
Theory of Probability revisited

Theory of Probability revisited:
A reassessment of a Bayesian classic

Christian P. Robert
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Sir Harold Jeffreys

Who’s Jeffreys?

Wikipedia article

Sir Harold Jeffreys (1891–1989)
Mathematician, statistician,
geophysicist, and astronomer. He
went to St John’s College,
Cambridge and became a fellow
in 1914, where he taught
mathematics then geophysics and
astronomy. He was knighted in
1953 and received the Gold
Medal of the Royal Astronomical
Society in 1937.
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Jeffreys and Science

Jeffreys married another mathematician and physicist, Bertha
Swirles (1903-1999) and together they wrote Methods of
Mathematical Physics.

Jeffreys is the founder of modern British geophysics. Many of his
contributions are summarised in his book The Earth. One of his
main discoveries is that the core of the Earth is liquid.
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Jeffreys and Statistics

Jeffreys wrote more than 400 papers, mostly on his own, on
subjects ranging across celestial mechanics, fluid dynamics,
meteorology, geophysics and probability.

H. Jeffreys and B. Swirles (eds.) (1971–77) Collected Papers
of Sir Harold Jeffreys on Geophysics and other Sciences in six
volumes, London, Gordon & Breach.

The statistics papers are in volume 6, Mathematics, Probability
& Miscellaneous Other Sciences. The coverage is not
comprehensive for Jeffreys omitted papers that had been
superseded by his books Scientific Inference and Theory of
Probability.
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Jeffreys and Inference

Jeffreys first used probability to deal with problems in the
Philosophy of Science.
K. Pearson’s Grammar of Science made a great impression on him,
with its emphasis on the probabilistic basic of scientific inference.
Jeffreys treated probability as a degree of reasonable belief, an
epistemic conception common to several Cambridge philosophers,
including J.M. Keynes. He used probability to explicate induction
and investigate the reasonableness of scientific theories.
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For appraising scientific theories, Venn’s probability as a limiting
frequency was useless but Jeffreys considered it mathematically
unsound as well.
Around 1930 Jeffreys began devising methods for analysing
geophysical data based on epistemic probability. He was extending
the methods used by physical scientists and did not know much
about, or greatly esteem, the efforts of statisticians.
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Jeffreys and Fisher

Ronald Fisher

Meanwhile Ronald Fisher
(1890–1962), had rejected the
Bayesian approach (1922–1924)
and based his work, including
maximum likelihood, on
frequentist foundations (?).

Fisher and Jeffreys first took serious notice of each another in
1933. About all they knew of each other’s work was that it was
founded on a flawed notion of probability.
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The Fisher–Jeffreys controversy

The Biometrika papers

Jeffreys (1933a) criticised Fisher
(1932) and Fisher (1933)
criticised Jeffreys (1932) with a
rejoinder by Jeffreys (1933b).
Biometrika called a halt to the
controversy by getting the parties
to coordinate their last words, in
Fisher (1934) and Jeffreys
(1934).
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Jeffreys’ Theory of Probability

While Jeffreys conceded nothing to Fisher, the encounter affected
the course of his work. He reacted to the dose of Statistics Fisher
administered by reconstructing Fisher’s subject on his own
foundations.
Theory of Probability (1939) was the outcome, as a theory of
inductive inference founded on the principle of inverse probability,
not a branch of pure mathematics, not a description of natural
phenomena as with Kolmogorov and von Mises.
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Theory of Probability begins with probability, refining the
treatment in Scientific Inference, and proceeds to cover a range of
applications comparable to that in Fisher’s book.
Jeffreys was very impressed by the solutions Fisher had found for
many statistical problems—the trouble was that they had no
real foundations! He also tried to place Fisher’s creations like
sufficiency in his own system.
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Theory of Probability?

First chapter Fundamental Notions sets goals for a theory of
induction rather than the mathematical bases of probability

Objection to Kolmogorov’s axiomatic definition

The above principles (...) rule out any definition of
probability that attempts to define probability in
terms of infinite sets of possible observations (I,
§1.1, 8).

No measure theoretic basis, e.g.

If the law concerns a measure capable of any value
in a continuous set we could reduce to a finite or an
enumerable set (I, §1.62).
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Logic based axioms (I, §1.2)
Tautological proof of Bayes’ Theorem

P (qr|pH) ∝ P (qr|H)P (p|qrH)

where H is the information already available, and p
some information (I, §1.22). This is the principle of
inverse probability, given by Bayes in 1763.

Introduction of decision theoretic notions like Laplace’s moral
expectation and utility functions

Insistence on modelling and prior construction
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Conditional probabilities

Probabilities of events defined as degrees of belief and conditional
on past (prior) experience

Our fundamental idea will not be simply the probability
of a proposition p but the probability of p on data q (I,
§1.2).

Subjective flavour of probabilities due to different data, P (p|q),
with same classical definition, e.g.

P (RS|p) = P (R|p)P (S|Rp)

proved for uniform distributions on finite sets (equiprobable events)
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Bayes Theorem

Bayes theorem = Inversion of probabilities

If A and E are events such that P (E) 6= 0, P (A|E) and P (E|A)
are related by

P (A|E) =

P (E|A)P (A)

P (E|A)P (A) + P (E|Ac)P (Ac)

=
P (E|A)P (A)

P (E)

[Thomas Bayes (?)]
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Who’s Bayes?

Reverend Thomas Bayes (ca. 1702–1761)

Presbyterian minister in Tunbridge Wells (Kent) from 1731, son of
Joshua Bayes, nonconformist minister. Election to the Royal
Society based on a tract of 1736 where he defended the views and
philosophy of Newton.
His sole probability paper, “Essay Towards Solving a Problem in
the Doctrine of Chances”, published posthumously in 1763 by
Pierce and containing the seeds of Bayes’ Theorem.
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(Modern) parametric model

Observations x1, . . . , xn generated from a probability distribution

x = (x1, . . . , xn) ∼ f(x|θ), θ = (θ1, . . . , θn)

Fisher’s associated likelihood

ℓ(θ|x) = f(x|θ)

[inverse density]
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Bayesian perspective

Jeffreys’ premises

Prior beliefs on the parameters θ of a model modeled through
a probability distribution π on Θ, called prior distribution

Inference based on the distribution of θ conditional on x,
π(θ|x), called posterior distribution

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

.

The posterior probabilities of the hypotheses are
proportional to the products of the prior probabilities
and the likelihoods (I, §.1.22).
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Modern Bayesian representation

Definition (Bayesian model)

A Bayesian statistical model is made of a parametric statistical
model,

(X , f(x|θ)) ,
and a prior distribution on the parameters,

(Θ, π(θ)) .
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Jeffreys’ Justifications

All probability statements are conditional

Actualization of the information on θ by extracting the
information on θ contained in the observation x

The principle of inverse probability does correspond
to ordinary processes of learning (I, §1.5)

Allows incorporation of imperfect information in the decision
process

A probability number [sic!] can be regarded as a
generalization of the assertion sign (I, §1.51).

Unique mathematical way to condition upon the observations
(conditional perspective) [Jeffreys?]
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Bayes’ 1763 paper:

Billiard ball W rolled on a line of length one, with a uniform
probability of stopping anywhere: W stops at p.
Second ball O then rolled n times under the same assumptions. X
denotes the number of times the ball O stopped on the left of W .

Bayes’ question:

Given X, what inference can we make on p?
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Modern translation:

Derive the posterior distribution of p given X, when

p ∼ U ([0, 1]) and X|p ∼ B(n, p)
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Resolution

Since

P (X = x|p) =

(
n

x

)
px(1− p)n−x,

P (a < p < b and X = x) =

∫ b

a

(
n

x

)
px(1− p)n−xdp

and

P (X = x) =

∫ 1

0

(
n

x

)
px(1− p)n−x dp,



Theory of Probability revisited

Fundamental notions

Bayes’ example

Resolution (2)

then

P (a < p < b|X = x) =

∫ b
a

(n
x

)
px(1− p)n−x dp

∫ 1
0

(n
x

)
px(1− p)n−x dp

=

∫ b
a p

x(1− p)n−x dp

B(x+ 1, n − x+ 1)
,

i.e.
p|x ∼ Be(x+ 1, n− x+ 1)

[Beta distribution]
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Prior and posterior distributions

Given f(x|θ) and π(θ), several distributions of interest:

(a) the joint distribution of (θ, x),

ϕ(θ, x) = f(x|θ)π(θ) ;

(b) the marginal distribution of x,

m(x) =

∫
ϕ(θ, x) dθ

=

∫
f(x|θ)π(θ) dθ ;
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(c) the posterior distribution of θ,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

=
f(x|θ)π(θ)

m(x)
;

(d) the predictive distribution of y, when y ∼ g(y|θ, x),

g(y|x) =

∫
g(y|θ, x)π(θ|x)dθ .
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Prior Selection

First chapter of ToP quite obscure about choice of π
Seems to advocate use of uniform priors:

If there is originally no ground to believe one of a set of
alternatives rather than another, the prior probabilities are
equal (I, §1.22).
To take the prior probabilities different in the absence of
observational reason would be an expression of sheer prejudice
(I, §1.4).
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Prior Selection (2)

Still perceives a potential problem:

...possible to derive theorems by equating probabilities
found in different ways (...) We must not expect too
much in the nature of a general proof of consistency (I,
§1.5).

but evacuates the difficulty:

...the choice in practice, within the range permitted,
makes very little difference to the results (I, §1.5).
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Posterior distribution

Operates conditional upon the observations

Incorporates the requirement of the Likelihood Principle

...the whole of the information contained in the
observations that is relevant to the posterior
probabilities of different hypotheses is summed up in
the values that they give the likelihood (II, §2.0).

Avoids averaging over the unobserved values of x

Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected

...can be used as the prior probability in taking
account of a further set of data, and the theory can
therefore always take account of new information (I,
§1.5).
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Additional themes in ToP Chapter 1

General remarks on model choice and the pervasive Occam’s
rasor rule

Bayes factor for testing purposes

Utility theory that evaluates decisions

Fairly obscure disgressions on Logic and Gödel’s Theorem.
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Who’s Occam?

Pluralitas non est ponenda sine neccesitate

William d’Occam (ca. 1290–ca. 1349)

William d’Occam or d’Ockham was
a English theologian (and a
Franciscan monk) from Oxford who
worked on the bases of empirical
induction, nominalism and logic and,
in particular, posed the above
principle later called Occam’s razor.
Also tried for heresy in Avignon and
excommunicated by John XXII.
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Second chapter: Direct Probabilities
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6 Significance tests: various complications
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Contents

Contents

Description and justification of most standard distributions

Hypergeometric, Binomial, Negative Binomial, Multinomial

Poisson

Normal, Pearson, χ2, Student’s t
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Contents

Comments

Physicist’s approach (approximations, intuition, series expansion)
Strange mix of Math (more measure theory than in Chapter I) and
pseudo-common sense

The normal law of error cannot therefore be theoretically
proved (II, §2.68).

Use of χ2 test in a frequentist sense!
Advocates normal distributions on the Fourier coefficients
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Contents

Prior remarks on prior Distributions

The most critical and most criticized point of Bayesian analysis !
Because...

the prior distribution is the key to Bayesian inference
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Contents

But...

In practice, it seldom occurs that the available prior information is
precise enough to lead to an exact determination of the prior
distribution

There is no such thing as the prior distribution!
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Contents

Rather...

The prior is a tool summarizing available information as well as
uncertainty related with this information,
And...
Ungrounded prior distributions produce unjustified posterior
inference
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Subjective priors

In situations with prior information, choice of prior mostly
subjective.

Example (Capture probabilities)

Capture-recapture experiment on migrations between zones
Prior information on capture and survival probabilities, pt and qit

Time 2 3 4 5 6
pt Mean 0.3 0.4 0.5 0.2 0.2

95% cred. int. [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.05,0.4] [0.05,0.4]

Site A B
Time t=1,3,5 t=2,4 t=1,3,5 t=2,4

qit Mean 0.7 0.65 0.7 0.7
95% cred. int. [0.4,0.95] [0.35,0.9] [0.4,0.95] [0.4,0.95]
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Example (Capture probabilities (2))

Corresponding prior modeling
Time 2 3 4 5 6
Dist. Be(6, 14) Be(8, 12) Be(12, 12) Be(3.5, 14) Be(3.5, 14)

Site A B
Time t=1,3,5 t=2,4 t=1,3,5 t=2,4
Dist. Be(6.0, 2.5) Be(6.5, 3.5) Be(6.0, 2.5) Be(6.0, 2.5)
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Strategies for prior determination

Use a partition of Θ in sets (e.g., intervals), determine the
probability of each set, and approach π by an histogram

Select significant elements of Θ, evaluate their respective
likelihoods and deduce a likelihood curve proportional to π

Use the marginal distribution of x,

m(x) =

∫

Θ
f(x|θ)π(θ) dθ

Empirical and hierarchical Bayes techniques
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Select a maximum entropy prior when prior characteristics
are known:

E
π[gk(θ)] = ωk (k = 1, . . . ,K)

with solution, in the discrete case

π∗(θi) =
exp

{∑K
1 λkgk(θi)

}

∑
j exp

{∑K
1 λkgk(θj)

} ,

and, in the continuous case,

π∗(θ) =
exp

{∑K
1 λkgk(θ)

}
π0(θ)

∫
exp

{∑K
1 λkgk(η)

}
π0(dη)

,

the λk’s being Lagrange multipliers and π0 a reference
measure [Caveat]
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Parametric approximations
Restrict choice of π to a parameterised density

π(θ|λ)

and determine the corresponding (hyper-)parameters

λ

through the moments or quantiles of π
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Example

For the normal model x ∼ N (θ, 1), ranges of the posterior
moments for fixed prior moments µ1 = 0 and µ2.

Minimum Maximum Maximum
µ2 x mean mean variance

3 0 -1.05 1.05 3.00
3 1 -0.70 1.69 3.63
3 2 -0.50 2.85 5.78

1.5 0 -0.59 0.59 1.50
1.5 1 -0.37 1.05 1.97
1.5 2 -0.27 2.08 3.80

[Goutis, 1990]
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Conjugate priors

Specific parametric family with analytical properties

Definition

A family F of probability distributions on Θ is conjugate for a
likelihood function f(x|θ) if, for every π ∈ F , the posterior
distribution π(θ|x) also belongs to F .

[Raiffa & Schlaifer, 1961]
Only of interest when F is parameterised : switching from prior to
posterior distribution is reduced to an updating of the
corresponding parameters.
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Justifications

Limited/finite information conveyed by x

Preservation of the structure of π(θ)

Exchangeability motivations

Device of virtual past observations

Linearity of some estimators

Tractability and simplicity

First approximations to adequate priors, backed up by
robustness analysis
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Exponential families

Definition

The family of distributions

f(x|θ) = C(θ)h(x) exp{R(θ) · T (x)}

is called an exponential family of dimension k. When Θ ⊂ Rk,
X ⊂ Rk and

f(x|θ) = C(θ)h(x) exp{θ · x},
the family is said to be natural.
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Conjugate priors

Interesting analytical properties :

Sufficient statistics (Pitman–Koopman Lemma)

Common enough structure (normal, binomial, Poisson,
Wishart, &tc...)

Analycity (Eθ[x] = ∇ψ(θ), ...)

Allow for conjugate priors

π(θ|µ, λ) = K(µ, λ) eθ.µ−λψ(θ)
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f(x|θ) π(θ) π(θ|x)
Normal Normal

N (θ, σ2) N (µ, τ2) N (ρ(σ2µ+ τ2x), ρσ2τ2)

ρ−1 = σ2 + τ2

Poisson Gamma
P(θ) G(α, β) G(α + x, β + 1)

Gamma Gamma
G(ν, θ) G(α, β) G(α+ ν, β + x)

Binomial Beta
B(n, θ) Be(α, β) Be(α+ x, β + n− x)

Theory of Probability revisited

Direct Probabilities

Conjugate priors

f(x|θ) π(θ) π(θ|x)
Negative Binomial Beta

N eg(m, θ) Be(α, β) Be(α+m,β + x)

Multinomial Dirichlet
Mk(θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Normal Gamma

N (µ, 1/θ) Ga(α, β) G(α + 0.5, β + (µ− x)2/2)
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Linearity of the posterior mean

If
θ ∼ πλ,x0

(θ) ∝ eθ·x0−λψ(θ)

with x0 ∈ X , then

E
π[∇ψ(θ)] =

x0

λ
.

Therefore, if x1, . . . , xn are i.i.d. f(x|θ),

E
π[∇ψ(θ)|x1, . . . , xn] =

x0 + nx̄

λ+ n
.
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But...

Example

When x ∼ Be(α, θ) with known α,

f(x|θ) ∝ Γ(α + θ)(1− x)θ

Γ(θ)
,

conjugate distribution not so easily manageable

π(θ|x0, λ) ∝
(

Γ(α + θ)

Γ(θ)

)λ
(1− x0)

θ
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Example

Coin spun on its edge, proportion θ of heads
When spinning n times a given coin, number of heads

x ∼ B(n, θ)

Flat prior, or mixture prior

1

2
[Be(10, 20) + Be(20, 10)]

or
0.5Be(10, 20) + 0.2Be(15, 15) + 0.3Be(20, 10).

Mixtures of natural conjugate distributions also make conjugate families
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p
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 comp.
2 comp.
3 comp.

Three prior distributions for a spinning-coin experiment
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Conjugate priors

p
0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

1 comp.
2 comp.
3 comp.

Posterior distributions for 50 observations
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Chapter 3: Estimation Problems

1 Fundamental notions

2 Direct Probabilities

3 Estimation problems
Improper prior distributions
Noninformative prior distributions
Bayesian inference
Sampling models
Normal models and linear regression
More sufficiency
More noninformative priors
The Jeffreys prior

4 Asymptotics & DT& ...
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Improper distributions

Necessary extension from a prior distribution to a prior σ-finite
measure π such that

∫

Θ
π(θ) dθ = +∞

...the fact that
∫∞
0 dv/v diverges at both limits is a

satisfactory feature (III, §3.1).
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Modern justifications

Often automatic/noninformative prior determination leads to
improper prior distributions

1 Only way to derive a prior in noninformative settings

2 Performances of estimators derived from these generalized
distributions usually good

3 Improper priors often occur as limits of proper distributions

4 More robust answer against possible misspecifications of the
prior
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Improper prior distributions

5 Generally more acceptable to non-Bayesians, with frequentist
justifications, such as:

(i) minimaxity
(ii) admissibility
(iii) invariance

6 Improper priors prefered to vague proper priors such as a
N (0, 1002) distribution

7 Penalization factor in

min
d

∫
L(θ, d)π(θ)f(x|θ) dx dθ
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Validation

Extension of the posterior distribution π(θ|x) associated with an
improper prior π as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ) dθ
,

when ∫

Θ
f(x|θ)π(θ) dθ <∞
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Uniform prior on R

If the parameter may have any value in a finite range, or
from −∞ to +∞, its prior probability should be taken as
uniformly distributed (III, §3.1).
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Example (Flat prior)

If x ∼ N (θ, 1) and π(θ) = ̟, constant, the pseudo marginal
distribution is

m(x) = ̟

∫ +∞

−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = ̟

and the posterior distribution of θ is

π(θ |x) =
1√
2π

exp

{
−(x− θ)2

2

}
,

i.e., corresponds to a N (x, 1) distribution.
[independent of ω]
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Improper prior distributions

Warning – Warning – Warning – Warning – Warning

The mistake is to think of them [non-informative priors] as
representing ignorance

[Lindley, 1990]
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Over-interpretation

If we take
P (dσ|H) ∝ dσ

as a statement that σ may have any value between 0 and
∞ (...), we must use ∞ instead of 1 to denote certainty
on data H. (..) But (..) the number for the probability
that σ < α will be finite, and the number for σ > α will
be infinite. Thus (...) the probability that σ < α is 0.
This is inconsistent with the statement that we know
nothing about σ (III, §3.1)

mis-interpretation
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Over-interpretation (2)

Example (Flat prior (2))

Consider a θ ∼ N (0, τ2) prior. Then, for any (a, b)

lim
τ→∞

P π (θ ∈ [a, b]) = 0

...we usually have some vague knowledge initially that
fixes upper and lower bounds [but] the truncation of the
distribution makes a negligible change in the results (III,
§3.1)

[Not!]
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Example (Haldane prior)

For a binomial observation, x ∼ B(n, p), and prior
π∗(p) ∝ [p(1− p)]−1, the marginal distribution,

m(x) =

∫ 1

0
[p(1− p)]−1

(
n

x

)
px(1− p)n−xdp

= B(x, n− x),

is only defined for x 6= 0, n .

Missed by Jeffreys:

If a sample is of one type with respect to some property
there is probability 1 that the population is of that type
(III, §3.1)

Theory of Probability revisited

Estimation problems

Noninformative prior distributions

Noninformative setting

What if all we know is that we know “nothing” ?!

...how can we assign the prior probability when we know
nothing about the value of the parameter except the very
vague knowledge just indicated? (III, §3.1)
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Noninformative distributions

...provide a formal way of expressing ignorance of the
value of the parameter over the range permitted (III,
§3.1).

In the absence of prior information, prior distributions solely
derived from the sample distribution f(x|θ)

It says nothing about the value of the parameter, except
the bare fact that it may possibly by its very nature be
restricted to lie within certain definite limits (III, §3.1)



Theory of Probability revisited

Estimation problems

Noninformative prior distributions

Re-Warning

Noninformative priors cannot be expected to represent
exactly total ignorance about the problem at hand, but
should rather be taken as reference or default priors,
upon which everyone could fall back when the prior
information is missing.

[Kass and Wasserman, 1996]
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Difficulties

Lack of reparameterization invariance/coherence

ψ = eθ π1(ψ) =
1

ψ
6= π2(ψ) = 1

There are cases of estimation where a law can be equally
well expressed in terms of several different sets of
parameters, and it is desirable to have a rule that will
lead to the same results whichever set we choose.
Otherwise we shall again be in danger of using different
rules arbitrarily to suit our taste (III, §3.1)
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Example (Jeffreys’ example, III, §3.1)

If
πV (v) ∝ 1 ,

then W = V n is such that

πW (w) ∝ w(n−1)/n

Theory of Probability revisited

Estimation problems

Noninformative prior distributions

Difficulties (2)

Problems of properness

x ∼ N (θ, σ2), π(θ, σ) = 1

π(θ, σ|x) ∝ e−(x−θ)2/2σ2
σ−1

⇒ π(σ|x) ∝ 1 (!!!)
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Difficulties (3)

Inappropriate for testing point null hypotheses:

The fatal objection to the universal application of the
uniform distribution is that it would make any
significance test impossible. If a new parameter is being
considered, the uniform distribution of prior probability
for it would practically always lead to the result that the
most probable value is different from zero (III,§3.1)

but so would any continuous prior!
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A strange conclusion

“The way out is in fact very easy”:

If v is capable of any value from 0 to ∞, and we take its
prior probability distribution as proportional to dv/v,
then ̺ = 1/v is also capable of any value from 0 to ∞,
and if we take its prior probability as proportional to
dρ/ρ we have two perfectly consistent statements of the
same form (III, §3.1)

Seems to consider that the objection of 0 probability result only
applies to parameters with (0,∞) support.
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ToP difficulties (§3.1)

End of §3.1 tries to justify the prior π(v) ∝ 1/v as “correct” prior.
E.g., usual argument that this corresponds to flat prior on log v,
although Jeffreys rejects Haldane’s prior which is based on flat
prior on the logistic transform v/(1 − v)

...not regard the above as showing that dx/x(1 − x) is
right for their problem. Other transformations would have
the same properties and would be mutually inconsistent if
the same rule was taken for all. ...[even though] there is
something to be said for the rule (III, §3.1)

P (dx|H) =
1

π

dx√
x(1− x)

.
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Very shaky from a mathematical point of view:

...the ratio of the probabilities that v is less or greater
than a is ∫ a

0
vndv

/∫ ∞

a
vndv .

(...) If n < −1, the numerator is infinite and the
denominator finite and the rule would say that the
probability that v is greater than any finite value is 0.
(...) But if n = −1 both integrals diverge and the ratio is
indeterminate. (...) Thus we attach no value to the
probability that v is greater or less than a, which is a
statement that we know nothing about v except that it is
between 0 and ∞ (III, §3.1)

See also the footnote † in §3.4 !
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Posterior distribution

π(θ|x) ∝ f(x|θ)π(θ)

extensive summary of the information available on θ

integrate simultaneously prior information and information
brought by x

unique motor of inference
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Bayesian Decision Theory

For a loss L(θ, δ) and a prior π, the Bayes rule is

δπ(x) = arg min
d

E
π[L(θ, d)|x].

Note: Practical computation not always possible analytically.
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Conjugate priors

For conjugate distributions, the posterior expectations of the
natural parameters can be expressed analytically, for one or several
observations.

Distribution Conjugate prior Posterior mean
Normal Normal

N (θ, σ2) N (µ, τ2)
µσ2 + τ2x

σ2 + τ2

Poisson Gamma

P(θ) G(α, β)
α+ x

β + 1
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Distribution Conjugate prior Posterior mean
Gamma Gamma

G(ν, θ) G(α, β)
α+ ν

β + x
Binomial Beta

B(n, θ) Be(α, β)
α+ x

α+ β + n
Negative binomial Beta

N eg(n, θ) Be(α, β)
α+ n

α+ β + x+ n
Multinomial Dirichlet

Mk(n; θ1, . . . , θk) D(α1, . . . , αk)
αi + xi(∑
j αj

)
+ n

Normal Gamma

N (µ, 1/θ) G(α/2, β/2)
α+ 1

β + (µ− x)2
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Example

Consider
x1, ..., xn ∼ U([0, θ])

and θ ∼ Pa(θ0, α). Then

θ|x1, ..., xn ∼ Pa(max (θ0, x1, ..., xn), α + n)

and

δπ(x1, ..., xn) =
α+ n

α+ n− 1
max (θ0, x1, ..., xn).
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Prediction

If x ∼ f(x|θ) and z ∼ g(z|x, θ), the predictive of z is

gπ(z|x) =

∫

Θ
g(z|x, θ)π(θ|x) dθ.
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Example (AR model)

Consider the AR(1) model

xt = ̺xt−1 + ǫt ǫt ∼ N (0, σ2)

the predictive of xT is then

xT |x1:(T−1) ∼
∫

σ−1

√
2π

exp{−(xT − ̺xT−1)
2

2σ2
}π(̺, σ|x1:(T−1))d̺dσ ,

and π(̺, σ|x1:(T−1)) can be expressed in closed form
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Hypergeometric and binomial inference

Case of an H (N,n, r) distribution under uniform prior
π(r) = 1/(N + 1)
Posterior

P (r|N, l,H) =

(
r

l

)(
N − r

n− l

)/(
N + 1

n+ 1

)
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Darroch model for capture–recapture

Alternative formulation:

n11 ∼ H (N,n2, n1/N)

Classical (MLE) estimator of N

N̂ =
n1

(n11/n2)

It cannot be used when n11 = 0
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Example (Deers)

Herd of deer on an island of Newfoundland (Canada) w/o any
predator, thus culling necessary for ecological equilibrium.
Annual census too time-consuming, but birth and death patterns
for the deer imply that the number of deer varies between 36 and
50. Prior:

N ∼ U ({36, . . . , 50})
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Example (Deers (2))

Posterior distribution

π(N = n|n11) =

(
n1

n11

)(
n2

n2 − n11

)/(
n

n2

)
π(N = n)

50∑

k=36

(
n1

n11

)(
n2

n2 − n11

)/(
k

n2

)
π(N = k)

,
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Table: Posterior distribution of the deer population size, π(N |n11).

N\n11 0 1 2 3 4 5
36 0.058 0.072 0.089 0.106 0.125 0.144
37 0.059 0.072 0.085 0.098 0.111 0.124
38 0.061 0.071 0.081 0.090 0.100 0.108
39 0.062 0.070 0.077 0.084 0.089 0.094
40 0.063 0.069 0.074 0.078 0.081 0.082
41 0.065 0.068 0.071 0.072 0.073 0.072
42 0.066 0.068 0.067 0.067 0.066 0.064
43 0.067 0.067 0.065 0.063 0.060 0.056
44 0.068 0.066 0.062 0.059 0.054 0.050
45 0.069 0.065 0.060 0.055 0.050 0.044
46 0.070 0.064 0.058 0.051 0.045 0.040
47 0.071 0.063 0.056 0.048 0.041 0.035
48 0.072 0.063 0.054 0.045 0.038 0.032
49 0.073 0.062 0.052 0.043 0.035 0.028
50 0.074 0.061 0.050 0.040 0.032 0.026
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Table: Posterior mean of the deer population size, N .

n11 0 1 2 3 4 5

E(N |n11) 43.32 42.77 42.23 41.71 41.23 40.78
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Different loss function

L(N, δ) =

{
10(δ −N) if δ > N,

N − δ otherwise,

in order to avoid overestimation
Bayes estimator is (1/11)-quantile of π(N |n11),

Table: Estimated deer population

n11 0 1 2 3 4 5

δπ(n11) 37 37 37 36 36 36
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Laplace succession rule

Example of a predictive distribution

...considering the probability that the next specimen will
be of the first type. The population being of number N ,
of which n have already been removed, and the members
of the first type being r in number, of which l have been
removed, the probability that the next would be of the
type, given r,N and the sample is (III, §3.2)

P (p|l,m,N, r,H) =
r − l

N −m
.
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Integrating in r

P (r, p|l,m,N,H) =
r − l

N −m

(
r

l

)(
N − r

n− l

)/(
N + 1

n+ 1

)
,

the marginal posterior of p is

P (p|l,m,N,H) =
l + 1

N −m

(
N+1
n+2

)
(N+1
n+1

) =
l + 1

n+ 2

which is independent of N . (...) Neither Bayes nor Laplace,
however, seem to have considered the case of finite N (III, §3.2)

[Why Bayes???]
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New criticism of uniform prior

The fundamental trouble is that the prior probabilities
1/(N + 1) attached by the theory to the extreme values
are utterly so small that they amount to saying, without
any evidence at all, that it is practically certain that the
population is not homogeneous in respect to the property
to be investigated. (...) Now I say that for this reason
the uniform assessment must be abandoned for ranges
including the extreme values. (III, §3.21)

Explanation: This is a preparatory step for the introduction of
specific priors fitted to point null hypotheses (using Dirac masses).
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Local resolution

Different weight on the boundaries

P (r = 0|NH) = P (r = N |NH) = k

...we are therefore restricted to values of k between 1
3

and 1
2 . A possible alternative form would be to take

k =
1

4
+

1

2(N + 1)

which puts half the prior probability into the extremes
and leaves the other half distributed over all values (III,
§3.21)
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Another contradiction

For the multinomial model

Mr(n; p1, . . . , pr) ,

under the uniform prior

(p1, . . . , pr) ∼ D(1, . . . , 1) ,

the marginal on p1 is not uniform:

p1 ∼ B(1, r − 1) .

This expresses the fact that the average value of all the
p’s is not 1/r instead of 1/2 (III, §3.23)
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The Poisson model

For m ∼ P(r), Jeffreys justifies the prior P (dr|H) ∝ dr/r by

This parameter is not a chance but a chance per unit
time, and therefore is dimensional (III, §3.3)

Posterior distribution conditional on observations m1, . . . ,mn

P (dr|m1, . . . ,mn,H) ∝ nSm

(Sm − 1)!
rSm−1 enr dr

given by the incomplete Γ function. We notice that the
only function of the observations that appears in the
posterior probability is Sm, therefore a sufficient statistic
for r (III, §3.3)
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The normal model

Importance of the normal model in many fields

Np(θ,Σ)

with known Σ, normal conjugate distribution, Np(µ,A).
Under quadratic loss, the Bayes estimator is

δπ(x) = x− Σ(Σ +A)−1(x− µ)

=
(
Σ−1 +A−1

)−1 (
Σ−1x+A−1µ

)
;
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Laplace approximation

ToP presents the normal distribution as a second order
approximation of slowly varying densities,

P (dx|x1, . . . , xn,H) ∝ f(x) exp
{
− n

2σ2
(x− x̄)2

}

(with the weird convention that x̄ is the empirical mean of the xi’s
and x is the true mean, i.e. θ...)
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Estimation of variance

If

x̄ =
1

n

n∑

i=1

xi and s2 =
1

n

n∑

i=1

(xi − x̄)2

the likelihood is

ℓ(θ, σ | x̄, s2) ∝ σ−n exp
[
− n

2σ2

{
s2 + (x̄− θ)2

}]

Jeffreys then argues in favour of

π∗(θ, σ) = 1/σ

assuming independence between θ and σ [Warnin!]
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In this case, the posterior distribution of (θ, σ) is such that

θ|σ, x̄, s2 ∼ N

(
x̄,
σ2

n

)
,

θ|x̄, s2 ∼ T
(
[n− 1], x̄, ns2/[n− 1]

)

σ2|x̄, s2 ∼ IG
(
n− 1

2
,
ns2

2

)
.

Reminder

Not defined for n = 1, 2

θ and σ2 are not a posteriori independent.

Conjugate posterior distributions have the same form

but require a careful determination of the hyperparameters
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More of the weird stuff!
Jeffreys also considers degenerate cases:

If n = 1, x̄ = x1, and s = 0 [!!!], then

P (dxdσ|x1,H) ∝ σ−2 exp

{
(x− x̄)2

σ2

}
dxdσ

Integrating with respect to σ we get

P (dx|x1,H) ∝ dx

|x− x1|

that is, the most probable value of x is x1 but we have
no information about the accuracy of the determination
(III, §3.41).

...even though P (dx|x1,H) is not integrable...
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Least squares

Usual regression model

y = Xβ + ǫ, ǫ ∼ Nn(0, σ
2I), β ∈ R

m

Incredibly convoluted derivation of β̂ = (XTX)−1XTy in ToP
[see §3.5 till the normal equations in (34)] for lack of matricial
notations, replaced with tensorial conventions used by Physicists

Personally I find that to get the right value for a
determinant above the third order is usually beyond my
powers (III, §3.5)

...understandable in 1939 (?)...
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(Modern) basics

The least-squares estimator β̂ has a normal distribution

β̂ ∼ Nm(β, σ2(XTX)−1)

Corresponding (Zellner’s) conjugate distributions on (β, σ2)

β|σ2 ∼ Nm

(
µ,
σ2

n0
(XTX)−1

)
,

σ2 ∼ IG(ν/2, s20/2)
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since, if s2 = ||y −Xβ̂||2,

β|β̂, s2, σ2 ∼ Np

(
n0µ+ β̂

n0 + 1
,

σ2

n0 + 1
(XTX)−1

)
,

σ2|β̂, s2 ∼ IG
(
k − p+ ν

2
,
s2 + s20 + n0

n0+1(µ− β̂)TXTX(µ− β̂)

2

)

More general conjugate distributions of the type

β ∼ Nm(Aθ,C),

where θ ∈ Rq (q ≤ m).
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Prior modelling

In ToP

P (dx1, . . . , dxm, dσ|H) ∝ dx1 · · · dxmdσ/σ

i.e. π(β, σ) = 1/σ

...the posterior probability of ζm is distributed as for t
with n−m degrees of freedom (III, §3.5)

Explanation

the ζi’s are the transforms of the βi’s in the eigenbasis of
(XTX)

ζi is also distributed as a t with n−m degrees of freedom
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Σ unknown

In this general case, the (apocryphal) Jeffreys prior is

πJ(β,Σ) =
1

|Σ|(k+1)/2
.

with likelihood

ℓ(β,Σ|y) ∝ |Σ|−n/2 exp

{
−1

2
tr

[
Σ−1

n∑

i=1

(yi −Xiβ)(yi −Xiβ)T

]}
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Consequences

suggests (inverse) Wishart distribution on Σ

posterior marginal distribution on β only defined for sample
size large enough

no closed form expression for posterior marginal
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Plusses of the Bayesian approach

Example (Truncated normal)

When a1, . . . , an are N (α, σ2
r ), with σ2

r known, and α > 0,

the posterior probability of α is therefore a normal one
about the weighted mean by the ar, but it is truncated at
α = 0 (III,§3.55).

Separation of likelihood (observations) from prior (α > 0)
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Preliminary example

Case of a quasi-exponential setting:

x1, . . . , xn ∼ U(α− σ, α+ σ)

Under prior
P (dα, dσ|H) ∝ dα dσ/σ

the two extreme observations are sufficient statistics for
α and σ. Then

P (dα|x1, . . . , xn,H) ∝
{

(α− x(1))
−ndα (α > (x(1) + x(2))/2,

(x(2) − α)−ndα (α < (x(1) + x(2))/2,

[with] a sharp peak at the mean of the extreme values
(III, §3.6)
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Reassessment of sufficiency and Pitman–Koopman lemma

in ToP, sufficiency is defined via a poor man’s factorisation
theorem, rather than through Fisher’s conditional property
(§3.7)
Pitman–Koopman lemma is re-demonstrated while no
mention is made of the support being independent of the
parameter(s)...

...but Jeffreys concludes with an example where the support is
(α,+∞) (!)
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Partial sufficiency

Example (Normal correlation)

Case of a N2 (θ,Σ) sample under the prior

π(θ,Σ) = 1/σ11σ22 Σ =

[
σ2

11 ρσ11σ22

ρσ11σ22 σ2
22

]

Then (III, §3.9) π(σ11, σ22, ρ|Data) is proportional to

1

(σ11σ22)n (1− ρ2)(n−1)/2

exp

{
−n

2(1− ρ2)

(
s2

σ2
11

+
t2

σ2
22

− 2ρrst

σ11σ22

)2
}
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Example (Normal correlation (2))

and

π(ρ|Data) ∝ (1− ρ2)(n−1)/2

(1− ρr)n−3/2
Sn−1(ρr)

only depends on r, which amounts to an additional proof that r is
a sufficient statistic for ρ (III, §3.9)

...Jeffreys unaware of marginalisation paradoxes...
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Marginalisation paradoxes

In the case of correlation, posterior on ρ could have been derived
from prior π(ρ) = 1/2 and distribution of r.
This is not always the case:

Marginalisation paradox

π(θ1|x1, x2) only depends on x1

f(x1|θ1, θ2) only depends on θ1

...but π(θ1|x1, x2) is not the same as

π(θ1|x1) ∝ π(θ1)f(x1|θ1) (!)

[Dawid, Stone & Zidek, 1973]
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Example (Normal MP)

Case when

u1 ∼ N (µ1, σ
2), u2 ∼ N (µ2, σ

2), s2 ∼ σ2χ2
ν/ν,

and when ζ = (µ1 − µ2)/(σ
√

2) parameter of interest, under prior
π(µ1, µ2, σ) = 1/σ
Then

π(ζ|x) only depends on z = u1 − u2/s
√

2

and z only depends on ζ

...but impossible to derive π(ζ|x) from f(z|ζ)

...and no paradox when π(µ1, µ2, σ) = 1/σ2 [!!]
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(Modern, not ToP) invariant priors

Principle: Agree with the natural symmetries of the problem

- Identify invariance structures as group action

G : x→ g(x) ∼ f(g(x)|ḡ(θ))
Ḡ : θ → ḡ(θ)
G∗ : L(d, θ) = L(g∗(d), ḡ(θ))

- Determine an invariant prior

π(ḡ(A)) = π(A)
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Generic solution

Right Haar measure
But...

Requires invariance to be part of the decision problem

Missing in most discrete setups (Poisson)

Invariance must somehow belong to prior setting

Opening towards left- and right-Haar measures at the end of §3.10.
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Invariant divergences

Interesting point made by Jeffreys that both

Lm =

∫
|(dP )1/m − (dP ′)1/m|m , Le =

∫
log

dP ′

dP
d(P ′ − P )

...are invariant for all non-singular transformations of x
and of the parameters in the laws (III, §3.10)
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Intrinsic losses

Noninformative settings w/o natural parameterisation : the
estimators should be invariant under reparameterisation

[Ultimate invariance!]

Principle

Corresponding parameterisation-free loss functions:

L(θ, δ) = d(f(·|θ), f(·|δ)),
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Examples:

1 the entropy distance (or Kullback–Leibler divergence)

Le(θ, δ) = Eθ

[
log

(
f(x|θ)
f(x|δ)

)]
,

2 the Hellinger distance

LH(θ, δ) =
1

2
Eθ




(√

f(x|δ)
f(x|θ) − 1

)2


 .
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Example (Normal mean)

Consider x ∼ N (θ, 1). Then

Le(θ, δ) =
1

2
Eθ[−(x− θ)2 + (x− δ)2] =

1

2
(δ − θ)2,

LH(θ, δ) = 1− exp{−(δ − θ)2/8}.

When π(θ|x) is N (µ(x), σ2), Bayes estimator of θ

δπ(x) = µ(x)

in both cases.
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Example (Normal everything)

Consider x ∼ N (λ, σ2) then

L2((λ, σ), (λ′, σ′)) = 2 sinh2 ζ + cosh ζ
(λ− λ′)2

σ2
0

Le((λ, σ), (λ′, σ′)) = 2

[
1− sech

1/2ζ exp

{−(λ− λ′)2

8σ2
0 cosh ζ

}]

if σ = σ0e
−ζ/2 and σ = σ0e

+ζ/2 (III, §3.10, (14) & (15))
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The Jeffreys prior

Based on Fisher information

I(θ) = Eθ

[
∂ℓ

∂θT

∂ℓ

∂θ

]

The Jeffreys prior distribution is

π∗(θ) ∝ |I(θ)|1/2

Note

This general presentation is not to be found in ToP! And not all
priors of Jeffreys’ are Jeffreys priors!
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Estimation problems

The Jeffreys prior

Where did Jeffreys hid his prior?!

Starts with second order approximation to both L2 and Le:

4L2(θ, θ
′) ≈ (θ − θ′)TI(θ)(θ − θ′) ≈ Le(θ, θ′)

This expression is therefore invariant for all non-singular
transformations of the parameters. It is not known
whether any analogous forms can be derived from [Lm] if
m 6= 2. (III, §3.10)

Main point

Fisher information equivariant under reparameterisation:

∂ℓ

∂θT

∂ℓ

∂θ
=

∂ℓ

∂ηT

∂ℓ

∂η
× ∂η

∂θT

∂η

∂θ

Theory of Probability revisited

Estimation problems

The Jeffreys prior

The fundamental prior

...if we took the prior probability density for the
parameters to be proportional to ||gik||1/2 [= |I(θ)|1/2],
it could stated for any law that is differentiable with
respect to all parameters that the total probability in any
region of the αi would be equal to the total probability in
the corresponding region of the α′i; in other words, it
satisfies the rule that equivalent propositions have the
same probability (III, §3.10)

Jeffreys never mentions Fisher information in connection with (gik)
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The Jeffreys prior

Jeffreys’ objections

Example (Normal everything)

In the case of a normal N (λ, σ2), |I(θ)|1/2 = 1/σ2 instead of the
prior π(θ) = 1/σ advocated earlier:

If the same method was applied to a joint distribution for
serveral variables about independent true values, an extra
factor 1/σ would appear for each. This is unacceptable:
(...) λ and σ are each capable of any value over a
considerable range and neither gives any appreciable
information about the other (III, §3.10)
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The Jeffreys prior

Example (Variable support)

If the support of f(·|θ) depends on θ, e.g. U([θ1, θ2]) usually no
Fisher information [e.g. exception ∝ {(x− θ1)

+}a{(θ2 − x)+}b
with a, b > 1]. Jeffreys suggests to condition on non-differentiable
parameters to derive a prior on the other parameters, and to use a
flat prior on the bounds of the support.
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The Jeffreys prior

Poisson distribution

The Poisson parameter, however, is in rather a special
position. It is usually the product of a scale factor with
an arbitrary sample size, which is not chosen until we
have already have some information about the probable
range of values for the scale parameter. It does however
point a warning for all designed experiments. The whole
point of general rules for the prior probability is to give a
starting-point, which we take to represent ignorance.
They will not be correct if previous knowledge is being
used (...) In the case of the Poisson law the sample size
is chosen so that λ will be a moderate number, usually 1
to 10. The dλ/λ rule, in fact, may express complete
ignorance of the scale parameter; but dλ/

√
λ may

express just enough information to suggest that the
experiment is worth making.
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The Jeffreys prior

Example (Mixture model)

For

f(x|θ) =

k∑

i=1

ωifi(x|αi) ,

Jeffreys suggests to separate the ωi’s from the αi’s:

πJ(ω,α) ∝
k∏

i=1

|I(αi)|1/2|/
√
ωi (36)
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The Jeffreys prior

Exponential families

Jeffreys makes yet another exception for Huzurbazar distributions

f(x) = φ(α)ψ(x) exp{u(α)v(x)}

namely exponential families.
Using the reparameterisation β = u(α), he considers three cases

1 β ∈ (−∞,+∞), then π⋆(β) ∝ 1

2 β ∈ (0,+∞), then π⋆(β) ∝ 1/β

3 β ∈ (0, 1), then π⋆(β) = 1/β(1 − β)
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The Jeffreys prior

Pros & Cons

Parameterization invariant

Relates to information theory

Agrees with most invariant priors (e.g., location/scale)

Suffers from dimensionality curse (e.g., Jeffreys’ correction)

Not coherent for Likelihood Principle (e.g., Binomial versus
Negative binomial)
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The Jeffreys prior

Example (Normal norm)

x ∼ Np(θ, Ip), η = ‖θ‖2, π(η) = ηp/2−1

E
π[η|x] = ‖x‖2 + p Bias 2p
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The Jeffreys prior

Example (Likelihood paradox)

If x ∼ B(n, θ), Jeffreys’ prior is

Be(1/2, 1/2)

and, if n ∼ N eg(x, θ), Jeffreys’ prior is

π2(θ) = −Eθ

[
∂2

∂θ2
log f(x|θ)

]

= Eθ

[
x

θ2
+

n− x

(1− θ)2

]
=

x

θ2(1− θ)
,

∝ θ−1(1− θ)−1/2
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The Jeffreys prior

Bernardo’s reference priors

Generalizes Jeffreys priors by distinguishing between nuisance and
interest parameters
Principle: maximize the information brought by the data

E
n

[∫
π(θ|xn) log(π(θ|xn)/π(θ))dθ

]

and consider the limit of the πn
Outcome: most usually, Jeffreys prior
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The Jeffreys prior

Nuisance parameters

For θ = (λ, ω),

π(λ|ω) = πJ(λ|ω) with fixed ω

Jeffreys’ prior conditional on ω, and

π(ω) = πJ(ω)

for the marginal model

f(x|ω) ∝
∫
f(x|θ)πJ(λ|ω)dλ

Depends on ordering

Problems of definition
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The Jeffreys prior

Example (Neyman–Scott problem)

Observation of xij iid N (µi, σ
2), i = 1, . . . , n, j = 1, 2.

The usual Jeffreys prior for this model is

π(µ1, . . . , µn, σ) = σ−n−1

which is inconsistent because

E[σ2|x11, . . . , xn2] = s2/(2n − 2),

where

s2 =

n∑

i=1

(xi1 − xi2)
2

2
,

Theory of Probability revisited

Estimation problems

The Jeffreys prior

Example (Neyman–Scott problem (2))

Associated reference prior with θ1 = σ and θ2 = (µ1, . . . , µn) gives

π(θ2|θ1) ∝ 1 ,

π(σ) ∝ 1/σ

Therefore,
E[σ2|x11, . . . , xn2] = s2/(n− 2)
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Matching priors

Frequency-validated priors:
Some posterior probabilities

π(g(θ) ∈ Cx|x) = 1− α

must coincide with the corresponding frequentist coverage

Pθ(Cx ∋ g(θ)) =

∫
ICx(g(θ)) f(x|θ) dx ,

...asymptotically
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The Jeffreys prior

For instance, Welch and Peers’ identity

Pθ(θ ≤ kα(x)) = 1− α+O(n−1/2)

and for Jeffreys’ prior,

Pθ(θ ≤ kα(x)) = 1− α+O(n−1)
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The Jeffreys prior

In general, choice of a matching prior dictated by the cancelation
of a first order term in an Edgeworth expansion, like

[I ′′(θ)]−1/2I ′(θ)∇ log π(θ) +∇T{I ′(θ)[I ′′(θ)]−1/2} = 0 .
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The Jeffreys prior

Example (Linear calibration)

(i = 1, . . . , n, j = 1, . . . , k)

yi = α+ βxi + εi, y0j = α+ βx0 + ε0j ,

with θ = (x0, α, β, σ
2) and x0 quantity of interest
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Example (Linear calibration (2))

One-sided differential equation:

|β|−1s−1/2 ∂

∂x0
{e(x0)π(θ)} − e−1/2(x0)sgn(β)n−1s1/2

∂π(θ)

∂x0

−e−1/2(x0)(x0 − x̄)s−1/2 ∂

∂β
{sgn(β)π(θ)} = 0

with

s = Σ(xi − x̄)2, e(x0) = [(n+ k)s + nk(x0 − x̄)2]/nk .
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The Jeffreys prior

Example (Linear calibration (3))

Solutions

π(x0, α, β, σ
2) ∝ e(x0)

(d−1)/2|β|dg(σ2) ,

where g arbitrary.
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The Jeffreys prior

Reference priors
Partition Prior

(x0, α, β, σ
2) |β|(σ2)−5/2

x0, α, β, σ
2 e(x0)

−1/2(σ2)−1

x0, α, (σ
2, β) e(x0)

−1/2(σ2)−3/2

x0, (α, β), σ2 e(x0)
−1/2(σ2)−1

x0, (α, β, σ
2) e(x0)

−1/2(σ2)−2
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The Jeffreys prior

Other approaches

Rissanen’s transmission information theory and minimum
length priors

Testing priors

stochastic complexity
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Fourth chapter: Approximate methods and
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3 Estimation problems

4 Asymptotics & DT& ...
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Evaluation of estimators
Loss functions
Admissibility
Usual loss functions
Chapter summary
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Some asymptotics

MAP

Equivalence of MAP and ML estimators:

...the differences between the values that make the
likelihood and the posterior density maxima are only of
order 1/n (IV, §4.0)

extrapolated into

...in the great bulk of cases the results of [the method of
maximum likelihood] are undistinguishable from those
given by the principle of inverse probability (IV, §4.0)
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Some asymptotics

The tramcar comparison

A man travelling in a foreign country has to change trains
at a junction, and goes into the town, of the existence of
which he has just heard. The first thing that he sees is a
tramcar numbered m = 100. What can he infer about
the number [N ] of tramcars in the town? (IV, §4.8)

Famous opposition: Bayes posterior expectation vs. MLE

Exclusion of flat prior on N

Choice of the scale prior π(N) ∝ 1/N

MLE is N̂ = m
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Some asymptotics

The tramcar (2)

Under π(N) ∝ 1/N + O(n−2), posterior is

π(N |m) ∝ 1/N2 + O(n−3)

and

P (N > n0|m,H) =
∞∑

n0+1

n−2
/ ∞∑

m

n−2 =
m

n0

Therefore posterior median is 2m

No mention made of either MLE or unbiasedness
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Some asymptotics

Laplace analytic approximation

When integrating a regular function

E
π[g(θ)|x] =

∫
Θ g(θ)f(x|θ)π(θ) dθ∫

Θ f(x|θ)π(θ) dθ
=

∫
Θ bN (θ) exp{−nhN (θ)} dθ∫
Θ bD(θ) exp{−nhD(θ)} dθ ,

Laplace’s approximation given by

∫
Θ bN (θ) exp{−nhN (θ)} dθ∫
Θ bD(θ) exp{−nhD(θ)} dθ =

σN
σD

e−n(ĥN−ĥD)

[
b̂N

b̂D
+

σ2
D

2nb̂2D

{
b̂D b̂

′′
N

−b̂N b̂′′D − σ2
Dĥ

′′′
D(b̂D b̂

′
N − b̂N b̂

′
D)
}]

+ O(n−2).
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Some asymptotics

Consequence

E
π[g(θ)|x] = ĝ +

σ2
D b̂

′
Dĝ

′

nb̂D
+
σ2
Dĝ

′′

2n
− σ4

Dĥ
′′′ĝ′

2n
+ O(n−2).

Example (Binomial model)

π(θ|x) density of Be(α, β) distribution and posterior expectation
of θ

δπ(x) =
α

α+ β
,

compared with

δπ(x) =
α2 + αβ + 2− 4α

(α+ β − 2)2
+ O((α+ β)−2),
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Some asymptotics

Fighting un-sufficiency

When maximum likelihood estimators not easily computed (e.g.,
outside exponential families), Jeffreys suggests use of Pearson’s
minimum χ2 estimation, which is a form of MLE for multinomial
settings.

Asymptotic difficulties of

In practice, (...) it is enough to group [observations] so
that there are no empty groups, mr for a terminal group
being calculated for a range extending to infinity (IV,
§4.1)

bypassed in ToP
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Some asymptotics

Unbiasedness

Searching for unbiased estimators presented in §4.3 as a way of
fighting un-sufficiency and attributed to Neyman and Pearson.

Introduction of Decision Theory via a multidimensional loss
function:

There are apparently an infinite number of unbiased
statistics associated with any law (...) The estimates of
α, β, . . . obtained will therefore be a, b, . . . which differ
little from α, β, . . . The choice is then made so that all of
E(α− a)2, E(β − b)2, . . . will be as small as possible

Note the first sentence above: meaningless!
Besides, unbiasedness is a property almost never shared by
Bayesian estimators!
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Evaluation of estimators

Evaluating estimators

Purpose of most inferential studies

To provide the statistician/client with a decision d ∈ D

Requires an evaluation criterion for decisions and estimators

L(θ, d)

[a.k.a. loss function]
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Evaluation of estimators

Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f(x|θ);
(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D , loss function associated with the decisions, L(θ, δ);
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Evaluation of estimators

Foundations

Theorem (Existence)

There exists an axiomatic derivation of the existence of a
loss function.

[DeGroot, 1970]
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Loss functions

Estimators

Decision procedure δ usually called estimator
(while its value δ(x) called estimate of θ)

Fact

Impossible to uniformly minimize (in d) the loss function

L(θ, d)

when θ is unknown
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Loss functions

Frequentist Principle

Average loss (or frequentist risk)

R(θ, δ) = Eθ[L(θ, δ(x))]

=

∫

X
L(θ, δ(x))f(x|θ) dx

Principle

Select the best estimator based on the risk function
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Loss functions

Difficulties with frequentist paradigm

(1) Error averaged over the different values of x proportionally to
the density f(x|θ): not so appealing for a client, who wants
optimal results for her data x!

(2) Assumption of repeatability of experiments not always
grounded.

(3) R(θ, δ) is a function of θ: there is no total ordering on the set
of procedures.
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Loss functions

Bayesian principle

Principle Integrate over the space Θ to get the posterior expected
loss

ρ(π, d|x) = E
π[L(θ, d)|x]

=

∫

Θ
L(θ, d)π(θ|x) dθ,
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Loss functions

Bayesian principle (2)

Alternative

Integrate over the space Θ and compute integrated risk

r(π, δ) = E
π[R(θ, δ)]

=

∫

Θ

∫

X
L(θ, δ(x)) f(x|θ) dx π(θ) dθ

which induces a total ordering on estimators.

Existence of an optimal decision
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Loss functions

Bayes estimator

Theorem (Construction of Bayes estimators)

An estimator minimizing
r(π, δ)

can be obtained by selecting, for every x ∈ X , the value δ(x)
which minimizes

ρ(π, δ|x)
since

r(π, δ) =

∫

X
ρ(π, δ(x)|x)m(x) dx.

Both approaches give the same estimator
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Loss functions

Bayes estimator (2)

Definition (Bayes optimal procedure)

A Bayes estimator associated with a prior distribution π and a loss
function L is

arg min
δ
r(π, δ)

The value r(π) = r(π, δπ) is called the Bayes risk
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Loss functions

Infinite Bayes risk

Above result valid for both proper and improper priors when

r(π) <∞

Otherwise, generalized Bayes estimator that must be defined
pointwise:

δπ(x) = arg min
d

ρ(π, d|x)

if ρ(π, d|x) is well-defined for every x.

Warning: Generalized Bayes 6= Improper Bayes
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Admissibility

Admissibility

Reduction of the set of acceptable estimators based on “local”
properties

Definition (Admissible estimator)

An estimator δ0 is inadmissible if there exists an estimator δ1 such
that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)

Otherwise, δ0 is admissible
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Admissibility

The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes
estimators often constitute the class of admissible estimators

If π is strictly positive on Θ, with

r(π) =

∫

Θ
R(θ, δπ)π(θ) dθ <∞

and R(θ, δ), is continuous, then the Bayes estimator δπ is
admissible.

If the Bayes estimator associated with a prior π is unique, it is
admissible.

Regular (6=generalized) Bayes estimators always admissible
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Admissibility

Example (Normal mean)

Consider x ∼ N (θ, 1) and the test of H0 : θ ≤ 0, i.e. the
estimation of

IH0(θ)

Under the loss
(IH0(θ)− δ(x))2 ,

the estimator (p-value)

p(x) = P0(X > x) (X ∼ N (0, 1))

= 1− Φ(x),

is Bayes under Lebesgue measure.
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Admissibility

Example (Normal mean (2))

Indeed

p(x) = E
π[IH0(θ)|x] = P π(θ < 0|x)

= P π(θ − x < −x|x) = 1− Φ(x).

The Bayes risk of p is finite and p(s) is admissible.
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Admissibility

Example (Normal mean (3))

Consider x ∼ N (θ, 1). Then δ0(x) = x is a generalised Bayes
estimator, is admissible, but

r(π, δ0) =

∫ +∞

−∞
R(θ, δ0) dθ

=

∫ +∞

−∞
1 dθ = +∞.
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Admissibility

Example (Normal mean (4))

Consider x ∼ Np(θ, Ip). If

L(θ, d) = (d− ||θ||2)2

the Bayes estimator for the Lebesgue measure is

δπ(x) = ||x||2 + p.

This estimator is not admissible because it is dominated by

δ0(x) = ||x||2 − p
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Usual loss functions

The quadratic loss

Historically, first loss function (Legendre, Gauss)

L(θ, d) = (θ − d)2

or
L(θ, d) = ||θ − d||2

The reason for using the expectation of the square of the
error as the criterion is that, given a large number of
observations, the probability of a set of statistics given
the parameters, and that of the parameters given the
statistics, are usually distributed approximately on a
normal correlation surface (IV, §4.3)

Explntn: Asymptotic normal distribution of MLE
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Usual loss functions

Proper loss

Posterior mean

The Bayes estimator δπ associated with the prior π and with the
quadratic loss is the posterior expectation

δπ(x) = E
π[θ|x] =

∫
Θ θf(x|θ)π(θ) dθ∫
Θ f(x|θ)π(θ) dθ

.
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Usual loss functions

Orthogonal parameters

Interesting disgression: reparameterise the parameter set so that
Fisher information is (nearly) diagonal.

...the quadratic term in E(logL) will reduce to a sum of
squares (IV, §4.3)

But this is local orthogonality: the diagonal terms in I(θ) may still
depend on all parameters and Jeffreys distinguishes global
orthogonality where each diagonal term only depends on one βi
and thus induces an independent product for the Jeffreys prior.

Generaly impossible, even though interesting for dealing with
nuisance parameters...
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Usual loss functions

The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) = | θ − d | ,

or

Lk1,k2
(θ, d) =

{
k2(θ − d) if θ > d,

k1(d− θ) otherwise.

L1 estimator

The Bayes estimator associated with π and Lk1,k2
is a

(k2/(k1 + k2)) fractile of π(θ|x).
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Usual loss functions

Posterior median

Relates to Jeffreys’

...we can use the median observation as a statistic for the
median of the law (IV, §4.4)

even though it lacks DT justification
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Usual loss functions

Example (Median law)

If

P (dx|m,a,H) ∝ 1

2
exp

(
−|x−m|

a

)
dx

a

the likelihood is maximum if m is taken equal to the median
observation and if a is the average residual without regard to sign.

[’tis Laplace’s law]

It is only subject to that law that the average residual
leads to the best estimate of uncertainty, and then the
best estimate of location is provided by the median
observation and not by the mean (IV, §4.4)

No trace whatsoever of Bayesian estimation???
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Chapter summary

ToP 4 bric-à-brac!

Sequence of remarks and cases

Difficulty when no sufficient statistics

Model/law misspecification (departure from normality)

Random effect

Randomization (contradiction to later Bayesian persp’s)

Rank tests (Spearman: It is an estimate but what is it an
estimate of?)

with very little relevance to either Bayesian methodology or DT...

Maybe a reflection on computational difficulties?
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Chapter 5: Significance tests: one new parameter

1 Fundamental notions

2 Direct Probabilities

3 Estimation problems

4 Asymptotics & DT& ...

5 Significance tests: one new parameter

6 Significance tests: various complications

7 Frequency definitions and direct methods
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5 Significance tests: one new parameter
Bayesian tests
Bayes factors
Improper priors for tests
Pseudo-Bayes factors
Intrinsic priors
Opposition to classical tests
Conclusion
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Bayesian tests

Fundamental setting

Is the new parameter supported by the observations or is
any variation expressible by it better interpreted as
random? Thus we must set two hypotheses for
comparison, the more complicated having the smaller
initial probability (V, §5.0)

[Occam’s rule again!]

...compare a specially suggested value of a new
parameter, often 0 [q], with the aggregate of other
possible values [q′]. We shall call q the null hypothesis
and q′ the alternative hypothesis [and] we must take

P (q|H) = P (q′|H) = 1/2 .
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Bayesian tests

Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of a
statistical model, a test is a statistical procedure that takes its
values in {0, 1}.

Example (Normal mean)

For x ∼ N (θ, 1), decide whether or not θ ≤ 0.
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Bayesian tests

The 0− 1 loss

Neyman–Pearson loss for testing hypotheses

Test of H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0.
Then

D = {0, 1}

The 0− 1 loss

L(θ, d) =

{
1− d if θ ∈ Θ0

d otherwise,
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Bayesian tests

Type–one and type–two errors

Associated with the risk

R(θ, δ) = Eθ[L(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0− 1 loss is

δπ(x) =

{
1 if P (θ ∈ Θ0|x) > P (θ 6∈ Θ0|x),
0 otherwise,
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Bayesian tests

Jeffreys’ example (§5.0)

Testing whether the mean α of a normal observation is zero:

P (q|aH) ∝ exp

(
− a2

2s2

)

P (q′dα|aH) ∝ exp

(
−(a− α)2

2s2

)
f(α)dα

P (q′|aH) ∝
∫

exp

(
−(a− α)2

2s2

)
f(α)dα
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A point of contention

Jeffreys asserts

Suppose that there is one old parameter α; the new
parameter is β and is 0 on q. In q′ we could replace α by
α′, any function of α and β: but to make it explicit that
q′ reduces to q when β = 0 we shall require that α′ = α
when β = 0 (V, §5.0).

This amounts to assume identical parameters in both models, a
controversial principle for model choice (see Chapter 6) or at the
very best to make α and β dependent a priori, a choice
contradicted by the following paragraphs!
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Orthogonal parameters

If

I(α, β) =

[
gαα 0
0 gββ

]
,

α and β orthogonal, but not [a posteriori] independent, contrary to
ToP assertions

...the result will be nearly independent on previous
information on old parameters (V, §5.01).

and

K =
1

f(b, a)

√
ngββ
2π

exp

(
−1

2
ngββb

2

)

[where] h(α) is irrelevant (V, §5.01)

Theory of Probability revisited

Significance tests: one new parameter

Bayesian tests

Acknowledgement in ToP

In practice it is rather unusual for a set of parameters to
arise in such a way that each can be treated as irrelevant
to the presence of any other. More usual cases are (...)
where some parameters are so closely associated that one
could hardly occur without the others (V, §5.04).
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Generalisation

Theorem (Optimal Bayes decision)

Under the 0− 1 loss function

L(θ, d) =






0 if d = IΘ0
(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0

the Bayes procedure is

δπ(x) =

{
1 if Prπ(θ ∈ Θ0|x) ≥ a0/(a0 + a1)

0 otherwise
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Bound comparison

Determination of a0/a1 depends on consequences of “wrong
decision” under both circumstances
Often difficult to assess in practice and replacement with “golden”
bounds like .05, biased towards H0

Example (Binomial probability)

Consider x ∼ B(n, p) and Θ0 = [0, 1/2]. Under the uniform prior
π(p) = 1, the posterior probability of H0 is

P π(p ≤ 1/2|x) =

∫ 1/2
0 px(1− p)n−xdp

B(x+ 1, n− x+ 1)

=
(1/2)n+1

B(x+ 1, n − x+ 1)

{
1

x+ 1
+ . . .+

(n− x)!x!

(n + 1)!

}
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Loss/prior duality

Decomposition

Prπ(θ ∈ Θ0|x) =
∫
Θ0
π(θ|x) dθ

=

R

Θ0
f(x|θ0)π(θ) dθ

R

Θ f(x|θ0)π(θ) dθ

suggests representation

π(θ) = π(Θ0)π0(θ) + (1− π(Θ0))π1(θ)

and decision

δπ(x) = 1 iff
π(Θ0)

(1− π(Θ0))

∫
Θ0
f(x|θ0)π0(θ) dθ

∫
Θc

0
f(x|θ0)π1(θ) dθ

≥ a0

a1

c©What matters is (π(Θ0)/a0, (1− π(Θ0))/a1)
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A function of posterior probabilities

Definition (Bayes factors)

For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0

B01 =
π(Θ0|x)
π(Θc

0|x)

/
π(Θ0)

π(Θc
0)

=

∫

Θ0

f(x|θ)π0(θ)dθ

∫

Θc
0

f(x|θ)π1(θ)dθ

[Good, 1958 & ToP, V, §5.01]

Goto Poisson example

Equivalent to Bayes rule: acceptance if
B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}
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Self-contained concept

Outside decision-theoretic environment:

eliminates choice of π(Θ0)

but depends on the choice of (π0, π1)

Bayesian/marginal equivalent to the likelihood ratio

Jeffreys’ scale of evidence (Appendix B):

if log10(B
π
10) < 0 null H0 supported

if log10(B
π
10) between 0 and 0.5, evidence against H0 weak,

if log10(B
π
10) 0.5 and 1, evidence substantial,

if log10(B
π
10) 1 and 1.5, evidence strong,

if log10(B
π
10) 1.5 and 2, evidence very strong and

if log10(B
π
10) above 2, evidence decisive
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Hot hand

Example (Binomial homogeneity)

Consider H0 : yi ∼ B(ni, p) (i = 1, . . . , G) vs. H1 : yi ∼ B(ni, pi).
Conjugate priors pi ∼ Be(α = ξ/ω, β = (1− ξ)/ω), with a
uniform prior on E[pi|ξ, ω] = ξ and on p (ω is fixed)

B10 =

∫ 1

0

G∏

i=1

∫ 1

0
pyi

i (1− pi)
ni−yipα−1

i (1− pi)
β−1d pi

×Γ(1/ω)/[Γ(ξ/ω)Γ((1 − ξ)/ω)]dξ
∫ 1
0 p

P

i yi(1− p)
P

i(ni−yi)d p

For instance, log10(B10) = −0.79 for ω = 0.005 and G = 138
slightly favours H0.

[Kass & Raftery, 1995]
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Multiple alternatives (§5.03)

If q′ = q1 ∪ · · · ∪ qm, and if P (q′|H) = 1/2, then, if P (qi|H) = κ,

(1− κ)m =
1

2

and
P (q|H)

P (qi|H)
≈ m

2 log 2
= 0.7m

c© If testing for a separate hypothesis qi, Bayes factor B0i

multiplied by 0.7m
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A major modification

When the null hypothesis is supported by a set of measure 0,
π(Θ0) = 0

[End of the story?!]

Suppose we are considering whether a location parameter
α is 0. The estimation prior probability for it is uniform
and we should have to take f(α) = 0 and K[= B10]
would always be infinite (V, §5.02)
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Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0
(θ), π1(θ) ∝ π(θ)IΘ1

(θ),

(under the standard dominating measures on Θ0 and Θ1)

Using the prior probabilities π(Θ0) = ̺0 and π(Θ1) = ̺1,

π(θ) = ̺0π0(θ) + ̺1π1(θ).

Note If Θ0 = {θ0}, π0 is the Dirac mass in θ0
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Contingency table (§5.11)

Then the alternatives, the sampling numbers, and the
chances may be shown as follows:

(
φ.ψ φ.ψ̃

φ̃.ψ φ̃.ψ̃

)
,

(
x y
x′ y′

)
,

(
p11 p12

p21 p22

)
.

If φ and ψ are in proportion we have hypothesis q, that

p11p22 = p12p21 .
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Contingency table (cont’d)

Under q,

(
p11 p12

p21 p22

)
=

(
αβ α(1− β)

(1− α)β (1− α)(1 − β)

)

and under q′,

(
p11 p12

p21 p22

)
=

(
αβ + γ α(1− β)− γ

(1− α)β − γ (1− α)(1 − β) + γ

)

If α ≤ β ≤ 1
2 , then −αβ ≤ γ ≤ α(1− β).
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Contingency table (cont’d)

In general, it should be

−{αβ ∧ (1− α)(1 − β)} ≤ γ ≤ {α(1 − β) ∧ (1− α)β}

Then

π1(α, β, γ) =
1

min(α, 1 − α, β, 1 − β)

× I(−(αβ∧(1−α)(1−β)),(α(1−β)∧(1−α)β))(γ)

and

P (q|θH) ∝ (x+ y)!(x′ + y′)!(x+ x′)!(y + y′)!

{(x+ y + x′ + y′)}2
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Contingency table (cont’d)

...but ToP gets it wrong when integrating in P (q′|θH) since it
keeps dividing by α rather than by min(α, 1 − α, β, 1 − β)...

Obvious ToP difficulty in computing

∫
(αβ + γ)x(α(1 − β)− γ)y((1 − α)β − γ)x

′

((1− α)(1 − β) + γ)y
′
π1(dα, dβ, dγ)

MC resolution
1 Simulate (α, β, γ) ∼ π1(α, β, γ)

2 Average
(αβ+γ)x(α(1−β)−γ)y((1−α)β−γ)x′((1−α)(1−β)+γ)y

′
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A touch of Eugenics...

...data on the conviction of twin brothers or sisters (of
like sex) of convicted criminals, according as the twins
were monozygotic (identical) or dizygotic (no more alike
physically than ordinary brothers or sisters)

Monogozytic Dizygotic
Convicted 10 2
Not convicted 3 15

Then

K =
1

171

(...) we can assert on the data that the odds on the
existence of a difference are about 171 to 1 (V, §5.14)
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Point null hypotheses

Particular case H0 : θ = θ0
Take ρ0 = Prπ(θ = θ0) and g1 prior density under Ha.
Posterior probability of H0

π(Θ0|x) =
f(x|θ0)ρ0∫
f(x|θ)π(θ) dθ

=
f(x|θ0)ρ0

f(x|θ0)ρ0 + (1− ρ0)m1(x)

and marginal under Ha

m1(x) =

∫

Θ1

f(x|θ)g1(θ) dθ.
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Point null hypotheses (cont’d)

Dual representation

π(Θ0|x) =

[
1 +

1− ρ0

ρ0

m1(x)

f(x|θ0)

]−1

.

and

Bπ
01(x) =

f(x|θ0)ρ0

m1(x)(1 − ρ0)

/
ρ0

1− ρ0
=
f(x|θ0)
m1(x)

Connection

π(Θ0|x) =

[
1 +

1− ρ0

ρ0

1

Bπ
01(x)

]−1

.
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Point null hypotheses (cont’d)

Example (Normal mean)

Test of H0 : θ = 0 when x ∼ N (θ, 1): we take π1 as N (0, τ2)

m1(x)

f(x|0) =
σ√

σ2 + τ2

e−x
2/2(σ2+τ2)

e−x2/2σ2

=

√
σ2

σ2 + τ2
exp

{
τ2x2

2σ2(σ2 + τ2)

}

and

π(θ = 0|x) =



1 +
1− ρ0

ρ0

√
σ2

σ2 + τ2
exp

(
τ2x2

2σ2(σ2 + τ2)

)


−1
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Point null hypotheses (cont’d)

Example (Normal mean)

Influence of τ :

τ/x 0 0.68 1.28 1.96

1 0.586 0.557 0.484 0.351
10 0.768 0.729 0.612 0.366
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A fundamental difficulty

Improper priors are not allowed here

If ∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be coherently normalised but the
normalisation matters in the Bayes factor Recall Bayes factor
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Constants matter

Example (Poisson versus Negative binomial)

If M1 is a P(λ) distribution and M2 is a N B(m,p) distribution,
we can take

π1(λ) = 1/λ
π2(m,p) = 1

M I{1,··· ,M}(m) I[0,1](p)
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Constants matter (cont’d)

Example (Poisson versus Negative binomial (2))

then

Bπ
12 =

∫ ∞

0

λx−1

x!
e−λdλ

1

M

M∑

m=1

∫ ∞

0

(
m

x− 1

)
px(1− p)m−xdp

= 1

/
1

M

M∑

m=x

(
m

x− 1

)
x!(m− x)!

m!

= 1

/
1

M

M∑

m=x

x/(m− x+ 1)

Theory of Probability revisited

Significance tests: one new parameter

Improper priors for tests

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!

same thing when both priors are improper

Improper priors on common (nuisance) parameters do not matter
(so much)
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Normal illustration

Take x ∼ N (θ, 1) and H0 : θ = 0

Influence of the constant

π(θ)/x 0.0 1.0 1.65 1.96 2.58

1 0.285 0.195 0.089 0.055 0.014
10 0.0384 0.0236 0.0101 0.00581 0.00143
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ToP unaware of the problem?

Example of testing for a zero normal mean:

If σ is the standard error and λ the true value, λ is 0 on
q. We want a suitable form for its prior on q′. (...) Then
we should take

P (qdσ|H) ∝ dσ/σ

P (q′dσdλ|H) ∝ f

(
λ

σ

)
dσ/σdλ/λ

where f [is a true density] (V, §5.2).

Fallacy of the “same” σ!
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Not enought information

If s′ = 0 [!!!], then [for σ = |x̄|/τ , λ = σv]

P (q|θH) ∝
∫ ∞

0

(
τ

|x̄|

)n
exp

(
−1

2
nτ2

)
dτ

τ
,

P (q′|θH) ∝
∫ ∞

0

dτ

τ

∫ ∞

−∞

(
τ

|x̄|

)n
f(v) exp

(
−1

2
n(v − τ)2

)
.

If n = 1 and f(v) is any even [density],

P (q′|θH) ∝ 1

2

√
2π

|x̄| and P (q|θH) ∝ 1

2

√
2π

|x̄|

and therefore K = 1 (V, §5.2).
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Strange constraints

If n ≥ 2, the condition that K = 0 for s′ = 0, x̄ 6= 0 is
equivalent to

∫ ∞

0
f(v)vn−1dv = ∞ .

The function satisfying this condition for [all] n is

f(v) =
1

π(1 + v2)

This is the prior recommended by Jeffreys hereafter.
But, first, many other families of densities satisfy this constraint
and a scale of 1 cannot be universal!
Second, s′ = 0 is a zero probability event...
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Further puzzlements!

When taking two normal sample x11, . . . , x1n1 and x21, . . . , x2n2

with means λ1 and λ2 and same variance σ, testing for
H0 : λ1 = λ2 suddenly gets outwordly:

...we are really considering four hypotheses, not two as in
the test for agreement of a location parameter with zero;
for neither may be disturbed, or either, or both may.

ToP then uses parameters (λ, σ) in all versions of the alternative
hypotheses, with

π0(λ, σ) ∝ 1/σ

π1(λ, σ, λ1) ∝ 1/π{σ2 + (λ1 − λ)2}
π2(λ, σ, λ2) ∝ 1/π{σ2 + (λ2 − λ)2}

π12(λ, σ, λ1, λ2) ∝ σ/π2{σ2 + (λ1 − λ)2}{σ2 + (λ2 − λ)2}
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ToP misses the points that

1 λ not have the same meaning under q, under q1 (= λ2) and
under q2 (= λ1)

2 λ has no precise meaning under q12 [hyperparameter?]

On q12, since λ does not appear explicitely in the
likelihood we can integrate it (V, §5.41).

3 even σ has a varying meaning over hypotheses

4 integrating over measures is meaningless!

P (q12dσdλ1dλ2|H) ∝ 2

π

dσdλ1dλ2

4σ2 + (λ1 − λ2)2

simply defines a new prior...

Further, erases the fake complexity in the end:

But there is so little to choose between the alternatives
that we may as well combine them (V, §5.41).
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Similar confusion in following sections (§5.42 — §5.45): the use of
improper priors in testing settings simply does not make sense
because ... constants matter!

Note also the aggravating effect of the multiple alternatives (e.g.,
§5.46):

P (q′|θH) = P (q1|θH) + P (q2|θH) + P (q12|θH)

which put more weight on q′
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Vague proper priors are not the solution

Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit
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Lindley’s paradox

Example (Normal case)

If testing
H0 : θ = 0

when observing
x ∼ N (θ, 1) ,

under a normal N (0, α) prior

B01(x)
α−→∞−→ 0
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Often dubbed Jeffreys–Lindley paradox...

In terms of

t =
√
n− 1x̄/s′, ν = n− 1

K ∼
√
πν

2

(
1 +

t2

ν

)−1/2ν+1/2

.

(...) The variation of K with t is much more important
than the variation with ν (V, §5.2).

But ToP misses the point that under H0 t ∼ Tν so does not vary
much with ν while ν goes to ∞...
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Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m− x+ 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α+ x)

x! Γ(α)
β−x

/
1

M

∑

m

x

m− x+ 1

=
(x+ α− 1) · · ·α
x(x− 1) · · · 1 β−x

/
1

M

∑

m

x

m− x+ 1

depends on choice of α(β) or β(α) −→ 0
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Learning from the sample

Definition (Learning sample)

Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample

There is just enough information in a minimal learning sample to
make inference about θ under the prior π
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Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

πi improper but πi(·|x[i]) proper

and ∫
fi(x[n/i]|θi) πi(θi|x[i])dθi∫
fj(x[n/i]|θj) πj(θj|x[i])dθj

independent of normalizing constant

Use remaining x[n/i] to run test as if πj(θj |x[i]) is the true
prior
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Motivation

Provides a working principle for improper priors

Gather enough information from data to achieve properness

and use this properness to run the test on remaining data

does not use x twice as in Aitkin’s (1991)
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Details

Since π1(θ1|x[i]) =
π1(θ1)f

1
[i](x[i]|θ1)∫

π1(θ1)f
1
[i](x[i]|θ1)dθ1

B12(x[n/i]) =

∫
f1
[n/i](x[n/i]|θ1)π1(θ1|x[i])dθ1

∫
f2
[n/i](x[n/i]|θ2)π2(θ2|x[i])dθ2

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

∫
π2(θ2)f

2
[i](x[i]|θ2)dθ2

∫
π1(θ1)f

1
[i](x[i]|θ1)dθ1

= BN
12(x)B21(x[i])

c© Independent of scaling factor!
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Unexpected problems!

depends on the choice of x[i]

many ways of combining pseudo-Bayes factors

AIBF = BN
ji

1

L

∑

ℓ

Bij(x[ℓ])

MIBF = BN
ji med[Bij(x[ℓ])]

GIBF = BN
ji exp

1

L

∑

ℓ

logBij(x[ℓ])

not often an exact Bayes factor

and thus lacking inner coherence

B12 6= B10B02 and B01 6= 1/B10 .

[Berger & Pericchi, 1996]
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Unexpec’d problems (cont’d)

Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a
training sample is allocated to each component
Reason If

x1, . . . , xn ∼
k∑

i=1

pif(x|θi)

and

π(θ) =
∏

i

πi(θi) with

∫
πi(θi)dθi = +∞ ,

the posterior is never defined, because

Pr(“no observation from f(·|θi)”) = (1− pi)
n
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Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean)

Take x ∼ N (θ, 1) with either θ = 0 (M1) or θ 6= 0 (M2) and
π2(θ) = 1.
Then

BAIBF
21 = B21

1√
2π

1
n

∑n
i=1 e

−x2
1/2 ≈ B21 for N (0, 2)

BMIBF
21 = B21

1√
2π
e−med(x2

1)/2 ≈ 0.93B21 for N (0, 1.2)

[Berger and Pericchi, 1998]

When such a prior exists, it is called an intrinsic prior
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Intrinsic priors (cont’d)

Example (Exponential scale)

Take x1, . . . , xn
i.i.d.∼ exp(θ − x)Ix≥θ

and H0 : θ = θ0, H1 : θ > θ0 , with π1(θ) = 1
Then

BA
10 = B10(x)

1

n

n∑

i=1

[
exi−θ0 − 1

]−1

is the Bayes factor for

π2(θ) = eθ0−θ
{
1− log

(
1− eθ0−θ

)}

Most often, however, the pseudo-Bayes factors do not correspond
to any true Bayes factor

[Berger and Pericchi, 2001]

Theory of Probability revisited

Significance tests: one new parameter

Intrinsic priors

Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb2(θ2)π2(θ2)dθ2

∫
Lb1(θ1)π1(θ1)dθ1

[O’Hagan, 1995]

Proportion b of the sample used to gain proper-ness
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Intrinsic priors

Fractional Bayes factor (cont’d)

Example (Normal mean)

BF
12 =

1√
b
en(b−1)x̄2

n/2

corresponds to exact Bayes factor for the prior N
(
0, 1−b

nb

)

If b constant, prior variance goes to 0

If b =
1

n
, prior variance stabilises around 1

If b = n−α, α < 1, prior variance goes to 0 too.
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Intrinsic priors

Random effect models

In ToP, systematic errors (V, §5.6) correspond to random effect
models

xij = yij + ǫi

with yij
iid∼ N (λ, σ2 and ǫi

iid∼ N (0, τ2)
Test of a systematic error is then equivalent to testing τ = 0

But use of χ2 test and MLE’s....!

Theory of Probability revisited

Significance tests: one new parameter

Opposition to classical tests

Comparison with classical tests

Standard answer

Definition (p-value)

The p-value p(x) associated with a test is the largest significance
level for which H0 is rejected

Note

An alternative definition is that a p-value is distributed uniformly
under the null hypothesis.
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Opposition to classical tests

p-value

Example (Normal mean)

Since the UUMP test is {|x| > k}, standard p-value

p(x) = inf{α; |x| > kα}
= PX(|X| > |x|), X ∼ N (0, 1)

= 1− Φ(|x|) + Φ(|x|) = 2[1 −Φ(|x|)].

Thus, if x = 1.68, p(x) = 0.10 and, if x = 1.96, p(x) = 0.05.
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Opposition to classical tests

Problems with p-values

Evaluation of the wrong quantity, namely the
probability to exceed the observed quantity.(wrong conditionin)

What the use of P implies, therefore, is that a
hypothesis that may be true may be rejected
because it had not predicted observable results that
have not occurred (VII, §7.2)

No transfer of the UMP optimality

No decisional support (occurences of inadmissibility)

Evaluation only under the null hypothesis

Huge numerical difference with the Bayesian range of answers
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Opposition to classical tests

Bayesian lower bounds

For illustration purposes, consider a class G of prior distributions

B(x,G ) = inf
g∈G

f(x|θ0)∫
Θ f(x|θ)g(θ) dθ ,

P (x,G ) = inf
g∈G

f(x|θ0)
f(x|θ0) +

∫
Θ f(x|θ)g(θ) dθ

when ̺0 = 1/2 or

B(x,G ) =
f(x|θ0)

supg∈G

∫
Θ f(x|θ)g(θ)dθ , P (x,G ) =

[
1 +

1

B(x,G )

]−1

.
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Opposition to classical tests

Resolution

Lemma

If there exists a mle for θ, θ̂(x), the solutions to the Bayesian lower
bounds are

B(x,G ) =
f(x|θ0)
f(x|θ̂(x))

, PP (x,G ) =

[

1 +
f(x|θ̂(x))
f(x|θ0)

]−1

respectively
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Opposition to classical tests

Normal case

When x ∼ N (θ, 1) and H0 : θ0 = 0, the lower bounds are

B(x,GA) = e−x
2/2 and P (x,GA) =

(
1 + ex

2/2
)−1

,

i.e.
p-value 0.10 0.05 0.01 0.001

P 0.205 0.128 0.035 0.004
B 0.256 0.146 0.036 0.004

[Quite different!]
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Opposition to classical tests

Unilateral case

Different situation when H0 : θ ≤ 0

Single prior can be used both for H0 and Ha

Improper priors are therefore acceptable

Similar numerical values compared with p-values
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Opposition to classical tests

Unilateral agreement

Theorem

When x ∼ f(x− θ), with f symmetric around 0 and endowed with
the monotone likelihood ratio property, if H0 : θ ≤ 0, the p-value
p(x) is equal to the lower bound of the posterior probabilities,
P (x,GSU ), when GSU is the set of symmetric unimodal priors and
when x > 0.

Reason:

p(x) = Pθ=0(X > x) =

∫ +∞

x
f(t) dt = inf

K

1

1 +

[
R 0
−K

f(x−θ) dθ
R K
−K

f(x−θ)
dθ

]−1
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Opposition to classical tests

Cauchy example

When x ∼ C (θ, 1) and H0 : θ ≤ 0, lower bound inferior to p-value:

p-value 0.437 0.102 0.063 0.013 0.004

P 0.429 0.077 0.044 0.007 0.002
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Conclusion

Comments

ToP very imprecise about choice of priors in the setting of
tests

ToP misses the difficulty of improper priors [coherent with
earlier stance]

but this problem still generates debates within the B
community

Some degree of goodness-of-fit testing but against fixed
alternatives

Persistence of the form

K ≈
√
πn

2

(
1 +

t2

ν

)−1/2ν+1/2

but ν not so clearly defined...
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Chapter 6: Significance tests: various complications

1 Fundamental notions

2 Direct Probabilities

3 Estimation problems

4 Asymptotics & DT& ...

5 Significance tests: one new parameter

6 Significance tests: various complications

7 Frequency definitions and direct methods
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6 Significance tests: various complications
What’s in there?!
Model choice
Bayesian resolution
Problems
Compatible priors
Variable selection
Symmetrised compatible priors
Examples
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What’s in there?!

Contents of Chapter 6

Certainly not a foundational chapter!!!

Some elementary remarks like

Anything that alters the prior probability of [the
alternative parameter] will alter the rinferences about q′

(VI, §6.0)

and

One further possibility is that q and q′ may not be
initially equally probable (VI, §6.0)
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What’s in there?!

Repetition of the multiple alternatives

With several parameters under H1, there are several embedded
alternatives:

If the parameters are α, β, we can write q for the
proposition α = β = 0, qα for α 6= 0, β = 0, qβ for
α =, β 6= 0, and qαβ for α 6= 0, β 6= 0 (VI, §6.1).

Difficulty to order qα and qβ reminiscent of Bernardo’s reference
priors but things get worse...

There is a best order of procedures, which is to assert the
[hypothesis] that is most strongly supported, rejet those
that are denied and proceed to consider further
combinations (VI, §6.12)
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What’s in there?!

Re-enter Ockham explicitely!

Pluralitas non est ponenda sine neccesitate

Variation is random until the
contrary is shown; and new
parameters in laws, when they
are suggested, must be tested
one at a time, unless there is
specific reason to the contrary.
(...) This principle is workable
and is a complete reversal of
the usual notion of a ‘principle
of causality’ (VI, §6.12)
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What’s in there?!

Case of two location parameters (VI, §6.2)

ToP suggests to use a Cauchy prior C(0, σ2) on the radius ρ and a
uniform prior on the angle
Similar shape of the Bayes factor

K ≈ n1/2π

2
t
(
ν + t2

)−ν/2+1
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What’s in there?!

Interesting extensions

Some hints at

Hierarchical modelling (§6.3)

xs ∼ f(x− αℓ) , αℓ ∼ τg({αℓ − α}/τ)

Hidden Markov model (§6.4)

P =





α+ (1 − α)p1 (1− α)p2 · · · (1− α)pr
(1− α)p1 α+ (1− α)p2 · · · (1− α)pr

· · ·
(1− α)p1 (1− α)p2 · · · α+ (1− α)pr




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What’s in there?!

Un-interesting disgressions

Section §6.5 very windy about the nature of deduction and the
approximation of point null hypotheses by interval representations

...by extending the meaning of q so as to say that the
new parameter is not 0 but may be anywhere in some
finite range. (...) I think, however, that it is both
impossible and undesirable. (...) If there is anything to
suggest a range of possible values it should go into the
statement of q′, not of q (VI, §6.5).
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Model choice

Model choice and model comparison

Choice of models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Model choice

Example (Galaxy normal mixture)

Set of observations of radial speeds of 82 galaxies possibly
modelled as a mixture of normal distributions

Mi : xj ∼
i∑

ℓ=1

pℓiN (µℓi, σ
2
ℓi)

1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.5

1.0
1.5

2.0

vitesses
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Bayesian resolution

Bayesian resolution

B Framework

Probabilises the entire model/parameter space
This means:

allocating probabilities pi to all models Mi

defining priors πi(θi) for each parameter space Θi
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Bayesian resolution

Formal solutions

Resolution
1 Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi
∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj

2 Take largest p(Mi|x) to determine “best” model,
or use averaged predictive

∑

j

p(Mj |x)
∫

Θj

fj(x
′|θj)πj(θj |x)dθj
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Problems

Several types of problems

Concentrate on selection perspective:

averaging = estimation = non-parsimonious = no-decision
how to integrate loss function/decision/consequences
representation of parsimony/sparcity (Ockham’s rule)
how to fight overfitting for nested models

Which loss ?
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Problems

Several types of problems (2)

Choice of prior structures

adequate weights pi:
if M1 = M2 ∪M3, p(M1) = p(M2) + p(M3) ?
priors distributions

πi(θi) defined for every i ∈ I

πi(θi) proper (Jeffreys)
πi(θi) coherent (?) for nested models

Warning

Parameters common to several models must be treated as separate
entities!
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Problems

Several types of problems (3)

Computation of predictives and marginals

- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over many models (2k)
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Compatible priors

Compatibility principle

Difficulty of finding simultaneously priors on a collection of models
Mi (i ∈ I)
Easier to start from a single prior on a “big” model and to derive
the others from a coherence principle

[Dawid & Lauritzen, 2000]
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Compatible priors

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1⊥)) = inf
θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

d(f(· |θ1), f(· |θ1⊥))

[Goutis & Robert, 1998]
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Compatible priors

Operational principle for variable selection

Selection rule

Among all subsets A of covariates such that

d(Mg,MA) = Ex[d(fg(·|x, α), fA(·|xA, α⊥))] < ǫ

select the submodel with the smallest number of variables.

[Dupuis & Robert, 2001]
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Compatible priors

Kullback proximity

Alternative to above

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫
Θ1
f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫
Θ2
f2(x|θ)π2(θ)dθ,

π2 = arg min
π2

∫
log

(
m1(x;π1)

m2(x;π2)

)
m1(x;π1) dx
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Compatible priors

Difficulties

Does not give a working principle when M2 is not a submodel
M1

Depends on the choice of π1

Prohibits the use of improper priors

Worse: useless in unconstrained settings...
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Compatible priors

Case of exponential families

Models
M1 : {f1(x|θ), θ ∈ Θ}

and
M2 : {f2(x|λ), λ ∈ Λ}

sub-model of M1,

∀λ ∈ Λ,∃ θ(λ) ∈ Θ, f2(x|λ) = f1(x|θ(λ))

Both M1 and M2 are natural exponential families

f1(x|θ) = h1(x) exp(θTt1(x)−M1(θ))

f2(x|λ) = h2(x) exp(λTt2(x)−M2(λ))
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Compatible priors

Conjugate priors

Parameterised (conjugate) priors

π1(θ; s1, n1) = C1(s1, n1) exp(sT1 θ − n1M1(θ))

π2(λ; s2, n2) = C2(s2, n2) exp(sT2 λ− n2M2(λ))

with closed form marginals (i = 1, 2)

mi(x; si, ni) =

∫
fi(x|u)πi(u)du =

hi(x)Ci(si, ni)

Ci(si + ti(x), ni + 1)
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Compatible priors

Conjugate compatible priors

(Q.) Existence and unicity of Kullback-Leibler projection

(s∗2, n
∗
2) = arg min

(s2,n2)
KL(m1(·; s1, n1),m2(·; s2, n2))

= arg min
(s2,n2)

∫
log

(
m1(x; s1, n1)

m2(x; s2, n2)

)
m1(x; s1, n1)dx
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Compatible priors

A sufficient condition

Sufficient statistic ψ = (λ,−M2(λ))

Theorem (Existence)

If, for all (s2, n2), the matrix

V
π2
s2,n2

[ψ]− E
m1
s1,n1

[
V
π2
s2,n2

(ψ|x)
]

is semi-definite negative, the conjugate compatible prior exists, is
unique and satisfies

E
π2
s∗2 ,n

∗
2
[λ]− E

m1
s1,n1

[Eπ2
s∗2 ,n

∗
2
(λ|x)] = 0

E
π2
s∗2 ,n

∗
2
(M2(λ))− E

m1
s1,n1

[Eπ2
s∗2 ,n

∗
2
(M2(λ)|x)] = 0.
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Compatible priors

An application to linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1 M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ2 ∼ N
(
s1, σ

2n1(X
T
1 X1)

−1
)

where X1 is a (n× k1) matrix of rank k1 ≤ n

2 M2 :

y|β2, σ
2 ∼ N (X2β2, σ

2), β2|σ2 ∼ N
(
s2, σ

2n2(X
T
2 X2)

−1
)
,

where X2 is a (n× k2) matrix with span(X2) ⊆ span(X1)

For a fixed (s1, n1), we need the projection (s2, n2) = (s1, n1)
⊥
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Compatible priors

Compatible g-priors

Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ2; s1, n1) and m2(y|σ2; s2, n2)

Theorem

Conditional on σ2, the conjugate compatible prior of M2 wrt M1 is

β2|X2, σ
2 ∼ N

(
s∗2, σ

2n∗2(X
T

2 X2)
−1
)

with

s∗2 = (XT

2 X2)
−1XT

2 X1s1

n∗2 = n1
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Variable selection

Variable selection

Regression setup where y regressed on a set {x1, . . . , xp} of p
potential explanatory regressors (plus intercept)

Corresponding 2p submodels Mγ , where γ ∈ Γ = {0, 1}p indicates
inclusion/exclusion of variables by a binary representation,
e.g. γ = 101001011 means that x1, x3, x5, x7 and x8 are included.
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Variable selection

Notations

For model Mγ ,

qγ variables included

t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} indices of those variables and
t0(γ) indices of the variables not included

For β ∈ Rp+1,

βt1(γ) =
[
β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

Xt1(γ) =
[
1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]
.

Submodel Mγ is thus

y|β, γ, σ2 ∼ N
(
Xt1(γ)βt1(γ), σ

2In
)
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Variable selection

Global and compatible priors

Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g

Resulting compatible prior

N
((

XT
t1(γ)

Xt1(γ)

)−1
XT
t1(γ)

Xβ̃, cσ2
(
XT
t1(γ)

Xt1(γ)

)−1
)

[Surprise!]

Theory of Probability revisited

Significance tests: various complications

Variable selection

Model index

For the hierarchical parameter γ, we use

π(γ) =

p∏

i=1

τγi

i (1− τi)
1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model (and a priori independence between the
presence/absence of variables)
Typically, when no prior information is available,
τ1 = . . . = τp = 1/2, ie a uniform prior

π(γ) = 2−p
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Variable selection

Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c+1)−(qγ+1)/2

[
yTy − cyTP1y

c+ 1
+
β̃TXTP1Xβ̃

c+ 1
− 2yTP1Xβ̃

c+ 1

]
−n/2

.

Conditionally on γ, posterior distributions of β and σ2:

βt1(γ)|σ2, y, γ ∼ N
[

c

c+ 1
(U1y + U1Xβ̃/c),

σ2c

c+ 1

(
XT

t1(γ)Xt1(γ)

)
−1
]
,

σ2|y, γ ∼ IG
[
n

2
,
yTy

2
− cyTP1y

2(c+ 1)
+
β̃TXTP1Xβ̃

2(c+ 1)
− yTP1Xβ̃

c+ 1

]
.
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Variable selection

Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:

Taking β̃ = 0p+1 and c large does not work
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Variable selection

Influence of c

Erase influence

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]

True model: two predictors x1 and x2, i.e. γ∗ = 110. . .0,
(β0, β1, β2) = (5, 1, 3), and σ2 = 4.
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Variable selection

Influence of c
2

t1(γ) c = 10 c = 100 c = 103 c = 104 c = 106

0,1,2 0.04062 0.35368 0.65858 0.85895 0.98222
0,1,2,7 0.01326 0.06142 0.08395 0.04434 0.00524
0,1,2,4 0.01299 0.05310 0.05805 0.02868 0.00336
0,2,4 0.02927 0.03962 0.00409 0.00246 0.00254
0,1,2,8 0.01240 0.03833 0.01100 0.00126 0.00126
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Variable selection

Noninformative case (cont’d)

In the noninformative setting,

π(γ|y) ∝
∞∑

c=1

c−1(c+ 1)−(qγ+1)/2

[
yTy − c

c+ 1
yTP1y

]−n/2

converges for all y’s
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Variable selection

Casella & Moreno’s example

t1(γ)
106∑

i=1

π(γ|y, c)π(c)

0,1,2 0.78071
0,1,2,7 0.06201
0,1,2,4 0.04119
0,1,2,8 0.01676
0,1,2,5 0.01604
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Variable selection

Gibbs approximation

When p large, impossible to compute the posterior probabilities of
the 2p models.
Use of a Monte Carlo approximation of π(γ|y)

Gibbs sampling

• At t = 0, draw γ0 from the uniform distribution on Γ

• At t, for i = 1, . . . , p, draw
γti ∼ π(γi|y, γt1, . . . , γti−1, . . . , γ

t−1
i+1 , . . . , γ

t−1
p )
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Variable selection

Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N
(

β0 +

20∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
True model with n = 180, σ2 = 4 and seven predictor variables

x1, x3, x5, x6, x12, x18, x20,
(β0, β1, β3, β5, β6, β12, β18, β20) = (3, 4, 1,−3, 12,−1, 5,−6)
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Variable selection

Gibbs approximation (cont’d)

Example (Simulated data (2))

γ π(γ|y) π̂(γ|y)
GIBBS

0,1,3,5,6,12,18,20 0.1893 0.1822
0,1,3,5,6,18,20 0.0588 0.0598
0,1,3,5,6,9,12,18,20 0.0223 0.0236
0,1,3,5,6,12,14,18,20 0.0220 0.0193
0,1,2,3,5,6,12,18,20 0.0216 0.0222
0,1,3,5,6,7,12,18,20 0.0212 0.0233
0,1,3,5,6,10,12,18,20 0.0199 0.0222
0,1,3,4,5,6,12,18,20 0.0197 0.0182
0,1,3,5,6,12,15,18,20 0.0196 0.0196

Gibbs (T = 100, 000) results for β̃ = 021 and c = 100
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Variable selection

Processionary caterpillar

Influence of some forest settlement characteristics on the
development of caterpillar colonies

Response y log-transform of the average number of nests of
caterpillars per tree on an area of 500 square meters (n = 33 areas)
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Variable selection

Processionary caterpillar (cont’d)

Potential explanatory variables

x1 altitude (in meters), x2 slope (in degrees),

x3 number of pines in the square,

x4 height (in meters) of the tree at the center of the square,

x5 diameter of the tree at the center of the square,

x6 index of the settlement density,

x7 orientation of the square (from 1 if southb’d to 2 ow),

x8 height (in meters) of the dominant tree,

x9 number of vegetation strata,

x10 mix settlement index (from 1 if not mixed to 2 if mixed).
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Variable selection

x1 x2 x3

x4 x5 x6

x7 x8 x9
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Variable selection

Bayesian regression output

Estimate BF log10(BF)

(Intercept) 9.2714 26.334 1.4205 (***)
X1 -0.0037 7.0839 0.8502 (**)
X2 -0.0454 3.6850 0.5664 (**)
X3 0.0573 0.4356 -0.3609
X4 -1.0905 2.8314 0.4520 (*)
X5 0.1953 2.5157 0.4007 (*)
X6 -0.3008 0.3621 -0.4412
X7 -0.2002 0.3627 -0.4404
X8 0.1526 0.4589 -0.3383
X9 -1.0835 0.9069 -0.0424
X10 -0.3651 0.4132 -0.3838

evidence against H0: (****) decisive, (***) strong, (**)
subtantial, (*) poor
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Variable selection

Bayesian variable selection

t1(γ) π(γ|y,X) π̂(γ|y,X)

0,1,2,4,5 0.0929 0.0929
0,1,2,4,5,9 0.0325 0.0326
0,1,2,4,5,10 0.0295 0.0272
0,1,2,4,5,7 0.0231 0.0231
0,1,2,4,5,8 0.0228 0.0229
0,1,2,4,5,6 0.0228 0.0226
0,1,2,3,4,5 0.0224 0.0220
0,1,2,3,4,5,9 0.0167 0.0182
0,1,2,4,5,6,9 0.0167 0.0171
0,1,2,4,5,8,9 0.0137 0.0130

Noninformative G-prior model choice and Gibbs estimations
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Symmetrised compatible priors

Postulate

Previous principle requires embedded models (or an encompassing
model) and proper priors, while being hard to implement outside
exponential families
Now we determine prior measures on two models M1 and M2, π1

and π2, directly by a compatibility principle.
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Symmetrised compatible priors

Generalised expected posterior priors

[Perez & Berger, 2000]

EPP Principle

Starting from reference priors πN1 and πN2 , substitute by prior
distributions π1 and π2 that solve the system of integral equations

π1(θ1) =

∫

X

πN1 (θ1 |x)m2(x)dx

and

π2(θ2) =

∫

X

πN2 (θ2 |x)m1(x)dx,

where x is an imaginary minimal training sample and m1, m2 are
the marginals associated with π1 and π2 respectively.
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Symmetrised compatible priors

Motivations

Eliminates the “imaginary observation” device and
proper-isation through part of the data by integration under
the “truth”

Assumes that both models are equally valid and equipped
with ideal unknown priors

πi, i = 1, 2,

that yield “true” marginals balancing each model wrt the
other

For a given π1, π2 is an expected posterior prior
Using both equations introduces symmetry into the game
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Symmetrised compatible priors

Dual properness

Theorem (Proper distributions)

If π1 is a probability density then π2 solution to

π2(θ2) =

∫

X

πN2 (θ2 |x)m1(x)dx

is a probability density

c© Both EPPs are either proper or improper
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Symmetrised compatible priors

Bayesian coherence

Theorem (True Bayes factor)

If π1 and π2 are the EPPs and if their marginals are finite, then the
corresponding Bayes factor

B1,2(x)

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Obviously only interesting when both π1 and π2 are improper.
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Symmetrised compatible priors

Existence/Unicity

Theorem (Recurrence condition)

When both the observations and the parameters in both models
are continuous, if the Markov chain with transition

Q
(
θ′1 | θ1

)
=

∫
g
(
θ1, θ

′
1, θ2, x, x

′) dxdx′dθ2

where

g
(
θ1, θ

′
1, θ2, x, x

′) = πN1
(
θ′1 |x

)
f2 (x | θ2)πN2

(
θ2 |x′

)
f1

(
x′ | θ1

)
,

is recurrent, then there exists a solution to the integral equations,
unique up to a multiplicative constant.
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Symmetrised compatible priors

Consequences

If the M chain is positive recurrent, there exists a unique pair
of proper EPPS.

The transition density Q (θ′1 | θ1) has a dual transition density
on Θ2.

There exists a parallel M chain on Θ2 with identical
properties; if one is (Harris) recurrent, so is the other.

Duality property found both in the MCMC literature and in
decision theory

[Diebolt & Robert, 1992; Eaton, 1992]

When Harris recurrence holds but the EPPs cannot be found,
the Bayes factor can be approximated by MCMC simulation
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Examples

Point null hypothesis testing

Testing H0 : θ = θ∗ versus H1 : θ 6= θ∗, i.e.

M1 : f (x | θ∗) ,
M2 : f (x | θ) , θ ∈ Θ.

Default priors

πN1 (θ) = δθ∗ (θ) and πN2 (θ) = πN (θ)

For x minimal training sample, consider the proper priors

π1 (θ) = δθ∗ (θ) and π2 (θ) =

∫
πN (θ |x) f (x | θ∗) dx
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Examples

Point null hypothesis testing (cont’d)

Then
∫
πN1 (θ |x)m2 (x) dx = δθ∗ (θ)

∫
m2 (x) dx = δθ∗ (θ) = π1 (θ)

and
∫
πN2 (θ |x)m1 (x) dx =

∫
πN (θ |x) f (x | θ∗) dx = π2 (θ)

c©π1 (θ) and π2 (θ) are integral priors

Note

Uniqueness of the Bayes factor
Integral priors and intrinsic priors coincide

[Moreno, Bertolino and Racugno, 1998]
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Examples

Location models

Two location models

M1 : f1 (x | θ1) = f1 (x− θ1)

M2 : f2 (x | θ2) = f2 (x− θ2)

Default priors
πNi (θi) = ci, i = 1, 2

with minimal training sample size one
Marginal densities

mN
i (x) = ci, i = 1, 2
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Examples

Location models (cont’d)

In that case, πN1 (θ1) and πN2 (θ2) are integral priors when c1 = c2:

∫
πN1 (θ1 |x)mN

2 (x) dx =

∫
c2f1 (x− θ1) dx = c2

∫
πN2 (θ2 |x)mN

1 (x) dx =

∫
c1f2 (x− θ2) dx = c1.

c© If the associated Markov chain is recurrent,

πN1 (θ1) = πN2 (θ2) = c

are the unique integral priors and they are intrinsic priors
[Cano, Kessler & Moreno, 2004]
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Examples

Location models (cont’d)

Example (Normal versus double exponential)

M1 : N (θ, 1), πN1 (θ) = c1,

M2 : DE(λ, 1), πN2 (λ) = c2.

Minimal training sample size one and posterior densities

πN1 (θ |x) = N (x, 1) and πN2 (λ |x) = DE (x, 1)
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Examples

Location models (cont’d)

Example (Normal versus double exponential (2))

Transition θ → θ′ of the Markov chain made of steps :

1 x′ = θ + ε1, ε1 ∼ N (0, 1)

2 λ = x′ + ε2, ε2 ∼ DE(0, 1)

3 x = λ+ ε3, ε3 ∼ DE(0, 1)

4 θ′ = x+ ε4, ε4 ∼ N (0, 1)

i.e. θ′ = θ + ε1 + ε2 + ε3 + ε4

random walk in θ with finite second moment, null recurrent
c© Resulting Lebesgue measures π1 (θ) = 1 = π2 (λ) invariant
and unique solutions to integral equations
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Chapter 7: Frequency definitions and direct methods
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7 Frequency definitions and direct methods
Contents
On tests and p values

Theory of Probability revisited

Frequency definitions and direct methods

Contents

In a dubious battle...

First, discussion against mathematical formalism that tries to build
on intuition for finite state spaces

For continuous distributions there are an infinite number
of possible cases, and the definition makes the probability,
in the face of it, the ratio of two infinite numbers and
therefore meaningless. (...) On the infinite population
definition, any finite probability is the ratio of two infinite
numbers and therefore is indeterminate (VII, §7.0)

Not worth much except as an historical perspective
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Contents

Dual representation

Next, discussion of dual meaning of Student’s T distribution:

P (dz|x, σ,H) ∝ (1 + z2)−1/2ndz (1)

where (...)

z =
x− x̄

s
.

My result is

P (dz|x̄, s,H) ∝ (1 + z2)−1/2ndz (4)

This is not the same thing as (1) since the data is
different.
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Contents

Explanation

While (1) is the (sampling) distribution of z as a transform of the
data (x̄, s), (4) is the (posterior) distribution of the mean
parameter x given the data.
Instance of a (Fisherian) pivotal quantity

Warnin! Dependence on the prior distribution

there is only one distrbution of the prior probability that
can lead to it, namely

P (dxdσ|H) ∝ dxdσ/σ
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On tests and p values

Criticism of frequentist tests

Rejection of Student’s t test:

...we should reject a suggested value of x by such rule as
this, but applying this in practice would imply that if
x was known to be always the same we must accept it in
95 per cent. and reject it in 5 per cent. of the cases
which hardly seems a satisfactory state of affairs. There
is no positive virtue in rejecting a hypothesis in 5 per
cent. of the cases where it is true, though it may be
inevitable if we are to have any rule at all for rejecting it
when it is false, that we shall sometimes reject it when it
is true. In practice nobody would use the rule in this way
if x was always the same; samples would always be
combined (VII, §7.1).
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On tests and p values

Missing [degree of] freedom

Same criticism of Pearson’s χ2 test [if acceptance of Pearson’s χ2

estimation method...]

if there were n groups of observations [and if] m
parameters had been found from the data, [Pearson]
would form the integral (VII, §7.2)

P (χ2) =

∫ ∞

χ
χn−m−1e−1/2χ dχ

/∫ ∞

0
χn−m−1e−1/2χ dχ

Should be n−m− 2 to correspond to the standard χ2
n−m−1

approximation...
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On tests and p values

Criticism of p-values

One of ToP most quoted sentences:

What the use of P implies, therefore, is that a hypothesis
that may be true may be rejected because it had not
predicted observable results that have not occurred (VII,
§7.2)

Even more to the point:

If P is small that means that there have been
unexpectedly large departures from prediction. But why
should these be stated in terms of P? (VII, §7.2)
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On tests and p values

Criticism of p-values (cont’d)

Jeffreys defends the use of likelihood ratios [or inverse probability]
versus p values (VII, §7.2)

...if the actual value is unknown the value of the power
function is also unknown (...) [and] if we must choose
between two definitely stated alternatives we should
naturally take the one that gives the larger likelihood
(VII, §7.5)
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On tests and p values

Criticism of p-values (cont’d)

Acceptance of posterior probability statements related to
confidence assessments:

...several of the P integrals have a definitive place in the
present theory, in problems of pure estimation. For the
normal law with a known standard error, the total are of
the tail represents the probability, given the data, that
the estimated difference has the wrong sign (VII, §7.21)

As for instance in design:

...the P integral found from the difference between the
mean yields of two varieties gives correctly the probability
on the data that the estimates are in the wrong order,
which is what is required (VII, §7.21)
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On tests and p values

Criticism of p-values (cont’d)

But does not make sense for testing point null hypotheses

If some special value has to be excluded before we can
assert any other value, what is the best rule on the data
available for deciding to retain it or adopt a new one?
(VII, §7.21)

And ToP finds no justification in the .05 golden rule

In itself it is fallacious [and] there is not the slightest
reason to suppose that it gives the best standard (VII,
§7.21)
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On tests and p values

Another fundamental issue

Why are p values so bad?
Because they do not account for the alternative:

Is it of the slightest use to reject an hypothesis unless we
have some idea of what to put in its place? (VII, §7.22)

...and for the consequences of rejecting the null:

The test required, in fact, is not whether the null
hypothesis is altogether satisfactory, but whether any
suggested alternative is likely to give an improvement in
representing future data (VII, §7.22)
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On tests and p values

The disagreement with Fisher

Main points of contention (VII, §7.4)

...general agreement between Fisher
and myself...

...hypothetical infinite
population...

lack of conditioning

...use of the P integrals...

Oooops!

...at that time, to my regret, I had not read ‘Student’s’
papers and it was not till considerably later that I saw the
intimate relation between [Fisher’s] methods and mine.
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On tests and p values

Overall risk

Criticism of power as parameter dependent Power back

Use of average risk

...the expectation of the total fraction of mistakes will be

2

∫ ∞

ac

P (qda|H) + 2

∫ ac

0

∫
P (q′dαda|H) .

Hence the total number of mistakes will be made a
minimum if the line is drawn at the critical value that
makes K = 1 (VII, §7.4) .

But bound becomes data-dependent!
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Chapter 8: General questions

1 Fundamental notions

2 Direct Probabilities

3 Estimation problems

4 Asymptotics & DT& ...

5 Significance tests: one new parameter

6 Significance tests: various complications

7 Frequency definitions and direct methods
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Introduction

Priors are not frequencies

First part (§8.0) focussing on the concept of prior distribution and
the differences with a frequency based probability

The essence of the present theory is that no probability,
direct, prior, or posterior is simply a frequency (VIII,
§8.0).

Extends this perspective to sampling distributions too [with hairy
arguments!].
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Subjective prior

Common criticism

Next, discussion of the subjective nature of priors

Critics (...) usually say that the prior probability is
‘subjective’ (...) or refer to the vagueness of previous
knowledge as an indication that the prior probability
cannot be assessed (VIII, §8.0).
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Subjective prior

Conditional features of probabilities

Long argument about the subjective nature of knowledge

What the present theory does is to resolve the problem
by making a sharp distinction between general principles,
which are deliberately designed to say nothing about
what experience is possible, and, on the other hand,
propositions that do concern experience and are in the
first place merely considered among alternatives (VIII,
§8.1).

and definition of probability

The probability of a proposition irrespective of the data
has no meaning and is simply an unattainable ideal (VIII,
§8.1).
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Jeffrey’s prior

Noninformative priors

ToP then advances the use of Jeffreys’ priors as the answer to
missing prior information

A prior probability used to express ignorance is merely the
formal statement of ignorance (VIII, §8.1).

Overlooks the lack of uniqueness of such priors
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Missing alternatives

Missing alternatives

Next section §8.2 fairly interesting in that ToP discusses the effect
of a missing alternative

We can never rule out the possibility that some new
explanantion may be suggested of any set of
experimental facts (VIII, §8.2).

Seems partly wrong though...
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Missing alternatives

Missing alternatives (cont’d)

Indeed, if H0 tested against H1, Bayes factor is

Bπ
01 =

∫
f0(x|θ0)π0(dθ0)∫
f1(x|θ1)π1(dθ1)

while if another (exclusive) alernative H2 is introduced, it would be

Bπ
01 =

∫
f0(x|θ0)π0(dθ0)

ω1

∫
f1(x|θ1)π1(dθ1) + (1− ω1)

∫
f2(x|θ2)π2(dθ2)

where ω1 relative prior weight of H1 vs H2

Basically biased in favour of H0
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Marginaliae

Marginaliae

The remaining sections are not very interesting from a Bayesian
point of view [but may be so from an epistemiological point of
view (quantum theory, relativity, “rejection of unobservables”,
realism vs. idealism)...]
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Conclusion

The end is near!!!

Conclusive section about ToP principles

...we have first the main principle that the ordinary
common-sense notion of probability is capable of
consistent treatment (VIII, §8.6).

...although consistency is not precisely defined.

The principle of inverse probability is a theorem (VIII,
§8.6).
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Conclusion

Jeffreys’ priors at the center of this theory:

The prior probabilities needed to express ignorance of the
value of a quantity to be estimated, where there is
nothing to call special attention to a particular value are
given by an invariance theory (VIII, §8.6).

with adequate changes for testing hypotheses:

Where a question of significance arises, that is, where
previous considerations call attention to some particular
value, half, or possibly some smaller fraction, of the prior
probability is concentrated at that value (VIII, §8.6).
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Conclusion

Main results

1 a proof independent of limiting processes that the whole
information is contained in the likelihood

2 a development of pure estimation processes without further
hypothesis

3 a general theory of significance tests

4 an account of how in certain conditions a law can reach a
high probability
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Conclusion

Corresponing remaining problems in ToP

1 information also contained in prior distribution

2 choice of estimation procedure never explicited

3 complete occultation of the infinite mass problem

4 no true theory of goodness of fit tests

but...

...it is enough (VIII, §8.8).


