Université Paris-Dauphine L3 - Statistical modelling Année 2020-2021

QCM 1 sept 2020

Dans cet exercice il vous est demandé de donner la ou les bonnes réponses. **Question 1** Consider a sequence X_n of independent rvs such that $\mathbb{P}(X_n = 1) = 1/n = 1 - \mathbb{P}(X_n = 0)$. Which of the following statements is true about the convergence of X_n ? not at all in probability and almost surely in probability but not almost surely almost surely but not in probability in distribution

Question 2 On $\Omega = [0, 1]$, we define $X_n = \mathbf{1}_{[0, 1/2]}$ if *n* is even, $X_n = \mathbf{1}_{[1/2, 1]}$ if *n* is odd. Then :

 X_n converges in L^1

 X_n converges in probability

 X_n converges a.s

 X_n converges in distribution

Question 3 Let X_1, X_2, \ldots be real-valued, independent and identically distributed random variables with mean $\mu \neq 0$ and finite variance $\sigma^2 > 0$. Let $\bar{X} = (1/n) \sum_{i=1}^n X_i$ denote the empirical mean. Then $(\bar{X})^2$ converges in distribution to a random variable which distribution is :

Question 4 Let X_1, X_2, \ldots be an independent sequence of real-valued random variables such that $X_n \sim \text{Bernoulli}(\frac{1}{n})$. Which statement about the convergence of the sequence $(X_n)_n$ is true?

 $(X_n)_n$ converges to 0 in probability, in distribution and in p-th mean for all p > 0 but not almost surely.

 $(X_n)_n$ converges to 0 almost surely, in *p*-th mean for p = 2 and p = 3 only but not in probability nor in distribution.

 $(X_n)_n$ converges to 0 in probability and in distribution but not almost surely nor in quadratic mean (*p*-th mean for p = 2).

 $(X_n)_n$ converges to 0 almost surely and in *p*-th mean for all p > 0 but not in probability nor in distribution.

Corrected

Question 5 Let $f(x) = \frac{\ln(x)}{x^3+1} \mathbf{1}_{x>0}$, then

there exists K such that Kf is the density of a r.v. that admits a mean but not a variance

there exists K such that f is a density of a r.v. that admits neither a mean nor a variance

there exists no K such that f is a density.

there exists K such that f is the density of a r.v. that admits a mean and a variance

Question 6 Let X be a real-valued random variable and $f : \mathbb{R} \to \mathbb{R}$ a function. With which condition on f is f(X) a random variable?

- f is measurable
- f is bounded
- $\int f(X)$ is always a random variable
- None of the above
- $\int f(X)$ is never a random variable

Question 7 Let $a_n \to_{n\to\infty}^{\mathcal{L}} a \in R$ and $Z_n \to_{n\to\infty}^{a.s.} Z$, then e^{a_n}/Z_n converges :

- in probability
- almost surely
- in distribution
- not at all

Question 8 Let (X_n) and (Y_n) be two sequences of random variables converging in distribution to X and Y respectively.

- 1. $(X_n + Y_n)$ converges in distribution to X + Y
- 2. $(X_n Y_n)$ converges in distribution to XY
- 3. If Y = c is a constant, $(X_n Y_n)$ converges in distribution to cX

What statements are true?

