Université Paris-Dauphine L3 - Statistical modelling

QCM 1

In this quizz, you have to check the correct answer(s) to the question. If none fits, do not check any box.

Let X_i (i = 1, 2, ...) be iid random variables taking values in \mathbb{N}^* , such that Question 1

$$P(X=k) = Ck^{-3}, \quad \forall k \ge 1,$$

with C > 0 a constant and define

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Which of the following statements are true?

 \bar{X}_n converges in probability to a constant $\mu \in \mathbb{R}$.

There exist $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ such that $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ converges in distribution to a standard normal distribution. \bar{X}_n converges in \mathbb{L}^2 to a constant $\mu \in \mathbb{R}$.

 \overline{X}_n converges a.s. to a constant $\mu \in \mathbb{R}$.

Question 2 Let X be a random variable with density

$$f(x) = \frac{3}{2}x^{-5/2}\mathbb{I}_{(1,\infty)}(x)$$

The expectation $\mathbb{E}[X^k]$ only exists when

$$k \le 2 \\ k \le 0 \\ k < 3/2 \\ k < 5/2 \\ k < -5/2 \\ k \le 1$$

Let X (resp. Y) be a random variable distributed from the geometric dis-Question 3 tribution with parameter p_1 (resp. p_2). We suppose that X and Y are independent. The distribution of the random variable $Z = \min\{X, Y\}$ is

the geometric distribution with parameter $p_1 + p_2 - p_1 p_2$.

- the geometric distribution with parameter $(1 p_1)(1 p_2)$?
- the exponential distribution with parameter $\frac{\min\{p_1, p_2\}}{p_1+p_2}$?
- the geometric distribution with parameter $p_1 + p_2$.

Corrected

Question 4

Let X_1 and X_2 be two independent random variables following an exponential distribution such that $\mathbb{E}[X_1] = \frac{1}{\lambda_1}$ and $\mathbb{E}[X_2] = \frac{1}{\lambda_2}$ with $\lambda_1, \lambda_2 > 0$. We recall that the p.d.f of an exponentially-distributed random variable with parameter λ is $f(x) = \lambda e^{-\lambda x}$.

The distribution of $\min(X_1, X_2)$ is

The exponential distribution with parameter $\frac{\lambda_1}{\lambda_2}$

The exponential distribution with parameter $\lambda_1 + \lambda_2$

The normal distribution
$$\mathcal{N}(\frac{1}{\lambda_1\lambda_2}, (\lambda_1\lambda_2)^2)$$

The uniform distribution on the interval $[\min(\lambda_1, \lambda_2), \max(\lambda_1, \lambda_2)]$

Question 5 Let X_1, X_2, \ldots be real-valued, iid random variables with mean $\mu \neq 0$ and finite variance $\sigma^2 > 0$. Let $\bar{X} = (1/n) \sum_{i=1}^n X_i$ denote the empirical mean. Then $(\bar{X})^2$ converges in distribution to a random variable whose distribution is

Question 6 Let X follow an exponential distribution with parameter $\lambda > 0$ (i.e. $\mathbb{E}(X) = \frac{1}{\lambda}$). Then $\mathbb{E}(X^2)$ is

Let X be a random variable with density

$$f(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$
, with $\mu \in \mathbb{R}$ and $b > 0$.

The cdf of X in realisation t is given by

$$\begin{array}{c} \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) \\ \mathbf{I}\left\{t \ge \mu\right\} + \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) (\mathbf{I}\left\{t < \mu\right\} - \mathbf{I}\left\{t \ge \mu\right\}) \\ 1 - \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) \\ \mathbf{I}\left\{t < \mu\right\} + \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) (\mathbf{I}\left\{t \ge \mu\right\} - \mathbf{I}\left\{t < \mu\right\}) \\ \frac{1}{2} \exp\left(-\frac{|t-\mu|}{b}\right) \end{array}$$

Question 8 Let $f(x) = \frac{|\ln(x)|}{x^3+1} \mathbf{1}_{x>0}$, then

there exists K such that Kf is the density of a r.v. that admits a mean but not a variance

there exists K such that Kf is the density of a r.v. that admits a mean and a variance there exists no K such that Kf is a density.

there exists K such that Kf is a density of a r.v. that admits neither a mean nor a variance

Corrected

Question 9 Take $X, Y \stackrel{\widetilde{idd}}{\sim} \mathcal{N}(1, 1)$. The expectation $\mathbb{E}[X/Y]$ is equal to $\begin{array}{c|c} 1 \\ 2 \\ +\infty \\ 0 \end{array}$ it does not exist

Question 10 Let X be a normally distributed $\mathcal{N}(0, \sigma^2)$, $\sigma > 0$ random variable and let $Y = \underline{a}X^2 + bX + c$. For which values of (a, b, c) are X and Y uncorrelated?

 $a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$ a = 0, b = 1, c = 1 $a \in \mathbb{R}, b = 0, c \in \mathbb{R}$ X and Y are always correlated

Question 11 To produce a random variable X with density

$$f(x) = \sin(x)\mathbf{I}_{[0,\pi/2]}(x)$$

one can rely on the following transform of a uniform $U \sim U_{[0,1]}$

$$X = \cos(U) + \pi/2$$

$$X = \arcsin(U)$$

$$X = \arccos(1 - U)$$

$$X = \cos(U)$$

$$X = \sin(U)$$

Question 12 Let X_1, X_2, \ldots be real-valued, iid random variables with mean $\mu \neq 0$ and finite variance $\sigma^2 > 0$. Let $\bar{X} = (1/n) \sum_{i=1}^n X_i$ denote the empirical mean. Then $(\bar{X})^2$ converges in distribution to a random variable whose distribution is

$$\begin{array}{c|c} \mathcal{N}(\mu^4, 16\mu^2\sigma^4) \\ \mathcal{N}(\mu^2, \sigma^4) \\ \mathcal{N}(\mu^2, 4\mu^2\sigma^2) \\ \mathcal{N}(\mu, \sigma^2) \\ \end{array}$$
 None of the above

Question 13

Let X_1 and X_2 be two independent random variables following an exponential distribution such that $\mathbb{E}[X_1] = \frac{1}{\lambda_1}$ and $\mathbb{E}[X_2] = \frac{1}{\lambda_2}$ with $\lambda_1, \lambda_2 > 0$. We recall that the p.d.f of an exponentially-distributed random variable with parameter λ is $f(x) = \lambda e^{-\lambda x}$. The distribution of min (X_1, X_2) is

-] The exponential distribution with parameter $\frac{\lambda_1}{\lambda_2}$
- The uniform distribution on the interval $[\min(\lambda_1, \lambda_2), \max(\lambda_1, \lambda_2)]$
- The normal distribution $\mathcal{N}(\frac{1}{\lambda_1\lambda_2}, (\lambda_1\lambda_2)^2)$

The exponential distribution with parameter $\lambda_1 + \lambda_2$

Question 14 Take $X, Y \stackrel{\widetilde{id}}{\sim} \mathcal{N}(1, 1)$. The expectation $\mathbb{E}[X/Y]$ is equal to \square 0 \square it does not exist $\square +\infty$ \square 1 \square 2

Question 15 Let X be a random variable with density

$$f(x) = \frac{3}{2}x^{-5/2}\mathbb{I}_{(1,\infty)}(x)$$

The expectation $\mathbb{E}[X^k]$ only exists when

Question 16 Let X follow an exponential distribution with parameter $\lambda > 0$ (i.e. $\mathbb{E}(X) = \frac{1}{\lambda}$). Then $\mathbb{E}(X^2)$ is

Question 17 To produce a random variable *X* with density

$$f(x) = \sin(x)\mathbf{I}_{[0,\pi/2]}(x)$$

one can rely on the following transform of a uniform $U \sim U_{[0,1]}$

$$X = \arcsin(U)$$

$$X = \cos(U) + \pi/2$$

$$X = \cos(U)$$

$$X = \sin(U)$$

$$X = \arccos(1 - U)$$

Question 18 Let X be a normally distributed $\mathcal{N}(0, \sigma^2)$, $\sigma > 0$ random variable and let $Y = aX^2 + bX + c$. For which values of (a, b, c) are X and Y uncorrelated?

 $a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$ a = 0, b = 1, c = 1 $a \in \mathbb{R}, b = 0, c \in \mathbb{R}$ X and Y are always correlated

Corrected

Let X (resp. Y) be a random variable distributed from the geometric dis-Question 19 tribution with parameter p_1 (resp. p_2). We suppose that X and Y are independent. The distribution of the random variable $Z = \min\{X, Y\}$ is

-] the exponential distribution with parameter $\frac{\min\{p_1, p_2\}}{p_1+p_2}$?
 - the geometric distribution with parameter $p_1 + p_2 p_1 p_2$.
- the geometric distribution with parameter $(1 p_1)(1 p_2)$?
- the geometric distribution with parameter $p_1 + p_2$.

Let $f(x) = \frac{|\ln(x)|}{x^3+1} \mathbf{1}_{x>0}$, then Question 20

- there exists no K such that Kf is a density.
- there exists K such that Kf is the density of a r.v. that admits a mean and a variance there exists K such that Kf is the density of a r.v. that admits a mean but not a variance
- there exists K such that Kf is a density of a r.v. that admits neither a mean nor a variance

Question 21 Let X be a random variable with density

$$f(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right), \quad \text{with} \quad \mu \in \mathbb{R} \quad \text{and} \quad b > 0.$$

The cdf of X in realisation t is given by

$$\begin{array}{c} \left[\begin{array}{c} \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) \\ \hline \frac{1}{2} \exp\left(-\frac{|t-\mu|}{b}\right) \\ \hline \end{array} \right] \\ 1 - \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) \\ \hline \end{array} \\ \mathbf{I} \{t \ge \mu\} + \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) (\mathbf{I} \{t < \mu\} - \mathbf{I} \{t \ge \mu\}) \\ \hline \\ \mathbf{I} \{t < \mu\} + \frac{1}{2} \exp\left(-\frac{t-\mu}{b}\right) (\mathbf{I} \{t \ge \mu\} - \mathbf{I} \{t < \mu\}) \\ \end{array}$$

Question 22 Let X_i (i = 1, 2, ...) be iid random variables taking values in \mathbb{N}^* , such that

$$P(X=k) = Ck^{-3}, \quad \forall k \ge 1,$$

with C > 0 a constant and define

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Which of the following statements are true?

There exist $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ such that $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ converges in distribution to a standard normal distribution.

 \bar{X}_n converges a.s. to a constant $\mu \in \mathbb{R}$.

 \overline{X}_n converges in \mathbb{L}^2 to a constant $\mu \in \mathbb{R}$.

 \bar{X}_n converges in probability to a constant $\mu \in \mathbb{R}$.