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Summary

In this discussion, we address some difficulties we have with Consonni and La
Rocca’s proposal and we propose a new interpretation of their approach.

We cannot but agree with the authors that “Bayesian model choice is an im-
portant and fascinating area” and we applaud this new attempt at providing an
objective answer to the variable selection problem, although we disagree with some
aspects of the solution they adopt. We sympathise with the idea of separating both
hypothesis, as an approach to the difficult problem of using pointwise hypotheses as
approximations of interval null hypothesis, i.e. replacing

H0 : d(θ, θ0) < ε, by H ′
0 : θ = θ0.

It is indeed a difficult issue and the Bayes factor associated to the problem H ′
0 is

not a satisfactory approximation of the Bayes factor associated to H0, see Rousseau
(2007) for a discussion on the subject. The assymmetry between the asymptotic
behaviours of the Bayes factor under H ′

0 and H1 comes from this problem.
In his approach to the same goal of defining a general framework to the model

choice problem, José Bernardo adopts a somehow opposed perspective with which
we much more readily agree, namely that an objective Bayes principle should start
from an encompassing model rather than seeking priors on every possible submodel.
We refer the reader to McCulloch and Rossi (1993), Mengersen and Robert (1996),
Goutis and Robert (1998), Dupuis and Robert (2003), Marin and Robert (2007) for
some arguments of ours on this perspective.

The definition of local priors and hence of non-local priors does not appeal very
much to us as the notion of the prior density π1 being non-zero in a neighbourhood
of the null hypothesis does not qualify how much the alternative prior weights this
neighbourhood of the null. We also find it quite disturbing to use such a prior for
estimation. Furthermore, while getting a closed-form expression in Theorem 1 is
a neat feat, the extreme dependence of the Bayes factor on the power h makes it
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difficult to advocate the use of this prior without further guidance upon the choice
of h.

Using the well-known dichotomy between prior and loss selection (Rubin, 1987,
Robert, 2001), we think that the definition of non-local priors should be replaced
by the use of loss functions that take into account the distance to the null, once
again reverting to the principles exposed in José Bernardo’s paper in this volume.
This perspective was actually pursued in Robert and Casella (1994) (see also Goutis
and Robert, 1997), where Bayes procedures were constructed, with the additional
incentive of allowing the use of improper priors without resorting to pseudo-Bayes
factors (O’Hagan, 1995, Berger and Pericchi, 1996). In particular the Bayes factor
associated to the non local prior proposed by the authors and prior to them by
Johnson and Rossell (2010)

π̃h(θ) ∝ gh(θ, θ0)π(θ), gh(θ, θ0) = |θ − θ0|h

is the Bayesian solution associated to the prior π(θ) and the loss function

L(δ, θ) =


1 if (δ = 1 & θ = θ0)

|θ − θ0|h if (δ = 0 & θ 6= θ0)

Presented as such, the solution makes much more sense and also leads to wider
generalisations and more interesting perspectives. One such is the use of other
distances than |θ − θ0| in problems where the question can be formalised on other
parameterisations and for which invariant distances such as d(fθ, fθ0)—where d is
either the Kullback-Leibler divergence (or a symmetric version of it ), or the L1 or
Hellinger distances—would be more appropriate. We recall that Robert and Casella
(1994) contains a detailed study of losses jointly addressing testing and simulation:
denoting by ϕ the estimate of Iθ0(θ), i.e. the indicator of the null hypothesis,

L1(θ;ϕ, θ̂) = d(θ, θ̂) I(ϕ = 0) + d(θ0, θ) I(ϕ = 1)

L2(θ;ϕ, θ̂) = d(θ, θ̂) (1− ϕ)2 + d(θ0, θ)ϕ
2

L3(θ;ϕ, θ̂) = d(θ, θ̂) (Iθ0(θ)− ϕ)2 + d(θ0, θ)ϕ
2

L4(θ;ϕ, θ̂) = 2d(θ, θ̂) I(ϕ = 0) +
n
d(θ0, θ) + d(θ0, θ̂)

o
I(ϕ = 1)

out of which only L4 provides a sensible answer for d(t) = t2:

(ϕπ(x), θ̂π(x)) =

(
(0, δπ(x)) if varπ(x) < (δπ(x)− θ0)2

(1, θ0)2 otherwise

where δπ(x) is the regular Bayes estimator, namely the posterior mean.
As a last minor remak, we do wonder whether or not the use of those non-local

priors (or should we say loss functions?) could help in solving the Lindley–Jeffreys
paradox because they exclude some neighbourhoods of the null hypothesis. Note
that, although Robert (1993) often gets quoted in relation with this Lindley–Jeffreys
paradox, we no longer find it to be a satisfactory solution as it suffers from the same
measure-theoretic difficulty as the Savage–Dickey paradox, as exposed in Marin and
Robert (2010).
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