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uses twice each power αj of π, the unknown normalizing constants of the παi ’s
vanish, which is one of the main reasons for using this algorithm.

The fact that π is stationary can be derived from the “detailed balance”
condition: let us assume that each of the MCMC kernels satisfy the corre-
sponding detailed balance equation

παj (x0)MCMC(x1|x0, παj ) = παj (x1)MCMC(x0|x1, παj ) .

Then

π(x(t))MCMC(x(t)
1 |x(t), πα1) · · ·MCMC(x(t)

2p |x
(t)
2p−1, πα1)

×min

{
1,
πα1(x(t))
π(x(t))

· · ·
παp(x(t)

p−1)

παp−1(x(t)
p−1)

παp−1(x(t)
p )

παp(x(t)
p )

· · ·
π(x(t)

2p−1)

πα1(x(t)
2p−1)

}
= πα1(x(t))MCMC(x(t)

1 |x(t), πα1) · · ·MCMC(x(t)
2p |x

(t)
2p−1, πα1)

×min

{
π(x(t))
πα1(x(t))

,
πα2(x(t)

1 )

πα1(x(t)
1 )
· · ·

π(x(t)
2p−1)

πα1(x(t)
2p−1)

}
= MCMC(x(t)|x(t)

1 , πα1)πα1(x(t)
1 )MCMC(x(t)

2 |x
(t)
1 , πα2) · · ·

×MCMC(x(t)
2p |x

(t)
2p−1, πα1) min

{
π(x(t))
πα1(x(t))

,
πα2(x(t)

1 )

πα1(x(t)
1 )
· · ·

π(x(t)
2p−1)

πα1(x(t)
2p−1)

}
= MCMC(x(t)|x(t)

1 , πα1)MCMC(x(t)
1 |x

(t)
2 , πα2)πα2(x(t)

2 ) · · ·

×MCMC(x(t)
2p |x

(t)
2p−1, πα1) min

{
π(x(t))πα1(x(t)

1 )

πα1(x(t))πα2(x(t)
1 )

,
πα3(x(t)

2 )

πα2(x(t)
2 )
· · ·

}
= · · ·

= MCMC(x(t)|x(t)
1 , πα1) · · ·MCMC(x(t)

2p−1|x
(t)
2p , πα1)π(x(t)

2p )

×min

{
π(x(t))
πα1(x(t))

· · ·
πα1(x(t)

2p )

π(x(t)
2p )

, 1

}

by a “domino effect” resulting from the individual detailed balance condi-
tions. This generalised detailed balance condition then ensures that π is the
stationary distribution of the chain (x(t))t.

Exercise 6.15 Show that the decomposition (6.9) is correct by representing
the generic parameter θ as (k, θk) and by introducing the submodel marginals,
mk(x1, . . . , xn) =

∫
fk(x1, . . . , xn|θk)πk(θk) dθk.

In a variable dimension model, the sampling distribution is
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f(x1, . . . , xn|θ) = f(x1, . . . , xn|(k, θk)) = fk(x1, . . . , xn|θk).

Decomposing the prior distribution as

π(θ) = π((k, θk)) = P(Mk)πk(θk) ,

the joint distribution of (x1, . . . , xn) and of θ is

f(x1, . . . , xn|θ)π(θ) = P(Mk)πk(θk)fk(x1, . . . , xn|θk)

and the marginal distribution of (x1, . . . , xn) is therefore derived by

m(x1, . . . , xn) =
∑
k

∫
P(Mk)πk(θk)fk(x1, . . . , xn|θk)dθk

=
∑
k

P(Mk)mk(x1, . . . , xn) .

Similarly, the predictive distribution f(x|x1, . . . , xn) can be expressed as

f(x|x1, . . . , xn) =
∫
f(x|θ)π(θ|x1, . . . , xn) dθ

=
∑
k

∫
fk(x|θk)

P(Mk)πk(θk)
m(x1, . . . , xn)

dθk

=
∑
k

P(Mk)mk(x1, . . . , xn)
m(x1, . . . , xn)

∫
fk(x|θk)

πk(θk)
mk(x1, . . . , xn)

dθk

=
∑
k

P(Mk|x1, . . . , xn)
∫
fk(x|θk)πk(θk|x1, . . . , xn) dθk .

Therefore,

E[x|x1, . . . , xn] =
∑
k

P(Mk|x1, . . . , xn)
∫∫

fk(x|θk)πk(θk|x1, . . . , xn) dθk .

Exercise 6.16 For a finite collection of submodels Mk (k = 1, . . . ,K), with
respective priors πk(θk) and weights %k, write a generic importance sampling
algorithm that approximates the posterior distribution.

The formal definition of an importance sampler in this setting is straight-
forward: all that is needed is a probability distribution (ω1, . . . , ωK) and a
collection of importance distributions ηk with supports at least as large as
supp(πk). The corresponding importance algorithm is then made of the three
following steps:
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Algorithm Importance Sampled Model Choice
1. Generate k ∼ (ω1, . . . , ωK);
2. Generate θk ∼ ηk(θk);
3. Compute the importance weight %kπk(θk)/ωkηk(θk) .

Obviously, the difficulty in practice is to come up with weights ωk that are
not too different from the %k’s [for efficiency reasons] while selecting perti-
nent importance distributions ηk. This is most often impossible, hence the
call to reversible jump techniques that are more local and thus require less
information about the target.

Exercise 6.17 Show that, if we define the acceptance probability

% =
π2(x′)
π1(x)

q(x|x′)
q(x′|x)

∧ 1

for moving from x to x′ and

%′ =
π1(x)
π2(x′)

q(x′|x)
q(x|x′)

∧ 1

for the reverse move, the detailed balance condition is modified in such a way that,
if Xt ∼ π1(x) and if a proposal is made based on q(x|xt), Xt+1 is distributed
from π2(x). Relate this property to Algorithm 6.5 and its acceptance probability.

If K denotes the associated Markov kernel, we have that

π1(x)K(x, x′) = π1(x)
{
q(x′|x)%(x, x′) + δx(x′)

∫
q(z|x)[1− %(x, z)]dz

}
= min {π1(x)q(x′|x), π1(x′)q(x|x′)}

+ δx(x′)
∫

max {0, q(z|x)π1(x)− q(x|z)π2(x)} dz

= π2(x)K̃(x′, x)

under the assumption that the reverse acceptance probability for the reverse
move is as proposed [a rather delicate assumption that makes the whole ex-
ercise definitely less than rigorous].

In Algorithm 6.5, the derivation is perfectly sound because the kernels are
used twice, once forward and once backward.
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Exercise 6.18 Show that the marginal distribution of p1 when (p1, . . . , pk) ∼
Dk(a1, . . . , ak) is a Be(a1, a2 + . . .+ ak) distribution.

This result relies on the same representation as Exercise 4.19: if (p1, . . . , pk) ∼
Dk(a1, . . . , ak), p1 is distributed identically to

ξ1
ξ1 + . . .+ ξk

, ξj ∼ G a(aj) .

Since ξ2 + . . .+ξk ∼ G a(a2 + · · ·+ak), this truly corresponds to a Be(a1, a2 +
. . .+ ak) distribution.





7

Dynamic Models

Exercise 7.1 Consider the process (xt)t∈Z defined by

xt = a+ bt+ yt ,

where (yt)t∈Z is an iid sequence of random variables with mean 0 and variance
σ2, and where a and b are constants. Define

wt = (2q + 1)−1

q∑
j=−q

xt+j .

Compute the mean and the autocovariance function of (wt)t∈Z. Show that
(wt)t∈Z is not stationary but that its autocovariance function γw(t + h, t) does
not depend on t.

We have

E[wt] = E

(2q + 1)−1

q∑
j=−q

xt+j


= (2q + 1)−1

q∑
j=−q

E [a+ b(t+ j) + yt]

= a+ bt .

The process (wt)t∈Z is therefore not stationary. Moreover
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E[wtwt+h] = E

a+ bt+
1

2q + 1

q∑
j=−q

yt+j

a+ bt+ bh+
q∑

j=−q
yt+h+j


= (a+ bt)(a+ bt+ bh) + E

 q∑
j=−q

yt+j

q∑
j=−q

yt+h+j


= (a+ bt)(a+ bt+ bh) + I|h|≤q(q + 1− |h|)σ2 .

Then,
cov(wt, wt+h) = I|h|≤q(q + 1− |h|)σ2

and,
γw(t+ h, t) = I|h|≤q(q + 1− |h|)σ2 .

Exercise 7.2 Suppose that the process (xt)t∈N is such that x0 ∼ N (0, τ2)
and, for all t ∈ N,

xt+1|x0:t ∼ N (xt/2, σ2) , σ > 0 .

Give a necessary condition on τ2 for (xt)t∈N to be a (strictly) stationary process.

We have
E[x1] = E[E[x1|x0]] = E[x0/2] = 0 .

Moreover,

V(x1) = V(E[x1|x0]) + E[V(x1|x0)] = τ2/4 + σ2 .

Marginaly, x1 is then distributed as a N (0, τ2/4+σ2) variable, with the same
distribution as x0 only if τ2/4 + σ2 = τ2, i.e. if τ2 = 4σ2/3.

Exercise 7.3 Suppose that (xt)t∈N is a Gaussian random walk on R: x0 ∼
N (0, τ2) and, for all t ∈ N,

xt+1|x0:t ∼ N (xt, σ2) , σ > 0 .

Show that, whatever the value of τ2 is, (xt)t∈N is not a (strictly) stationary
process.

We have
E[x1] = E[E[x1|x0]] = E[x0] = 0 .

Moreover,
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V(x1) = V(E[x1|x0]) + E[V(x1|x0)] = τ2 + σ2 .

The marginal distribution of x1 is then a N (0, τ2 + σ2) distribution which
cannot be equal to a N (0, τ2) distribution.

Exercise 7.4 Consider the process (xt)t∈N such that x0 = 0 and, for all t ∈ N,

xt+1|x0:t ∼ N (% xt, σ2) .

Suppose that π(%, σ) = 1/σ and that there is no constraint on %. Show that the
conditional posterior distribution of %, conditional on the observations x0:T and
on σ2 is a N (µT , ω2

T ) distribution, with

µT =
T∑
t=1

xt−1xt

/ T∑
t=1

x2
t−1 and ω2

T = σ2

/ T∑
t=1

x2
t−1 .

Show that the marginal posterior distribution of % is a Student T (T − 1, µT , ν2
T )

distribution, with

ν2
T =

1
T − 1

(
T∑
t=1

x2
t

/ T−1∑
t=0

x2
t − µ2

T

)
.

Apply this modeling to the AEGON series in Eurostoxx 50 and evaluate its pre-
dictive abilities.

Warning! The text above replaces the text of Exercise 7.4 in the first printing
of the book, with T − 1 degrees of freedom instead of T and a new expression
for ν2

T .
The posterior conditional density of % is proportional to

T∏
t=1

exp
{
−(xt − % xt−1)2/2σ2

}
∝ exp

{[
−%2

T−1∑
t=0

x2
t + 2%

T−1∑
t=0

xtxt+1

]/
2σ2

}
,

which indeed leads to a N (µT , ω2
T ) conditional distribution as indicated

above.
Given that the joint posterior density of (%, σ) is proportional to

σ−T−1
T∏
t=1

exp
{
−(xt − % xt−1)2/2σ2

}
integrating out σ leads to a density proportional to
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σ2
)−T/2−1/2

exp

(
T∑
t=1

(xt − ρxt−1)2/(2σ2)

)
dσ

=
∫ (

σ2
)−T/2−1

exp

(
T∑
t=1

(xt − ρxt−1)2/(2σ2)

)
dσ2

=

{
T∑
t=1

(xt − % xt−1)2

}−T/2

when taking into account the Jacobian. We thus get a Student T (T −
1, µT , ν2

T ) distribution and the parameters can be derived from expanding
the sum of squares:

T∑
t=1

(xt − % xt−1)2 =
T−1∑
t=0

x2
t

(
%2 − 2%µT

)
+

T∑
t=1

x2
t

into

T−1∑
t=0

x2
t (%− µT )2 +

T∑
t=1

x2
t −

T−1∑
t=0

x2
tµ

2
T

∝ (%− µT )2

T − 1
+

1
T − 1

(∑T
t=1 x

2
t∑T−1

t=0 x2
t

− µ2
T

)

=
(%− µT )2

T − 1
+ ν2

T .

The main point with this example is that, when % is unconstrained, the
joint posterior distribution of (%, σ) is completely closed-form. Therefore, the
predictive distribution of xT+1 is given by∫

1√
2πσ

exp{−(xT+1 − %xT )2/2σ2}π(σ, %|x0:T )dσd%

which has again a closed-form expression:
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1√
2πσ

exp{ − (xT+1 − %xT )2/2σ2}π(σ, %|x0:T )dσd%

∝
∫
σ−T−2 exp{−

T∑
t=0

(xt+1 − %xt)2/2σ2}dσd%

∝
∫ { T∑

t=0

(xt+1 − % xt)2

}−(T+1)/2

d%

∝

(
T∑
t=0

x2
t

)−(T+1)/2 ∫ {
(%− µT+1)2

T
+ ν2

T+1

}−(T+2)/2

d%

∝

(
T∑
t=0

x2
t

)−(T+1)/2

ν−T−1
T

∝

 T∑
t=0

x2
t

T∑
t=0

x2
t+1 −

{
T∑
t=0

xtxt+1

}2
(T+1)/2

.

This is a Student T (T, δT , ωT ) distribution, with

δT = xT

T−1∑
t=0

xtxt+1/

T−1∑
t=0

x2
t = ρ̂TxT

and

ωT =


T∑
t=0

x2
t

T∑
t=0

x2
t −

(
T∑
t=0

xtxt+1

)2

/
T

T−1∑
t=0

x2
t .

The predictive abilities of the model are thus in providing a point estimate for
the next observation x̂T+1 = ρ̂TxT , and a confidence band around this value.

Exercise 7.5 Give the necessary and sufficient condition under which an AR(2)
process with autoregressive polynomial P(u) = 1− %1u− %2u

2 (with %2 6= 0) is
causal.

The AR(2) process with autoregressive polynomial P is causal if and only
if the roots of P are outside the unit circle in the complex plane. The roots
of P are given by

u− =
−%1 −

√
%2

1 + 4%2

−2%2
and u+ =

−%1 +
√
%2

1 + 4%2

−2%2

with the convention that
√
x = ι

√
−x ∈ C if x < 0. (Because of the symmetry

of the roots wrt ρ1, the causality region will be symmetric in ρ1.)
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A first empirical approach based on simulation is to produce a sample
of (%1, %2)’s over the sphere of radius 6 (6 is chosen arbitrarily and could be
changed if this is too small a bound) and to plot only those (%1, %2)’s for which
the roots u− and u+ are outside the unit circle.

# Number of points
N=10^4

# Sample of rho’s
rho1=rnorm(N)
rho2=rnorm(N)
rad=6*runif(N)/sqrt(rho1^2+rho2^2)
rho1=rad*rho1
rho2=rad*rho2
R=matrix(1,ncol=3,nrow=N)
R[,2]=-rho1
R[,3]=-rho2

roots=apply(R,1,polyroot)
indx=(1:N)[(Mod(roots[1,])>1)]
indx=indx[(Mod(roots[2,indx])>1)]
plot(rho1[indx],rho2[indx],col="grey",cex=.4,
xlab=expression(rho[1]),ylab=expression(rho[2]))

The output of this program is given on Figure 7.1 but, while it looks like a
triangular shape, this does not define an analytical version of the restricted
parameter space.

If we now look at the analytical solution, there are two cases to consider:
either %2

1 + 4%2 < 0 and the roots are then complex numbers, or %2
1 + 4%2 > 0

and the roots are then real numbers.
If %2

1 + 4%2 < 0, then∣∣∣∣∣−%1 ± i
√
−(%2

1 + 4%2)
2%2

∣∣∣∣∣
2

> 1

implies that −1 < %2, which, together with the constraint %2
1 + 4%2 < 0,

provides a first region of values for (%1, %2):

C1 =
{

(%1, %2); |%1| ≤ 4, %2 < −%2
1/4
}
.

If %2
1 + 4%2 > 0, then the condition |u±| > 1 turns into√

%2
1 + 4%2−|%1| > 2%2 if %2 > 0 and|%1|−

√
%2

1 + 4%2 > −2%2 if %2 < 0 .

Thus, this amounts to compare
√
%2

1 + 4%2 with 2|%2 + |%1| or, equivalently,
4%2 with 4%2

2 + 4|%1%2|, ending up with the global condition %2 < 1− |%1. The
second part of the causality set is thus
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Fig. 7.1. Acceptable values of (ρ1, ρ2) for the AR(2) model obtained by simulation.

C2 =
{

(%1, %2); |%1| ≤ 4, %2 < −%2
1/4
}
,

and cumulating both regions leads to the triangle

T = {(%1, %2); %2 > −1, %2 < 1− |%1|} .

Exercise 7.6 Show that the stationary distribution of x−p:−1 is a Np(µ1p,A)
distribution, and give a fixed point equation satisfied by the covariance matrix A.

If we denote
zt = (xt, xt−1, . . . , xt+1−p) ,

then
zt+1 = µ1p +B (zt − µ1p) + εt+1 .

Therefore,
E [zt+1|zt] = µ1p +B (zt − µ1p)

and

V (zt+1|zt) = V (εt+1) =


σ2 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 = V .
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Then,
zt+1|zt ∼ Np (µ1p +B (zt − µ1p) , V ) .

Therefore, if z−1 = x−p:−1 ∼ Np (µ1p, A) is Gaussian, then zt is Gaussian.
Suppose that zt ∼ Np(M,A), we get

E [zt+1) = µ1p +B (M − µ1p]

and E [zt+1] = E [zt] if

µ1p +B (M − µ1p) = M ,

which means that M = µ1p. Similarly, V (zt+1) = V (zt) if and only if

BAB′ + V = A ,

which is the ”fixed point” equation satisfied by A.

Exercise 7.7 Show that the posterior distribution on θ associated with the prior
π(θ) = 1/σ2 is well-defined for T > p observations.

Warning: The prior π(θ) = 1/σ was wrongly used in the first printing of the
book.

The likelihood conditional on the initial values x0:(p−1) is proportional to

σ−T+p−1
T∏
t=p

exp

−
(
xt − µ−

p∑
i=1

%i(xt−i − µ)

)2 /
2σ2

 .

A traditional noninformative prior is π(µ, %1, . . . , %p, σ
2) = 1/σ2. In that case,

the probability density of the posterior distribution is proportional to

σ−T+p−3
T∏
t=p

exp

−
(
xt − µ−

p∑
i=1

%i(xt−i − µ)

)2 /
2σ2

 .

And∫
(σ2)−(T−p+3)/2

T∏
t=p

exp

−
(
xt − µ−

p∑
i=1

%i(xt−i − µ)

)2 /
2σ2

dσ2 <∞

holds for T − p+ 1 > 0, i.e., T > p− 1. This integral is equal to−
(
xt − µ−

p∑
i=1

%i(xt−i − µ)

)2 /
2σ2


(p−T−1)/2

,
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which is integrable in µ for T − p > 0, i.e. T > p. The other parameters %j
(j = 1, . . . , p0 being bounded, the remaining integrand is clearly integrable in
%.

Exercise 7.8 Show that the coefficients of the polynomial P can be de-
rived in O(p2) time from the inverse roots λi using the recurrence relations
(i = 1, . . . , p, j = 0, . . . , p)

ψi0 = 1 , ψij = ψi−1
j − λiψi−1

j−1 ,

where ψ0
0 = 1 and ψij = 0 for j > i, and setting %j = −ψpj (j = 1, . . . , p).

Warning: The useless sentence “Deduce that the likelihood is computable in
O(Tp2) time” found in the first printing of the book has been removed.

Since
p∏
i=1

(1− λix) = 1−
j∑
j=1

%jx
j ,

we can expand the lhs one root at a time. If we set
i∏

j=1

(1− λjx) =
i∑

j=0

ψijx
j ,

‘ then
i+1∏
j=1

(1− λjx) = (1− λi+1x)
i∏

j=1

(1− λjx)

= (1− λi+1x)
i∑

j=0

ψijx
j

= 1 +
i∑

j=1

(ψij − λi+1ψ
i
j−1)xj − λi+1ψ

i
ix
i+1 ,

which establishes the ψi+1
j = ψij − λi+1ψ

i
j−1 recurrence relation.

This recursive process requires the allocation of i variables at the ith stage;
the coefficients of P can thus be derived with a complexity of O(p2).

Exercise 7.9 Show that, if the proposal on σ2 is a log-normal distribution
LN (log(σ2

t−1), τ2) and if the prior distribution on σ2 is the noninformative prior
π(σ2) = 1/σ2, the acceptance ratio also reduces to the likelihood ratio because
of the Jacobian.
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Warning: In the first printing of the book, there is a log missing in the mean
of the log-normal distribution.

If we write the Metropolis–Hastings ratio for a current value σ2
0 and a

proposed value σ2
1 , we get

π(σ2
1)`(σ2

1)
π(σ2

0)`(σ2
0)

exp
(
−(log(σ2

0 − log(σ2
1))2/2τ2

)
/σ2

0

exp (−(log(σ2
0 − log(σ2

1))2/2τ2) /σ2
1

=
`(σ2

1)
`(σ2

0)
,

as indicated.

Exercise 7.10 Write an R program that extends the reversible jump algorithm
7.1 to the case when the order p is unknown and apply it to the same Ahold Kon.
series of Eurostoxx 50.

The modification is rather straightforward if one only considers birth and
death moves, adding and removing real or complex roots in the polynomial.
When the new values are generated from the prior, as in the program provided
by #7.txt on the Webpage, the acceptance probability remains equal to the
likelihood ratio (with the usual modifications at the boundaries).

Exercise 7.11 For an MA(q) process, show that (s ≤ q)

γx(s) = σ2

q−|s|∑
i=0

ϑiϑi+|s| .

We have

γx(s) = E [xtxt−s]
= E [[εt + ϑ1εt−1 + . . .+ ϑqεt−q] [εt−s + ϑ1εt−s−1 + . . .+ ϑqεt−s−q]] .

Then, if 1 ≤ s ≤ q,

γx(s) = [ϑs + ϑs+1ϑ1 + . . .+ ϑqϑq−s]σ2

and
γx(0) =

[
1 + ϑ2

1 + . . .+ ϑ2
q

]
σ2 .

Therefore, if (0 ≤ s ≤ q) with the convention that ϑ0 = 1

γx(s) = σ2

q−s∑
i=0

ϑiϑi+s .

The fact that γx(s) = γx(−s) concludes the proof.
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Exercise 7.12 Show that the conditional distribution of (ε0, . . . , ε−q+1) given
both x1:T and the parameters is a normal distribution. Evaluate the complexity
of computing the mean and covariance matrix of this distribution.

The distribution of x1:T conditional on (ε0, . . . , ε−q+1) is proportional to

σ−T
T∏
t=1

exp

−
xt − µ+

q∑
j=1

ϑj ε̂t−j

2/
2σ2

 ,

Take
(ε0, . . . , ε−q+1) ∼ Nq

(
0q, σ2Iq

)
.

In that case, the conditional distribution of (ε0, . . . , ε−q+1) given x1:T is pro-
portional to

0∏
i=−q+1

exp
{
−ε2i /2σ2

} T∏
t=1

exp
{
−ε̂2t/2σ2

}
.

Due to the recursive definition of ε̂t, the computation of the mean and the
covariance matrix of this distribution is too costly to be available for realistic
values of T . For instance, getting the conditional mean of εi requires deriving
the coefficients of εi from all termsxt − µ+

q∑
j=1

ϑj ε̂t−j

2

by exploiting the recursive relation

ε̂t = xt − µ+
q∑
j=1

ϑj ε̂t−j .

If we write ε̂1 = δ1 +β1εi and ε̂t = δt+βtεi, then we need to use the recursive
formula

δt = xt − µ+
q∑
j=1

ϑjδt−j , βt =
q∑
j=1

βt−j ,

before constructing the conditional mean of εi. The corresponding cost for this
single step is therefore O(Tq) and therefore O(qT 2) for the whole series of εi’s.
Similar arguments can be used for computing the conditional variances.

Exercise 7.13 Give the conditional distribution of ε−t given the other ε−i’s,
x1:T , and the ε̂i’s. Show that it only depends on the other ε−i’s, x1:q−t+1, and
ε̂1:q−t+1.
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The formulation of the exercise is slightly too vague in that the ε̂i’s are
deterministic quantities based on the ε−i’s and x1:T . Thus, from a probabilistic
point of view, the conditional distribution of ε−t only depends on the other
ε−i’s and x1:T . However, from an algorithmic point of view, if we take the ε̂i’s
as additional observables in (7.11), spotting ε−` in

T∑
t=1

xt − µ+
q∑
j=1

ϑj ε̂t−j

2

leads to keep only

q−∑̀
t=1

xt − µ+
t−1∑
j=1

ϑj ε̂t−j +
q∑
j=t

ϑjεt−j

2

in the sum since, for t − q > −`, i.e. for t > q − `, ε−` does not appear in
the distribution. (Again, this is a formal construct that does not account for
the deterministic derivation of the ε̂i’s.) The conditional distribution of ε−` is
then obviously a normal distribution.

Exercise 7.14 Show that the predictive horizon for the MA(q) model is re-
stricted to the first q future observations xt+i.

Obviously, due to the lack of correlation between xT+q+j (j > 0) and x1:T

we have
E [xT+q+1|x1:T ] = E [xT+q+1] = 0

and therefore the MA(q) model has no predictive ability further than horizon
q.

Exercise 7.15 Show that, when the support Y is finite and when (yt)t∈N is
stationary, the marginal distribution of xt is the same mixture distribution for all
t’s. Deduce that the same identifiability problem as in mixture models occurs in
this setting.

Since the marginal distribution of xt is given by∫
f(xt|yt)π(yt) dyt =

∑
y∈Y

π(y)f(xt|y) ,

where π is the stationary distribution of (yt), this is indeed a mixture distri-
bution. Although this is not the fundamental reason for the unidentifiability
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of hidden Markov models, there exists an issue of label switching similar to
the case of standard mixtures.

Exercise 7.16 Write down the joint distribution of (yt, xt)t∈N in (7.19) and
deduce that the (observed) likelihood is not available in closed form.

Recall that y0 ∼ N (0, σ2) and, for t = 1, . . . , T ,{
yt = ϕyt−1 + σε∗t−1 ,

xt = βeyt/2εt ,

where both εt and ε∗t are iid N (0, 1) random variables. The joint distribution
of (x1:T ,y0:T ) is therefore

f (x1:T ,y0:T ) = f (x1:T |y0:T ) f (y0:T )

=

(
T∏
i=1

f(xi|yi)

)
f(y0)f(y1|y0) . . . f(yT |yT−1)

=
1

(2πβ2)T/2
exp

{
−

T∑
t=1

yt/2

)
exp

(
− 1

2β2

T∑
t=1

x2
t exp(−yt)

)

× 1

(2πσ2)(T+1)/2
exp

(
− 1

2σ2

(
y2

0 +
T∑
t=1

(yt − ϕyt−1)2

)}
.

Due to the double exponential term exp
(
− 1

2β2

∑T
t=1 x

2
t exp(−yt)

)
, it is im-

possible to find a closed-form of the integral in y0:T .

Exercise 7.17 Show that the counterpart of the prediction filter in the Markov-
switching case is given by

log p(x1:t) =
t∑

r=1

log

[
κ∑
i=1

f(xr|xr−1, yr = i)ϕr(i)

]
,

where ϕr(i) = P(yr = i|x1:r−1) is given by the recursive formula

ϕr(i) ∝
κ∑
j=1

pjif(xr−1|xr−2, yr−1 = j)ϕr−1(j) .

Warning! There is a typo in the first printing of the book where ϕr is defined
conditional on x1:t−1 instead of x1:r−1.
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This exercise is more or less obvious given the developments provided in
the book. The distribution of yr given the past values x1:r−1 is the marginal
of (yr, yr−1) given the past values x1:r−1:

P(yr = i|x1:t−1) =
κ∑
j=1

P(yr = i, yr−1 = j|x1:r−1)

=
κ∑
j=1

P(yr−1 = j|x1:r−1) P(yr = i|yr−1 = j)

∝
κ∑
j=1

pjiP(yr−1 = j, xr−1|x1:r−2)

=
κ∑
j=1

pjiP(yr−1 = j, |x1:r−2)f(xr−1|xr−2, yr−1 = j) ,

which leads to the update formula for the ϕr(i)’. The marginal distribution
x1:t is then derived by

p(x1:t) =
t∏

r=1

p(xr|x1:(r−1))

=
t∏

r=1

κ∑
j=1

P(yr−1 = j, xr|x1:r−1)

=
t∏

r=1

κ∑
j=1

f(xr|xr−1, yr = i)ϕr(i) ,

with the obvious convention ϕ1(i) = πi, if (π1, . . . , πκ) is the stationary dis-
tribution associated with P = (pij).
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Image Analysis

Exercise 8.1 Draw an example with n = 5 points in R2 such that the k-nearest-
neighbor relation is not symmetric.

The first quadrant of Figure 8.2 in the book is already an illustration of an
assymmetric neighborhood relation. Once two points are drawn, it is sufficient
to find sequentialy new points that are closer to the latest than the earlier
points. Figure 8.1 illustrates this case in dimension one, with decreasing-radius
circles to emphasize the assymetry: each point on the line is such that its right
neighbor is its nearest neighbor and that it is the nearest neighbor of its left
neighbor.

Exercise 8.2 For a given pair (k, n) and a uniform distribution of x in [0, 1]3,
design a Monte Carlo experiment that evaluates the distribution of the size of the
symmetrized k-nearest-neighborhood.

For a given pair (k, n), the Monte Carlo experiment produces N random
samples on [0, 1]3, for instance as

samp=matrix(runif(3*n),n,3)

compute the k-nearest-neighborhood matrix for this sample, by

disamp=as.matrix(dist(samp,up=T,diag=T)) #distance matrix

neibr=t(apply(disamp,1,order))[,-1] #k nearest neighbours
knnbr=neibr[,1:k]
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Fig. 8.1. Sequence of five points with assymetry in the nearest-neighbor relations.

newnbr=matrix(0,n,n) #k nearest neighbours
for (i in 1:n) #indicator matrix
newnbr[i,knnbr[i,]]=1

and compute the sizes of the symmetrized k-nearest-neighborhoods for those
samples, by

size[t,]=apply(newnbr+t(newnbr)>0,1,sum)

ending up with an approximation to the distribution of the size over the
samples. It is then possible to summarize the matrix size on an histogram
as in Figure 8.2.

Exercise 8.3 When y = (y1, y2), show that the joint pdf of y is given by

f(y|X, β, k) = f(y1|y2,X, β, k)
/ G∑

g=1

f(Cg|y2,X, β, k)
f(y2|Cg,X, β, k)

.

Discuss the extension to the general case. (Indication: The extension is solved via
the Hammersley–Clifford theorem, given in Section 8.3.1.)

This exercice is a consequence of Exercice 3.21: we have that, for all y2’s,
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size
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Fig. 8.2. Histogram of the size of the symmetrized k-nearest-neighborhoods when
k = 3 and n = 200 based on N = 1000 simulations.

f(y1|X, β, k) =
f(y1|y2,X, β, k)/f(y2|y1,X, β, k)∫
f(y1|y2,X, β, k)/f(y2|y1,X, β, k)dy1

=
f(y1|y2,X, β, k)/f(y2|y1,X, β, k)∑G

g=1 f(Cg|y2,X, β, k)/f(y2|Cg,X, β, k)
,

since the support of y1 is finite. We can therefore conclude that

f(y|X, β, k) =
f(y1|y2,X, β, k)∑G

g=1 f(Cg|y2,X, β, k)/f(y2|Cg,X, β, k)
.

As suggested, the extension is solved via the Hammersley–Clifford theo-
rem, given in (8.4). See Section 8.3.1 for details.

Exercise 8.4 Find two conditional distributions f(x|y) and g(y|x) such that
there is no joint distribution corresponding to both f and g. Find a necessary
condition for f and g to be compatible in that respect, i.e. to correspond to a
joint distribution on (x, y).

As stated, this is a rather obvious question: if f(x|y) = 4y exp(−4yx) and
if g(y|x) = 6x exp(−6xy), there cannot be a joint distribution inducing these
two conditionals. What is more interesting is that, if f(x|y) = 4y exp(−4yx)
and g(y|x) = 4x exp(−4yx), there still is no joint distribution, despite the
formal agreement between both conditionals: the only joint that would work
has the major drawback that it has an infinite mass!

Exercise 8.5 Using the Hammersley-Clifford theorem, show that the full condi-
tional distributions given by (8.1) are compatible with a joint distribution.
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Note: In order to expose the error made in the first printing in using the size
of the symmetrized neighborhood, Nk(i), we will compute the potential joint
distribution based on the pseudo-conditional

P(yi = Cj |y−i,X, β, k) ∝ exp

(
β
∑
`∼ki

ICj (y`)
/
Nk(i)

)
,

even though it is defined for a fixed Nk(i) = Nk in the book.
It follows from (8.4) that, if there exists a joint distribution, it satisfies

P(y|X, β, k) ∝
n−1∏
i=0

P(yi+1|y∗1 , . . . , y∗i , yi+2, . . . , yn,X, β, k)
P(y∗i+1|y∗1 , . . . , y∗i , yi+2, . . . , yn,X, β, k)

.

Therefore,

P(y|X, β, k) ∝ exp

β
n∑
i=1

1
Nk(i)

 ∑
`<i,`∼ki

[
Iy∗` (yi)− Iy∗` (y∗i )

]
+

∑
`>i,`∼ki

[Iy`(yi)− Iy`(y∗i )]


is the candidate joint distribution. Unfortunately, if we now try to derive the
conditional distribution of yj from this joint, we get

P(yi = Cj |y−i,X, β, k) ∝ expβ

 1
Nk(j)

∑
`>j,`∼kj

Iy`(yj) +
∑

`<j,`∼kj

Iy`(yj)
Nk(`)

+
1

Nk(j)

∑
`<j,`∼kj

Iy∗` (yj)−
∑

`<j,`∼kj

Iy∗` (yj)
Nk(`)


which differs from the orginal conditional if the Nk(j)’s differ. In conclusion,
there is no joint distribution if (8.1) is defined as in the first printing. Taking
all the Nk(j)’s equal leads to a coherent joint distribution since the last line
in the above equation cancels.

Exercise 8.6 If a joint density π(y1, ..., yn) is such that the conditionals
π(y−i|yi) never cancel on the supports of the marginals m−i(y−i), show that the
support of π is equal to the cartesian product of the supports of the marginals.

Warning! This exercise replaces the former version of Exercise 8.6: “If
π(x1, . . . , xn) is a density such that its full conditionals never cancel on its
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support, characterize the support of π in terms of the supports of the marginal
distributions.”

Let us suppose that the support of π is not equal to the product of the
supports of the marginals. (This means that the support of π is smaller than
this product.) Then the conditionals π(y−i|yi) cannot be positive everywhere
on the support of m(y−i).

Exercise 8.7 Describe the collection of cliques C for an 8 neighbor neighborhood
structure such as in Figure 8.7 on a regular n×m array. Compute the number of
cliques.

If we draw a detailed graph of the connections on a regular grid as in
Figure 8.3, then the maximal structure such that all members are neighbors
is made of 4 points. Cliques are thus made of squares of 4 points and there
are (n− 1)× (m− 1) cliques on a n×m array.

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

Fig. 8.3. Neighborhood relations between the points of a 4 × 4 regular grid for a
8 neighbor neighborhood structure.
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Exercise 8.8 Use the Hammersley-Clifford theorem to establish that (8.6) is the
joint distribution associated with the above conditionals. Deduce that the Ising
model is a MRF.

Following the developments in Exercise 8.5, this is exactly the same prob-
lem as for the distribution (8.1) with a fixed neighborhood structure and the
use of β instead of β/Nk.

Exercise 8.9 Draw the function Z(β) for a 3 × 5 array. Determine the com-
putational cost of the derivation of the normalizing constant Z(β) of (8.6) for a
m× n array.

The function Z(β) is defined by

Z(β) = 1
/∑

x∈X
exp

β∑
j∼i

Ixj=xi

 ,

which involves a summation over the set X of size 215. The R code corre-
sponding to this summation is

neigh=function(i,j){ #Neighbourhood indicator function

(i==j+1)||(i==j-1)||(i==j+5)||(i==j-5)
}

zee=function(beta){

val=0
array=rep(0,15)

for (i in 1:(2^15-1)){

expterm=0
for (j in 1:15)
expterm=expterm+sum((array==array[j])*neigh(i=1:15,j=j))

val=val+exp(beta*expterm)

j=1
while (array[j]==1){
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array[j]=0
j=j+1

}
array[j]=1

}

expterm=0
for (j in 1:15)

expterm=expterm+sum((array==array[j])*neigh(i=1:15,j=j))

val=val+exp(beta*expterm)

1/val
}

It produces the (exact) curve given in Figure 8.4.
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Fig. 8.4. Plot of the function Z(β) for a 3×5 array with a four neighbor structure.

In the case of a m × n array, the summation involves 2m×n and each
exponential term in the summation requires (m×n)2 evaluations, which leads
to a O((m× n)2 2m×n) overall cost.
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Exercise 8.10 For an n × m array I, if the neighborhood relation is based
on the four nearest neighbors as in Figure 8.7, show that the xi,j ’s for which
(i+ j) ≡ 0(2) are independent conditional on the xi,j ’s for which (i+ j) ≡ 1(2)
(1 ≤ i ≤ n, 1 ≤ j ≤ m). Deduce that the update of the whole image can be
done in two steps by simulating the pixels with even sums of indices and then the
pixels with odd sums of indices. (This modification of Algorithm 8.2 is a version
of the Swendsen–Wang algorithm.)

Warning! This exercise replaces the former version of Exercise 8.10 “For an
n×m array I, if the neighborhood relation is based on the four nearest neigh-
bors, show that the x2i,2j’s are independent conditional on the x2i−1,2j−1’s
(1 ≤ i ≤ n, 1 ≤ j ≤ m). Deduce that the update of the whole image can be
done in two steps by simulating the pixels with even indices and then the pixels
with odd indices”

This exercise is simply illustrating in the simplest case the improvement
brought by the Swendsen-Wang algorithm upon the Gibbs sampler for image
processing.

As should be obvious from Figure 8.7 in the book, the dependence graph
between the nodes of the array is such that a given xi,j is independent from
all the other nodes, conditional on its four neighbours. When (i + j) ≡ 0(2),
the neighbours have indices (i, j) such that (i + j) ≡ 1(2), which establishes
the first result.

Therefore, a radical alternative to the node-by-node update is to run a
Gibbs sampler with two steps: a first step that updates the nodes xi,j with
even (i+ j)’s and a step that updates the nodes xi,j with odd (i+ j)’s. This is
quite a powerful solution in that it achieves the properties of two-stage Gibbs
sampling, as for instance the Markovianity of the subchains generated at each
step (see Robert and Casella, 2004, Chapter 9, for details).

Exercise 8.11 Determine the computational cost of the derivation of the nor-
malizing constant of the distribution (8.7) for a m × n array and G different
colors.

Just as in Exercise 8.9, finding the exact normalizing requires summing
over all possible values of x, which involves Gm×n terms. And each exponential
term involves a sum over (m × n)2 terms, even though clever programing of
the neighborhood system may reduce the computational cost down to m× n.
Overall, the normalizing constant faces a computing cost of at least O(m ×
n×Gm×n).
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Exercise 8.12 Use the Hammersley-Clifford theorem to establish that (8.7) is
the joint distribution associated with the above conditionals. Deduce that the
Potts model is a MRF.

Similar to the resolution of Exercise 8.5, using the Hammersley-Clifford
representation (8.4) and defining an arbitrary order on the set I leads to the
joint distribution

π(x) ∝
exp

{
β
∑
i∈I
∑
j<i,j∼i Ixi=xj +

∑
j>i,j∼i Ixi=x?j

}
exp

{
β
∑
i∈I
∑
j<i,j∼i Ix?i=xj +

∑
j>i,j∼i Ix?i=x?j

}
∝ exp

β
 ∑
j∼i,j<i

Ixi=xj +
∑

j∼i,j>i
Ixi=x?j −

∑
j∼i,j>i

Ix?j=xi


= exp

β∑
j∼i

Ixi=xj

 .

So we indeed recover a joint distribution that is compatible with the initial full
conditionals of the Potts model. The fact that the Potts is a MRF is obvious
when considering its conditional distributions.

Exercise 8.13 Derive an alternative to Algorithm 8.3 where the probabilities in
the multinomial proposal are proportional to the numbers of neighbors nu`,g and
compare its performance with those of Algorithm 8.3.

In Step 2 of Algorithm 8.3, another possibility is to select the proposed
value of xu` from a multinomial distribution

MG

(
1;n(t)

1 (u`), . . . , n
(t)
G (u`)

)
where n(t)

g (u`) denotes the number of neighbors of ul that take the value g.
This is likely to be more efficient than a purely random proposal, especially
when the value of β is high.

Exercise 8.14 Show that the Swendsen-Wang improvement given in Exercise
8.10 also applies to the simulation of π(x|y, β, σ2,µ).
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This is kind of obvious when considering that taking into account the
values of the yi’s does not modify the dependence structure of the Potts model.
Therefore, if there is a decomposition of the grid I into a small number of
sub-grids I1, . . . , Ik such that all the points in Ij are independent from one
another given the other I`’s, a k step Gibbs sampler can be proposed for the
simulation of x.

Exercise 8.15 Using a piecewise-linear interpolation of f(β) based on the val-
ues f(β1), . . . , f(βM ), with 0 < β1 < . . . < βM = 2, give the explicit value of
the integral ∫ α1

α0

f̂(β) dβ

for any pair 0 ≤ α0 < α1 ≤ 2.

This follows directly from the R program provided in #8.txt, with∫ α1

α0

f̂(β) dβ ≈
∑

i,α0≤βi≤α1

f(βi)(βi+1 − βi) ,

with the appropriate corrections at the boundaries.

Exercise 8.16 Show that the estimators x̂ that minimize the posterior expected
losses E[L1(x, x̂)|y)] and E[L2(x, x̂)|y)] are x̂MPM and x̂MAP , respectively.

Since
L1(x, x̂) =

∑
i∈I

Ixi 6=x̂i ,

the estimator x̂ associated with L1 is minimising

E

[∑
i∈I

Ixi 6=x̂i
∣∣y]

and therefore, for every i ∈ I, x̂i minimizes P(xi 6= x̂i), which indeed gives
the MPM as the solution. Similarly,

L2(x, x̂) = Ix 6=bx
leads to x̂ as the solution to

minbx E
[
Ix 6=bx∣∣y] = minbx P

(
x 6= x̂

∣∣y) ,
which means that x̂ is the posterior mode.
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Exercise 8.17 Determine the estimators x̂ associated with two loss functions
that penalize differently the classification errors,

L3(x, x̂) =
∑
i,j∈I

Ixi=xj Ix̂i 6=x̂j and L4(x, x̂) =
∑
i,j∈I

Ixi 6=xj Ix̂i=x̂j

Even though L3 and L4 are very similar, they enjoy completely different
properties. In fact, L3 is basically useless because x̂ = (1, · · · , 1) is always an
optimal solution!

If we now look at L4, we first notice that this loss function is invariant by
permutation of the classes in x: all that matters are the groups of components
of x taking the same value. Minimizing this loss function then amounts to
finding a clustering algorithm. To achieve this goal, we first look at the dif-
ference in the risks when allocating an arbitrary x̂i to the value a and when
allocating x̂i to the value b. This difference is equal to∑

j,x̂j=a

P(xi = xj)−
∑
j,x̂j=b

P(xi = xj) .

It is therefore obvious that, for a given configuration of the other xj ’s, we
should pick the value a that minimizes the sum

∑
j,x̂j=a

P(xi = xj). Once xi
is allocated to this value, a new index ` is to be chosen for possible realloca-
tion until the scheme has reached a fixed configuration, that is, no x̂i need
reallocation.

This scheme produces a smaller risk at each of its steps so it does neces-
sarily converge to a fixed point. What is less clear is that this produces the
global minimum of the risk. An experimental way of checking this is to run
the scheme with different starting points and to compare the final values of
the risk.

Exercise 8.18 Since the maximum of π(x|y) is the same as that of π(x|y)κ

for every κ ∈ N, show that

π(x|y)κ =
∫
π(x, θ1|y) dθ1 × · · · ×

∫
π(x, θκ|y) dθκ (8.10)

where θi = (βi,µi, σ2
i ) (1 ≤ i ≤ κ). Deduce from this representation an opti-

mization scheme that slowly increases κ over iterations and that runs a Gibbs
sampler for the integrand of (8.10) at each iteration.

The representation (8.10) is obvious since
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π(x, θ|y) dθ

)κ
=
∫
π(x, θ|y) dθ × · · · ×

∫
π(x, θ|y) dθ

=
∫
π(x, θ1|y) dθ1 × · · · ×

∫
π(x, θκ|y) dθκ

given that the symbols θi within the integrals are dummies.
This is however the basis for the so-called SAME algorithm of Doucet,

Godsill and Robert (2001), described in detail in Robert and Casella (2004).


