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Chapter 0 : the what and why of statistics

1 the what and why of statistics
What?
Examples
Why?



What is statistics?

Many notions and usages of statistics, from description to action:

summarising data

extracting significant patterns
from huge datasets

exhibiting correlations

smoothing time series

predicting random events

selecting influential variates

making decisions

identifying causes

detecting fraudulent data

[xkcd]



What is statistics?

Many approaches to the field

algebra

data mining

mathematical statistics

machine learning

computer science

econometrics

psychometrics

[xkcd]



Definition(s)

Given data x1, . . . , xn, possibly driven by a probability distribution
F, the goal is to infer about the distribution F with theoretical
guarantees when n grows to infinity.

data can be of arbitrary size and format

driven means that the xi’s are considered as realisations of
random variables related to F

sample size n indicates the number of [not always
exchangeable] replications

distribution F denotes a probability distribution of a known or
unknown transform of x1
inference may cover the parameters driving F or some
functional of F

guarantees mean getting to the “truth” or as close as possible
to the “truth” with infinite data

“truth” could be the entire F, some functional of F or some
decision involving F
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Warning: models are neither true nor real

Data most usually comes without a model, which is a
mathematical construct intended to bring regularity and
reproducibility, in order to draw inference

“All models are wrong
but some are more use-
ful than others”
—George Box—

Usefulness is to be understood as having explanatory or predictive
abilities



Warning (2)

“Model produces data. The data does not produce the
model.”
—P. Westfall and K. Henning—

Meaning that

a single model cannot be associated with a given dataset, no
matter how precise the data gets

but models can be checked by opposing artificial data from a
model to observed data and spotting potential discrepancies

c© Relevance of [computer] simulation tools relying on probabilistic
models



Example 1: spatial pattern

(a) and (b) mortality in the 1st and 8th

realizations; (c) mean mortality; (d)

LISA map; (e) area covered by hot

spots; (f) mortality distribution with

high reliability

Mortality from oral cancer in Taiwan:

Model chosen to be

Yi ∼ P(mi)︸ ︷︷ ︸
Poisson

logmi = logEi + a+ εi

[Lin et al., 2014, Int. J. Envir. Res. Pub. Health]



Example 1: spatial pattern

(a) and (b) mortality in the 1st and 8th

realizations; (c) mean mortality; (d)

LISA map; (e) area covered by hot

spots; (f) mortality distribution with

high reliability

Mortality from oral cancer in Taiwan:

Model chosen to be

Yi ∼ P(mi) logmi = logEi + a+ εi

where

Yi and Ei are observed and age/sex
standardised expected counts in area i

a is an intercept term representing the
baseline (log) relative risk across the
study region

noise εi spatially structured with zero
mean

[Lin et al., 2014, Int. J. Envir. Res. Pub. Health]



Example 2: World cup predictions

If team i and team j are playing and score yi and yj goals, resp.,
then the data point for this game is

yij = sign(yi − yj)×
√
|yi − yj|

Corresponding data model is:

yij ∼ N(ai − aj,σy),

where ai and aj ability parameters and σy
scale parameter estimated from the data

Nate Silver’s prior scores

ai ∼ N(b× prior scorei,σa)

[A. Gelman, blog, 13 July 2014]

Resulting confidence
intervals



Example 2: World cup predictions

If team i and team j are playing and score yi and yj goals, resp.,
then the data point for this game is

yij = sign(yi − yj)×
√
|yi − yj|

Potential outliers led to fatter tail model:

yij ∼ T7(ai − aj,σy),

Nate Silver’s prior scores

ai ∼ N(b× prior scorei,σa)

[A. Gelman, blog, 13 July 2014] Resulting confidence
intervals



Example 3: American voting patterns

“Within any education category, richer people vote more
Republican. In contrast, the pattern of education and voting is
nonlinear.”

[A. Gelman, blog, 23 March 2012]



Example 3: American voting patterns

“Within any education category, richer people vote more
Republican. In contrast, the pattern of education and voting is
nonlinear.”
“There is no plausible way based on these data in which elites can
be considered a Democratic voting bloc. To create a group of
strongly Democratic-leaning elite whites using these graphs, you
would need to consider only postgraduates (...), and you have to
go down to the below-$75,000 level of family income, which hardly
seems like the American elites to me.”

[A. Gelman, blog, 23 March 2012]



Example 3: American voting patterns

“Within any education category, richer people vote more
Republican. In contrast, the pattern of education and voting is
nonlinear.”

“The patterns are consistent for all three of the past presidential
elections

[A. Gelman, blog, 23 March 2012]



Example 4: Automatic number recognition

Reading postcodes and cheque amounts by analysing images of
digits
Classification problem: allocate a new image (1024x1024 binary
array) to one of the classes 0,1,...,9

Tools:

linear discriminant analysis

kernel discriminant analysis

random forests

support vector machine

deep learning



Example 5: Asian beetle invasion

Several studies in recent years have shown the harlequin conquering other ladybirds across Europe.
In the UK scientists found that seven of the eight native British species have declined. Similar
problems have been encountered in Belgium and Switzerland.

[BBC News, 16 May 2013]

How did the Asian Ladybird beetle
arrive in Europe?

Why do they swarm right now?

What are the routes of invasion?

How to get rid of them
(biocontrol)?

[Estoup et al., 2012, Molecular Ecology Res.]



Example 5: Asian beetle invasion

For each outbreak, the arrow indicates the most likely invasion
pathway and the associated posterior probability, with 95% credible
intervals in brackets

[Lombaert & al., 2010, PLoS ONE]



Example 5: Asian beetle invasion

Most likely scenario of evolution, based on data:
samples from five populations (18 to 35 diploid individuals per
sample), genotyped at 18 autosomal microsatellite loci,
summarised into 130 statistics

[Lombaert & al., 2010, PLoS ONE]



Example 6: Are more babies born on Valentine’s day than
on Halloween?

Uneven pattern of birth rate across the calendar year

with large variations on heavily significant dates (Halloween,
Valentine’s day, April fool’s day, Christmas, ...)



Example 6: Are more babies born on Valentine’s day than
on Halloween?

Uneven pattern of birth rate across the calendar year with large
variations on heavily significant dates (Halloween, Valentine’s day,
April fool’s day, Christmas, ...)

The data could be cleaned even further. Here’s how I’d
start: go back to the data for all the years and fit a regres-
sion with day-of-week indicators (Monday, Tuesday, etc),
then take the residuals from that regression and pipe them
back into [my] program to make a cleaned-up graph. It’s
well known that births are less frequent on the weekends,
and unless your data happen to be an exact 28-year pe-
riod, you’ll get imbalance, which I’m guessing is driving a
lot of the zigzagging in the graph above.



Example 6: Are more babies born on Valentine’s day than
on Halloween?

I modeled the data with a Gaussian
process with six components:

1 slowly changing trend

2 7 day periodical component
capturing day of week effect

3 365.25 day periodical component
capturing day of year effect

4 component to take into account
the special days and interaction
with weekends

5 small time scale correlating noise

6 independent Gaussian noise

[A. Gelman, blog, 12 June 2012]



Example 6: Are more babies born on Valentine’s day than
on Halloween?

Day of the week effect has been
increasing in 80’s

Day of year effect has changed only
a little during years

22nd to 31st December is strange
time

[A. Gelman, blog, 12 June 2012]
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Example 7: Were the 2009 Iranian elections rigged?

Presidential elections of 2009 in Iran saw Mahmoud Ahmadinejad
re-elected, amidst considerable protests against rigging.

...We’ll concentrate on vote counts–the number of votes
received by different candidates in different provinces–and
in particular the last and second-to-last digits of these
numbers. For example, if a candidate received 14,579
votes in a province (...), we’ll focus on digits 7 and 9.
[B. Beber & A. Scacco, The Washington Post, June 20, 2009]

Similar analyses in other countries like Russia (2018)



Example 7: Were the 2009 Iranian elections rigged?

Presidential elections of 2009 in Iran saw Mahmoud Ahmadinejad
re-elected, amidst considerable protests against rigging.

The ministry provided data for 29 provinces, and we exam-
ined the number of votes each of the four main candidates–
Ahmadinejad, Mousavi, Karroubi and Mohsen Rezai–is re-
ported to have received in each of the provinces–a total of
116 numbers.
[B. Beber & A. Scacco, The Washington Post, June 20, 2009]

Similar analyses in other countries like Russia (2018)



Example 7: Were the 2009 Iranian elections rigged?

Presidential elections of 2009 in Iran saw Mahmoud Ahmadinejad
re-elected, amidst considerable protests against rigging.

The numbers look suspicious. We find too many 7s and
not enough 5s in the last digit. We expect each digit (0,
1, 2, and so on) to appear at the end of 10 percent of the
vote counts. But in Iran’s provincial results, the digit 7
appears 17 percent of the time, and only 4 percent of the
results end in the number 5. Two such departures from
the average–a spike of 17 percent or more in one digit
and a drop to 4 percent or less in another–are extremely
unlikely. Fewer than four in a hundred non-fraudulent elec-
tions would produce such numbers.
[B. Beber & A. Scacco, The Washington Post, June 20, 2009]

Similar analyses in other countries like Russia (2018)



Why modelling?

Transforming (potentially deterministic) observations of a
phenomenon “into” a model allows for

detection of recurrent or rare patterns (outliers)

identification of homogeneous groups (classification) and of
changes

selection of the most adequate scientific model or theory

assessment of the significance of an effect (statistical test)

comparison of treatments, populations, regimes, trainings, ...

estimation of non-linear regression functions

construction of dependence graphs and evaluation of
conditional independence



Assumptions

Statistical analysis is always conditional to some mathematical
assumptions on the underlying data like, e.g.,

random sampling

independent and identically distributed (i.i.d.) observations

exchangeability

stationary

weakly stationary

homocedasticity

data missing at random

When those assumptions fail to hold, statistical procedures may
prove unreliable
Warning: This does not mean statistical methodology only applies
when the model is correct



Role of mathematics wrt statistics

Warning: This does not mean statistical methodology only applies
when the model is correct
Statistics is not [solely] a branch of mathematics, but relies on
mathematics to

build probabilistic models

construct procedures as optimising criteria

validate procedures as asymptotically correct

provide a measure of confidence in the reported results

c© This is a mathematical statistics course
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Six quotes from Kaiser Fung

You may think you have all of the data. You don’t.

One of the biggest myths of Big Data is that data alone
produce complete answers.

Their “data” have done no arguing; it is the humans who are
making this claim.

[Kaiser Fung, Big Data, Plainly Spoken blog]



Six quotes from Kaiser Fung

Before getting into the methodological issues, one needs to
ask the most basic question. Did the researchers check the
quality of the data or just take the data as is?

We are not saying that statisticians should not tell stories.
Story-telling is one of our responsibilities. What we want to
see is a clear delineation of what is data-driven and what is
theory (i.e., assumptions).

[Kaiser Fung, Big Data, Plainly Spoken blog]



Six quotes from Kaiser Fung

The standard claim is that the observed effect is so large as to
obviate the need for having a representative sample. Sorry —
the bad news is that a huge effect for a tiny non-random
segment of a large population can coexist with no effect for
the entire population.

[Kaiser Fung, Big Data, Plainly Spoken blog]



Chapter 1 :
statistical vs. real models

Statistical models
Quantities of interest
Exponential families



Statistical models

For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables
[observations versus Random Variables]

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)
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For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 1: Some aspects of F may ultimately remain unavailable



Statistical models

For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 2: The model is always wrong, even though we behave as
if...



Limit of averages

Case of an iid sequence X1, . . . ,Xn ∼ N(0, 1)

Evolution of the range of X̄n across 1000 repetitions, along with one random
sequence and the theoretical 95% range



Limit theorems

Law of Large Numbers (LLN)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X]

X1 + . . . + Xn
n

prob−→ E[X]

[proof: see Terry Tao’s “What’s new”, 18 June 2008]
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n
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Limit theorems

Law of Large Numbers (LLN)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X]

X1 + . . . + Xn
n

a.s.−→ E[X]

Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),

√
n

{
X1 + . . . + Xn

n
− E[X]

}
dist.−→ N(0,σ2)

[proof: see Terry Tao’s “What’s new”, 5 January 2010]



Limit theorems

Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),

√
n

{
X1 + . . . + Xn

n
− E[X]

}
dist.−→ N(0,σ2)

[proof: see Terry Tao’s “What’s new”, 5 January 2010]

Continuity Theorem

If
Xn

dist.−→ a

and g is continuous at a, then

g(Xn)
dist.−→ g(a)



Limit theorems

Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),

√
n

{
X1 + . . . + Xn

n
− E[X]

}
dist.−→ N(0,σ2)

[proof: see Terry Tao’s “What’s new”, 5 January 2010]

Slutsky’s Theorem

If Xn, Yn, Zn converge in distribution to X, a, and b, respectively,
then

XnYn + Zn
dist.−→ aX+ b



Limit theorems

Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),

√
n

{
X1 + . . . + Xn

n
− E[X]

}
dist.−→ N(0,σ2)

[proof: see Terry Tao’s “What’s new”, 5 January 2010]

Delta method’s Theorem

If √
n{Xn − µ}

dist.−→ Np(0,Ω)

and g : Rp → Rq is a continuously differentiable function on a
neighbourhood of µ ∈ Rp, with a non-zero gradient ∇g(µ), then

√
n {g(Xn) − g(µ)}

dist.−→ Nq(0,∇g(µ)TΩ∇g(µ))



Entertaining read



Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of independent Bernoulli variables

Xi ∼ B(pi)

with unknown and different parameters pi (e.g., opinion poll, flu
epidemics)
Transform of i.i.d. U1, . . . ,Un:

Xi = I(Ui 6 pi)



Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of conditionally independent Bernoulli
variables

Xi|zi ∼ B(p(zi))

with covariate-driven parameters p(zi) (e.g., opinion poll, flu
epidemics)
Transform of i.i.d. U1, . . . ,Un:

Xi = I(Ui 6 pi)



Parametric versus non-parametric

Two classes of statistical models:

Parametric when F varies within a family of distributions
indexed by a parameter θ that belongs to a finite dimension
space Θ:

F ∈ {Fθ, θ ∈ Θ}

and to “know” F is to know which θ it corresponds to
(identifiability);

Non-parametric all other cases, i.e. when F is not constrained
in a parametric way or when only some aspects of F are of
interest for inference

Trivia: Machine-learning does not draw such a strict distinction
between classes
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Two classes of statistical models:

Parametric when F varies within a family of distributions
indexed by a parameter θ that belongs to a finite dimension
space Θ:

F ∈ {Fθ, θ ∈ Θ}

and to “know” F is to know which θ it corresponds to
(identifiability);

Non-parametric all other cases, i.e. when F is not constrained
in a parametric way or when only some aspects of F are of
interest for inference

Trivia: Machine-learning does not draw such a strict distinction
between classes



Non-parametric models

In non-parametric models, there may still be constraints on the
range of F‘s as for instance

EF[Y|X = x] = Ψ(βTx), varF(Y|X = x) = σ2

in which case the statistical inference only deals with estimating or
testing the constrained aspects or providing prediction.
Note: Estimating a density or a regression function like Ψ(βTx) is
only of interest in a restricted number of cases



Parametric models

When F = Fθ, inference usually covers the whole of the parameter
θ and provides

point estimates of θ, i.e. values substituting for the unknown
“true” θ

confidence intervals (or regions) on θ as regions likely to
contain the “true” θ

testing specific features of θ (true or not?) or of the whole
family (goodness-of-fit)

predicting some other variable whose distribution depends on
θ

z1, . . . , zm ∼ Gθ(z)

Inference: all those procedures depend on the sample (x1, . . . , xn)
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testing specific features of θ (true or not?) or of the whole
family (goodness-of-fit)

predicting some other variable whose distribution depends on
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Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Questions of interest:

1 likely value of p or range thereof

2 whether or not p exceeds a level p0
3 how many more observations are needed to get an estimation

of p precise within two decimals

4 what is the average length of a “lucky streak” (1’s in a row)



Exemple 2: Normal sample

Model: Observation of i.i.d. Normal variates

Xi ∼ N(µ,σ2)

with unknown parameters µ and σ > 0 (e.g., blood pressure)
Questions of interest:

1 likely value of µ or range thereof

2 whether or not µ is above the mean η of another sample
y1, . . . ,ym

3 percentage of extreme values in the next batch of m xi’s

4 how many more observations to exclude µ = 0 from likely
values

5 which of the xi’s are outliers



Quantities of interest

Statistical distributions (incompletely) characterised by (1-D)
moments:

central moments

µ1 = E [X] =

∫
xdF(x) µk = E

[
(X− µ1)

k
]
k > 1

non-central moments

ξk = E
[
Xk
]
k > 1

α quantile
P(X < ζα) = α

and (2-D) moments

cov(Xi,Xj) =

∫
(xi − E[Xi])(xj − E[Xj])dF(xi, xj)

Note: For parametric models, those quantities are transforms of
the parameter θ



Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

Single parameter p with

E[X] = p var(X) = p(1− p)

[somewhat boring...]
Median and mode



Example 1: Binomial experiment again

Model: Observation of i.i.d. Binomial variables

Xi ∼ B(n,p) P(X = k) =

(
n

k

)
pk(1− p)n−k

Single parameter p with

E[X] = np var(X) = np(1− p)

[somewhat less boring!]
Median and mode



Example 2: Normal experiment again

Model: Observation of i.i.d. Normal variates

Xi ∼ N(µ,σ2) i = 1, . . . ,n ,

with unknown parameters µ and σ > 0 (e.g., blood pressure)

µ1 = E[X] = µ var(X) = σ2 µ3 = 0 µ4 = 3σ
4

Median and mode equal to µ



Exponential families

Class of parametric densities with nice analytic properties

Start from the normal density:

ϕ(x; θ) =
1√
2π

exp
{
xθ− x2/2− θ2/2

}
=

exp{−θ2/2}√
2π

exp {xθ}︸ ︷︷ ︸
x meets θ

exp
{
−x2/2

}
where θ and x only interact through single exponential product



Exponential families

Class of parametric densities with nice analytic properties

Definition

A parametric family of distributions on X is an exponential family
if its density with respect to a measure ν satisfies

f(x|θ) = c(θ)h(x) exp{T(x)Tτ(θ)}︸ ︷︷ ︸
scalar product

, θ ∈ Θ,

where T(·) and τ(·) are k-dimensional functions and c(·) and h(·)
are positive unidimensional functions.

Function c(·) is redundant, being defined by normalising constraint:

c(θ)−1 =

∫
X

h(x) exp{T(x)Tτ(θ)}dν(x)



Exponential families (examples)

Example 1: Binomial experiment again

Binomial variable

X ∼ B(n,p) P(X = k) =

(
n

k

)
pk(1− p)n−k

can be expressed as

P(X = k) = (1− p)n
(
n

k

)
exp{k log(p/(1− p))}

hence

c(p) = (1− p)n , h(x) =

(
n

x

)
, T(x) = x , τ(p) = log(p/(1− p))
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Binomial variable

X ∼ B(n,p) P(X = k) =
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)
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P(X = k) = (1− p)n
(
n

k

)
exp{k log(p/(1− p))}

hence

c(p) = (1− p)n , h(x) =

(
n

x

)
, T(x) = x , τ(p) = log(p/(1− p))



Exponential families (examples)

Example 2: Normal experiment again

Normal variate
X ∼ N(µ,σ2)

with parameter θ = (µ,σ2) and density

f(x|θ) =
1√
2πσ2

exp{−(x− µ)2/2σ2}

=
1√
2πσ2

exp{−x2/2σ2 + xµ/σ2 − µ2/2σ2}

=
exp{−µ2/2σ2}√

2πσ2
exp{−x2/2σ2 + xµ/σ2}

hence

c(θ) =
exp{−µ2/2σ2}√

2πσ2
, T(x) =

(
x2

x

)
, τ(θ) =

(
−1/2σ2

µ/σ2

)



natural exponential families

reparameterisation induced by the shape of the density:

Definition

In an exponential family, the natural parameter is τ(θ) and the
natural parameter space is

Θ =

{
τ ∈ Rk;

∫
X

h(x) exp{T(x)Tτ}dν(x) <∞}
Example For the B(m,p) distribution, the natural parameter is

θ = log{p/(1− p)}

and the natural parameter space is R
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Definition

In an exponential family, the natural parameter is τ(θ) and the
natural parameter space is

Θ =

{
τ ∈ Rk;

∫
X

h(x) exp{T(x)Tτ}dν(x) <∞}
Example For the B(m,p) distribution, the natural parameter is

θ = log{p/(1− p)}

and the natural parameter space is R



regular and minimal exponential families

Possible to add and (better!) delete useless components of T :

Definition

A regular exponential family corresponds to the case where Θ is an
open set.
A minimal exponential family corresponds to the case when the
Ti(X)’s are linearly independent, i.e.

Pθ(αTT(X) = const.) = 0 for α 6= 0 θ ∈ Θ

Also called non-degenerate exponential family
Usual assumption when working with exponential families
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A minimal exponential family corresponds to the case when the
Ti(X)’s are linearly independent, i.e.

Pθ(αTT(X) = const.) = 0 for α 6= 0 θ ∈ Θ

Also called non-degenerate exponential family
Usual assumption when working with exponential families



Illustrations

For a Normal N(µ,σ2) distribution,

f(x|µ,σ) =
1√
2π

1

σ
exp{− x2/2σ2 + µ/σ2 x− µ2/2σ2}

means this is a two-dimensional minimal exponential family

For a fourth-power distribution

f(x|µ) = C(θ) exp{−(x− θ)4}} ∝ e−x4 e4θ3x−6θ2x2+4θx3−θ4

implies this is a three-dimensional minimal exponential family
[Exercise: find C]



convexity properties

Highly regular densities

Theorem

The natural parameter space Θ of an exponential family is convex
and the inverse normalising constant c−1(θ) is a convex function.

Example For B(n,p), the natural parameter space is R and the
inverse normalising constant (1+ exp(θ))n is convex
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analytic properties

Lemma

If the density of X has the minimal representation

f(x|θ) = c(θ)h(x) exp{T(x)Tθ}

then the natural statistic Z = T(X) is also distributed from an
exponential family and there exists a measure νT such that the
density of Z [= T(X)] against νT is

f(z; θ) = c(θ) exp{zTθ}



analytic properties

Theorem

If the density of Z = T(X) against νT is c(θ) exp{zTθ}, if the real
value function ϕ is measurable, with∫

|ϕ(z)| exp{zTθ}dνT (z) <∞
on the interior of Θ, then

f : θ→ ∫ ϕ(z) exp{zTθ} dνT (z)

is an analytic function on the interior of Θ and

∇f(θ) =
∫
zϕ(z) exp{zTθ}dνT (z)



moments of exponential families

Normalising constant c(·) generating all moments

Proposition

If T(·) : X→ Rd and the density of Z = T(X) is exp{zTθ−ψ(θ)},
then

Eθ
[
exp{T(x)Tu}

]
= exp{ψ(θ+ u) −ψ(θ)}

and ψ(·) is the cumulant generating function.

[Laplace transform]



moments of exponential families

Normalising constant c(·) generating all moments

Proposition

If T(·) : X→ Rd and the density of Z = T(X) is exp{zTθ−ψ(θ)},
then

Eθ[Ti(X)] =
∂ψ(θ)

∂θi
i = 1, . . . ,d,

and

Eθ
[
Ti(X) Tj(X)

]
=
∂2ψ(θ)

∂θi∂θj
i, j = 1, . . . ,d

Sort of integration by part in parameter space:∫ {
Ti(x) +

∂

∂θi
log c(θ)

}
c(θ)h(x) exp{T(x)Tθ}dν(x) =

∂

∂θi
1 = 0



Sample from exponential families

Take an exponential family

f(x|θ) = h(x) exp
{
τ(θ)TT(x) −ψ(θ)

}
and id sample x1, . . . , xn from f(x|θ).
Then

f(x1, . . . , xn|θ) =

n∏
i=1

h(xi) exp

{
τ(θ)T

n∑
i=1

T(xi) − nψ(θ)

}

Remark

For an exponential family with summary statistic T(·), the statistic

S(X1, . . . ,Xn) =

n∑
i=1

T(Xi)

is sufficient for describing the joint density
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connected examples of exponential families

Example

Chi-square χ2k distribution corresponding to distribution of
X21 + . . . + X2k when Xi ∼ N(0, 1), with density

fk(z) =
z
k/2−1 exp{−z/2}

2k/2Γ(k/2)
z ∈ R+



connected examples of exponential families

Counter-Example

Non-central chi-square χ2k(λ) distribution corresponding to
distribution of X21 + . . . + X2k when Xi ∼ N(µ, 1), with density

fk,λ(z) = 1/2 (z/λ)
k/4−1/2 exp{−(z+ λ)/2}Ik/2−1(

√
zλ) z ∈ R+

where λ = kµ2 and Iν Bessel function of second order



connected examples of exponential families

Counter-Example

Fisher Fn,m distribution
corresponding to the ratio

Z =
Yn/n

Ym/m
Yn ∼ χ2n, Ym ∼ χ2m ,

with density

fm,n(z) =
(n/m)n/2

B(n/2,m/2)
z
n/2−1 (1+ n/mz)−

n+m/2 z ∈ R+



connected examples of exponential families

Example

Ising Be(n/2,m/2) distribution corresponding to the distribution of

Z =
nY

nY +m
when Y ∼ Fn,m

has density

fm,n(z) =
1

B(n/2,m/2)
z
n/2−1 (1− z)

m/2−1 z ∈ (0, 1)



connected examples of exponential families

Counter-Example

Laplace double-exponential L(µ,σ) distribution corresponding to
the rescaled difference of two exponential E(σ−1) random variables,

Z = µ+ X1 − X2 when X1,X2
∼

iid E(σ−1)

has density

f(z;µ,σ) =
1

σ
exp{−σ−1|x− µ|}



chapter 2 :
the bootstrap method

Introduction
Glivenko-Cantelli Theorem
The Monte Carlo method
Bootstrap
Parametric Bootstrap



Motivating example

Case of a random event with binary (Bernoulli) outcome Z ∈ {0, 1}
such that P(Z = 1) = p
Observations z1, . . . , zn (iid) put to use to approximate p by

p̂ = p̂(z1, . . . , zn) = 1/n

n∑
i=1

zi

Illustration of a (moment/unbiased/maximum likelihood) estimator
of p



intrinsic statistical randomness

inference based on a random sample implies uncertainty

Since it depends on a random sample, an estimator

δ(X1, . . . ,Xn)

also is a random variable

Hence “error” in the reply: an estimator produces a different
estimation of the same quantity θ each time a new sample is used
(data does produce the model)
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infered variation

inference based on a random sample implies uncertainty

Question 1 :

How much does δ(X1, . . . ,Xn) vary when the sample varies?

Question 2 :

What is the variance of δ(X1, . . . ,Xn) ?

Question 3 :

What is the distribution of δ(X1, . . . ,Xn) ?



infered variation

inference based on a random sample implies uncertainty

Question 1 :

How much does δ(X1, . . . ,Xn) vary when the sample varies?

Question 2 :

What is the variance of δ(X1, . . . ,Xn) ?

Question 3 :

What is the distribution of δ(X1, . . . ,Xn) ?



infered variation

inference based on a random sample implies uncertainty

Question 1 :

How much does δ(X1, . . . ,Xn) vary when the sample varies?

Question 2 :

What is the variance of δ(X1, . . . ,Xn) ?

Question 3 :

What is the distribution of δ(X1, . . . ,Xn) ?



infered variation

Example (Normal sample)

Take X1, . . . ,X100 a random sample from N(θ, 1). Its mean θ is
estimated by

θ̂ =
1

100

100∑
i=1

Xi

Variation compatible with the (known) theoretical distribution
θ̂ ∼ N(θ, 1/100)
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1
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Xi
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Associated difficulties (illustrations)

Observation of a single sample x1, . . . , xn in most cases

The sampling distribution F is often unknown

The evaluation of the average variation of δ(X1, . . . ,Xn) is
paramount for the construction of confidence intervals and for
testing/answering questions like

H0 : θ 6 0

In the normal case, the true θ stands with high probability in
the interval

[θ̂− 2σ, θ̂+ 2σ] .

Quid of σ ?!
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Estimation of the repartition function

Extension/application of the LLN to the approximation of the cdf:
For an i.i.d. sample X1, . . . ,Xn, empirical cdf

F̂n(x) =
1

n

n∑
i=1

I]−∞,x](Xi)

=
card {Xi; Xi 6 x}

n
,

Step function corresponding to the empirical distribution

1/n

n∑
i=1

δXi

where δ Dirac mass
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convergence of the empirical cdf

Glivenko-Cantelli Theorem

‖F̂n − F‖∞ = sup
x∈R

|F̂n(x) − F(x)|
a.s.−→ 0

[Glivenko, 1933;Cantelli, 1933]

F̂n(x) is a convergent estimator of the cdf F(x)



convergence of the empirical cdf

Dvoretzky–Kiefer–Wolfowitz inequality

P
(

sup
x∈R

∣∣F̂n(x) − F(x)∣∣ > ε) 6 e−2nε
2

for every ε > εn =
√
1/2n ln 2

[Massart, 1990]

F̂n(x) is a convergent estimator of the cdf F(x)



convergence of the empirical cdf

Donsker’s Theorem

The sequence √
n(F̂n(x) − F(x))

converges in distribution to a Gaussian process G with zero mean
and covariance

cov[G(s),G(t)] = E[G(s)G(t)] = min{F(s), F(t)}− F(s)F(t).

[Donsker, 1952]

F̂n(x) is a convergent estimator of the cdf F(x)



statistical consequences of Glivenko-Cantelli

Moments

E[F̂n(x)] = F(x)

var[F̂n(x)] =
F(x)(1− F(x))

n



statistical consequences of Glivenko-Cantelli

Confidence band

If

Ln(x) = max
{
F̂n(x) − εn, 0

}
,Un(x) = min

{
F̂n(x) + εn, 1

}
,

then, for εn =
√
1/2n ln 2/α,

P
(
Ln(x) 6 F(x) 6 Un(x) for all x

)
> 1− α



Glivenko-Cantelli in action

Example (Normal sample)

Estimation of the cdf F from a normal sample of 100 points
and variation of this estimation over 200 normal samples



Properties

Estimator of a non-parametric nature : it is not necessary to
know the distribution or the shape of the distribution of the
sample to derive this estimator

c© it is always available

Robustess versus efficiency: If the [parameterised] shape of
the distribution is known, there exists a better approximation
based on this shape, but if the shape is wrong, the parametric
result can be completely off!
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parametric versus non-parametric inference

Example (Normal sample)

cdf of N(θ, 1), Φ(x− θ)

Estimation of Φ(·− θ) by F̂n and by Φ(·− θ̂) based on 100
points and maximal variation of those estimations over 200
replications



parametric versus non-parametric inference

Example (Non-normal sample)

Sample issued from

0.3N(0, 1) + 0.7N(2.5, 1)

wrongly allocated to a normal distribution Φ(·− θ)



parametric versus non-parametric inference

Estimation of F by F̂n and by Φ(·− θ̂) based on 100 points
and maximal variation of those estimations over 200
replications



Extension to functionals of F

For any quantity θ(F) depending on F, for instance,

θ(F) =

∫
h(x)dF(x) ,

[Functional of the cdf]
use of the plug-in approximation θ(F̂n), for instance,

θ̂(F) =

∫
h(x)dF̂n(x)

= 1/n

n∑
i=1

h(Xi)

[Moment estimator]
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examples

variance estimator

If

θ(F) = var(X) =

∫(
x− EF[X]

)2
dF(x)

then

θ(F̂n) =

∫(
x− E

F̂n
[X]
)2

dF̂n(x)

= 1/n

n∑
i=1

(
Xi − E

F̂n
[X]
)2

= 1/n

n∑
i=1

(
Xi − X̄n

)2
which differs from the (unbiased) sample variance

1/n−1

n∑
i=1

(
Xi − X̄n

)2



examples

median estimator

If θ(F) is the median of F, it is defined by

PF(X 6 θ(F)) = 0.5

θ(F̂n) is thus defined by

P
F̂n
(X 6 θ(F̂n)) = 1/n

n∑
i=1

I(Xi 6 θ(F̂n)) = 0.5

which implies that θ(F̂n) is the median of X1, . . . ,Xn, namely
X(n/2)



median estimator

Example (Normal sample)

θ also is the median of N(θ, 1), hence another estimator of θ is the
median of F̂n, i.e. the median of X1, . . . ,Xn, namely X(n/2)

Comparison of the variations of sample means and sample
medians over 200 normal samples



q-q plots

Graphical test of adequation for dataset x1, . . . , xn and targeted
dsitribution F:
Plot sorted x1, . . . , xn against F−1(1/n+1), . . . , F−1(n/n+1)

Example

Normal N(0, 1) sample
against

N(0, 1)

N(0, 2)

E(3)

theoretical distributions
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basis of Monte Carlo simulation

Recall the

Law of large numbers

If X1, . . . ,Xn simulated from f,

Ê[h(X)]n =
1

n

n∑
i=1

h(Xi)
a.s.−→ E[h(X)]

Result fundamental for the use of computer-based simulation
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Ê[h(X)]n =
1

n

n∑
i=1

h(Xi)
a.s.−→ E[h(X)]

Result fundamental for the use of computer-based simulation



computer simulation

Principle

produce by a computer program an arbitrary long sequence

x1, x2, . . .
iid
∼ F

exploit the sequence as if it were a truly iid sample

c© Mix of algorithmic, statistics, and probability theory
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Monte Carlo simulation in practice

For a given distribution F, call the corresponding
pseudo-random generator in an arbitrary computer language

> x=rnorm(10)

> x

[1] -0.02157345 -1.13473554 1.35981245 -0.88757941 0.70356394 -1.03538265

[7] -0.74941846 0.50629858 0.83579100 0.47214477

use the sample as a statistician would do

> mean(x)

[1] 0.004892123

> var(x)

[1] 0.8034657

to approximate quantities related with F



Monte Carlo integration

Approximation of integrals related with F:

Law of large numbers

If X1, . . . ,Xn simulated from f,

În =
1

n

n∑
i=1

h(Xi)
a.s.−→ I =

∫
h(x) dF(x)

Convergence a.s. as n→∞
Monte Carlo principle

1 Call a computer pseudo-random generator of F to produce
x1, . . . , xn

2 Approximate I with În
3 Check the precision of În and if needed increase n
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3 Check the precision of În and if needed increase n



example: normal moment

For a Gaussian distribution, E[X4] = 3. Via Monte Carlo
integration,

n 5 50 500 5000 50,000 500,000

În 1.65 5.69 3.24 3.13 3.038 3.029



How can one approximate the distribution of θ(F̂n) ?

Given an estimate θ(F̂n) of θ(F), its variability is required to
evaluate precision

bootstrap principle

Since

θ(F̂n) = θ(X1, . . . ,Xn) with X1, . . . ,Xn
iid
∼ F

replace F with F̂n :

θ(F̂n) ≈ θ(X∗1 , . . . ,X∗n) with X∗1 , . . . ,X∗n
iid
∼ F̂n
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illustration: bootstrap variance

For a given estimator θ(F̂n), a random variable, its (true) variance
is defined as

σ2 = EF
[
(θ(F̂n) − EF[θ(F̂n)])2

]
bootstrap approximation

E
F̂n

[
(θ(̂̂Fn) − E

F̂n
[θ(F̂n)])

2
]
= E

F̂n

[
θ(̂̂Fn)2]− θ(F̂n)2

meaning that the random variable θ(̂̂Fn) in the first expectation is
now a transform of

X∗1 , . . . ,X∗n
iid
∼ F̂n

while the second θ(F̂n) is the original estimate



screen snapshot



Remarks

bootstrap because the sample itself is used to build an
evaluation of its own distribution

a bootstrap sample is obtained by n samplings with
replacement in (X1, . . . ,Xn)

that is, X∗1 sampled from (X1, . . . ,Xn), then X∗2 independently
sampled from (X1, . . . ,Xn), ...

a bootstrap sample can thus take nn values (or
(
2n−1
n

)
values

if the order does not matter)

combinatorial complexity prevents analytic derivations
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bootstrap by simulation

Implementation

Since F̂n is known, it is possible to simulate from F̂n, therefore
one can approximate the distribution of θ(X∗1 , . . . ,X∗n) [instead of
θ(X1, . . . ,Xn)]
The distribution corresponding to

F̂n(x) = card {Xi; Xi 6 x}
/
n

allocates a probability of 1/n to each point in {x1, . . . , xn} :

PrF̂n(X∗ = xi) = 1/n

Simulating from F̂n is equivalent to sampling with replacement in
(X1, . . . ,Xn)

[in R, sample(x,n,replace=TRUE)]



bootstrap algorithm

Monte Carlo implementation
1 For b = 1, . . . ,B,

1 generate a sample Xb1 , . . . ,Xbn from F̂n
2 construct the corresponding value

θ̂b = θ(Xb1 , . . . ,Xbn)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . ,Xn)
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bootstrap algorithm

Monte Carlo implementation
1 For b = 1, . . . ,B,

1 generate a sample Xb1 , . . . ,Xbn from F̂n
2 construct the corresponding value

θ̂b = θ(Xb1 , . . . ,Xbn)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . ,Xn)



mixture illustration

Observation of a sample [here simulated from
0.3N(0, 1) + 0.7N(2.5, 1) as illustration]

> x=rnorm(250)+(runif(250)<.7)*2.5 #n=250

Interest in the distribution of X̄ = 1/n
∑
i Xi

> xbar=mean(x)

[1] 1.73696

Bootstrap sample of X̄∗

> bobar=rep(0,1000) #B=1000

> for (t in 1:1000)

+ bobar[t]=mean(sample(x,250,rep=TRUE))

> hist(bobar)



mixture illustration

Example (Sample 0.3N(0, 1) + 0.7N(2.5, 1))

Variation of the empirical means over 200 bootstrap samples
versus observed average



mixture illustration

Example (Derivation of the average variation)

For an estimator θ(X1, . . . ,Xn), the standard deviation is given by

η(F) =
√

EF
[
{θ(X1, . . . ,Xn) − EF[θ(X1, . . . ,Xn)]}2

]
and its bootstrap approximation is

η(F̂n) =

√
EF̂n

[
{θ(X1, . . . ,Xn) − EF̂n [θ(X1, . . . ,Xn)]}2

]
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For an estimator θ(X1, . . . ,Xn), the standard deviation is given by

η(F) =
√

EF
[
{θ(X1, . . . ,Xn) − EF[θ(X1, . . . ,Xn)]}2

]
and its bootstrap approximation is

η(F̂n) =

√
EF̂n

[
{θ(X1, . . . ,Xn) − EF̂n [θ(X1, . . . ,Xn)]}2
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mixture illustration

Example (Derivation of the average variation)

Approximation itself approximated by Monte-Carlo:

η̂(F̂n) =

(
1/B

B∑
b=1

(θ(Xb1 , . . . ,Xbn) − θ̄)
2

)1/2

where

θ̄ = 1/B

B∑
b=1

θ(Xb1 , . . . ,Xbn)



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

1 rely on the normal approximation

θ(F̂n) ≈ N(θ(F),η(F)2)

and use the interval[
θ(F̂n) + zα/2η(F̂n), θ(F̂n) − zα/2η(F̂n)

]



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

2 generate a bootstrap approximation to the cdf of θ(F̂n)

Ĥ(r) = 1/B

B∑
b=1

I(θ(Xb1 , . . . ,Xbn) 6 r)

and use the interval[
Ĥ−1(α/2), Ĥ−1(1− α/2)

]
which is also [

θ∗(n{α/2}), θ
∗
(n{1−α/2})

]



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

3 generate a bootstrap approximation to the cdf of θ(F̂n)−θ(F),

Ĥ(r) =
1

B

B∑
b=1

I((θ(Xb1 , . . . ,Xbn) − θ(F̂n) 6 r)

and use the interval[
θ(F̂n) − Ĥ

−1(1− α/2), θ(F̂n) − Ĥ
−1(α/2)

]
which is also[

2θ(F̂n) − θ
∗
(n{1−α/2}), 2θ(F̂n) − θ

∗
(n{α/2})

]



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> sd(bootmed)

[1] 0.1222386

> median(x)-2*sd(bootmed)

[1] -0.2090547

> median(x)+2*sd(bootmed)

[1] 0.2798995



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> quantile(bootmed,prob=c(.025,.975))

2.5% 97.5%

-0.2430018 0.2375104



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> 2*median(x)-quantile(bootmed,prob=c(.975,.025))

97.5% 2.5%

-0.1666657 0.3138465



example: mean bootstrap variation

Example (Sample 0.3N(0, 1) + 0.7N(2.5, 1))

Interval of bootstrap variation at ±2η̂(F̂n) and average of the
observed sample



example: mean bootstrap variation

Example (Normal sample)

Sample

(X1, . . . ,X100)
iid
∼ N(θ, 1)

Comparison of the confidence intervals

[x̄− 2 ∗ σ̂x/10, x̄+ 2 ∗ σ̂x/10] = [−0.113, 0.327]

[normal approximation]

[x̄∗ − 2 ∗ σ̂∗, x̄∗ + 2 ∗ σ̂∗] = [−0.116, 0.336]

[normal bootstrap approximation]

[q∗(0.025),q∗(0.975)] = [−0.112, 0.336]

[generic bootstrap approximation]



example: mean bootstrap variation

Example (Normal sample)

Sample

(X1, . . . ,X100)
iid
∼ N(θ, 1)

Comparison of the confidence intervals

[x̄− 2 ∗ σ̂x/10, x̄+ 2 ∗ σ̂x/10] = [−0.113, 0.327]

[normal approximation]

[x̄∗ − 2 ∗ σ̂∗, x̄∗ + 2 ∗ σ̂∗] = [−0.116, 0.336]

[normal bootstrap approximation]

[q∗(0.025),q∗(0.975)] = [−0.112, 0.336]

[generic bootstrap approximation]



example: mean bootstrap variation

Variation ranges at 95% for a sample of 100 points and 200
bootstrap replications



a counter-example

Consider X1, . . . ,Xn ∼ U(0, θ) then

θ = θ(F) = Eθ
[
n

n− 1
X(n)

]

Using bootstrap, distribution of
n−1/nθ(F̂n) far from truth

fmax(x) = nxn−1/θn I(0,θ)(x)



a counter-example

Consider X1, . . . ,Xn ∼ U(0, θ) then

θ = θ(F) = Eθ
[
n

n− 1
X(n)

]

Using bootstrap, distribution of
n−1/nθ(F̂n) far from truth

fmax(x) = nxn−1/θn I(0,θ)(x)



Parametric Bootstrap

If the parametric shape of F is known,

F(·) = Φλ(·) λ ∈ Λ ,

an evaluation of F more efficient than F̂n is provided by

Φλ̂n

where λ̂n is a convergent estimator of λ
[Cf Example 3]
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Parametric Bootstrap

Approximation of the distribution of

θ(X1, . . . ,Xn)

by the distribution of

θ(X∗1 , . . . ,X∗n) X∗1 , . . . ,X∗n
iid
∼ Φλ̂n

May avoid Monte Carlo simulation approximations in some cases



Parametric Bootstrap

Approximation of the distribution of

θ(X1, . . . ,Xn)

by the distribution of

θ(X∗1 , . . . ,X∗n) X∗1 , . . . ,X∗n
iid
∼ Φλ̂n

May avoid Monte Carlo simulation approximations in some cases



example of parametric Bootstrap

Example (Exponential Sample )

Take

X1, . . . ,Xn
iid
∼ Exp(λ)

and λ= 1/Eλ[X] to be estimated
A possible estimator is

λ̂(x1, . . . , xn) =
n∑n
i=1 xi

but this estimator is biased

Eλ[λ̂(X1, . . . ,Xn)] 6= λ



example of parametric Bootstrap

Example (Exponential Sample )

Take

X1, . . . ,Xn
iid
∼ Exp(λ)

and λ= 1/Eλ[X] to be estimated
A possible estimator is

λ̂(x1, . . . , xn) =
n∑n
i=1 xi

but this estimator is biased

Eλ[λ̂(X1, . . . ,Xn)] 6= λ



example of parametric Bootstrap

Example (Exponential Sample (2))

Questions :

What is the bias

λ− Eλ[λ̂(X1, . . . ,Xn)]

of this estimator ?

What is the distribution of this estimator ?



example of parametric Bootstrap

Example (Exponential Sample (2))

Questions :

What is the bias

λ− Eλ[λ̂(X1, . . . ,Xn)]

of this estimator ?

What is the distribution of this estimator ?



Bootstrap evaluation of the bias

Example (Exponential Sample (3))

λ̂(x1, . . . , xn) − Eλ̂(x1,...,xn)[λ̂(X1, . . . ,Xn)]

[parametric version]

λ̂(x1, . . . , xn) − EF̂n [λ̂(X1, . . . ,Xn)]

[non-parametric version]



example: bootstrap bias evaluation

Example (Exponential Sample (4))

In the first (parametric) version,

1/λ̂(X1, . . . ,Xn) ∼ Ga(n,nλ)

and
Eλ[λ̂(X1, . . . ,Xn)] =

n

n− 1
λ

therefore the bias is analytically evaluated as

−λ
/
n− 1

and estimated by

−
λ̂(X1, . . . ,Xn)

n− 1
= −0.00787



example: bootstrap bias evaluation

Example (Exponential Sample (4))

In the first (parametric) version,

1/λ̂(X1, . . . ,Xn) ∼ Ga(n,nλ)

and
Eλ[λ̂(X1, . . . ,Xn)] =

n

n− 1
λ

therefore the bias is analytically evaluated as

−λ
/
n− 1

and estimated by

−
λ̂(X1, . . . ,Xn)

n− 1
= −0.00787



example: bootstrap bias evaluation

Example (Exponential Sample (5))

In the second (nonparametric) version, evaluation by Monte Carlo,

λ̂(x1, . . . , xn) − EF̂n [λ̂(X1, . . . ,Xn)] = 0.00142

which achieves the “wrong” sign



example: bootstrap bias evaluation

Example (Exponential Sample (6))

Construction of a confidence interval on λ
By parametric bootstrap,

Prλ
(
λ̂1 6 λ 6 λ̂2

)
= Pr

(
ω1 6 λ/λ̂ 6 ω2

)
= 0.95

can be deduced from
λ/λ̂ ∼ Ga(n,n)

[In R, qgamma(0.975,n,1/n)]

[λ̂1, λ̂2] = [0.452, 0.580]



example: bootstrap bias evaluation

Example (Exponential Sample (7))

In nonarametric bootstrap, one replaces

PrF (q(.025) 6 λ(F) 6 q(.975)) = 0.95

with
PrF̂n

(
q∗(.025) 6 λ(F̂n) 6 q

∗(.975)
)
= 0.95

Approximation of quantiles q∗(.025) and q∗(.975) of λ(F̂n) by
bootstrap (Monte Carlo) sampling

[q∗(.025),q∗(.975)] = [0.454, 0.576]



example: bootstrap bias evaluation

Example (Exponential Sample (7))

In nonarametric bootstrap, one replaces

PrF (q(.025) 6 λ(F) 6 q(.975)) = 0.95

with
PrF̂n

(
q∗(.025) 6 λ(F̂n) 6 q

∗(.975)
)
= 0.95

Approximation of quantiles q∗(.025) and q∗(.975) of λ(F̂n) by
bootstrap (Monte Carlo) sampling

[q∗(.025),q∗(.975)] = [0.454, 0.576]



example: bootstrap bias evaluation



example: bootstrap distribution evaluation

Example (Student Sample)

Take

X1, . . . ,Xn
iid
∼ T(5,µ, τ2)

def
= µ+ τ

N(0, 1)√
χ25/5

µ and τ could be estimated by

µ̂n =
1

n

n∑
i=1

Xi τ̂n =

√
5− 2

5

√√√√ 1

n

n∑
i=1

(Xi − µ̂)2

=

√
5− 2

5
σ̂n



example: bootstrap distribution evaluation

Example (Student Sample (2))

Problem µ̂n is not distributed from a Student T(5,µ, τ2/n)
distribution
The distribution of µ̂n can be reproduced by bootstrap sampling



example: bootstrap distribution evaluation

Example (Student Sample (3))

Comparison of confidence intervals

[µ̂n − 2 ∗ σ̂n/10, µ̂n + 2 ∗ σ̂n/10] = [−0.068, 0.319]

[normal approximation]

[q∗(0.05),q∗(0.95)] = [−0.056, 0.305]

[parametric boostrap approximation]

[q∗(0.05),q∗(0.95)] = [−0.094, 0.344]

[non parametric boostrap approximation]



example: bootstrap distribution evaluation

95% variation interval for a 150 points sample with 400
bootstrap replicas (top) nonparametric and (bottom)
parametric



Chapter 3 :
Likelihood function and inference

4 Likelihood function and inference
The likelihood
Information and curvature
Sufficiency and ancilarity
Maximum likelihood estimation
Non-regular models
EM algorithm



The likelihood

Given an usually parametric family of distributions

F ∈ {Fθ, θ ∈ Θ}

with densities fθ [wrt a fixed measure ν], the density of the iid
sample x1, . . . , xn is

n∏
i=1

fθ(xi)

Note In the special case ν is a counting measure,

n∏
i=1

fθ(xi)

is the probability of observing the sample x1, . . . , xn among all
possible realisations of X1, . . . ,Xn
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The likelihood

Definition (likelihood function)

The likelihood function associated with a sample x1, . . . , xn is the
function

L :Θ −→ R+

θ −→ n∏
i=1

fθ(xi)

same formula as density but different space of variation



The likelihood

Definition (likelihood function)

The likelihood function associated with a sample x1, . . . , xn is the
function

L :Θ −→ R+

θ −→ n∏
i=1

fθ(xi)

same formula as density but different space of variation



Example: density function versus likelihood function

Take the case of a Poisson density
[against the counting measure]

f(x; θ) =
θx

x!
e−θ IN(x)

which varies in N as a function of x
versus

L(θ; x) =
θx

x!
e−θ

which varies in R+ as a function of θ θ = 3
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Example: density function versus likelihood function

Take the case of a Normal N(0, θ)
density [against the Lebesgue measure]

f(x; θ) =
1√
2πθ

e−x
2/2θ IR(x)

which varies in R as a function of x
versus

L(θ; x) =
1√
2πθ

e−x
2/2θ

which varies in R+ as a function of θ
θ = 2
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Example: density function versus likelihood function

Take the case of a Normal N(0, 1/θ)
density [against the Lebesgue measure]

f(x; θ) =

√
θ√
2π
e−x

2θ/2 IR(x)

which varies in R as a function of x
versus

L(θ; x) =

√
θ√
2π
e−x

2θ/2 IR(x)

which varies in R+ as a function of θ
θ = 1/2



Example: density function versus likelihood function

Take the case of a Normal N(0, 1/θ)
density [against the Lebesgue measure]

f(x; θ) =

√
θ√
2π
e−x

2θ/2 IR(x)

which varies in R as a function of x
versus

L(θ; x) =

√
θ√
2π
e−x

2θ/2 IR(x)

which varies in R+ as a function of θ
x = 1/2



Example: Hardy-Weinberg equilibrium

Population genetics:

Genotypes of biallelic genes AA, Aa, and aa

sample frequencies nAA, nAa and naa

multinomial model M(n;pAA,pAa,paa)

related to population proportion of A alleles, pA:

pAA = p2A , pAa = 2pA(1− pA) , paa = (1− pA)
2

likelihood

L(pA|nAA,nAa,naa) ∝ p2nAAA [2pA(1− pA)]
nAa(1− pA)

2naa

[Boos & Stefanski, 2013]



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Example: Rainfall at a given spot on a given day may be zero with
positive probability p0 [it did not rain!] or an arbitrary number
between 0 and 100 [capacity of measurement container] or 100
with positive probability p100 [container full]



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Example: Tobit model where y ∼ N(XTβ,σ2) but
y∗ = y× I{y > 0} observed



mixed distributions and their likelihood

Special case when a random variable X may take specific values
a1, . . . ,ak and a continum of values A

Density of X against composition of two measures, counting and
Lebesgue:

fX(a) =

{
Pθ(X = a) if a ∈ {a1, . . . ,ak}

f(a|θ) otherwise

Results in likelihood

L(θ|x1, . . . , xn) =

k∏
j=1

Pθ(X = ai)
nj ×

∏
xi /∈{a1,...,ak}

f(xi|θ)

where nj # observations equal to aj



Enters Fisher, Ronald Fisher!

Fisher’s intuition in the 20’s:

the likelihood function contains the
relevant information about the
parameter θ

the higher the likelihood the more
likely the parameter

the curvature of the likelihood
determines the precision of the
estimation



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ P(3) as n increases

n = 40, ..., 240



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ P(3) as n increases

n = 38, ..., 240



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ N(0, 1) as n increases



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ N(0, 1) as sample varies



Concentration of likelihood mode around “true” parameter

Likelihood functions for x1, . . . , xn ∼ N(0, 1) as sample varies



why concentration takes place

Consider

x1, . . . , xn
iid
∼ F

Then

log

n∏
i=1

f(xi|θ) =

n∑
i=1

log f(xi|θ)

and by LLN

1/n

n∑
i=1

log f(xi|θ)
L−→ ∫

X

log f(x|θ)dF(x)

Lemma

Maximising the likelihood is asymptotically equivalent to
minimising the Kullback-Leibler divergence∫

X

log f(x)/f(x|θ) dF(x)

c© Member of the family closest to true distribution
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by LLN

1/n

n∑
i=1

log f(xi|θ)
L−→ ∫

X

log f(x|θ)dF(x)

Lemma

Maximising the likelihood is asymptotically equivalent to
minimising the Kullback-Leibler divergence∫

X

log f(x)/f(x|θ) dF(x)

c© Member of the family closest to true distribution



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0
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Score function defined by
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∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
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Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Reason:∫
X

∇ log L(θ|x)dFθ(x) =

∫
X

∇L(θ|x) dx = ∇
∫
X

dFθ(x)



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Connected with concentration theorem: gradient null on average
for true value of parameter



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Warning: Not defined for non-differentiable likelihoods, e.g. when
support depends on θ



Score function

Score function defined by

∇ log L(θ|x) =
(
∂/∂θ1L(θ|x), . . . , ∂/∂θpL(θ|x)

)/
L(θ|x)

Gradient (slope) of likelihood function at point θ

lemma

When X ∼ Fθ,
Eθ[∇ log L(θ|X)] = 0

Warning (2): Does not imply maximum likelihood estimator is
unbiased



Fisher’s information matrix

Another notion attributed to Fisher [more likely due to Edgeworth]

Information: covariance matrix of the score vector

I(θ) = Eθ
[
∇ log f(X|θ) {∇ log f(X|θ)}T

]
Often called Fisher information

Measures curvature of the likelihood surface, which translates as
information brought by the data

Sometimes denoted IX to stress dependence on distribution of X
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Information: covariance matrix of the score vector
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Fisher’s information matrix

Second derivative of the log-likelihood as well

lemma

If L(θ|x) is twice differentiable [as a function of θ]

I(θ) = −Eθ
[
∇T∇ log f(X|θ)

]
Hence

Iij(θ) = −Eθ
[

∂2

∂θi∂θj
log f(X|θ)

]



Illustrations

Binomial B(n,p) distribution

f(x|p) =

(
n

x

)
px(1− p)n−x

∂/∂p log f(x|p) = x/p− n−x/1−p

∂2/∂p2 log f(x|p) = − x/p2 − n−x/(1−p)2

Hence

I(p) = np/p2 + n−np/(1−p)2

= n/p(1−p)



Illustrations

Multinomial M(n;p1, . . . ,pk) distribution

f(x|p) =

(
n

x1 · · · xk

)
px11 · · ·p

xk
k

∂/∂pi log f(x|p) = xi/pi − xk/pk
∂2/∂pi∂pj log f(x|p) = − xk/p2k
∂2/∂p2i log f(x|p) = − xi/p2i − xk/p2k

Hence

I(p) = n


1/p1 + 1/pk · · · 1/pk

1/pk · · · 1/pk
. . .

1/pk · · · 1/pk−1 + 1/pk





Illustrations

Multinomial M(n;p1, . . . ,pk) distribution

f(x|p) =

(
n

x1 · · · xk

)
px11 · · ·p

xk
k

∂/∂pi log f(x|p) = xi/pi − xk/pk
∂2/∂pi∂pj log f(x|p) = − xk/p2k
∂2/∂p2i log f(x|p) = − xi/p2i − xk/p2k

and

I(p)−1 = 1/n


p1(1− p1) −p1p2 · · · −p1pk−1
−p1p2 p2(1− p2) · · · −p2pk−1

. . .
. . .

−p1pk−1 −p2pk−1 · · · pk−1(1− pk−1)





Illustrations

Normal N(µ,σ2) distribution

f(x|θ) =
1√
2π

1

σ
exp
{
−(x−µ)2/2σ2

}
∂/∂µ log f(x|θ) = x−µ/σ2

∂/∂σ log f(x|θ) = − 1/σ+ (x−µ)2/σ3 ∂2/∂µ2 log f(x|θ) = − 1/σ2

∂2/∂µ∂σ log f(x|θ) = −2 x−µ/σ3 ∂2/∂σ2 log f(x|θ) = 1/σ2 − 3 (x−µ)2/σ4

Hence

I(θ) = 1/σ2
(
1 0

0 2

)



Properties

Additive features translating as accumulation of information:

if X and Y are independent, IX(θ) + IY(θ) = I(X,Y)(θ)

IX1,...,Xn(θ) = nIX1(θ)

if X = T(Y) and Y = S(X), IX(θ) = IY(θ)

if X = T(Y), IX(θ) 6 IY(θ)

If η = Ψ(θ) is a bijective transform, change of parameterisation:

I(θ) =

{
∂η

∂θ

}T

I(η)

{
∂η

∂θ

}
”In information geometry, this is seen as a change of
coordinates on a Riemannian manifold, and the intrin-
sic properties of curvature are unchanged under different
parametrizations. In general, the Fisher information matrix
provides a Riemannian metric (more precisely, the Fisher-
Rao metric).” [Wikipedia]
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Approximations

Back to the Kullback–Leibler divergence

D(θ ′, θ) =

∫
X

f(x|θ ′) log f(x|θ ′)/f(x|θ) dx

Using a second degree Taylor expansion

log f(x|θ) = log f(x|θ ′) + (θ− θ ′)T∇ log f(x|θ ′)

+
1

2
(θ− θ ′)T∇∇T log f(x|θ ′)(θ− θ ′) + o(||θ− θ ′||2)

approximation of divergence:

D(θ ′, θ) ≈ 1
2
(θ− θ ′)TI(θ ′)(θ− θ ′)

[Exercise: show this is exact in the normal case]
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First CLT

Central limit law of the score vector
Given X1, . . . ,Xn i.i.d. f(x|θ),

1/
√
n∇ log L(θ|X1, . . . ,Xn) ≈ N (0, IX1(θ))

[at the “true” θ]

Notation I1(θ) stands for IX1(θ) and indicates information
associated with a single observation
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Sufficiency

What if a transform of the sample

S(X1, . . . ,Xn)

contains all the information, i.e.

I(X1,...,Xn)(θ) = IS(X1,...,Xn)(θ)

uniformly in θ?

In this case S(·) is called a sufficient statistic [because it is
sufficient to know the value of S(x1, . . . , xn) to get complete
information]

[A statistic is an arbitrary transform of the data X1, . . . ,Xn]
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Sufficiency (bis)

Alternative definition:

If (X1, . . . ,Xn) ∼ f(x1, . . . , xn|θ) and if T = S(X1, . . . ,Xn) is such
that the distribution of (X1, . . . ,Xn) conditional on T does not
depend on θ, then S(·) is a sufficient statistic

Factorisation theorem

S(·) is a sufficient statistic if and only if

f(x1, . . . , xn|θ) = g(S(x1, . . . , xn)|θ)× h(x1, . . . , xn)

another notion due to Fisher
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Illustrations

Uniform U(0, θ) distribution

L(θ|x1, . . . , xn) = θ
−n

n∏
i=1

I(0,θ)(xi) = θ−nIθ> max
i
xi

Hence
S(X1, . . . ,Xn) = max

i
Xi = X(n)

is sufficient



Illustrations

Bernoulli B(p) distribution

L(p|x1, . . . , xn) =

n∏
i=1

pxi(1− p)n−xi = {p/1−p}
∑
i xi (1− p)n

Hence
S(X1, . . . ,Xn) = Xn

is sufficient



Illustrations

Normal N(µ,σ2) distribution

L(µ,σ|x1, . . . , xn) =

n∏
i=1

1√
2πσ

exp{− (xi−µ)
2/2σ2}

=
1

{2πσ2}n/2
exp

{
−
1

2σ2

n∑
i=1

(xi − x̄n + x̄n − µ)2

}

=
1

{2πσ2}n/2
exp

{
−
1

2σ2

n∑
i=1

(xi − x̄n)
2 −

1

2σ2

n∑
i=1

(x̄n − µ)2

}

Hence

S(X1, . . . ,Xn) =

(
Xn,

n∑
i=1

(Xi − Xn)
2

)
is sufficient



Sufficiency and exponential families

Both previous examples belong to exponential families

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}
Generic property of exponential families:

f(x1, . . . , xn|θ) =

n∏
i=1

h(xi) exp

{
T(θ)T

n∑
i=1

S(xi) − nτ(θ)

}

lemma

For an exponential family with summary statistic S(·), the statistic

S(X1, . . . ,Xn) =

n∑
i=1

S(Xi)

is sufficient
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Sufficiency as a rare feature

Nice property reducing the data to a low dimension transform but...

How frequent is it within the collection of probability distributions?

Very rare as essentially restricted to exponential families
[Pitman-Koopman-Darmois theorem]

with the exception of parameter-dependent families like U(0, θ)
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Pitman-Koopman-Darmois characterisation

If X1, . . . ,Xn are iid random variables from a density f(·|θ)
whose support does not depend on θ and verifying the
property that there exists an integer n0 such that, for n >
n0, there is a sufficient statistic S(X1, . . . ,Xn) with fixed
[in n] dimension, then f(·|θ) belongs to an exponential
family

[Factorisation theorem]

Note: Darmois published this result in 1935 [in French] and
Koopman and Pitman in 1936 [in English] but Darmois is generally
omitted from the theorem... Fisher proved it for one-D sufficient
statistics in 1934
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Minimal sufficiency

Multiplicity of sufficient statistics, e.g., S′(x) = (S(x),U(x))
remains sufficient when S(·) is sufficient

Search of a most concentrated summary:

Minimal sufficiency

A sufficient statistic S(·) is minimal sufficient if it is a function of
any other sufficient statistic

Lemma
For a minimal exponential family representation

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}
S(X1) + . . . + S(Xn) is minimal sufficient
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Ancillarity

Opposite of sufficiency:

Ancillarity

When X1, . . . ,Xn are iid random variables from a density f(·|θ), a
statistic A(·) is ancillary if A(X1, . . . ,Xn) has a distribution that
does not depend on θ

Useless?! Not necessarily, as conditioning upon A(X1, . . . ,Xn)
leads to more precision and efficiency:

Use of Fθ(x1, . . . , xn|A(x1, . . . , xn)) instead of Fθ(x1, . . . , xn)

Notion of maximal ancillary statistic
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Illustrations

1 If X1, . . . ,Xn
iid
∼ U(0, θ), A(X1, . . . ,Xn) = (X1, . . . ,Xn)/X(n)

is ancillary

2 If X1, . . . ,Xn
iid
∼ N(µ,σ2),

A(X1, . . . ,Xn) =
(X1 − Xn, . . . ,Xn − Xn)∑n

i=1(Xi − Xn)
2)

is ancillary

3 If X1, . . . ,Xn
iid
∼ f(x|θ), rank(X1, . . . ,Xn) is ancillary

> x=rnorm(10)

> rank(x)

[1] 7 4 1 5 2 6 8 9 10 3

[see, e.g., rank tests]



Basu’s theorem

Completeness

When X1, . . . ,Xn are iid random variables from a density f(·|θ), a
statistic A(·) is complete if the only function Ψ such that
Eθ[Ψ(A(X1, . . . ,Xn))] = 0 for all θ’s is the null function

Let X = (X1, . . . ,Xn) be a random sample from f(·|θ) where
θ ∈ Θ. If V is an ancillary statistic, and T is complete and
sufficient for θ then T and V are independent with respect to f(·|θ)
for all θ ∈ Θ.

[Basu, 1955]
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some examples

Example 1

If X = (X1, . . . ,Xn) is a random sample from the Normal
distribution N(µ,σ2) when σ is known, X̄n = 1/n

∑n
i=1 Xi is

sufficient and complete, while (X1 − X̄n, . . . ,Xn − X̄n) is ancillary,
hence independent from X̄n.

counter-Example 2

Let N be an integer-valued random variable with known pdf
(π1,π2, . . .). And let S|N = n ∼ B(n,p) with unknown p. Then
(N,S) is minimal sufficient and N is ancillary.
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more counterexamples

counter-Example 3

If X = (X1, . . . ,Xn) is a random sample from the double
exponential distribution f(x|θ) = 2 exp{−|x− θ|}, (X(1), . . . ,X(n))
is minimal sufficient but not complete since X(n) − X(1) is ancillary
and with fixed expectation.

counter-Example 4

If X is a random variable from the Uniform U(θ, θ+ 1)
distribution, X and [X] are independent, but while X is complete
and sufficient, [X] is not ancillary.
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last counterexample

Let X be distributed as
x -5 -4 -3 -2 -1 1 2 3 4 5

px α′p2q α′pq2 p3/2 q3/2 γ′pq γ′pq q3/2 p3/2 αpq2 αp2q

with
α+ α ′ = γ+ γ ′ = 2/3

known and q = 1− p. Then

T = |X| is minimal sufficient

V = I(X > 0) is ancillary

if α ′ 6= α T and V are not independent

T is complete for two-valued functions

[Lehmann, 1981]



Point estimation, estimators and estimates

When given a parametric family f(·|θ) and a sample supposedly
drawn from this family

(X1, . . . ,XN)
iid
∼ f(x|θ)

1 an estimator of θ is a statistic T(X1, . . . ,XN) or θ̂n providing
a [reasonable] substitute for the unknown value θ.

2 an estimate of θ is the value of the estimator for a given
[realised] sample, T(x1, . . . , xn)

Example: For a Normal N(µ,σ2) sample X1, . . . ,XN,

T(X1, . . . ,XN) = µ̂n = XN

is an estimator of µ and µ̂N = 2.014 is an estimate
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Rao–Blackwell Theorem

If δ(·) is an estimator of θ and T = T(X) is a sufficient statistic,
then

δ1(X) = Eθ[δ(X)|T ]

has a smaller variance than δ(·)

varθ(δ1(X)) 6 varθ(δ(X))

[Rao, 1945; Blackwell, 1947]
mean squared error of Rao–Blackwell estimator does not exceed
that of original estimator
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Lehmann–Scheffé Theorem

Estimator δ0

unbiased for Eθ[δX] = Ψ(θ)
depends on data only through complete, sufficient statistic
S(X)

is the unique best unbiased estimator of Ψ(θ)
[Lehmann & Scheffé, 1955]

For any unbiased estimator δ(·) of Ψ(θ),

δ0(X) = Eθ[δ(X)|S(X)]
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[Fréchet–Darmois–]Cramér–Rao bound

If θ̂ is an estimator of θ ∈ R with bias

b(θ) = Eθ[θ̂] − θ

then

varθ(θ̂) >
[1+ b ′(θ)]2

I(θ)

[Fréchet, 1943; Darmois, 1945; Rao, 1945; Cramér, 1946]
variance of any unbiased estimator at least as high as inverse
Fisher information
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Single parameter proof

If δ = δ(X) unbiased estimator of Ψ(θ), then

varθ(δ) >
[Ψ ′(θ)]2

I(θ)

Take score Z = ∂
∂θ log f(X|θ). Then

covθ(Z, δ) = Eθ[δ(X)Z] = Ψ ′(θ)

And Cauchy-Schwarz implies

covθ(Z, δ)2 6 varθ(δ)varθ(Z) = varθ(δ)I(θ)



Warning: unbiasedness may be harmful

Unbiasedness is not an ultimate property!

most transforms h(θ) do not allow
for unbiased estimators

no bias may imply large variance

efficient estimators may be biased
(MLE)

existence of UNMVUE restricted to
exponential families

Cramér–Rao bound inaccessible
outside exponential families



Maximum likelihood principle

Given the concentration property of the likelihood function,
reasonable choice of estimator as mode:

MLE

A maximum likelihood estimator (MLE) θ̂N satisfies

L(θ̂N|X1, . . . ,XN) > L(θN|X1, . . . ,XN) for all θ ∈ Θ

Under regularity of L(·|X1, . . . ,XN), MLE also solution of the
likelihood equations

∇ log L(θ̂N|X1, . . . ,XN) = 0

Warning: θ̂N is not most likely value of θ but makes observation
(x1, . . . , xN) most likely...
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Maximum likelihood invariance

Principle independent of parameterisation:

If ξ = h(θ) is a one-to-one transform of θ, then

ξ̂MLE
N = h(θ̂MLE

N )

[estimator of transform = transform of estimator]

By extension, if ξ = h(θ) is any transform of θ, then

ξ̂MLE
N = h(θ̂MLE

n )

Alternative of profile likelihoods distinguishing between parameters
of interest and nuisance parameters
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Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1 an a.s. unique MLE θ̂MLE
n

2

3

1 Case of x1, . . . , xn ∼ N(µ, 1)

2

3 [with τ = +∞]



Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1

2 several or an infinity of MLE’s [or of solutions to likelihood
equations]

3

1

2 Case of x1, . . . , xn ∼ N(µ1 + µ2, 1) [and mixtures of normal]

3 [with τ = +∞]



Unicity of maximum likelihood estimate

Depending on regularity of L(·|x1, . . . , xN), there may be

1

2

3 no MLE at all

1

2

3 Case of x1, . . . , xn ∼ N(µi, τ
−2) [with τ = +∞]



Unicity of maximum likelihood estimate

Consequence of standard differential calculus results on
`(θ) = log L(θ|x1, . . . , xn):

lemma

If Θ is connected and open, and if `(·) is twice-differentiable with

lim
θ→∂Θ `(θ) < +∞

and if H(θ) = ∇∇T`(θ) is positive definite at all solutions of the
likelihood equations, then `(·) has a unique global maximum

Limited appeal because excluding local maxima
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Unicity of MLE for exponential families

lemma

If f(·|θ) is a minimal exponential family

f(x|θ) = h(x) exp
{
T(θ)TS(x) − τ(θ)

}
with T(·) one-to-one and twice differentiable over Θ, if Θ is open,
and if there is at least one solution to the likelihood equations,
then it is the unique MLE

Likelihood equation is equivalent to S(x) = Eθ[S(X)]



Unicity of MLE for exponential families

lemma

If Θ is connected and open, and if `(·) is twice-differentiable with

lim
θ→∂Θ `(θ) < +∞

and if H(θ) = ∇∇T`(θ) is positive definite at all solutions of the
likelihood equations, then `(·) has a unique global maximum



Illustrations

Uniform U(0, θ) likelihood

L(θ|x1, . . . , xn) = θ
−nIθ> max

i
xi

not differentiable at X(n) but

θ̂MLE
n = X(n)

[Super-efficient estimator]



Illustrations

Bernoulli B(p) likelihood

L(p|x1, . . . , xn) = {p/1−p}
∑
i xi (1− p)n

differentiable over (0, 1) and

p̂MLE
n = Xn



Illustrations

Normal N(µ,σ2) likelihood

L(µ,σ|x1, . . . , xn) ∝ σ−n exp

{
−
1

2σ2

n∑
i=1

(xi − x̄n)
2 −

1

2σ2

n∑
i=1

(x̄n − µ)2

}

differentiable with

(µ̂MLE
n , σ̂2

MLE

n ) =

(
Xn,

1

n

n∑
i=1

(Xi − Xn)
2

)



The fundamental theorem of Statistics

fundamental theorem

Under appropriate conditions, if (X1, . . . ,Xn)
iid
∼ f(x|θ), if θ̂n is

solution of ∇ log f(X1, . . . ,Xn|θ) = 0, then

√
n{θ̂n − θ}

L−→ Np(0, I(θ)
−1)

Equivalent of CLT for estimation purposes

I(θ) can be replaced with I(θ̂n)

or even Î(θ̂n) = −1/n
∑
i∇∇T log f(xi|θ̂n)
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Assumptions

θ identifiable

support of f(·|θ) constant in θ

`(θ) thrice differentiable

[the killer] there exists g(x) integrable against f(·|θ) in a
neighbourhood of the true parameter such that∣∣∣∣ ∂3

∂θi∂θj∂θk
f(·|θ)

∣∣∣∣ 6 g(x)
the following identity stands [mostly superfluous]

I(θ) = Eθ
[
∇ log f(X|θ) {∇ log f(X|θ)}T

]
= −Eθ

[
∇T∇ log f(X|θ)

]
θ̂n converges in probability to θ [similarly superfluous]

[Boos & Stefanski, 2014, p.286; Lehmann & Casella, 1998]



Inefficient MLEs

Example of MLE of η = ||θ||2 when x ∼ Np(θ, Ip):

η̂MLE = ||x||2

Then Eη[||x||2] = η+ p diverges away from η with p

Note: Consistent and efficient behaviour when considering the
MLE of η based on

Z = ||X||2 ∼ χ2p(η)

[Robert, 2001]



Inefficient MLEs

Example of MLE of η = ||θ||2 when x ∼ Np(θ, Ip):

η̂MLE = ||x||2

Then Eη[||x||2] = η+ p diverges away from η with p

Note: Consistent and efficient behaviour when considering the
MLE of η based on

Z = ||X||2 ∼ χ2p(η)

[Robert, 2001]



Inefficient MLEs

Example of MLE of η = ||θ||2 when x ∼ Np(θ, Ip):

η̂MLE = ||x||2

Then Eη[||x||2] = η+ p diverges away from η with p

Note: Consistent and efficient behaviour when considering the
MLE of η based on

Z = ||X||2 ∼ χ2p(η)

[Robert, 2001]



Inconsistent MLEs

Take X1, . . . ,Xn
iid
∼ fθ(x) with

fθ(x) = (1− θ)
1

δ(θ)
f0(x−θ/δ(θ)) + θf1(x)

for θ ∈ [0, 1],

f1(x) = I[−1,1](x) f0(x) = (1− |x|)I[−1,1](x)

and
δ(θ) = (1− θ) exp{−(1− θ)−4 + 1}

Then for any θ
θ̂MLE
n

a.s.−→ 1

[Ferguson, 1982; John Wellner’s slides, ca. 2005]



Inconsistent MLEs

Consider Xij i = 1, . . . ,n, j = 1, 2 with Xij ∼ N(µi,σ
2). Then

µ̂MLE
i = Xi1+Xi2/2 σ̂2

MLE
=
1

4n

n∑
i=1

(Xi1 − Xi2)
2

Therefore
σ̂2

MLE a.s.−→ σ2/2

[Neyman & Scott, 1948]



Inconsistent MLEs

Consider Xij i = 1, . . . ,n, j = 1, 2 with Xij ∼ N(µi,σ
2). Then

µ̂MLE
i = Xi1+Xi2/2 σ̂2

MLE
=
1

4n

n∑
i=1

(Xi1 − Xi2)
2

Therefore
σ̂2

MLE a.s.−→ σ2/2

[Neyman & Scott, 1948]

Note: Working solely with Xi1 − Xi2 ∼ N(0, 2σ2) produces a
consistent MLE



Likelihood optimisation

Practical optimisation of the likelihood function

θ? = arg max
θ
L(θ|x) =

n∏
i=1

g(Xi|θ).

assuming X = (X1, . . . ,Xn)
iid
∼ g(x|θ)

analytical resolution feasible for exponential families

∇T(θ)
n∑
i=1

S(xi) = n∇τ(θ)

use of standard numerical techniques like Newton-Raphson

θ(t+1) = θ(t) + Iobs(X, θ(t))−1∇`(θ(t))

with `(.) log-likelihood and Iobs observed information matrix
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EM algorithm

Cases where g is too complex for the above to work

Special case when g is a marginal

g(x|θ) =

∫
Z

f(x, z|θ) dz

Z called latent or missing variable



Illustrations

censored data

X = min(X∗,a) X∗ ∼ N(θ, 1)

mixture model

X ∼ .3N1(µ0, 1) + .7N1(µ1, 1),

desequilibrium model

X = min(X∗, Y∗) X∗ ∼ f1(x|θ) Y∗ ∼ f2(x|θ)



Completion

EM algorithm based on completing data x with z, such as

(X,Z) ∼ f(x, z|θ)

Z missing data vector and pair (X,Z) complete data vector

Conditional density of Z given x:

k(z|θ, x) =
f(x, z|θ)

g(x|θ)
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(X,Z) ∼ f(x, z|θ)

Z missing data vector and pair (X,Z) complete data vector

Conditional density of Z given x:
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f(x, z|θ)

g(x|θ)



Likelihood decomposition

Likelihood associated with complete data (x, z)

Lc(θ|x, z) = f(x, z|θ)

and likelihood for observed data

L(θ|x)

such that

log L(θ|x) = E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x] (1)

for any θ0, with integration operated against conditionnal
distribution of Z given observables (and parameters), k(z|θ0, x)



[A tale of] two θ’s

There are “two θ’s” ! : in (1), θ0 is a fixed (and arbitrary) value
driving integration, while θ both free (and variable)

Maximising observed likelihood

L(θ|x)

equivalent to maximise r.h.s. term in (1)

E[log Lc(θ|x,Z)|θ0, x] − E[log k(Z|θ, x)|θ0, x]



[A tale of] two θ’s

There are “two θ’s” ! : in (1), θ0 is a fixed (and arbitrary) value
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Intuition for EM

Instead of maximising wrt θ r.h.s. term in (1), maximise only

E[log Lc(θ|x,Z)|θ0, x]

Maximisation of complete log-likelihood impossible since z

unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term θ0
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Expectation–Maximisation

Expectation of complete log-likelihood denoted

Q(θ|θ0, x) = E[log Lc(θ|x,Z)|θ0, x]

to stress dependence on θ0 and sample x

Principle

EM derives sequence of estimators θ̂(j), j = 1, 2, . . ., through
iteration of Expectation and Maximisation steps:

Q(θ̂(j)|θ̂(j−1), x) = max
θ
Q(θ|θ̂(j−1), x).
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EM Algorithm

Iterate (in m)

1 (step E) Compute

Q(θ|θ̂(m), x) = E[log Lc(θ|x,Z)|θ̂(m), x] ,

2 (step M) Maximise Q(θ|θ̂(m), x) in θ and set

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m), x).

until a fixed point [of Q] is found
[Dempster, Laird, & Rubin, 1978]



Justification

Observed likelihood
L(θ|x)

increases at every EM step

L(θ̂(m+1)|x) > L(θ̂(m)|x)

[Exercice: use Jensen and (1)]



Censored data

Normal N(θ, 1) sample right-censored

L(θ|x) =
1

(2π)m/2
exp

{
−
1

2

m∑
i=1

(xi − θ)
2

}
[1−Φ(a− θ)]n−m

Associated complete log-likelihood:

log Lc(θ|x, z) ∝ −
1

2

m∑
i=1

(xi − θ)
2 −

1

2

n∑
i=m+1

(zi − θ)
2 ,

where zi’s are censored observations, with density

k(z|θ, x) =
exp{− 1

2(z− θ)
2}

√
2π[1−Φ(a− θ)]

=
ϕ(z− θ)

1−Φ(a− θ)
, a < z.
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Censored data (2)

At j-th EM iteration

Q(θ|θ̂(j), x) ∝ −
1

2

m∑
i=1

(xi − θ)
2 −

1

2
E

[
n∑

i=m+1

(Zi − θ)
2

∣∣∣∣∣ θ̂(j), x
]

∝ −
1

2

m∑
i=1

(xi − θ)
2

−
1

2

n∑
i=m+1

∫∞
a

(zi − θ)
2k(z|θ̂(j), x)dzi



Censored data (3)

Differenciating in θ,

n θ̂(j+1) = mx̄+ (n−m)E[Z|θ̂(j)] ,

with

E[Z|θ̂(j)] =
∫∞
a

zk(z|θ̂(j), x)dz = θ̂(j) +
ϕ(a− θ̂(j))

1−Φ(a− θ̂(j))
.

Hence, EM sequence provided by

θ̂(j+1) =
m

n
x̄+

n−m

n

[
θ̂(j) +

ϕ(a− θ̂(j))

1−Φ(a− θ̂(j))

]
,

which converges to likelihood maximum θ̂
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Mixtures

Mixture of two normal distributions with unknown means

.3N1(µ0, 1) + .7N1(µ1, 1),

sample X1, . . . ,Xn and parameter θ = (µ0,µ1)
Missing data: Zi ∈ {0, 1}, indicator of component associated with
Xi ,

Xi|zi ∼ N(µzi , 1) Zi ∼ B(.7)

Complete likelihood

log Lc(θ|x, z) ∝ −
1

2

n∑
i=1

zi(xi − µ1)
2 −

1

2

n∑
i=1

(1− zi)(xi − µ0)
2

= −
1

2
n1(µ̂1 − µ1)

2 −
1

2
(n− n1)(µ̂0 − µ0)

2

with

n1 =

n∑
i=1

zi , n1µ̂1 =

n∑
i=1

zixi , (n− n1)µ̂0 =

n∑
i=1

(1− zi)xi
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Mixtures (2)

At j-th EM iteration

Q(θ|θ̂(j), x) =
1

2
E
[
n1(µ̂1 − µ1)

2 + (n− n1)(µ̂0 − µ0)
2|θ̂(j), x

]
Differenciating in θ

θ̂(j+1) =


E
[
n1µ̂1

∣∣θ̂(j), x] /E [n1|θ̂(j), x]
E
[
(n− n1)µ̂0

∣∣θ̂(j), x] /E [(n− n1)|θ̂(j), x
]




Mixtures (3)

Hence θ̂(j+1) given by
∑n
i=1 E

[
Zi
∣∣θ̂(j), xi] xi /∑n

i=1 E
[
Zi|θ̂(j), xi

]
∑n
i=1 E

[
(1− Zi)

∣∣θ̂(j), xi] xi /∑n
i=1 E

[
(1− Zi)|θ̂(j), xi

]


Conclusion

Step (E) in EM replaces missing data Zi with their conditional
expectation, given x (expectation that depend on θ̂(m)).



Mixtures (3)

−1 0 1 2 3

−
1

0
1

2
3

µ1

µ 2

EM iterations for several starting values



Properties

EM algorithm such that

it converges to local maximum or saddle-point

it depends on the initial condition θ(0)

it requires several initial values when likelihood multimodal



Chapter 4 :
Decision theory and Bayesian analysis

5 Decision theory and Bayesian analysis
Bayesian modelling
Conjugate priors
Improper prior distributions
Bayesian inference



A pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer?

sounds like an impossible task

one observation x = 11 and two unknowns, nsocks and npairs

writing the likelihood is a challenge [exercise]
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A prioris on socks

Given parameters nsocks and npairs, set of socks

S =
{
s1, s1, . . . , snpairs , snpairs , snpairs+1, . . . , snsocks

}
and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning

If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
nsocks I’m going to use a negative binomial with mean 30 and
standard deviation 15.
On npairs/2nsocks I’m going to put a Beta prior distribution that puts
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Simulating the experiment

Given a prior distribution on nsocks and npairs,

nsocks ∼ Neg(30, 15) npairs|nsocks ∼ nsocks/2Be(15, 2)

possible to

1 generate new values
of nsocks and npairs,

2 generate a new
observation of X,
number of unique
socks out of 11.

3 accept the pair
(nsocks,npairs) if the
realisation of X is
equal to 11
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The outcome of this simulation method returns a distribution on
the pair (nsocks,npairs) that is the conditional distribution of the
pair given the observation X = 11
Proof: Generations from π(nsocks,npairs) are accepted with probability

P {X = 11|(nsocks,npairs)}
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General principle

Bayesian principle Given a probability
distribution on the parameter θ called
prior

π(θ)

and an observation x of X ∼ f(x|θ),
Bayesian inference relies on the
conditional distribution of θ given X = x

π(θ|x) =
π(θ)f(x|θ)∫
π(θ)f(x|θ)dθ

called posterior distribution
[Bayes’ theorem]

Thomas Bayes
(FRS, 1701?-1761)



Bayesian inference

Posterior distribution
π(θ|x)

as distribution on θ the parameter conditional on x the
observation used for all aspects of inference

point estimation, e.g., E[h(θ)|x];
confidence intervals, e.g.,
{θ; π(θ|x) > κ};

tests of hypotheses, e.g.,
π(θ = 0|x) ; and

prediction of future observations



Central tool... central to Bayesian inference

Posterior defined up to a constant as

π(θ|x) ∝ f(x|θ)π(θ)

Operates conditional upon the observation(s) X = x

Integrate simultaneously prior information and information
brought by x

Avoids averaging over the unobserved values of X

Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected [domino effect]

Provides a complete inferential scope and a unique motor of
inference



The thorny issue of the prior distribution

Compared with likelihood inference, based solely on

L(θ|x1, . . . , xn) =

n∏
i=1

f(xi|θ)

Bayesian inference introduces an extra measure π(θ) that is chosen
a priori, hence subjectively by the statistician based on

hypothetical range of θ

guesstimates of θ with an associated (lack of) precision

type of sampling distribution

Note There also exist reference solutions (see below)



The thorny issue of the prior distribution

Compared with likelihood inference, based solely on

L(θ|x1, . . . , xn) =

n∏
i=1

f(xi|θ)

Bayesian inference introduces an extra measure π(θ) that is chosen
a priori, hence subjectively by the statistician based on

hypothetical range of θ

guesstimates of θ with an associated (lack of) precision

type of sampling distribution

Note There also exist reference solutions (see below)



Bayes’ example

Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.



Bayes’ example

Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.

Thomas Bayes’ question

Given X, what inference can we
make on p?



Bayes’ example

Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.

Modern translation:

Derive the posterior distribution of p
given X, when

p ∼ U([0, 1]) and X ∼ B(n,p)



Resolution

Since

P(X = x|p) =

(
n

x

)
px(1− p)n−x,

P(a < p < b and X = x) =

∫b
a

(
n

x

)
px(1− p)n−xdp

and

P(X = x) =

∫ 1
0

(
n

x

)
px(1− p)n−x dp,



Resolution (2)

then

P(a < p < b|X = x) =

∫b
a

(
n
x

)
px(1− p)n−x dp∫1

0

(
n
x

)
px(1− p)n−x dp

=

∫b
a p

x(1− p)n−x dp

B(x+ 1,n− x+ 1)
,

i.e.
p|x ∼ Be(x+ 1,n− x+ 1)

[Beta distribution]
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Conjugate priors

Easiest case is when prior distribution is within parametric family

Conjugacy

In this case, posterior inference is tractable and reduces to
updating the hyperparameters∗ of the prior

Example In Thomas Bayes’ example, the Be(a,b) prior is
conjugate

∗The hyperparameters are parameters of the priors; they are most often not
treated as random variables
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Exponential families and conjugacy

The family of exponential distributions

f(x|θ) = C(θ)h(x) exp{R(θ) · T(x)}
= h(x) exp{R(θ) · T(x) − τ(θ)}

allows for conjugate priors

π(θ|µ, λ) = K(µ, λ) eθ.µ−λψ(θ)

Following Pitman-Koopman-Darmois’ Lemma, only case [besides
uniform distributions]
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Illustration

Discrete/Multinomial & Dirichlet

If observations consist of positive counts Y1, . . . ,Yd modelled by a
Multinomial M(θ1, . . . ,θp) distribution

L(y|θ,n) =
n!∏d
i=1 yi!

d∏
i=1

θ
yi
i

conjugate family is the Dirichlet D(α1, . . . ,αd) distribution

π(θ|α) =
Γ(
∑d
i=1 αi)∏d

i=1 Γ(αi)

d∏
i

θαi−1i

defined on the probability simplex (θi > 0,
∑d
i=1 θi = 1), where Γ

is the gamma function Γ(α) =
∫∞
0 t

α−1e−tdt



Standard exponential families

f(x|θ) π(θ) π(θ|x)

Normal Normal

N(θ,σ2) N(µ, τ2) N(ρ(σ2µ+ τ2x), ρσ2τ2)

ρ−1 = σ2 + τ2

Poisson Gamma
P(θ) G(α,β) G(α+ x,β+ 1)

Gamma Gamma
G(ν, θ) G(α,β) G(α+ ν,β+ x)

Binomial Beta
B(n, θ) Be(α,β) Be(α+ x,β+ n− x)



Standard exponential families [2]

f(x|θ) π(θ) π(θ|x)
Negative Binomial Beta

Neg(m, θ) Be(α,β) Be(α+m,β+ x)
Multinomial Dirichlet

Mk(θ1, . . . ,θk) D(α1, . . . ,αk) D(α1 + x1, . . . ,αk + xk)
Normal Gamma

N(µ, 1/θ) Ga(α,β) G(α+ 0.5,β+ (µ− x)2/2)



Linearity of the posterior mean

Lemma If
θ ∼ πλ,x0(θ) ∝ e

θ·x0−λψ(θ)

with x0 ∈ X, then

Eπ[∇ψ(θ)] = x0
λ

.

Therefore, if x1, . . . , xn are i.i.d. f(x|θ),

Eπ[∇ψ(θ)|x1, . . . , xn] =
x0 + nx̄

λ+ n



Improper distributions

Necessary extension from a prior probability distribution to a prior
σ-finite positive measure π such that∫

Θ

π(θ)dθ = +∞
Improper prior distribution

Note A σ-finite density with ∫
Θ

π(θ)dθ < +∞
can be renormalised into a probability density
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Justifications

Often automatic prior determination leads to improper prior
distributions

1 Only way to derive a prior in noninformative settings

2 Performances of estimators derived from these generalized
distributions usually good

3 Improper priors often occur as limits of proper distributions

4 More robust answer against possible misspecifications of the
prior

5 Penalization factor
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Validation

Extension of the posterior distribution π(θ|x) associated with an
improper prior π as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ)dθ
,

when ∫
Θ

f(x|θ)π(θ)dθ <∞
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Normal illustration

If x ∼ N(θ, 1) and π(θ) = $, constant, the pseudo marginal
distribution is

m(x) = $

∫+∞
−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = $

and the posterior distribution of θ is

π(θ | x) =
1√
2π

exp
{
−(x−θ)2/2

}
,

i.e., corresponds to a N(x, 1) distribution.
[independent of ω]
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Warning

The mistake is to think of them [non-informative priors] as
representing ignorance

[Lindley, 1990]

Normal illustration:
Consider a θ ∼ N(0, τ2) prior. Then

lim
τ→∞ Pπ (θ ∈ [a,b]) = 0

for any (a,b)



Warning

Noninformative priors cannot be expected to represent
exactly total ignorance about the problem at hand, but
should rather be taken as reference or default priors, upon
which everyone could fall back when the prior information
is missing.

[Kass and Wasserman, 1996]

Normal illustration:
Consider a θ ∼ N(0, τ2) prior. Then

lim
τ→∞ Pπ (θ ∈ [a,b]) = 0

for any (a,b)



Haldane prior

Consider a binomial observation, x ∼ B(n,p), and

π∗(p) ∝ [p(1− p)]−1

[Haldane, 1931]
The marginal distribution,

m(x) =

∫ 1
0

[p(1− p)]−1
(
n

x

)
px(1− p)n−xdp

= B(x,n− x),

is only defined for x 6= 0,n .
[Not recommended!]
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The Jeffreys prior

Based on Fisher information

I(θ) = Eθ
[
∂`

∂θt
∂`

∂θ

]
Jeffreys prior density is

π∗(θ) ∝ |I(θ)|1/2

Pros & Cons

relates to information theory

agrees with most invariant priors

parameterisation invariant
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Example

If x ∼ Np(θ, Ip), Jeffreys’ prior is

π(θ) ∝ 1

and if η = ‖θ‖2,
π(η) = ηp/2−1

and
Eπ[η|x] = ‖x‖2 + p

with bias 2p
[Not recommended!]



Example

If x ∼ B(n, θ), Jeffreys’ prior is

Be(1/2, 1/2)

and, if n ∼ Neg(x, θ), Jeffreys’ prior is

π2(θ) = −Eθ
[
∂2

∂θ2
log f(x|θ)

]
= Eθ

[
x

θ2
+

n− x

(1− θ)2

]
=

x

θ2(1− θ)
,

∝ θ−1(1− θ)−1/2



MAP estimator

When considering estimates of the parameter θ, one default
solution is the maximum a posteriori (MAP) estimator

arg max
θ
`(θ|x)π(θ)

Motivations

Most likely value of θ

Penalized likelihood estimator

Further appeal in restricted parameter spaces
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Illustration

Consider x ∼ B(n,p). Possible priors:

π∗(p) =
1

B(1/2, 1/2)
p−1/2(1− p)−1/2 ,

π1(p) = 1 and π2(p) = p
−1(1− p)−1 .

Corresponding MAP estimators:

δ∗(x) = max

(
x− 1/2

n− 1
, 0

)
,

δ1(x) =
x

n
,

δ2(x) = max

(
x− 1

n− 2
, 0

)
.



Illustration [opposite]

MAP not always appropriate:
When

f(x|θ) =
1

π

[
1+ (x− θ)2

]−1
,

and

π(θ) =
1

2
e−|θ|

then MAP estimator of θ is always

δ∗(x) = 0



Prediction

Inference on new observations depending on the same parameter,
conditional on the current data

If x ∼ f(x|θ) [observed], θ ∼ π(θ), and z ∼ g(z|x, θ) [unobserved],
predictive of z is marginal conditional

gπ(z|x) =

∫
Θ

g(z|x, θ)π(θ|x)dθ.



time series illustration

Consider the AR(1) model

xt = ρxt−1 + εt εt ∼ N(0,σ2)

predictive of xT is then

xT |x1:(T−1) ∼

∫
σ−1√
2π

exp{−(xT−ρxT−1)
2/2σ2}π(ρ,σ|x1:(T−1))dρdσ ,

and π(ρ,σ|x1:(T−1)) can be expressed in closed form



Posterior mean

Theorem The solution to

arg min
δ

Eπ
[
||θ− δ||2

∣∣ x]
is given by

δπ(x) = Eπ [θ|x]

[Posterior mean = Bayes estimator under quadratic loss]



Posterior median

Theorem When θ ∈ R, the solution to

arg min
δ

Eπ [ |θ− δ| | x]

is given by
δπ(x) = medianπ (θ|x)

[Posterior mean = Bayes estimator under absolute loss]

Obvious extension to

arg min
δ

Eπ
[

p∑
i=1

|θi − δ|

∣∣∣∣∣ x
]
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Inference with conjugate priors

For conjugate distributions, posterior expectations of the natural
parameters may be expressed analytically, for one or several
observations.

Distribution Conjugate prior Posterior mean
Normal Normal

N(θ,σ2) N(µ, τ2)
µσ2 + τ2x

σ2 + τ2
Poisson Gamma

P(θ) G(α,β)
α+ x

β+ 1



Inference with conjugate priors

For conjugate distributions, posterior expectations of the natural
parameters may be expressed analytically, for one or several
observations.

Distribution Conjugate prior Posterior mean
Gamma Gamma

G(ν, θ) G(α,β)
α+ ν

β+ x
Binomial Beta

B(n, θ) Be(α,β)
α+ x

α+ β+ n
Negative binomial Beta

Neg(n, θ) Be(α,β)
α+ n

α+ β+ x+ n
Multinomial Dirichlet

Mk(n; θ1, . . . ,θk) D(α1, . . . ,αk)
αi + xi(∑
j αj

)
+ n

Normal Gamma

N(µ, 1/θ) G(α/2,β/2)
α+ 1

β+ (µ− x)2



Illustration

Consider
x1, ..., xn ∼ U([0, θ])

and θ ∼ Pa(θ0,α). Then

θ|x1, ..., xn ∼ Pa(max (θ0, x1, ..., xn),α+ n)

and

δπ(x1, ..., xn) =
α+ n

α+ n− 1
max (θ0, x1, ..., xn).



HPD region

Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region



HPD region

Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region

Example case x ∼ N(θ, 1) and θ ∼ N(0, 10). Then

θ|x ∼ N (10/11x, 10/11)

and

Cπ(x) =
{
θ; |θ− 10/11x| > k′

}
= (10/11x− k′, 10/11x+ k′)



HPD region

Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region

Warning Frequentist coverage is not 1− α, hence name of credible
rather than confidence region

Further validation of HPD regions as smallest-volume
1− α-coverage regions
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