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SUMMARY

In this discussion, we congratulate Professor Bernardo for his all-encompassing
perspective on intrinsic inference and focus on the case of nuisance parameters.

1. UNIFIED INFERENCE

The paper manages the tour de force of aggregating intrinsic loss functions with
intrinsic (aka reference) priors. Thus, Professor Bernardo presents us with a unified
picture of Bayesian analysis as he sees it and it is obviously fitting to see this cohesive
perspective appearing in the Valencia 9 proceedings as a kind of third unification!
We appreciated very much the paper and our comments will thus concentrate on
minor issues rather than on the big picture, since we mostly agree with it. Although
the tendency in Bayesian analysis, along the years, and in particular in the Valencia
proceedings (see, e.g., Polson and Scott in this volume who discuss shrinkage without
a loss function), has been to shy away from the decision-theoretic perspective (see,
e.g., Gelman, 2008), it is worth reenacting this approach to the field, both because
it sustains to a large extent the validation of a Bayesian analysis and because it
avoids the deterioration of its scope into a mechanical data analysis tool.

2. DOWN WITH POINT MASSES!

The requirement that one uses a point mass as a prior when testing for point null
hypotheses is always an embarassment and often a cause of misunderstanding in
our classes. Rephrasing the decision to pick the simpler model as the result of a
larger advantage is thus much more likely to convince our students. What matters
in pointwise hypothesis testing is not whether or not # = 6y holds but what the
consequences of a wrong decision are. Of course, there is a caveat in the reformula-
tion of Professor Bernardo, which is that, in the event the null hypothesis 6 = 6y is
accepted, one has to act with the model M. One can of course assume that, given
the model My, the intrinsic Bayesian statistician would start from the reference
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prior for Mg, but this involves a dual definition of the prior for the same problem
that remains a bit of an itch...

The case of compound hypotheses is only half-convincing in that the “natural”
solution would seem to us to compare the posterior expected losses under both
models, rather than singling out Hp in a most unbalanced and unBayesian way. We
actually take issue with the repeated use of infimums (infima?) in the definition of
loss functions.

3. INTRINSIC LOSSES

Most obviously, we welcome the recentering of objective Bayes analyses around
the intrinsic losses we developed in Robert (1996a). (Note that the severe lack of
invariance of HPD regions was further studied in Druilhet and Marin, 2007, while
integrating point estimation losses in the evaluation of credible regions was proposed
in Robert and Casella, 1994.)

The handling of nuisance parameters always is a...nuisance, so Definition 5 is a
possible solution to this nuisance. While it shies away from using the unsatisfactory
argument of A being “common” to both models, one of us (CPR) somehow dislikes
the introduction of the infimum over all values of Ao: a more agreable alternative
would be to integrate over the A¢’s, using for instance an intrinsic prior m(A|6o).
We however acknowledge the relevance of projections in model comparisons, as
illustrated by Robert and Rousseau (2002).

Another issue deals with cases when the nuisance parameter is ill-defined under
the null hypothesis, as for instance in our favourite example of mixtures of distri-
butions (Titterington et al., 1985, MacLachlan and Peel, 2000): When the null has
several possible representations, the nuisance parameter varies from one represen-
tation to the next. A connected issue is the case when the parameter of interest
is a function (functional) of the whole parameter vector that is such that there is
no explicit way of breaking the whole parameter into a parameter of interest and
a nuisance parameter, a setting that typically occurs in semi-parametric problems.
Although a natural extension to Bernardo’s approach is to define the intrinsic loss
between the parameter 6 = 0(f) and 6o as

6(0o, f) = inf{min(k(f, fo), k(fo, f)); fo € F satisfies 0(fo) =00}

such an approach seems impossible to implement in practice, even in simple semi-
parametric problems.

When replacing regular testing with checking whether or not the new type of
regret £{0o, (0, \)} — £o is positive, the so-called context dependent positive constant
lo is equal to

/ / gh{ala(aa/\)}p(ea)‘|z) dgdr
e JA

in the original formulation. We therefore wonder why the special values £y = log 10*
for k = 1,2,3,..., are of particular interest compared, say, with ¢ = log ﬁk or
lo = log €*... The calibration of £, suffers from the same difficulty as the calibration
of Bayes factors in that the choice of the decision boundary between acceptance and
rejection is not based on a loss function. In particular, it is surprising that, in a
objective context, £y does not depend on the number of observations. Typically, the
Kullback—Leibler divergence between the densities fp and fp associated with n (not
necessarily i.i.d) observations increases with n. Should ¢y be rescaled as nfy and is
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Figure 1: Kullback—Leibler loss function ¢(6,¢) associated with a Cauchy
distribution with location parameter 6.

such a scaling appropriate in general? We argue that rescaling by n as such is as
arbitrary as considering Jeffreys prior as default prior.

A last point of interest to us is whether or not an integrated reference analysis
is always possible. Bypassing the issue of finding a reference prior, We wonder if
there exist settings where the posterior Kullback—Leibler loss is uniformly infinite,
thus preventing the choice of a Bayes estimator. For instance, when observing a
Cauchy variate z, the intrinsic loss is of the form represented in Figure 1. Since the
posterior under the flat prior is a Cauchy distribution with location parameter x, the
loss may be increasing too fast for the Bayes estimator to exist A family of models
where the Kullback—Leibler loss cannot be applied corresponds to cases where the
densities have supports that depend on the parameters in a non-trivial way, i.e.

fo(z) =Ir090(xz), where L(O)NL(O)°#0 and L(O)NLO) #0

and go(z) > 0 everywhere.

In conclusion, our point here is to emphasize that, although the Kullback—Leibler
loss has compelling features such as additivity, it also suffers from drawbacks, related
to the requirement of comparing absolutely continuous distributions (one way or
the other) and to its unboundedness. Some other natural intrinsic losses could be
considered, in particular the Hellinger distance (Robert, 1996b). How would both
losses compare and what would their relative merits be? It seems to us that the
natural calibrations found in Professor Bernardo’s proposal could not be used with
an Hellinger loss. Now, ould that be such a bad thing...?!

4. REFERENCE PRIORS

Although we essentially agree with most of the construction of reference priors, we
are doubtful about the systematic use of repeated (indentically and independently)
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data sets. Indeed, in cases where the observations are modelled as a dependent
process, say a time series, a part of the parameter vector addresses the dependence
structure. Then, first, repeated iid sampling from the model will not provide useful
knowledge about these parameters, since they can only be infered correctly by letting
the sample size increase to infinity. Second, for a fixed sample size, the Fisher
information matrix depends in a non-trivial way on n and it usually has a non-
explicit representation. Therefore, the reference prior under repeated sampling does
not have an interesting formulation. For instance, when sampling from a stationary
Gaussian process with spectral density fp, the Fisher information matrix associated
with the covariance matrix includes terms of the form

tr [(Tu (o) ' Tu(V )7

where T, (f) is the n dimensional Toeplitz matrix associated with the function f
and Vfy is the first derivative of the spectral density, see Philippe and Rousseau
(2003). This expression is not user-friendly, to say the least!, whereas the reference
prior—obtained by letting the sample size go to infinity—actually corresponds to
the limit of the above terms:

i ™
2 J_ .

(Vlog fo )2 (z) dz

which are much more satisfactory for the construction of a prior distribution. The
latter can also be obtained by considering the limit of the reference priors as n goes
to infinity, however it is not clear whether it should be interpreted as the reference
directly obtained from increasing n in the sampling or as the limit of Professor
Bernardo’s reference prior when n goes to infinity. These two approaches might
indeed lead to quite different results, for instance for non-stationary models.
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